// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if V8_TARGET_ARCH_X64 #include "codegen.h" #include "ic-inl.h" #include "runtime.h" #include "stub-cache.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type, Label* global_object) { // Register usage: // type: holds the receiver instance type on entry. __ cmpb(type, Immediate(JS_GLOBAL_OBJECT_TYPE)); __ j(equal, global_object); __ cmpb(type, Immediate(JS_BUILTINS_OBJECT_TYPE)); __ j(equal, global_object); __ cmpb(type, Immediate(JS_GLOBAL_PROXY_TYPE)); __ j(equal, global_object); } // Generated code falls through if the receiver is a regular non-global // JS object with slow properties and no interceptors. static void GenerateNameDictionaryReceiverCheck(MacroAssembler* masm, Register receiver, Register r0, Register r1, Label* miss) { // Register usage: // receiver: holds the receiver on entry and is unchanged. // r0: used to hold receiver instance type. // Holds the property dictionary on fall through. // r1: used to hold receivers map. __ JumpIfSmi(receiver, miss); // Check that the receiver is a valid JS object. __ movp(r1, FieldOperand(receiver, HeapObject::kMapOffset)); __ movb(r0, FieldOperand(r1, Map::kInstanceTypeOffset)); __ cmpb(r0, Immediate(FIRST_SPEC_OBJECT_TYPE)); __ j(below, miss); // If this assert fails, we have to check upper bound too. STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); GenerateGlobalInstanceTypeCheck(masm, r0, miss); // Check for non-global object that requires access check. __ testb(FieldOperand(r1, Map::kBitFieldOffset), Immediate((1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasNamedInterceptor))); __ j(not_zero, miss); __ movp(r0, FieldOperand(receiver, JSObject::kPropertiesOffset)); __ CompareRoot(FieldOperand(r0, HeapObject::kMapOffset), Heap::kHashTableMapRootIndex); __ j(not_equal, miss); } // Helper function used to load a property from a dictionary backing storage. // This function may return false negatives, so miss_label // must always call a backup property load that is complete. // This function is safe to call if name is not an internalized string, // and will jump to the miss_label in that case. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss_label, Register elements, Register name, Register r0, Register r1, Register result) { // Register use: // // elements - holds the property dictionary on entry and is unchanged. // // name - holds the name of the property on entry and is unchanged. // // r0 - used to hold the capacity of the property dictionary. // // r1 - used to hold the index into the property dictionary. // // result - holds the result on exit if the load succeeded. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done, elements, name, r0, r1); // If probing finds an entry in the dictionary, r1 contains the // index into the dictionary. Check that the value is a normal // property. __ bind(&done); const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; __ Test(Operand(elements, r1, times_pointer_size, kDetailsOffset - kHeapObjectTag), Smi::FromInt(PropertyDetails::TypeField::kMask)); __ j(not_zero, miss_label); // Get the value at the masked, scaled index. const int kValueOffset = kElementsStartOffset + kPointerSize; __ movp(result, Operand(elements, r1, times_pointer_size, kValueOffset - kHeapObjectTag)); } // Helper function used to store a property to a dictionary backing // storage. This function may fail to store a property even though it // is in the dictionary, so code at miss_label must always call a // backup property store that is complete. This function is safe to // call if name is not an internalized string, and will jump to the miss_label // in that case. The generated code assumes that the receiver has slow // properties, is not a global object and does not have interceptors. static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss_label, Register elements, Register name, Register value, Register scratch0, Register scratch1) { // Register use: // // elements - holds the property dictionary on entry and is clobbered. // // name - holds the name of the property on entry and is unchanged. // // value - holds the value to store and is unchanged. // // scratch0 - used during the positive dictionary lookup and is clobbered. // // scratch1 - used for index into the property dictionary and is clobbered. