// Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. #include "string_bytes.h" #include "base64.h" #include "node_internals.h" #include "node_errors.h" #include "node_buffer.h" #include #include // memcpy #include #include // When creating strings >= this length v8's gc spins up and consumes // most of the execution time. For these cases it's more performant to // use external string resources. #define EXTERN_APEX 0xFBEE9 namespace node { using v8::HandleScope; using v8::Isolate; using v8::Just; using v8::Local; using v8::Maybe; using v8::MaybeLocal; using v8::Nothing; using v8::String; using v8::Value; namespace { template class ExternString: public ResourceType { public: ~ExternString() override { free(const_cast(data_)); isolate()->AdjustAmountOfExternalAllocatedMemory(-byte_length()); } const TypeName* data() const override { return data_; } size_t length() const override { return length_; } int64_t byte_length() const { return length() * sizeof(*data()); } static MaybeLocal NewFromCopy(Isolate* isolate, const TypeName* data, size_t length, Local* error) { if (length == 0) return String::Empty(isolate); if (length < EXTERN_APEX) return NewSimpleFromCopy(isolate, data, length, error); TypeName* new_data = node::UncheckedMalloc(length); if (new_data == nullptr) { *error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate); return MaybeLocal(); } memcpy(new_data, data, length * sizeof(*new_data)); return ExternString::New(isolate, new_data, length, error); } // uses "data" for external resource, and will be free'd on gc static MaybeLocal New(Isolate* isolate, TypeName* data, size_t length, Local* error) { if (length == 0) return String::Empty(isolate); if (length < EXTERN_APEX) { MaybeLocal str = NewSimpleFromCopy(isolate, data, length, error); free(data); return str; } ExternString* h_str = new ExternString(isolate, data, length); MaybeLocal str = NewExternal(isolate, h_str); isolate->AdjustAmountOfExternalAllocatedMemory(h_str->byte_length()); if (str.IsEmpty()) { delete h_str; *error = node::ERR_STRING_TOO_LONG(isolate); return MaybeLocal(); } return str.ToLocalChecked(); } inline Isolate* isolate() const { return isolate_; } private: ExternString(Isolate* isolate, const TypeName* data, size_t length) : isolate_(isolate), data_(data), length_(length) { } static MaybeLocal NewExternal(Isolate* isolate, ExternString* h_str); // This method does not actually create ExternString instances. static MaybeLocal NewSimpleFromCopy(Isolate* isolate, const TypeName* data, size_t length, Local* error); Isolate* isolate_; const TypeName* data_; size_t length_; }; typedef ExternString ExternOneByteString; typedef ExternString ExternTwoByteString; template <> MaybeLocal ExternOneByteString::NewExternal( Isolate* isolate, ExternOneByteString* h_str) { return String::NewExternalOneByte(isolate, h_str).FromMaybe(Local()); } template <> MaybeLocal ExternTwoByteString::NewExternal( Isolate* isolate, ExternTwoByteString* h_str) { return String::NewExternalTwoByte(isolate, h_str).FromMaybe(Local()); } template <> MaybeLocal ExternOneByteString::NewSimpleFromCopy(Isolate* isolate, const char* data, size_t length, Local* error) { MaybeLocal str = String::NewFromOneByte(isolate, reinterpret_cast(data), v8::NewStringType::kNormal, length); if (str.IsEmpty()) { *error = node::ERR_STRING_TOO_LONG(isolate); return MaybeLocal(); } return str.ToLocalChecked(); } template <> MaybeLocal ExternTwoByteString::NewSimpleFromCopy(Isolate* isolate, const uint16_t* data, size_t length, Local* error) { MaybeLocal str = String::NewFromTwoByte(isolate, data, v8::NewStringType::kNormal, length); if (str.IsEmpty()) { *error = node::ERR_STRING_TOO_LONG(isolate); return MaybeLocal(); } return str.ToLocalChecked(); } } // anonymous namespace // supports regular and URL-safe base64 const int8_t unbase64_table[256] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -1, -1, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, 62, -1, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63, -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static const int8_t unhex_table[256] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static inline unsigned unhex(uint8_t x) { return unhex_table[x]; } template static size_t hex_decode(char* buf, size_t len, const TypeName* src, const size_t srcLen) { size_t i; for (i = 0; i < len && i * 2 + 1 < srcLen; ++i) { unsigned a = unhex(src[i * 2 + 0]); unsigned b = unhex(src[i * 2 + 1]); if (!~a || !~b) return i; buf[i] = (a << 4) | b; } return i; } size_t StringBytes::WriteUCS2(Isolate* isolate, char* buf, size_t buflen, Local str, int flags, size_t* chars_written) { uint16_t* const dst = reinterpret_cast(buf); size_t max_chars = buflen / sizeof(*dst); if (max_chars == 0) { return 0; } size_t nchars; size_t alignment = reinterpret_cast(dst) % sizeof(*dst); if (alignment == 0) { nchars = str->Write(isolate, dst, 0, max_chars, flags); *chars_written = nchars; return nchars * sizeof(*dst); } uint16_t* aligned_dst = reinterpret_cast(buf + sizeof(*dst) - alignment); CHECK_EQ(reinterpret_cast(aligned_dst) % sizeof(*dst), 0); // Write all but the last char nchars = str->Write(isolate, aligned_dst, 0, max_chars - 1, flags); // Shift everything to unaligned-left memmove(dst, aligned_dst, nchars * sizeof(*dst)); // One more char to be written uint16_t last; if (nchars == max_chars - 1 && str->Write(isolate, &last, nchars, 1, flags) != 0) { memcpy(buf + nchars * sizeof(*dst), &last, sizeof(last)); nchars++; } *chars_written = nchars; return nchars * sizeof(*dst); } size_t StringBytes::Write(Isolate* isolate, char* buf, size_t buflen, Local val, enum encoding encoding, int* chars_written) { HandleScope scope(isolate); size_t nbytes; int nchars; if (chars_written == nullptr) chars_written = &nchars; CHECK(val->IsString() == true); Local str = val.As(); int flags = String::HINT_MANY_WRITES_EXPECTED | String::NO_NULL_TERMINATION | String::REPLACE_INVALID_UTF8; switch (encoding) { case ASCII: case LATIN1: if (str->IsExternalOneByte()) { auto ext = str->GetExternalOneByteStringResource(); nbytes = std::min(buflen, ext->length()); memcpy(buf, ext->data(), nbytes); } else { uint8_t* const dst = reinterpret_cast(buf); nbytes = str->WriteOneByte(isolate, dst, 0, buflen, flags); } *chars_written = nbytes; break; case BUFFER: case UTF8: nbytes = str->WriteUtf8(isolate, buf, buflen, chars_written, flags); break; case UCS2: { size_t nchars; nbytes = WriteUCS2(isolate, buf, buflen, str, flags, &nchars); *chars_written = static_cast(nchars); // Node's "ucs2" encoding wants LE character data stored in // the Buffer, so we need to reorder on BE platforms. See // https://nodejs.org/api/buffer.html regarding Node's "ucs2" // encoding specification if (IsBigEndian()) SwapBytes16(buf, nbytes); break; } case BASE64: if (str->IsExternalOneByte()) { auto ext = str->GetExternalOneByteStringResource(); nbytes = base64_decode(buf, buflen, ext->data(), ext->length()); } else { String::Value value(isolate, str); nbytes = base64_decode(buf, buflen, *value, value.length()); } *chars_written = nbytes; break; case HEX: if (str->IsExternalOneByte()) { auto ext = str->GetExternalOneByteStringResource(); nbytes = hex_decode(buf, buflen, ext->data(), ext->length()); } else { String::Value value(isolate, str); nbytes = hex_decode(buf, buflen, *value, value.length()); } *chars_written = nbytes; break; default: CHECK(0 && "unknown encoding"); break; } return nbytes; } bool StringBytes::IsValidString(Local string, enum encoding enc) { if (enc == HEX && string->Length() % 2 != 0) return false; // TODO(bnoordhuis) Add BASE64 check? return true; } // Quick and dirty size calculation // Will always be at least big enough, but may have some extra // UTF8 can be as much as 3x the size, Base64 can have 1-2 extra bytes Maybe StringBytes::StorageSize(Isolate* isolate, Local val, enum encoding encoding) { HandleScope scope(isolate); size_t data_size = 0; bool is_buffer = Buffer::HasInstance(val); if (is_buffer && (encoding == BUFFER || encoding == LATIN1)) { return Just(Buffer::Length(val)); } Local str; if (!val->ToString(isolate->GetCurrentContext()).ToLocal(&str)) return Nothing(); switch (encoding) { case ASCII: case LATIN1: data_size = str->Length(); break; case BUFFER: case UTF8: // A single UCS2 codepoint never takes up more than 3 utf8 bytes. // It is an exercise for the caller to decide when a string is // long enough to justify calling Size() instead of StorageSize() data_size = 3 * str->Length(); break; case UCS2: data_size = str->Length() * sizeof(uint16_t); break; case BASE64: data_size = base64_decoded_size_fast(str->Length()); break; case HEX: CHECK(str->Length() % 2 == 0 && "invalid hex string length"); data_size = str->Length() / 2; break; default: CHECK(0 && "unknown encoding"); break; } return Just(data_size); } Maybe StringBytes::Size(Isolate* isolate, Local val, enum encoding encoding) { HandleScope scope(isolate); if (Buffer::HasInstance(val) && (encoding == BUFFER || encoding == LATIN1)) return Just(Buffer::Length(val)); Local str; if (!val->ToString(isolate->GetCurrentContext()).ToLocal(&str)) return Nothing(); switch (encoding) { case ASCII: case LATIN1: return Just(str->Length()); case BUFFER: case UTF8: return Just(str->Utf8Length(isolate)); case UCS2: return Just(str->Length() * sizeof(uint16_t)); case BASE64: { String::Value value(isolate, str); return Just(base64_decoded_size(*value, value.length())); } case HEX: return Just(str->Length() / 2); } UNREACHABLE(); } static bool contains_non_ascii_slow(const char* buf, size_t len) { for (size_t i = 0; i < len; ++i) { if (buf[i] & 0x80) return true; } return false; } static bool contains_non_ascii(const char* src, size_t len) { if (len < 16) { return contains_non_ascii_slow(src, len); } const unsigned bytes_per_word = sizeof(uintptr_t); const unsigned align_mask = bytes_per_word - 1; const unsigned unaligned = reinterpret_cast(src) & align_mask; if (unaligned > 0) { const unsigned n = bytes_per_word - unaligned; if (contains_non_ascii_slow(src, n)) return true; src += n; len -= n; } #if defined(_WIN64) || defined(_LP64) const uintptr_t mask = 0x8080808080808080ll; #else const uintptr_t mask = 0x80808080l; #endif const uintptr_t* srcw = reinterpret_cast(src); for (size_t i = 0, n = len / bytes_per_word; i < n; ++i) { if (srcw[i] & mask) return true; } const unsigned remainder = len & align_mask; if (remainder > 0) { const size_t offset = len - remainder; if (contains_non_ascii_slow(src + offset, remainder)) return true; } return false; } static void force_ascii_slow(const char* src, char* dst, size_t len) { for (size_t i = 0; i < len; ++i) { dst[i] = src[i] & 0x7f; } } static void force_ascii(const char* src, char* dst, size_t len) { if (len < 