#include "spawn_sync.h" #include "env-inl.h" #include "string_bytes.h" #include "util.h" #include #include namespace node { using v8::Array; using v8::Context; using v8::EscapableHandleScope; using v8::FunctionCallbackInfo; using v8::Handle; using v8::HandleScope; using v8::Integer; using v8::Isolate; using v8::Local; using v8::Null; using v8::Number; using v8::Object; using v8::String; using v8::Value; SyncProcessOutputBuffer::SyncProcessOutputBuffer() : used_(0), next_(nullptr) { } void SyncProcessOutputBuffer::OnAlloc(size_t suggested_size, uv_buf_t* buf) const { if (used() == kBufferSize) *buf = uv_buf_init(nullptr, 0); else *buf = uv_buf_init(data_ + used(), available()); } void SyncProcessOutputBuffer::OnRead(const uv_buf_t* buf, size_t nread) { // If we hand out the same chunk twice, this should catch it. CHECK_EQ(buf->base, data_ + used()); used_ += static_cast(nread); } size_t SyncProcessOutputBuffer::Copy(char* dest) const { memcpy(dest, data_, used()); return used(); } unsigned int SyncProcessOutputBuffer::available() const { return sizeof data_ - used(); } unsigned int SyncProcessOutputBuffer::used() const { return used_; } SyncProcessOutputBuffer* SyncProcessOutputBuffer::next() const { return next_; } void SyncProcessOutputBuffer::set_next(SyncProcessOutputBuffer* next) { next_ = next; } SyncProcessStdioPipe::SyncProcessStdioPipe(SyncProcessRunner* process_handler, bool readable, bool writable, uv_buf_t input_buffer) : process_handler_(process_handler), readable_(readable), writable_(writable), input_buffer_(input_buffer), first_output_buffer_(nullptr), last_output_buffer_(nullptr), uv_pipe_(), write_req_(), shutdown_req_(), lifecycle_(kUninitialized) { CHECK(readable || writable); } SyncProcessStdioPipe::~SyncProcessStdioPipe() { CHECK(lifecycle_ == kUninitialized || lifecycle_ == kClosed); SyncProcessOutputBuffer* buf; SyncProcessOutputBuffer* next; for (buf = first_output_buffer_; buf != nullptr; buf = next) { next = buf->next(); delete buf; } } int SyncProcessStdioPipe::Initialize(uv_loop_t* loop) { CHECK_EQ(lifecycle_, kUninitialized); int r = uv_pipe_init(loop, uv_pipe(), 0); if (r < 0) return r; uv_pipe()->data = this; lifecycle_ = kInitialized; return 0; } int SyncProcessStdioPipe::Start() { CHECK_EQ(lifecycle_, kInitialized); // Set the busy flag already. If this function fails no recovery is // possible. lifecycle_ = kStarted; if (readable()) { if (input_buffer_.len > 0) { CHECK_NE(input_buffer_.base, nullptr); int r = uv_write(&write_req_, uv_stream(), &input_buffer_, 1, WriteCallback); if (r < 0) return r; } int r = uv_shutdown(&shutdown_req_, uv_stream(), ShutdownCallback); if (r < 0) return r; } if (writable()) { int r = uv_read_start(uv_stream(), AllocCallback, ReadCallback); if (r < 0) return r; } return 0; } void SyncProcessStdioPipe::Close() { CHECK(lifecycle_ == kInitialized || lifecycle_ == kStarted); uv_close(uv_handle(), CloseCallback); lifecycle_ = kClosing; } Local SyncProcessStdioPipe::GetOutputAsBuffer(Environment* env) const { size_t length = OutputLength(); Local js_buffer = Buffer::New(env, length).ToLocalChecked(); CopyOutput(Buffer::Data(js_buffer)); return js_buffer; } bool SyncProcessStdioPipe::readable() const { return readable_; } bool SyncProcessStdioPipe::writable() const { return writable_; } uv_stdio_flags SyncProcessStdioPipe::uv_flags() const { unsigned int flags; flags = UV_CREATE_PIPE; if (readable()) flags |= UV_READABLE_PIPE; if (writable()) flags |= UV_WRITABLE_PIPE; return static_cast(flags); } uv_pipe_t* SyncProcessStdioPipe::uv_pipe() const { CHECK_LT(lifecycle_, kClosing); return &uv_pipe_; } uv_stream_t* SyncProcessStdioPipe::uv_stream() const { return reinterpret_cast(uv_pipe()); } uv_handle_t* SyncProcessStdioPipe::uv_handle() const { return reinterpret_cast(uv_pipe()); } size_t SyncProcessStdioPipe::OutputLength() const { SyncProcessOutputBuffer* buf; size_t size = 0; for (buf = first_output_buffer_; buf != nullptr; buf = buf->next()) size += buf->used(); return size; } void SyncProcessStdioPipe::CopyOutput(char* dest) const { SyncProcessOutputBuffer* buf; size_t offset = 0; for (buf = first_output_buffer_; buf != nullptr; buf = buf->next()) offset += buf->Copy(dest + offset); } void SyncProcessStdioPipe::OnAlloc(size_t suggested_size, uv_buf_t* buf) { // This function assumes that libuv will never allocate two buffers for the // same stream at the same time. There's an assert in // SyncProcessOutputBuffer::OnRead that would fail if this assumption was // ever violated. if (last_output_buffer_ == nullptr) { // Allocate the first capture buffer. first_output_buffer_ = new SyncProcessOutputBuffer(); last_output_buffer_ = first_output_buffer_; } else if (last_output_buffer_->available() == 0) { // The current capture buffer is full so get us a new one. SyncProcessOutputBuffer* buf = new SyncProcessOutputBuffer(); last_output_buffer_->set_next(buf); last_output_buffer_ = buf; } last_output_buffer_->OnAlloc(suggested_size, buf); } void SyncProcessStdioPipe::OnRead(const uv_buf_t* buf, ssize_t nread) { if (nread == UV_EOF) { // Libuv implicitly stops reading on EOF. } else if (nread < 0) { SetError(static_cast(nread)); // At some point libuv should really implicitly stop reading on error. uv_read_stop(uv_stream()); } else { last_output_buffer_->OnRead(buf, nread); process_handler_->IncrementBufferSizeAndCheckOverflow(nread); } } void SyncProcessStdioPipe::OnWriteDone(int result) { if (result < 0) SetError(result); } void SyncProcessStdioPipe::OnShutdownDone(int result) { if (result < 0) SetError(result); } void SyncProcessStdioPipe::OnClose() { lifecycle_ = kClosed; } void SyncProcessStdioPipe::SetError(int error) { CHECK_NE(error, 0); process_handler_->SetPipeError(error); } void SyncProcessStdioPipe::AllocCallback(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf) { SyncProcessStdioPipe* self = reinterpret_cast(handle->data); self->OnAlloc(suggested_size, buf); } void SyncProcessStdioPipe::ReadCallback(uv_stream_t* stream, ssize_t nread, const uv_buf_t* buf) { SyncProcessStdioPipe* self = reinterpret_cast(stream->data); self->OnRead(buf, nread); } void SyncProcessStdioPipe::WriteCallback(uv_write_t* req, int result) { SyncProcessStdioPipe* self = reinterpret_cast(req->handle->data); self->OnWriteDone(result); } void SyncProcessStdioPipe::ShutdownCallback(uv_shutdown_t* req, int result) { SyncProcessStdioPipe* self = reinterpret_cast(req->handle->data); // On AIX, OS X and the BSDs, calling shutdown() on one end of a pipe // when the other end has closed the connection fails with ENOTCONN. // Libuv is not the right place to handle that because it can't tell // if the error is genuine but we here can. if (result == UV_ENOTCONN) result = 0; self->OnShutdownDone(result); } void SyncProcessStdioPipe::CloseCallback(uv_handle_t* handle) { SyncProcessStdioPipe* self = reinterpret_cast(handle->data); self->OnClose(); } void SyncProcessRunner::Initialize(Handle target, Handle unused, Handle context) { Environment* env = Environment::GetCurrent(context); env->SetMethod(target, "spawn", Spawn); } void SyncProcessRunner::Spawn(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); env->PrintSyncTrace(); SyncProcessRunner p(env); Local result = p.Run(args[0]); args.GetReturnValue().Set(result); } SyncProcessRunner::SyncProcessRunner(Environment* env) : max_buffer_(0), timeout_(0), kill_signal_(SIGTERM), uv_loop_(nullptr), stdio_count_(0), uv_stdio_containers_(nullptr), stdio_pipes_(nullptr), stdio_pipes_initialized_(false), uv_process_options_(), file_buffer_(nullptr), args_buffer_(nullptr), env_buffer_(nullptr), cwd_buffer_(nullptr), uv_process_(), killed_(false), buffered_output_size_(0), exit_status_(-1), term_signal_(-1), uv_timer_(), kill_timer_initialized_(false), error_(0), pipe_error_(0), lifecycle_(kUninitialized), env_(env) { } SyncProcessRunner::~SyncProcessRunner() { CHECK_EQ(lifecycle_, kHandlesClosed); if (stdio_pipes_ != nullptr) { for (size_t i = 0; i < stdio_count_; i++) { if (stdio_pipes_[i] != nullptr) delete stdio_pipes_[i]; } } delete[] stdio_pipes_; delete[] file_buffer_; delete[] args_buffer_; delete[] cwd_buffer_; delete[] env_buffer_; delete[] uv_stdio_containers_; } Environment* SyncProcessRunner::env() const { return env_; } Local SyncProcessRunner::Run(Local options) { EscapableHandleScope scope(env()->isolate()); CHECK_EQ(lifecycle_, kUninitialized); TryInitializeAndRunLoop(options); CloseHandlesAndDeleteLoop(); Local result = BuildResultObject(); return scope.Escape(result); } void SyncProcessRunner::TryInitializeAndRunLoop(Local options) { int r; // There is no recovery from failure inside TryInitializeAndRunLoop - the // only option we'd have is to close all handles and destroy the loop. CHECK_EQ(lifecycle_, kUninitialized); lifecycle_ = kInitialized; uv_loop_ = new uv_loop_t; if (uv_loop_ == nullptr) return SetError(UV_ENOMEM); CHECK_EQ(uv_loop_init(uv_loop_), 0); r = ParseOptions(options); if (r < 0) return SetError(r); if (timeout_ > 0) { r = uv_timer_init(uv_loop_, &uv_timer_); if (r < 0) return SetError(r); uv_unref(reinterpret_cast(&uv_timer_)); uv_timer_.data = this; kill_timer_initialized_ = true; // Start the timer immediately. If uv_spawn fails then // CloseHandlesAndDeleteLoop() will immediately close the timer handle // which implicitly stops it, so there is no risk that the timeout callback // runs when the process didn't start. r = uv_timer_start(&uv_timer_, KillTimerCallback, timeout_, 0); if (r < 0) return SetError(r); } uv_process_options_.exit_cb = ExitCallback; r = uv_spawn(uv_loop_, &uv_process_, &uv_process_options_); if (r < 0) return SetError(r); uv_process_.data = this; for (uint32_t i = 0; i < stdio_count_; i++) { SyncProcessStdioPipe* h = stdio_pipes_[i]; if (h != nullptr) { r = h->Start(); if (r < 0) return SetPipeError(r); } } r = uv_run(uv_loop_, UV_RUN_DEFAULT); if (r < 0) // We can't handle uv_run failure. abort(); // If we get here the process should have exited. CHECK_GE(exit_status_, 0); } void SyncProcessRunner::CloseHandlesAndDeleteLoop() { CHECK_LT(lifecycle_, kHandlesClosed); if (uv_loop_ != nullptr) { CloseStdioPipes(); CloseKillTimer(); // Close the process handle when ExitCallback was not called. uv_handle_t* uv_process_handle = reinterpret_cast(&uv_process_); if (!uv_is_closing(uv_process_handle)) uv_close(uv_process_handle, nullptr); // Give closing watchers a chance to finish closing and get their close // callbacks called. int r = uv_run(uv_loop_, UV_RUN_DEFAULT); if (r < 0) abort(); CHECK_EQ(uv_loop_close(uv_loop_), 0); delete uv_loop_; uv_loop_ = nullptr; } else { // If the loop doesn't exist, neither should any pipes or timers. CHECK_EQ(false, stdio_pipes_initialized_); CHECK_EQ(false, kill_timer_initialized_); } lifecycle_ = kHandlesClosed; } void SyncProcessRunner::CloseStdioPipes() { CHECK_LT(lifecycle_, kHandlesClosed); if (stdio_pipes_initialized_) { CHECK_NE(stdio_pipes_, nullptr); CHECK_NE(uv_loop_, nullptr); for (uint32_t i = 0; i < stdio_count_; i++) { if (stdio_pipes_[i] != nullptr) stdio_pipes_[i]->Close(); } stdio_pipes_initialized_ = false; } } void SyncProcessRunner::CloseKillTimer() { CHECK_LT(lifecycle_, kHandlesClosed); if (kill_timer_initialized_) { CHECK_GT(timeout_, 0); CHECK_NE(uv_loop_, nullptr); uv_handle_t* uv_timer_handle = reinterpret_cast(&uv_timer_); uv_ref(uv_timer_handle); uv_close(uv_timer_handle, KillTimerCloseCallback); kill_timer_initialized_ = false; } } void SyncProcessRunner::Kill() { // Only attempt to kill once. if (killed_) return; killed_ = true; // We might get