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done, elements, name, scratch0, scratch1); // If probing finds an entry in the dictionary, scratch0 contains the // index into the dictionary. Check that the value is a normal // property that is not read only. __ bind(&done); const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; const int kTypeAndReadOnlyMask = (PropertyDetails::TypeField::kMask | PropertyDetails::AttributesField::encode(READ_ONLY)) << kSmiTagSize; __ Test(Operand(elements, scratch1, times_pointer_size, kDetailsOffset - kHeapObjectTag), Smi::FromInt(kTypeAndReadOnlyMask)); __ j(not_zero, miss_label); // Store the value at the masked, scaled index. const int kValueOffset = kElementsStartOffset + kPointerSize; __ lea(scratch1, Operand(elements, scratch1, times_pointer_size, kValueOffset - kHeapObjectTag)); __ movp(Operand(scratch1, 0), value); // Update write barrier. Make sure not to clobber the value. __ movp(scratch0, value); __ RecordWrite(elements, scratch1, scratch0, kDontSaveFPRegs); } // Checks the receiver for special cases (value type, slow case bits). // Falls through for regular JS object. static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm, Register receiver, Register map, int interceptor_bit, Label* slow) { // Register use: // receiver - holds the receiver and is unchanged. // Scratch registers: // map - used to hold the map of the receiver. // Check that the object isn't a smi. __ JumpIfSmi(receiver, slow); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing // into string objects work as intended. ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ CmpObjectType(receiver, JS_OBJECT_TYPE, map); __ j(below, slow); // Check bit field. __ testb(FieldOperand(map, Map::kBitFieldOffset), Immediate((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit))); __ j(not_zero, slow); } // Loads an indexed element from a fast case array. // If not_fast_array is NULL, doesn't perform the elements map check. static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver, Register key, Register elements, Register scratch, Register result, Label* not_fast_array, Label* out_of_range) { // Register use: // // receiver - holds the receiver on entry. // Unchanged unless 'result' is the same register. // // key - holds the smi key on entry. // Unchanged unless 'result' is the same register. // // elements - holds the elements of the receiver on exit. // // result - holds the result on exit if the load succeeded. // Allowed to be the the same as 'receiver' or 'key'. // Unchanged on bailout so 'receiver' and 'key' can be safely // used by further computation. // // Scratch registers: // // scratch - used to hold elements of the receiver and the loaded value. __ movp(elements, FieldOperand(receiver, JSObject::kElementsOffset)); if (not_fast_array != NULL) { // Check that the object is in fast mode and writable. __ CompareRoot(FieldOperand(elements, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); __ j(not_equal, not_fast_array); } else { __ AssertFastElements(elements); } // Check that the key (index) is within bounds. __ SmiCompare(key, FieldOperand(elements, FixedArray::kLengthOffset)); // Unsigned comparison rejects negative indices. __ j(above_equal, out_of_range); // Fast case: Do the load. SmiIndex index = masm->SmiToIndex(scratch, key, kPointerSizeLog2); __ movp(scratch, FieldOperand(elements, index.reg, index.scale, FixedArray::kHeaderSize)); __ CompareRoot(scratch, Heap::kTheHoleValueRootIndex); // In case the loaded value is the_hole we have to consult GetProperty // to ensure the prototype chain is searched. __ j(equal, out_of_range); if (!result.is(scratch)) { __ movp(result, scratch); } } // Checks whether a key is an array index string or a unique name. // Falls through if the key is a unique name. static void GenerateKeyNameCheck(MacroAssembler* masm, Register key, Register map, Register hash, Label* index_string, Label* not_unique) { // Register use: // key - holds the key and is unchanged. Assumed to be non-smi. // Scratch registers: // map - used to hold the