// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "codegen-inl.h" #include "macro-assembler.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- rax : number of arguments excluding receiver // -- rdi : called function (only guaranteed when // extra_args requires it) // -- rsi : context // -- rsp[0] : return address // -- rsp[8] : last argument // -- ... // -- rsp[8 * argc] : first argument (argc == rax) // -- rsp[8 * (argc +1)] : receiver // ----------------------------------- // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; __ pop(kScratchRegister); // Save return address. __ push(rdi); __ push(kScratchRegister); // Restore return address. } else { ASSERT(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects rax to contain the number of arguments // including the receiver and the extra arguments. __ addq(rax, Immediate(num_extra_args + 1)); __ JumpToExternalReference(ExternalReference(id), 1); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ push(rbp); __ movq(rbp, rsp); // Store the arguments adaptor context sentinel. __ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); // Push the function on the stack. __ push(rdi); // Preserve the number of arguments on the stack. Must preserve both // rax and rbx because these registers are used when copying the // arguments and the receiver. __ Integer32ToSmi(rcx, rax); __ push(rcx); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. Number is a Smi. __ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ movq(rsp, rbp); __ pop(rbp); // Remove caller arguments from the stack. __ pop(rcx); SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); __ push(rcx); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : actual number of arguments // -- rbx : expected number of arguments // -- rdx : code entry to call // ----------------------------------- Label invoke, dont_adapt_arguments; __ IncrementCounter(&Counters::arguments_adaptors, 1); Label enough, too_few; __ cmpq(rax, rbx); __ j(less, &too_few); __ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ j(equal, &dont_adapt_arguments); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(rax, Operand(rbp, rax, times_pointer_size, offset)); __ movq(rcx, Immediate(-1)); // account for receiver Label copy; __ bind(©); __ incq(rcx); __ push(Operand(rax, 0)); __ subq(rax, Immediate(kPointerSize)); __ cmpq(rcx, rbx); __ j(less, ©); __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(rdi, Operand(rbp, rax, times_pointer_size, offset)); __ movq(rcx, Immediate(-1)); // account for receiver Label copy; __ bind(©); __ incq(rcx); __ push(Operand(rdi, 0)); __ subq(rdi, Immediate(kPointerSize)); __ cmpq(rcx, rax); __ j(less, ©); // Fill remaining expected arguments with undefined values. Label fill; __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); __ bind(&fill); __ incq(rcx); __ push(kScratchRegister); __ cmpq(rcx, rbx); __ j(less, &fill); // Restore function pointer. __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } // Call the entry point. __ bind(&invoke); __ call(rdx); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ jmp(rdx); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // Stack Layout: // rsp[0]: Return address // rsp[1]: Argument n // rsp[2]: Argument n-1 // ... // rsp[n]: Argument 1 // rsp[n+1]: Receiver (function to call) // // rax contains the number of arguments, n, not counting the receiver. // // 1. Make sure we have at least one argument. { Label done; __ testq(rax, rax); __ j(not_zero, &done); __ pop(rbx); __ Push(Factory::undefined_value()); __ push(rbx); __ incq(rax); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack, check // if it is a function. Label non_function; // The function to call is at position n+1 on the stack. __ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize)); __ JumpIfSmi(rdi, &non_function); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &non_function); // 3a. Patch the first argument if necessary when calling a function. Label shift_arguments; { Label convert_to_object, use_global_receiver, patch_receiver; // Change context eagerly in case we need the global receiver. __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); __ movq(rbx, Operand(rsp, rax, times_pointer_size, 0)); __ JumpIfSmi(rbx, &convert_to_object); __ CompareRoot(rbx, Heap::kNullValueRootIndex); __ j(equal, &use_global_receiver); __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); __ j(equal, &use_global_receiver); __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx); __ j(below, &convert_to_object); __ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE); __ j(below_equal, &shift_arguments); __ bind(&convert_to_object); __ EnterInternalFrame(); // In order to preserve argument count. __ Integer32ToSmi(rax, rax); __ push(rax); __ push(rbx); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ movq(rbx, rax); __ pop(rax); __ SmiToInteger32(rax, rax); __ LeaveInternalFrame(); // Restore the function to rdi. __ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize)); __ jmp(&patch_receiver); // Use the global receiver object from the called function as the // receiver. __ bind(&use_global_receiver); const int kGlobalIndex = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; __ movq(rbx, FieldOperand(rsi, kGlobalIndex)); __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalContextOffset)); __ movq(rbx, FieldOperand(rbx, kGlobalIndex)); __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); __ bind(&patch_receiver); __ movq(Operand(rsp, rax, times_pointer_size, 0), rbx); __ jmp(&shift_arguments); } // 3b. Patch the first argument when calling a non-function. The // CALL_NON_FUNCTION builtin expects the non-function callee as // receiver, so overwrite the first argument which will ultimately // become the receiver. __ bind(&non_function); __ movq(Operand(rsp, rax, times_pointer_size, 0), rdi); __ xor_(rdi, rdi); // 4. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. __ bind(&shift_arguments); { Label loop; __ movq(rcx, rax); __ bind(&loop); __ movq(rbx, Operand(rsp, rcx, times_pointer_size, 0)); __ movq(Operand(rsp, rcx, times_pointer_size, 1 * kPointerSize), rbx); __ decq(rcx); __ j(not_sign, &loop); // While non-negative (to copy return address). __ pop(rbx); // Discard copy of return address. __ decq(rax); // One fewer argument (first argument is new receiver). } // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin. { Label function; __ testq(rdi, rdi); __ j(not_zero, &function); __ xor_(rbx, rbx); __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); __ Jump(Handle(builtin(ArgumentsAdaptorTrampoline)), RelocInfo::CODE_TARGET); __ bind(&function); } // 5b. Get the code to call from the function and check that the number of // expected arguments matches what we're providing. If so, jump // (tail-call) to the code in register edx without checking arguments. __ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movsxlq(rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); __ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); __ cmpq(rax, rbx); __ j(not_equal, Handle(builtin(ArgumentsAdaptorTrampoline)), RelocInfo::CODE_TARGET); ParameterCount expected(0); __ InvokeCode(rdx, expected, expected, JUMP_FUNCTION); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { // Stack at entry: // rsp: return address // rsp+8: arguments // rsp+16: receiver ("this") // rsp+24: function __ EnterInternalFrame(); // Stack frame: // rbp: Old base pointer // rbp[1]: return address // rbp[2]: function arguments // rbp[3]: receiver // rbp[4]: function static const int kArgumentsOffset = 2 * kPointerSize; static const int kReceiverOffset = 3 * kPointerSize; static const int kFunctionOffset = 4 * kPointerSize; __ push(Operand(rbp, kFunctionOffset)); __ push(Operand(rbp, kArgumentsOffset)); __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); // Check the stack for overflow. We are not trying need to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex); __ movq(rcx, rsp); // Make rcx the space we have left. The stack might already be overflowed // here which will cause rcx to become negative. __ subq(rcx, kScratchRegister); // Make rdx the space we need for the array when it is unrolled onto the // stack. __ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rax, kPointerSizeLog2); // Check if the arguments will overflow the stack. __ cmpq(rcx, rdx); __ j(greater, &okay); // Signed comparison. // Out of stack space. __ push(Operand(rbp, kFunctionOffset)); __ push(rax); __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION); __ bind(&okay); // End of stack check. // Push current index and limit. const int kLimitOffset = StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize; const int kIndexOffset = kLimitOffset - 1 * kPointerSize; __ push(rax); // limit __ push(Immediate(0)); // index // Change context eagerly to get the right global object if // necessary. __ movq(rdi, Operand(rbp, kFunctionOffset)); __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Compute the receiver. Label call_to_object, use_global_receiver, push_receiver; __ movq(rbx, Operand(rbp, kReceiverOffset)); __ JumpIfSmi(rbx, &call_to_object); __ CompareRoot(rbx, Heap::kNullValueRootIndex); __ j(equal, &use_global_receiver); __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); __ j(equal, &use_global_receiver); // If given receiver is already a JavaScript object then there's no // reason for converting it. __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx); __ j(below, &call_to_object); __ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE); __ j(below_equal, &push_receiver); // Convert the receiver to an object. __ bind(&call_to_object); __ push(rbx); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ movq(rbx, rax); __ jmp(&push_receiver); // Use the current global receiver object as the receiver. __ bind(&use_global_receiver); const int kGlobalOffset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; __ movq(rbx, FieldOperand(rsi, kGlobalOffset)); __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalContextOffset)); __ movq(rbx, FieldOperand(rbx, kGlobalOffset)); __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); // Push the receiver. __ bind(&push_receiver); __ push(rbx); // Copy all arguments from the array to the stack. Label entry, loop; __ movq(rax, Operand(rbp, kIndexOffset)); __ jmp(&entry); __ bind(&loop); __ movq(rdx, Operand(rbp, kArgumentsOffset)); // load arguments // Use inline caching to speed up access to arguments. Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // It is important that we do not have a test instruction after the // call. A test instruction after the call is used to indicate that // we have generated an inline version of the keyed load. In this // case, we know that we are not generating a test instruction next. // Push the nth argument. __ push(rax); // Update the index on the stack and in register rax. __ movq(rax, Operand(rbp, kIndexOffset)); __ SmiAddConstant(rax, rax, Smi::FromInt(1)); __ movq(Operand(rbp, kIndexOffset), rax); __ bind(&entry); __ cmpq(rax, Operand(rbp, kLimitOffset)); __ j(not_equal, &loop); // Invoke the function. ParameterCount actual(rax); __ SmiToInteger32(rax, rax); __ movq(rdi, Operand(rbp, kFunctionOffset)); __ InvokeFunction(rdi, actual, CALL_FUNCTION); __ LeaveInternalFrame(); __ ret(3 * kPointerSize); // remove function, receiver, and arguments } // Load the built-in Array function from the current context. static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { // Load the global context. __ movq(result, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(result, FieldOperand(result, GlobalObject::kGlobalContextOffset)); // Load the Array function from the global context. __ movq(result, Operand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); } // Number of empty elements to allocate for an empty array. static const int kPreallocatedArrayElements = 4; // Allocate an empty JSArray. The allocated array is put into the result // register. If the parameter initial_capacity is larger than zero an elements // backing store is allocated with this size and filled with the hole values. // Otherwise the elements backing store is set to the empty FixedArray. static void AllocateEmptyJSArray(MacroAssembler* masm, Register array_function, Register result, Register scratch1, Register scratch2, Register scratch3, int initial_capacity, Label* gc_required) { ASSERT(initial_capacity >= 0); // Load the initial map from the array function. __ movq(scratch1, FieldOperand(array_function, JSFunction::kPrototypeOrInitialMapOffset)); // Allocate the JSArray object together with space for a fixed array with the // requested elements. int size = JSArray::kSize; if (initial_capacity > 0) { size += FixedArray::SizeFor(initial_capacity); } __ AllocateInNewSpace(size, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Allocated the JSArray. Now initialize the fields except for the elements // array. // result: JSObject // scratch1: initial map // scratch2: start of next object __ movq(FieldOperand(result, JSObject::kMapOffset), scratch1); __ Move(FieldOperand(result, JSArray::kPropertiesOffset), Factory::empty_fixed_array()); // Field JSArray::kElementsOffset is initialized later. __ Move(FieldOperand(result, JSArray::kLengthOffset), Smi::FromInt(0)); // If no storage is requested for the elements array just set the empty // fixed array. if (initial_capacity == 0) { __ Move(FieldOperand(result, JSArray::kElementsOffset), Factory::empty_fixed_array()); return; } // Calculate the location of the elements array and set elements array member // of the