here even if the process we spawned has already exited. This // could happen when our child process spawned another process which // inherited (one of) the stdio pipes. In this case we won't attempt to send // a signal to the process, however we will still close our end of the stdio // pipes so this situation won't make us hang. if (exit_status_ < 0) { int r = uv_process_kill(&uv_process_, kill_signal_); // If uv_kill failed with an error that isn't ESRCH, the user probably // specified an invalid or unsupported signal. Signal this to the user as // and error and kill the process with SIGKILL instead. if (r < 0 && r != UV_ESRCH) { SetError(r); r = uv_process_kill(&uv_process_, SIGKILL); CHECK(r >= 0 || r == UV_ESRCH); } } // Close all stdio pipes. CloseStdioPipes(); // Stop the timeout timer immediately. CloseKillTimer(); } void SyncProcessRunner::IncrementBufferSizeAndCheckOverflow(ssize_t length) { buffered_output_size_ += length; if (max_buffer_ > 0 && buffered_output_size_ > max_buffer_) { SetError(UV_ENOBUFS); Kill(); } } void SyncProcessRunner::OnExit(int64_t exit_status, int term_signal) { if (exit_status < 0) return SetError(static_cast(exit_status)); exit_status_ = exit_status; term_signal_ = term_signal; } void SyncProcessRunner::OnKillTimerTimeout() { SetError(UV_ETIMEDOUT); Kill(); } int SyncProcessRunner::GetError() { if (error_ != 0) return error_; else return pipe_error_; } void SyncProcessRunner::SetError(int error) { if (error_ == 0) error_ = error; } void SyncProcessRunner::SetPipeError(int pipe_error) { if (pipe_error_ == 0) pipe_error_ = pipe_error; } Local SyncProcessRunner::BuildResultObject() { EscapableHandleScope scope(env()->isolate()); Local js_result = Object::New(env()->isolate()); if (GetError() != 0) { js_result->Set(env()->error_string(), Integer::New(env()->isolate(), GetError())); } if (exit_status_ >= 0) js_result->Set(env()->status_string(), Number::New(env()->isolate(), static_cast(exit_status_))); else // If exit_status_ < 0 the process was never started because of some error. js_result->Set(env()->status_string(), Null(env()->isolate())); if (term_signal_ > 0) js_result->Set(env()->signal_string(), String::NewFromUtf8(env()->isolate(), signo_string(term_signal_))); else js_result->Set(env()->signal_string(), Null(env()->isolate())); if (exit_status_ >= 0) js_result->Set(env()->output_string(), BuildOutputArray()); else js_result->Set(env()->output_string(), Null(env()->isolate())); js_result->Set(env()->pid_string(), Number::New(env()->isolate(), uv_process_.pid)); return scope.Escape(js_result); } Local SyncProcessRunner::BuildOutputArray() { CHECK_GE(lifecycle_, kInitialized); CHECK_NE(stdio_pipes_, nullptr); EscapableHandleScope scope(env()->isolate()); Local js_output = Array::New(env()->isolate(), stdio_count_); for (uint32_t i = 0; i < stdio_count_; i++) { SyncProcessStdioPipe* h = stdio_pipes_[i]; if (h != nullptr && h->writable()) js_output->Set(i, h->GetOutputAsBuffer(env())); else js_output->Set(i, Null(env()->isolate())); } return scope.Escape(js_output); } int SyncProcessRunner::ParseOptions(Local js_value) { HandleScope scope(env()->isolate()); int r; if (!js_value->IsObject()) return UV_EINVAL; Local js_options = js_value.As(); Local js_file = js_options->Get(env()->file_string()); r = CopyJsString(js_file, &file_buffer_); if (r < 0) return r; uv_process_options_.file = file_buffer_; Local js_args = js_options->Get(env()->args_string()); r = CopyJsStringArray(js_args, &args_buffer_); if (r < 0) return r; uv_process_options_.args = reinterpret_cast(args_buffer_); Local js_cwd = js_options->Get(env()->cwd_string()); if (IsSet(js_cwd)) { r = CopyJsString(js_cwd, &cwd_buffer_); if (r < 0) return r; uv_process_options_.cwd = cwd_buffer_; } Local js_env_pairs = js_options->Get(env()->env_pairs_string()); if (IsSet(js_env_pairs)) { r = CopyJsStringArray(js_env_pairs, &env_buffer_); if (r < 0) return r; uv_process_options_.env = reinterpret_cast(env_buffer_); } Local js_uid = js_options->Get(env()->uid_string()); if (IsSet(js_uid)) { if (!CheckRange(js_uid)) return UV_EINVAL; uv_process_options_.uid = static_cast(js_uid->Int32Value()); uv_process_options_.flags |= UV_PROCESS_SETUID; } Local js_gid = js_options->Get(env()->gid_string()); if (IsSet(js_gid)) { if (!CheckRange(js_gid)) return UV_EINVAL; uv_process_options_.gid = static_cast(js_gid->Int32Value()); uv_process_options_.flags |= UV_PROCESS_SETGID; } if (js_options->Get(env()->detached_string())->BooleanValue()) uv_process_options_.flags |= UV_PROCESS_DETACHED; Local wba = env()->windows_verbatim_arguments_string(); if (js_options->Get(wba)->BooleanValue()) uv_process_options_.flags |= UV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS; Local js_timeout = js_options->Get(env()->timeout_string()); if (IsSet(js_timeout)) { if (!js_timeout->IsNumber()) return UV_EINVAL; int64_t timeout = js_timeout->IntegerValue(); if (timeout < 0) return UV_EINVAL; timeout_ = static_cast(timeout); } Local js_max_buffer = js_options->Get(env()->max_buffer_string()); if (IsSet(js_max_buffer)) { if (!CheckRange(js_max_buffer)) return UV_EINVAL; max_buffer_ = js_max_buffer->Uint32Value(); } Local js_kill_signal = js_options->Get(env()->kill_signal_string()); if (IsSet(js_kill_signal)) { if (!js_kill_signal->IsInt32()) return UV_EINVAL; kill_signal_ = js_kill_signal->Int32Value(); if (kill_signal_ == 0) return UV_EINVAL; } Local js_stdio = js_options->Get(env()->stdio_string()); r = ParseStdioOptions(js_stdio); if (r < 0) return r; return 0; } int SyncProcessRunner::ParseStdioOptions(Local js_value) { HandleScope scope(env()->isolate()); Local js_stdio_options; if (!js_value->IsArray()) return UV_EINVAL; js_stdio_options = js_value.As(); stdio_count_ = js_stdio_options->Length(); uv_stdio_containers_ = new uv_stdio_container_t[stdio_count_]; stdio_pipes_ = new SyncProcessStdioPipe*[stdio_count_](); stdio_pipes_initialized_ = true; for (uint32_t i = 0; i < stdio_count_; i++) { Local js_stdio_option = js_stdio_options->Get(i); if (!js_stdio_option->IsObject()) return UV_EINVAL; int r = ParseStdioOption(i, js_stdio_option.As()); if (r < 0) return r; } uv_process_options_.stdio = uv_stdio_containers_; uv_process_options_.stdio_count = stdio_count_; return 0; } int SyncProcessRunner::ParseStdioOption(int child_fd, Local js_stdio_option) { Local js_type = js_stdio_option->Get(env()->type_string()); if (js_type->StrictEquals(env()->ignore_string())) { return AddStdioIgnore(child_fd); } else if (js_type->StrictEquals(env()->pipe_string())) { Local rs = env()->readable_string(); Local ws = env()->writable_string(); bool readable = js_stdio_option->Get(rs)->BooleanValue(); bool writable = js_stdio_option->Get(ws)->BooleanValue(); uv_buf_t buf = uv_buf_init(nullptr, 0); if (readable) { Local input = js_stdio_option->Get(env()->input_string()); if (Buffer::HasInstance(input)) { buf = uv_buf_init(Buffer::Data(input), static_cast(Buffer::Length(input))); } else if (!input->IsUndefined() && !input->IsNull()) { // Strings, numbers etc. are currently unsupported. It's not possible // to create a buffer for them here because there is no way to free // them afterwards. return UV_EINVAL; } } return AddStdioPipe(child_fd, readable, writable, buf); } else if (js_type->StrictEquals(env()->inherit_string()) || js_type->StrictEquals(env()->fd_string())) { int inherit_fd = js_stdio_option->Get(env()->fd_string())->Int32Value(); return AddStdioInheritFD(child_fd, inherit_fd); } else { CHECK(0 && "invalid child stdio type"); return UV_EINVAL; } } int SyncProcessRunner::AddStdioIgnore(uint32_t child_fd) { CHECK_LT(child_fd, stdio_count_); CHECK_EQ(stdio_pipes_[child_fd], nullptr); uv_stdio_containers_[child_fd].flags = UV_IGNORE; return 0; } int SyncProcessRunner::AddStdioPipe(uint32_t child_fd, bool readable, bool writable, uv_buf_t input_buffer) { CHECK_LT(child_fd, stdio_count_); CHECK_EQ(stdio_pipes_[child_fd], nullptr); SyncProcessStdioPipe* h = new SyncProcessStdioPipe(this, readable, writable, input_buffer); int r = h->Initialize(uv_loop_); if (r < 0) { delete h; return r; } stdio_pipes_[child_fd] = h; uv_stdio_containers_[child_fd].flags = h->uv_flags(); uv_stdio_containers_[child_fd].data.stream = h->uv_stream(); return 0; } int SyncProcessRunner::AddStdioInheritFD(uint32_t child_fd, int inherit_fd) { CHECK_LT(child_fd, stdio_count_); CHECK_EQ(stdio_pipes_[child_fd], nullptr); uv_stdio_containers_[child_fd].flags = UV_INHERIT_FD; uv_stdio_containers_[child_fd].data.fd = inherit_fd; return 0; } bool SyncProcessRunner::IsSet(Local value) { return !value->IsUndefined() && !value->IsNull(); } template bool SyncProcessRunner::CheckRange(Local js_value) { if ((t) -1 > 0) { // Unsigned range check. if (!js_value->IsUint32()) return false; if (js_value->Uint32Value() & ~((t) ~0)) return false; } else { // Signed range check. if (!js_value->IsInt32()) return false; if (js_value->Int32Value() & ~((t) ~0)) return false; } return true; } int SyncProcessRunner::CopyJsString(Local js_value, const char** target) { Isolate* isolate = env()->isolate(); Local js_string; size_t size, written; char* buffer; if (js_value->IsString()) js_string = js_value.As(); else js_string = js_value->ToString(env()->isolate()); // Include space for null terminator byte. size = StringBytes::StorageSize(isolate, js_string, UTF8) + 1; buffer = new char[size]; written = StringBytes::Write(isolate, buffer, -1, js_string, UTF8); buffer[written] = '\0'; *target = buffer; return 0; } int SyncProcessRunner::CopyJsStringArray(Local js_value, char** target) { Isolate* isolate = env()->isolate(); Local js_array; uint32_t length; size_t list_size, data_size, data_offset; char** list; char* buffer; if (!js_value->IsArray()) return UV_EINVAL; js_array = js_value.As()->Clone().As(); length = js_array->Length(); // Convert all array elements to string. Modify the js object itself if // needed - it's okay since we cloned the original object. for (uint32_t i = 0; i < length; i++) { if (!js_array->Get(i)->IsString()) js_array->Set(i, js_array->Get(i)->ToString(env()->isolate())); } // Index has a pointer to every string element, plus one more for a final // null pointer. list_size = (length + 1) * sizeof *list; // Compute the length of all strings. Include room for null terminator // after every string. Align strings to cache lines. data_size = 0; for (uint32_t i = 0; i < length; i++) { data_size += StringBytes::StorageSize(isolate, js_array->Get(i), UTF8) + 1; data_size = ROUND_UP(data_size, sizeof(void*)); // NOLINT(runtime/sizeof) } buffer = new char[list_size + data_size]; list = reinterpret_cast(buffer); data_offset = list_size; for (uint32_t i = 0; i < length; i++) { list[i] = buffer + data_offset; data_offset += StringBytes::Write(isolate, buffer + data_offset, -1, js_array->Get(i), UTF8); buffer[data_offset++] = '\0'; data_offset = ROUND_UP(data_offset, sizeof(void*)); // NOLINT(runtime/sizeof) } list[length] = nullptr; *target = buffer; return 0; } void SyncProcessRunner::ExitCallback(uv_process_t* handle, int64_t exit_status, int term_signal) { SyncProcessRunner* self = reinterpret_cast(handle->data); uv_close(reinterpret_cast(handle), nullptr); self->OnExit(exit_status, term_signal); } void SyncProcessRunner::KillTimerCallback(uv_timer_t* handle) { SyncProcessRunner* self = reinterpret_cast(handle->data); self->OnKillTimerTimeout(); } void SyncProcessRunner::KillTimerCloseCallback(uv_handle_t* handle) { // No-op. } } // namespace node NODE_MODULE_CONTEXT_AWARE_BUILTIN(spawn_sync, node::SyncProcessRunner::Initialize)