map of the key. // hash - used to hold the hash of the key. Label unique; __ CmpObjectType(key, LAST_UNIQUE_NAME_TYPE, map); __ j(above, not_unique); STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE); __ j(equal, &unique); // Is the string an array index, with cached numeric value? __ movl(hash, FieldOperand(key, Name::kHashFieldOffset)); __ testl(hash, Immediate(Name::kContainsCachedArrayIndexMask)); __ j(zero, index_string); // The value in hash is used at jump target. // Is the string internalized? We already know it's a string so a single // bit test is enough. STATIC_ASSERT(kNotInternalizedTag != 0); __ testb(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(kIsNotInternalizedMask)); __ j(not_zero, not_unique); __ bind(&unique); } void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow, check_name, index_smi, index_name, property_array_property; Label probe_dictionary, check_number_dictionary; // Check that the key is a smi. __ JumpIfNotSmi(rax, &check_name); __ bind(&index_smi); // Now the key is known to be a smi. This place is also jumped to from below // where a numeric string is converted to a smi. GenerateKeyedLoadReceiverCheck( masm, rdx, rcx, Map::kHasIndexedInterceptor, &slow); // Check the receiver's map to see if it has fast elements. __ CheckFastElements(rcx, &check_number_dictionary); GenerateFastArrayLoad(masm, rdx, rax, rcx, rbx, rax, NULL, &slow); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->keyed_load_generic_smi(), 1); __ ret(0); __ bind(&check_number_dictionary); __ SmiToInteger32(rbx, rax); __ movp(rcx, FieldOperand(rdx, JSObject::kElementsOffset)); // Check whether the elements is a number dictionary. // rdx: receiver // rax: key // rbx: key as untagged int32 // rcx: elements __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), Heap::kHashTableMapRootIndex); __ j(not_equal, &slow); __ LoadFromNumberDictionary(&slow, rcx, rax, rbx, r9, rdi, rax); __ ret(0); __ bind(&slow); // Slow case: Jump to runtime. // rdx: receiver // rax: key __ IncrementCounter(counters->keyed_load_generic_slow(), 1); GenerateRuntimeGetProperty(masm); __ bind(&check_name); GenerateKeyNameCheck(masm, rax, rcx, rbx, &index_name, &slow); GenerateKeyedLoadReceiverCheck( masm, rdx, rcx, Map::kHasNamedInterceptor, &slow); // If the receiver is a fast-case object, check the keyed lookup // cache. Otherwise probe the dictionary leaving result in rcx. __ movp(rbx, FieldOperand(rdx, JSObject::kPropertiesOffset)); __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::kHashTableMapRootIndex); __ j(equal, &probe_dictionary); // Load the map of the receiver, compute the keyed lookup cache hash // based on 32 bits of the map pointer and the string hash. __ movp(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); __ movl(rcx, rbx); __ shr(rcx, Immediate(KeyedLookupCache::kMapHashShift)); __ movl(rdi, FieldOperand(rax, String::kHashFieldOffset)); __ shr(rdi, Immediate(String::kHashShift)); __ xor_(rcx, rdi); int mask = (KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask); __ and_(rcx, Immediate(mask)); // Load the key (consisting of map and internalized string) from the cache and // check for match. Label load_in_object_property; static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket; Label hit_on_nth_entry[kEntriesPerBucket]; ExternalReference cache_keys = ExternalReference::keyed_lookup_cache_keys(masm->isolate()); for (int i = 0; i < kEntriesPerBucket - 1; i++) { Label try_next_entry; __ movp(rdi, rcx); __ shl(rdi, Immediate(kPointerSizeLog2 + 1)); __ LoadAddress(kScratchRegister, cache_keys); int off = kPointerSize * i * 2; __ cmpq(rbx, Operand(kScratchRegister, rdi, times_1, off)); __ j(not_equal, &try_next_entry); __ cmpq(rax, Operand(kScratchRegister, rdi, times_1, off + kPointerSize)); __ j(equal, &hit_on_nth_entry[i]); __ bind(&try_next_entry); } int off = kPointerSize * (kEntriesPerBucket - 1) * 2; __ cmpq(rbx, Operand(kScratchRegister, rdi, times_1, off)); __ j(not_equal, &slow); __ cmpq(rax, Operand(kScratchRegister, rdi, times_1, off + kPointerSize)); __ j(not_equal, &slow); // Get field offset, which is a 32-bit integer. ExternalReference cache_field_offsets = ExternalReference::keyed_lookup_cache_field_offsets(masm->isolate()); // Hit on nth entry. for (int i = kEntriesPerBucket - 1; i >= 0; i--) { __ bind(&hit_on_nth_entry[i]); if (i != 0) { __ addl(rcx, Immediate(i)); } __ LoadAddress(kScratchRegister, cache_field_offsets); __ movl(rdi, Operand(kScratchRegister, rcx, times_4, 0)); __ movzxbq(rcx, FieldOperand(rbx, Map::kInObjectPropertiesOffset)); __ subq(rdi, rcx); __ j(above_equal, &property_array_property); if (i != 0) { __ jmp(&load_in_object_property); } } // Load in-object property. __ bind(&load_in_object_property); __ movzxbq(rcx, FieldOperand(rbx, Map::kInstanceSizeOffset)); __ addq(rcx, rdi); __ movp(rax, FieldOperand(rdx, rcx, times_pointer_size, 0)); __ IncrementCounter(counters->keyed_load_generic_lookup_cache(), 1); __ ret(0); // Load property array property. __ bind(&property_array_property); __ movp(rax, FieldOperand(rdx, JSObject::kPropertiesOffset)); __ movp(rax, FieldOperand(rax, rdi, times_pointer_size, FixedArray::kHeaderSize)); __ IncrementCounter(counters->keyed_load_generic_lookup_cache(), 1); __ ret(0); // Do a quick inline probe of the receiver's dictionary, if it // exists. __ bind(&probe_dictionary); // rdx: receiver // rax: key // rbx: elements __ movp(rcx, FieldOperand(rdx, JSObject::kMapOffset)); __ movb(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset)); GenerateGlobalInstanceTypeCheck(masm, rcx, &slow); GenerateDictionaryLoad(masm, &slow, rbx, rax, rcx, rdi, rax); __ IncrementCounter(counters->keyed_load_generic_symbol(), 1); __ ret(0); __ bind(&index_name); __ IndexFromHash(rbx, rax); __ jmp(&index_smi); } void KeyedLoadIC::GenerateString(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; Register receiver = rdx; Register index = rax; Register scratch = rcx; Register result = rax; StringCharAtGenerator char_at_generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. &miss, // When index out of range. STRING_INDEX_IS_ARRAY_INDEX); char_at_generator.GenerateFast(masm); __ ret(0); StubRuntimeCallHelper call_helper; char_at_generator.GenerateSlow(masm, call_helper); __ bind(&miss); GenerateMiss(masm); } void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow; // Check that the receiver isn't a smi. __ JumpIfSmi(rdx, &slow); // Check that the key is an array index, that is Uint32. STATIC_ASSERT(kSmiValueSize <= 32); __ JumpUnlessNonNegativeSmi(rax, &slow); // Get the map of the receiver. __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); // Check that it has indexed interceptor and access checks // are not enabled for this object. __ movb(rcx, FieldOperand(rcx, Map::kBitFieldOffset)); __ andb(rcx, Immediate(kSlowCaseBitFieldMask)); __ cmpb(rcx, Immediate(1 << Map::kHasIndexedInterceptor)); __ j(not_zero, &slow); // Everything is fine, call runtime. __ PopReturnAddressTo(rcx); __ push(rdx); // receiver __ push(rax); // key __ PushReturnAddressFrom(rcx); // Perform tail call to the entry. __ TailCallExternalReference( ExternalReference(IC_Utility(kKeyedLoadPropertyWithInterceptor), masm->isolate()), 2, 1); __ bind(&slow); GenerateMiss(masm); } static void KeyedStoreGenerateGenericHelper( MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow, KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length) { Label transition_smi_elements; Label finish_object_store, non_double_value, transition_double_elements; Label fast_double_without_map_check; // Fast case: Do the store, could be either Object or double. __ bind(fast_object); // rax: value // rbx: receiver's elements array (a FixedArray) // rcx: index // rdx: receiver (a JSArray) // r9: map of receiver if (check_map == kCheckMap) { __ movp(rdi, FieldOperand(rbx, HeapObject::kMapOffset)); __ CompareRoot(rdi, Heap::kFixedArrayMapRootIndex); __ j(not_equal, fast_double); } // HOLECHECK: guards "A[i] = V" // We have to go to the runtime if the current value is the hole because // there may be a callback on the element Label holecheck_passed1; __ movp(kScratchRegister, FieldOperand(rbx, rcx, times_pointer_size, FixedArray::kHeaderSize)); __ CompareRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ j(not_equal, &holecheck_passed1); __ JumpIfDictionaryInPrototypeChain(rdx, rdi, kScratchRegister, slow); __ bind(&holecheck_passed1); // Smi stores don't require further checks. Label non_smi_value; __ JumpIfNotSmi(rax, &non_smi_value); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ leal(rdi, Operand(rcx, 1)); __ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rdi); } // It's irrelevant whether array is smi-only or not when writing a smi. __ movp(FieldOperand(rbx, rcx, times_pointer_size, FixedArray::kHeaderSize), rax); __ ret(0); __ bind(&non_smi_value); // Writing a non-smi, check whether array allows non-smi elements. // r9: receiver's map __ CheckFastObjectElements(r9, &transition_smi_elements); __ bind(&finish_object_store); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ leal(rdi, Operand(rcx, 1)); __ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rdi); } __ movp(FieldOperand(rbx, rcx, times_pointer_size, FixedArray::kHeaderSize), rax); __ movp(rdx, rax); // Preserve the value which is returned. __ RecordWriteArray( rbx, rdx, rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ ret(0); __ bind(fast_double); if (check_map == kCheckMap) { // Check for fast double array case. If this fails, call through to the // runtime. // rdi: elements array's map __ CompareRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex); __ j(not_equal, slow); } // HOLECHECK: guards "A[i] double hole?" // We have to see if the double version of the hole is present. If so // go to the runtime. uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32); __ cmpl(FieldOperand(rbx, rcx, times_8, offset), Immediate(kHoleNanUpper32)); __ j(not_equal, &fast_double_without_map_check); __ JumpIfDictionaryInPrototypeChain(rdx, rdi, kScratchRegister, slow); __ bind(&fast_double_without_map_check); __ StoreNumberToDoubleElements(rax, rbx, rcx, xmm0, &transition_double_elements); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ leal(rdi, Operand(rcx, 1)); __ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rdi); } __ ret(0); __ bind(&transition_smi_elements); __ movp(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); // Transition the array appropriately depending on the value type. __ movp(r9, FieldOperand(rax, HeapObject::kMapOffset)); __ CompareRoot(r9, Heap::kHeapNumberMapRootIndex); __ j(not_equal, &non_double_value); // Value is a double. Transition FAST_SMI_ELEMENTS -> // FAST_DOUBLE_ELEMENTS and complete the store. __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, rbx, rdi, slow); AllocationSiteMode mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS); ElementsTransitionGenerator::GenerateSmiToDouble(masm, mode, slow); __ movp(rbx, FieldOperand(rdx, JSObject::kElementsOffset)); __ jmp(&fast_double_without_map_check); __ bind(&non_double_value); // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, rbx, rdi, slow); mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateMapChangeElementsTransition(masm, mode, slow); __ movp(rbx, FieldOperand(rdx, JSObject::kElementsOffset)); __ jmp(&finish_object_store); __ bind(&transition_double_elements); // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS __ movp(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS, rbx, rdi, slow); mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateDoubleToObject(masm, mode, slow); __ movp(rbx, FieldOperand(rdx, JSObject::kElementsOffset)); __ jmp(&finish_object_store); } void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm, StrictModeFlag strict_mode) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow, slow_with_tagged_index, fast_object, fast_object_grow; Label fast_double, fast_double_grow; Label array, extra, check_if_double_array; // Check that the object isn't a smi. __ JumpIfSmi(rdx, &slow_with_tagged_index); // Get the map from the receiver. __ movp(r9, FieldOperand(rdx, HeapObject::kMapOffset)); // Check that the receiver does not require access checks and is not observed. // The generic stub does not perform map checks or handle observed objects. __ testb(FieldOperand(r9, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved)); __ j(not_zero, &slow_with_tagged_index); // Check that the key is a smi. __ JumpIfNotSmi(rcx, &slow_with_tagged_index); __ SmiToInteger32(rcx, rcx); __ CmpInstanceType(r9, JS_ARRAY_TYPE); __ j(equal, &array); // Check that the object is some kind of JSObject. __ CmpInstanceType(r9, FIRST_JS_OBJECT_TYPE); __ j(below, &slow); // Object case: Check key against length in the elements array. // rax: value // rdx: JSObject // rcx: index __ movp(rbx, FieldOperand(rdx, JSObject::kElementsOffset)); // Check array bounds. __ SmiCompareInteger32(FieldOperand(rbx, FixedArray::kLengthOffset), rcx); // rax: value // rbx: FixedArray // rcx: index __ j(above, &fast_object); // Slow case: call runtime. __ bind(&slow); __ Integer32ToSmi(rcx, rcx); __ bind(&slow_with_tagged_index); GenerateRuntimeSetProperty(masm, strict_mode); // Never returns to here. // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. __ bind(&extra); // rax: value // rdx: receiver (a JSArray) // rbx: receiver's elements array (a FixedArray) // rcx: index // flags: smicompare (rdx.length(), rbx) __ j(not_equal, &slow); // do not leave holes in the array __ SmiCompareInteger32(FieldOperand(rbx, FixedArray::kLengthOffset), rcx); __ j(below_equal, &slow); // Increment index to get new length. __ movp(rdi, FieldOperand(rbx, HeapObject::kMapOffset)); __ CompareRoot(rdi, Heap::kFixedArrayMapRootIndex); __ j(not_equal, &check_if_double_array); __ jmp(&fast_object_grow); __ bind(&check_if_double_array); // rdi: elements array's map __ CompareRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex); __ j(not_equal, &slow); __ jmp(&fast_double_grow); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode (and writable); if it // is the length is always a smi. __ bind(&array); // rax: value // rdx: receiver (a JSArray) // rcx: index __ movp(rbx, FieldOperand(rdx, JSObject::kElementsOffset)); // Check the key against the length in the array, compute the // address to store into and fall through to fast case. __ SmiCompareInteger32(FieldOperand(rdx, JSArray::kLengthOffset), rcx); __ j(below_equal, &extra); KeyedStoreGenerateGenericHelper(masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength); KeyedStoreGenerateGenericHelper(masm, &fast_object_grow, &fast_double_grow, &slow, kDontCheckMap, kIncrementLength); } static Operand GenerateMappedArgumentsLookup(MacroAssembler* masm, Register object, Register key, Register scratch1, Register scratch2, Register scratch3, Label* unmapped_case, Label* slow_case) { Heap* heap = masm->isolate()->heap(); // Check that the receiver is a JSObject. Because of the elements // map check later, we do not need to check for interceptors or // whether it requires access checks. __ JumpIfSmi(object, slow_case); // Check that the object is some kind of JSObject. __ CmpObjectType(object, FIRST_JS_RECEIVER_TYPE, scratch1); __ j(below, slow_case); // Check that the key is a positive smi. Condition check = masm->CheckNonNegativeSmi(key); __ j(NegateCondition(check), slow_case); // Load the elements into scratch1 and check its map. If not, jump // to the unmapped lookup with the parameter map in scratch1. Handle arguments_map(heap->non_strict_arguments_elements_map()); __ movp(scratch1, FieldOperand(object, JSObject::kElementsOffset)); __ CheckMap(scratch1, arguments_map, slow_case, DONT_DO_SMI_CHECK); // Check if element is in the range of mapped arguments. __ movp(scratch2, FieldOperand(scratch1, FixedArray::kLengthOffset)); __ SmiSubConstant(scratch2, scratch2, Smi::FromInt(2)); __ cmpq(key, scratch2); __ j(greater_equal, unmapped_case); // Load element index and check whether it is the hole. const int kHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize; __ SmiToInteger64(scratch3, key); __ movp(scratch2, FieldOperand(scratch1, scratch3, times_pointer_size, kHeaderSize)); __ CompareRoot(scratch2, Heap::kTheHoleValueRootIndex); __ j(equal, unmapped_case); // Load value from context and return it. We can reuse scratch1 because // we do not jump to the unmapped lookup (which requires the parameter // map in scratch1). __ movp(scratch1, FieldOperand(scratch1, FixedArray::kHeaderSize)); __ SmiToInteger64(scratch3, scratch2); return FieldOperand(scratch1, scratch3, times_pointer_size, Context::kHeaderSize); } static Operand GenerateUnmappedArgumentsLookup(MacroAssembler* masm, Register key, Register parameter_map, Register scratch, Label* slow_case) { // Element