JSArray. // result: JSObject // scratch2: start of next object __ lea(scratch1, Operand(result, JSArray::kSize)); __ movq(FieldOperand(result, JSArray::kElementsOffset), scratch1); // Initialize the FixedArray and fill it with holes. FixedArray length is // stored as a smi. // result: JSObject // scratch1: elements array // scratch2: start of next object __ Move(FieldOperand(scratch1, HeapObject::kMapOffset), Factory::fixed_array_map()); __ Move(FieldOperand(scratch1, FixedArray::kLengthOffset), Smi::FromInt(initial_capacity)); // Fill the FixedArray with the hole value. Inline the code if short. // Reconsider loop unfolding if kPreallocatedArrayElements gets changed. static const int kLoopUnfoldLimit = 4; ASSERT(kPreallocatedArrayElements <= kLoopUnfoldLimit); __ Move(scratch3, Factory::the_hole_value()); if (initial_capacity <= kLoopUnfoldLimit) { // Use a scratch register here to have only one reloc info when unfolding // the loop. for (int i = 0; i < initial_capacity; i++) { __ movq(FieldOperand(scratch1, FixedArray::kHeaderSize + i * kPointerSize), scratch3); } } else { Label loop, entry; __ jmp(&entry); __ bind(&loop); __ movq(Operand(scratch1, 0), scratch3); __ addq(scratch1, Immediate(kPointerSize)); __ bind(&entry); __ cmpq(scratch1, scratch2); __ j(below, &loop); } } // Allocate a JSArray with the number of elements stored in a register. The // register array_function holds the built-in Array function and the register // array_size holds the size of the array as a smi. The allocated array is put // into the result register and beginning and end of the FixedArray elements // storage is put into registers elements_array and elements_array_end (see // below for when that is not the case). If the parameter fill_with_holes is // true the allocated elements backing store is filled with the hole values // otherwise it is left uninitialized. When the backing store is filled the // register elements_array is scratched. static void AllocateJSArray(MacroAssembler* masm, Register array_function, // Array function. Register array_size, // As a smi. Register result, Register elements_array, Register elements_array_end, Register scratch, bool fill_with_hole, Label* gc_required) { Label not_empty, allocated; // Load the initial map from the array function. __ movq(elements_array, FieldOperand(array_function, JSFunction::kPrototypeOrInitialMapOffset)); // Check whether an empty sized array is requested. __ testq(array_size, array_size); __ j(not_zero, ¬_empty); // If an empty array is requested allocate a small elements array anyway. This // keeps the code below free of special casing for the empty array. int size = JSArray::kSize + FixedArray::SizeFor(kPreallocatedArrayElements); __ AllocateInNewSpace(size, result, elements_array_end, scratch, gc_required, TAG_OBJECT); __ jmp(&allocated); // Allocate the JSArray object together with space for a FixedArray with the // requested elements. __ bind(¬_empty); SmiIndex index = masm->SmiToIndex(kScratchRegister, array_size, kPointerSizeLog2); __ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize, index.scale, index.reg, result, elements_array_end, scratch, gc_required, TAG_OBJECT); // Allocated the JSArray. Now initialize the fields except for the elements // array. // result: JSObject // elements_array: initial map // elements_array_end: start of next object // array_size: size of array (smi) __ bind(&allocated); __ movq(FieldOperand(result, JSObject::kMapOffset), elements_array); __ Move(elements_array, Factory::empty_fixed_array()); __ movq(FieldOperand(result, JSArray::kPropertiesOffset), elements_array); // Field JSArray::kElementsOffset is initialized later. __ movq(FieldOperand(result, JSArray::kLengthOffset), array_size); // Calculate the location of the elements array and set elements array member // of the JSArray. // result: JSObject // elements_array_end: start of next object // array_size: size of array (smi) __ lea(elements_array, Operand(result, JSArray::kSize)); __ movq(FieldOperand(result, JSArray::kElementsOffset), elements_array); // Initialize the fixed array. FixedArray length is stored as a smi. // result: JSObject // elements_array: elements array // elements_array_end: start of next object // array_size: size of array (smi) __ Move(FieldOperand(elements_array, JSObject::kMapOffset), Factory::fixed_array_map()); Label not_empty_2, fill_array; __ SmiTest(array_size); __ j(not_zero, ¬_empty_2); // Length of the FixedArray is the number of pre-allocated elements even // though the actual JSArray has length 0. __ Move(FieldOperand(elements_array, FixedArray::kLengthOffset), Smi::FromInt(kPreallocatedArrayElements)); __ jmp(&fill_array); __ bind(¬_empty_2); // For non-empty JSArrays the length of the FixedArray and the JSArray is the // same. __ movq(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size); // Fill the allocated FixedArray with the hole value if requested. // result: JSObject // elements_array: elements array // elements_array_end: start of next object __ bind(&fill_array); if (fill_with_hole) { Label loop, entry; __ Move(scratch, Factory::the_hole_value()); __ lea(elements_array, Operand(elements_array, FixedArray::kHeaderSize - kHeapObjectTag)); __ jmp(&entry); __ bind(&loop); __ movq(Operand(elements_array, 0), scratch); __ addq(elements_array, Immediate(kPointerSize)); __ bind(&entry); __ cmpq(elements_array, elements_array_end); __ j(below, &loop); } } // Create a new array for the built-in Array function. This function allocates // the JSArray object and the FixedArray elements array and initializes these. // If the Array cannot be constructed in native code the runtime is called. This // function assumes the following state: // rdi: constructor (built-in Array function) // rax: argc // rsp[0]: return address // rsp[8]: last argument // This function is used for both construct and normal calls of Array. The only // difference between handling a construct call and a normal call is that for a // construct call the constructor function in rdi needs to be preserved for // entering the generic code. In both cases argc in rax needs to be preserved. // Both registers are preserved by this code so no need to differentiate between // a construct call and a normal call. static void ArrayNativeCode(MacroAssembler* masm, Label *call_generic_code) { Label argc_one_or_more, argc_two_or_more; // Check for array construction with zero arguments. __ testq(rax, rax); __ j(not_zero, &argc_one_or_more); // Handle construction of an empty array. AllocateEmptyJSArray(masm, rdi, rbx, rcx, rdx, r8, kPreallocatedArrayElements, call_generic_code); __ IncrementCounter(&Counters::array_function_native, 1); __ movq(rax, rbx); __ ret(kPointerSize); // Check for one argument. Bail out if argument is not smi or if it is // negative. __ bind(&argc_one_or_more); __ cmpq(rax, Immediate(1)); __ j(not_equal, &argc_two_or_more); __ movq(rdx, Operand(rsp, kPointerSize)); // Get the argument from the stack. __ JumpIfNotPositiveSmi(rdx, call_generic_code); // Handle construction of an empty array of a certain size. Bail out if size // is to large to actually allocate an elements array. __ SmiCompare(rdx, Smi::FromInt(JSObject::kInitialMaxFastElementArray)); __ j(greater_equal, call_generic_code); // rax: argc // rdx: array_size (smi) // rdi: constructor // esp[0]: return address // esp[8]: argument AllocateJSArray(masm, rdi, rdx, rbx, rcx, r8, r9, true, call_generic_code); __ IncrementCounter(&Counters::array_function_native, 1); __ movq(rax, rbx); __ ret(2 * kPointerSize); // Handle construction of an array from a list of arguments. __ bind(&argc_two_or_more); __ movq(rdx, rax); __ Integer32ToSmi(rdx, rdx); // Convet argc to a smi. // rax: argc // rdx: array_size (smi) // rdi: constructor // esp[0] : return address // esp[8] : last argument AllocateJSArray(masm, rdi, rdx, rbx, rcx, r8, r9, false, call_generic_code); __ IncrementCounter(&Counters::array_function_native, 1); // rax: argc // rbx: JSArray // rcx: elements_array // r8: elements_array_end (untagged) // esp[0]: return address // esp[8]: last argument // Location of the last argument __ lea(r9, Operand(rsp, kPointerSize)); // Location of the first array element (Parameter fill_with_holes to // AllocateJSArrayis false, so the FixedArray is returned in rcx). __ lea(rdx, Operand(rcx, FixedArray::kHeaderSize - kHeapObjectTag)); // rax: argc // rbx: JSArray // rdx: location of the first array element // r9: location of the last argument // esp[0]: return address // esp[8]: last argument Label loop, entry; __ movq(rcx, rax); __ jmp(&entry); __ bind(&loop); __ movq(kScratchRegister, Operand(r9, rcx, times_pointer_size, 0)); __ movq(Operand(rdx, 0), kScratchRegister); __ addq(rdx, Immediate(kPointerSize)); __ bind(&entry); __ decq(rcx); __ j(greater_equal, &loop); // Remove caller arguments from the stack and return. // rax: argc // rbx: JSArray // esp[0]: return address // esp[8]: last argument __ pop(rcx); __ lea(rsp, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize)); __ push(rcx); __ movq(rax, rbx); __ ret(0); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- Label generic_array_code; // Get the Array function. GenerateLoadArrayFunction(masm, rdi); if (FLAG_debug_code) { // Initial map for the builtin Array function shoud be a map. __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); __ Check(not_smi, "Unexpected initial map for Array function"); __ CmpObjectType(rbx, MAP_TYPE, rcx); __ Check(equal, "Unexpected initial map for Array function"); } // Run the native code for the Array function called as a normal function. ArrayNativeCode(masm, &generic_array_code); // Jump to the generic array code in case the specialized code cannot handle // the construction. __ bind(&generic_array_code); Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric); Handle array_code(code); __ Jump(array_code, RelocInfo::CODE_TARGET); } void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rdi : constructor // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- Label generic_constructor; if (FLAG_debug_code) { // The array construct code is only set for the builtin Array function which // does always have a map. GenerateLoadArrayFunction(masm, rbx); __ cmpq(rdi, rbx); __ Check(equal, "Unexpected Array function"); // Initial map for the builtin Array function should be a map. __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); __ Check(not_smi, "Unexpected initial map for Array function"); __ CmpObjectType(rbx, MAP_TYPE, rcx); __ Check(equal, "Unexpected initial map for Array function"); } // Run the native code for the Array function called as constructor. ArrayNativeCode(masm, &generic_constructor); // Jump to the generic construct code in case the specialized code cannot // handle the construction. __ bind(&generic_constructor); Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric); Handle generic_construct_stub(code); __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET); } void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { // TODO(849): implement custom construct stub. // Generate a copy of the generic stub for now. Generate_JSConstructStubGeneric(masm); } void Builtins::Generate_JSConstructCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax: number of arguments // -- rdi: constructor function // ----------------------------------- Label non_function_call; // Check that function is not a smi. __ JumpIfSmi(rdi, &non_function_call); // Check that function is a JSFunction. __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &non_function_call); // Jump to the function-specific construct stub. __ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kConstructStubOffset)); __ lea(rbx, FieldOperand(rbx, Code::kHeaderSize)); __ jmp(rbx); // rdi: called object // rax: number of arguments __ bind(&non_function_call); // Set expected number of arguments to zero (not changing rax). __ movq(rbx, Immediate(0)); __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); __ Jump(Handle(builtin(ArgumentsAdaptorTrampoline)), RelocInfo::CODE_TARGET); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function) { // Enter a construct frame. __ EnterConstructFrame(); // Store a smi-tagged arguments count on the stack. __ Integer32ToSmi(rax, rax); __ push(rax); // Push the function to invoke on the stack. __ push(rdi); // Try to allocate the object without transitioning into C code. If any of the // preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { Label undo_allocation; #ifdef ENABLE_DEBUGGER_SUPPORT ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(); __ movq(kScratchRegister, debug_step_in_fp); __ cmpq(Operand(kScratchRegister, 0), Immediate(0)); __ j(not_equal, &rt_call); #endif // Verified that the constructor is a JSFunction. // Load the initial map and verify that it is in fact a map. // rdi: constructor __ movq(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi ASSERT(kSmiTag == 0); __ JumpIfSmi(rax, &rt_call); // rdi: constructor // rax: initial map (if proven valid below) __ CmpObjectType(rax, MAP_TYPE, rbx); __ j(not_equal, &rt_call); // Check that the constructor is not constructing a JSFunction (see comments // in Runtime_NewObject in runtime.cc). In which case the initial map's // instance type would be JS_FUNCTION_TYPE. // rdi: constructor // rax: initial map __ CmpInstanceType(rax, JS_FUNCTION_TYPE); __ j(equal, &rt_call); // Now allocate the JSObject on the heap. __ movzxbq(rdi, FieldOperand(rax, Map::kInstanceSizeOffset)); __ shl(rdi, Immediate(kPointerSizeLog2)); // rdi: size of new object __ AllocateInNewSpace(rdi, rbx, rdi, no_reg, &rt_call, NO_ALLOCATION_FLAGS); // Allocated the JSObject, now initialize the fields. // rax: initial map // rbx: JSObject (not HeapObject tagged - the actual address). // rdi: start of next object __ movq(Operand(rbx, JSObject::kMapOffset), rax); __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex); __ movq(Operand(rbx, JSObject::kPropertiesOffset), rcx); __ movq(Operand(rbx, JSObject::kElementsOffset), rcx); // Set extra fields in the newly allocated object. // rax: initial map // rbx: JSObject // rdi: start of next object { Label loop, entry; __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ lea(rcx, Operand(rbx, JSObject::kHeaderSize)); __ jmp(&entry); __ bind(&loop); __ movq(Operand(rcx, 0), rdx); __ addq(rcx, Immediate(kPointerSize)); __ bind(&entry); __ cmpq(rcx, rdi); __ j(less, &loop); } // Add the object tag to make the JSObject real, so that we can continue and // jump into the continuation code at any time from now on. Any failures // need to undo the allocation, so that the heap is in a consistent state // and verifiable. // rax: initial map // rbx: JSObject // rdi: start of next object __ or_(rbx, Immediate(kHeapObjectTag)); // Check if a non-empty properties array is needed. // Allocate and initialize a FixedArray if it is. // rax: initial map // rbx: JSObject // rdi: start of next object // Calculate total properties described map. __ movzxbq(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset)); __ movzxbq(rcx, FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset)); __ addq(rdx, rcx); // Calculate unused properties past the end of the in-object properties. __ movzxbq(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset)); __ subq(rdx, rcx); // Done if no extra properties are to be allocated. __ j(zero, &allocated); __ Assert(positive, "Property allocation count failed."); // Scale the number of elements by pointer size and add the header for // FixedArrays to the start of the next object calculation from above. // rbx: JSObject // rdi: start of next object (will be start of FixedArray) // rdx: number of elements in properties array __ AllocateInNewSpace(FixedArray::kHeaderSize, times_pointer_size, rdx, rdi, rax, no_reg, &undo_allocation, RESULT_CONTAINS_TOP); // Initialize the FixedArray. // rbx: JSObject // rdi: FixedArray // rdx: number of elements // rax: start of next object __ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex); __ movq(Operand(rdi, HeapObject::kMapOffset), rcx); // setup the map __ Integer32ToSmi(rdx, rdx); __ movq(Operand(rdi, FixedArray::kLengthOffset), rdx); // and length // Initialize the fields to undefined. // rbx: JSObject // rdi: FixedArray // rax: start of next object // rdx: number of elements { Label loop, entry; __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ lea(rcx, Operand(rdi, FixedArray::kHeaderSize)); __ jmp(&entry); __ bind(&loop); __ movq(Operand(rcx, 0), rdx); __ addq(rcx, Immediate(kPointerSize)); __ bind(&entry); __ cmpq(rcx, rax); __ j(below, &loop); } // Store the initialized FixedArray into the properties field of // the JSObject // rbx: JSObject // rdi: FixedArray __ or_(rdi, Immediate(kHeapObjectTag)); // add the heap tag __ movq(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi); // Continue with JSObject being successfully allocated // rbx: JSObject __ jmp(&allocated); // Undo the setting of the new top so that the heap is verifiable. For // example, the map's unused properties potentially do not match the // allocated objects unused properties. // rbx: JSObject (previous new top) __ bind(&undo_allocation); __ UndoAllocationInNewSpace(rbx); } // Allocate the new receiver object using the runtime call. // rdi: function (constructor) __ bind(&rt_call); // Must restore rdi (constructor) before calling runtime. __ movq(rdi, Operand(rsp, 0)); __ push(rdi); __ CallRuntime(Runtime::kNewObject, 1); __ movq(rbx, rax); // store result in rbx // New object allocated. // rbx: newly allocated object __ bind(&allocated); // Retrieve the function from the stack. __ pop(rdi); // Retrieve smi-tagged arguments count from the stack. __ movq(rax, Operand(rsp, 0)); __ SmiToInteger32(rax, rax); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ push(rbx); __ push(rbx); // Setup pointer to last argument. __ lea(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ movq(rcx, rax); __ jmp(&entry); __ bind(&loop); __ push(Operand(rbx, rcx, times_pointer_size, 0)); __ bind(&entry); __ decq(rcx); __ j(greater_equal, &loop); // Call the function. if (is_api_function) { __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); Handle code = Handle( Builtins::builtin(Builtins::HandleApiCallConstruct)); ParameterCount expected(0); __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET, CALL_FUNCTION); } else { ParameterCount actual(rax); __ InvokeFunction(rdi, actual, CALL_FUNCTION); } // Restore context from the frame. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(rax, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense. __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); __ j(above_equal, &exit); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ movq(rax, Operand(rsp, 0)); // Restore the arguments count and leave the construct frame. __ bind(&exit); __ movq(rbx, Operand(rsp, kPointerSize)); // get arguments count __ LeaveConstructFrame(); // Remove caller arguments from the stack and return. __ pop(rcx); SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); __ push(rcx); __ IncrementCounter(&Counters::constructed_objects, 1); __ ret(0); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Expects five C++ function parameters. // - Address entry (ignored) // - JSFunction* function ( // - Object* receiver // - int argc // - Object*** argv // (see Handle::Invoke in execution.cc). // Platform specific argument handling. After this, the stack contains // an internal frame and the pushed function and receiver, and // register rax and rbx holds the argument count and argument array, // while rdi holds the function pointer and rsi the context. #ifdef _WIN64 // MSVC parameters in: // rcx : entry (ignored) // rdx : function // r8 : receiver // r9 : argc // [rsp+0x20] : argv // Clear the context before we push it when entering the JS frame. __ xor_(rsi, rsi); __ EnterInternalFrame(); // Load the function context into rsi. __ movq(rsi, FieldOperand(rdx, JSFunction::kContextOffset)); // Push the function and the receiver onto the stack. __ push(rdx); __ push(r8); // Load the number of arguments and setup pointer to the arguments. __ movq(rax, r9); // Load the previous frame pointer to access C argument on stack __ movq(kScratchRegister, Operand(rbp, 0)); __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset)); // Load the function pointer into rdi. __ movq(rdi, rdx); #else // _WIN64 // GCC parameters in: // rdi : entry (ignored) // rsi : function // rdx : receiver // rcx : argc // r8 : argv __ movq(rdi, rsi); // rdi : function // Clear the context before we push it when entering the JS frame. __ xor_(rsi, rsi); // Enter an internal frame. __ EnterInternalFrame(); // Push the function and receiver and setup the context. __ push(rdi); __ push(rdx); __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Load the number of arguments and setup pointer to the arguments. __ movq(rax, rcx); __ movq(rbx, r8); #endif // _WIN64 // Current stack contents: // [rsp + 2 * kPointerSize ... ]: Internal frame // [rsp + kPointerSize] : function // [rsp] : receiver // Current register contents: // rax : argc // rbx : argv // rsi : context // rdi : function // Copy arguments to the stack in a loop. // Register rbx points to array of pointers to handle locations. // Push the values of these handles. Label loop, entry; __ xor_(rcx, rcx); // Set loop variable to 0. __ jmp(&entry); __ bind(&loop); __ movq(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); __ push(Operand(kScratchRegister, 0)); // dereference handle __ addq(rcx, Immediate(1)); __ bind(&entry); __ cmpq(rcx, rax); __ j(not_equal, &loop); // Invoke the code. if (is_construct) { // Expects rdi to hold function pointer. __ Call(Handle(Builtins::builtin(Builtins::JSConstructCall)), RelocInfo::CODE_TARGET); } else { ParameterCount actual(rax); // Function must be in rdi. __ InvokeFunction(rdi, actual, CALL_FUNCTION); } // Exit the JS frame. Notice that this also removes the empty // context and the function left on the stack by the code // invocation. __ LeaveInternalFrame(); // TODO(X64): Is argument correct? Is there a receiver to remove? __ ret(1 * kPointerSize); // remove receiver } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_LazyCompile(MacroAssembler* masm) { // Enter an internal frame. __ EnterInternalFrame(); // Push a copy of the function onto the stack. __ push(rdi); __ push(rdi); // Function is also the parameter to the runtime call. __ CallRuntime(Runtime::kLazyCompile, 1); __ pop(rdi); // Tear down temporary frame. __ LeaveInternalFrame(); // Do a tail-call of the compiled function. __ lea(rcx, FieldOperand(rax, Code::kHeaderSize)); __ jmp(rcx); } } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64