is in arguments backing store, which is referenced by the // second element of the parameter_map. The parameter_map register // must be loaded with the parameter map of the arguments object and is // overwritten. const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize; Register backing_store = parameter_map; __ movp(backing_store, FieldOperand(parameter_map, kBackingStoreOffset)); Handle fixed_array_map(masm->isolate()->heap()->fixed_array_map()); __ CheckMap(backing_store, fixed_array_map, slow_case, DONT_DO_SMI_CHECK); __ movp(scratch, FieldOperand(backing_store, FixedArray::kLengthOffset)); __ cmpq(key, scratch); __ j(greater_equal, slow_case); __ SmiToInteger64(scratch, key); return FieldOperand(backing_store, scratch, times_pointer_size, FixedArray::kHeaderSize); } void KeyedLoadIC::GenerateNonStrictArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow, notin; Operand mapped_location = GenerateMappedArgumentsLookup( masm, rdx, rax, rbx, rcx, rdi, ¬in, &slow); __ movp(rax, mapped_location); __ Ret(); __ bind(¬in); // The unmapped lookup expects that the parameter map is in rbx. Operand unmapped_location = GenerateUnmappedArgumentsLookup(masm, rax, rbx, rcx, &slow); __ CompareRoot(unmapped_location, Heap::kTheHoleValueRootIndex); __ j(equal, &slow); __ movp(rax, unmapped_location); __ Ret(); __ bind(&slow); GenerateMiss(masm); } void KeyedStoreIC::GenerateNonStrictArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow, notin; Operand mapped_location = GenerateMappedArgumentsLookup( masm, rdx, rcx, rbx, rdi, r8, ¬in, &slow); __ movp(mapped_location, rax); __ lea(r9, mapped_location); __ movp(r8, rax); __ RecordWrite(rbx, r9, r8, kDontSaveFPRegs, EMIT_REMEMBERED_SET, INLINE_SMI_CHECK); __ Ret(); __ bind(¬in); // The unmapped lookup expects that the parameter map is in rbx. Operand unmapped_location = GenerateUnmappedArgumentsLookup(masm, rcx, rbx, rdi, &slow); __ movp(unmapped_location, rax); __ lea(r9, unmapped_location); __ movp(r8, rax); __ RecordWrite(rbx, r9, r8, kDontSaveFPRegs, EMIT_REMEMBERED_SET, INLINE_SMI_CHECK); __ Ret(); __ bind(&slow); GenerateMiss(masm); } void LoadIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- // Probe the stub cache. Code::Flags flags = Code::ComputeHandlerFlags(Code::LOAD_IC); masm->isolate()->stub_cache()->GenerateProbe( masm, flags, rax, rcx, rbx, rdx); GenerateMiss(masm); } void LoadIC::GenerateNormal(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- Label miss; GenerateNameDictionaryReceiverCheck(masm, rax, rdx, rbx, &miss); // rdx: elements // Search the dictionary placing the result in rax. GenerateDictionaryLoad(masm, &miss, rdx, rcx, rbx, rdi, rax); __ ret(0); // Cache miss: Jump to runtime. __ bind(&miss); GenerateMiss(masm); } void LoadIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->load_miss(), 1); __ PopReturnAddressTo(rbx); __ push(rax); // receiver __ push(rcx); // name __ PushReturnAddressFrom(rbx); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 2, 1); } void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- __ PopReturnAddressTo(rbx); __ push(rax); // receiver __ push(rcx); // name __ PushReturnAddressFrom(rbx); // Perform tail call to the entry. __ TailCallRuntime(Runtime::kGetProperty, 2, 1); } void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->keyed_load_miss(), 1); __ PopReturnAddressTo(rbx); __ push(rdx); // receiver __ push(rax); // name __ PushReturnAddressFrom(rbx); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kKeyedLoadIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 2, 1); } void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ PopReturnAddressTo(rbx); __ push(rdx); // receiver __ push(rax); // name __ PushReturnAddressFrom(rbx); // Perform tail call to the entry. __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- // Get the receiver from the stack and probe the stub cache. Code::Flags flags = Code::ComputeHandlerFlags(Code::STORE_IC); masm->isolate()->stub_cache()->GenerateProbe( masm, flags, rdx, rcx, rbx, no_reg); // Cache miss: Jump to runtime. GenerateMiss(masm); } void StoreIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ PopReturnAddressTo(rbx); __ push(rdx); // receiver __ push(rcx); // name __ push(rax); // value __ PushReturnAddressFrom(rbx); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void StoreIC::GenerateNormal(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; GenerateNameDictionaryReceiverCheck(masm, rdx, rbx, rdi, &miss); GenerateDictionaryStore(masm, &miss, rbx, rcx, rax, r8, r9); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->store_normal_hit(), 1); __ ret(0); __ bind(&miss); __ IncrementCounter(counters->store_normal_miss(), 1); GenerateMiss(masm); } void StoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm, StrictModeFlag strict_mode) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ PopReturnAddressTo(rbx); __ push(rdx); __ push(rcx); __ push(rax); __ Push(Smi::FromInt(NONE)); // PropertyAttributes __ Push(Smi::FromInt(strict_mode)); __ PushReturnAddressFrom(rbx); // Do tail-call to runtime routine. __ TailCallRuntime(Runtime::kSetProperty, 5, 1); } void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm, StrictModeFlag strict_mode) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ PopReturnAddressTo(rbx); __ push(rdx); // receiver __ push(rcx); // key __ push(rax); // value __ Push(Smi::FromInt(NONE)); // PropertyAttributes __ Push(Smi::FromInt(strict_mode)); // Strict mode. __ PushReturnAddressFrom(rbx); // Do tail-call to runtime routine. __ TailCallRuntime(Runtime::kSetProperty, 5, 1); } void StoreIC::GenerateSlow(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ PopReturnAddressTo(rbx); __ push(rdx); // receiver __ push(rcx); // key __ push(rax); // value __ PushReturnAddressFrom(rbx); // Do tail-call to runtime routine. ExternalReference ref(IC_Utility(kStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ PopReturnAddressTo(rbx); __ push(rdx); // receiver __ push(rcx); // key __ push(rax); // value __ PushReturnAddressFrom(rbx); // Do tail-call to runtime routine. ExternalReference ref(IC_Utility(kKeyedStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ PopReturnAddressTo(rbx); __ push(rdx); // receiver __ push(rcx); // key __ push(rax); // value __ PushReturnAddressFrom(rbx); // Do tail-call to runtime routine. ExternalReference ref = ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } #undef __ Condition CompareIC::ComputeCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return equal; case Token::LT: return less; case Token::GT: return greater; case Token::LTE: return less_equal; case Token::GTE: return greater_equal; default: UNREACHABLE(); return no_condition; } } bool CompareIC::HasInlinedSmiCode(Address address) { // The address of the instruction following the call. Address test_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a test al, nothing // was inlined. return *test_instruction_address == Assembler::kTestAlByte; } void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) { // The address of the instruction following the call. Address test_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a test al, nothing // was inlined. if (*test_instruction_address != Assembler::kTestAlByte) { ASSERT(*test_instruction_address == Assembler::kNopByte); return; } Address delta_address = test_instruction_address + 1; // The delta to the start of the map check instruction and the // condition code uses at the patched jump. int8_t delta = *reinterpret_cast(delta_address); if (FLAG_trace_ic) { PrintF("[ patching ic at %p, test=%p, delta=%d\n", address, test_instruction_address, delta); } // Patch with a short conditional jump. Enabling means switching from a short // jump-if-carry/not-carry to jump-if-zero/not-zero, whereas disabling is the // reverse operation of that. Address jmp_address = test_instruction_address - delta; ASSERT((check == ENABLE_INLINED_SMI_CHECK) ? (*jmp_address == Assembler::kJncShortOpcode || *jmp_address == Assembler::kJcShortOpcode) : (*jmp_address == Assembler::kJnzShortOpcode || *jmp_address == Assembler::kJzShortOpcode)); Condition cc = (check == ENABLE_INLINED_SMI_CHECK) ? (*jmp_address == Assembler::kJncShortOpcode ? not_zero : zero) : (*jmp_address == Assembler::kJnzShortOpcode ? not_carry : carry); *jmp_address = static_cast(Assembler::kJccShortPrefix | cc); } } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64