16) { force_ascii_slow(src, dst, len); return; } const unsigned bytes_per_word = sizeof(uintptr_t); const unsigned align_mask = bytes_per_word - 1; const unsigned src_unalign = reinterpret_cast(src) & align_mask; const unsigned dst_unalign = reinterpret_cast(dst) & align_mask; if (src_unalign > 0) { if (src_unalign == dst_unalign) { const unsigned unalign = bytes_per_word - src_unalign; force_ascii_slow(src, dst, unalign); src += unalign; dst += unalign; len -= src_unalign; } else { force_ascii_slow(src, dst, len); return; } } #if defined(_WIN64) || defined(_LP64) const uintptr_t mask = ~0x8080808080808080ll; #else const uintptr_t mask = ~0x80808080l; #endif const uintptr_t* srcw = reinterpret_cast(src); uintptr_t* dstw = reinterpret_cast(dst); for (size_t i = 0, n = len / bytes_per_word; i < n; ++i) { dstw[i] = srcw[i] & mask; } const unsigned remainder = len & align_mask; if (remainder > 0) { const size_t offset = len - remainder; force_ascii_slow(src + offset, dst + offset, remainder); } } static size_t hex_encode(const char* src, size_t slen, char* dst, size_t dlen) { // We know how much we'll write, just make sure that there's space. CHECK(dlen >= slen * 2 && "not enough space provided for hex encode"); dlen = slen * 2; for (uint32_t i = 0, k = 0; k < dlen; i += 1, k += 2) { static const char hex[] = "0123456789abcdef"; uint8_t val = static_cast(src[i]); dst[k + 0] = hex[val >> 4]; dst[k + 1] = hex[val & 15]; } return dlen; } #define CHECK_BUFLEN_IN_RANGE(len) \ do { \ if ((len) > Buffer::kMaxLength) { \ *error = node::ERR_BUFFER_TOO_LARGE(isolate); \ return MaybeLocal(); \ } \ } while (0) MaybeLocal StringBytes::Encode(Isolate* isolate, const char* buf, size_t buflen, enum encoding encoding, Local* error) { CHECK_NE(encoding, UCS2); CHECK_BUFLEN_IN_RANGE(buflen); if (!buflen && encoding != BUFFER) { return String::Empty(isolate); } MaybeLocal val; switch (encoding) { case BUFFER: { if (buflen > node::Buffer::kMaxLength) { *error = node::ERR_BUFFER_TOO_LARGE(isolate); return MaybeLocal(); } auto maybe_buf = Buffer::Copy(isolate, buf, buflen); if (maybe_buf.IsEmpty()) { *error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate); return MaybeLocal(); } return maybe_buf.ToLocalChecked(); } case ASCII: if (contains_non_ascii(buf, buflen)) { char* out = node::UncheckedMalloc(buflen); if (out == nullptr) { *error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate); return MaybeLocal(); } force_ascii(buf, out, buflen); return ExternOneByteString::New(isolate, out, buflen, error); } else { return ExternOneByteString::NewFromCopy(isolate, buf, buflen, error); } case UTF8: val = String::NewFromUtf8(isolate, buf, v8::NewStringType::kNormal, buflen); if (val.IsEmpty()) { *error = node::ERR_STRING_TOO_LONG(isolate); return MaybeLocal(); } return val.ToLocalChecked(); case LATIN1: return ExternOneByteString::NewFromCopy(isolate, buf, buflen, error); case BASE64: { size_t dlen = base64_encoded_size(buflen); char* dst = node::UncheckedMalloc(dlen); if (dst == nullptr) { *error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate); return MaybeLocal(); } size_t written = base64_encode(buf, buflen, dst, dlen); CHECK_EQ(written, dlen); return ExternOneByteString::New(isolate, dst, dlen, error); } case HEX: { size_t dlen = buflen * 2; char* dst = node::UncheckedMalloc(dlen); if (dst == nullptr) { *error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate); return MaybeLocal(); } size_t written = hex_encode(buf, buflen, dst, dlen); CHECK_EQ(written, dlen); return ExternOneByteString::New(isolate, dst, dlen, error); } default: CHECK(0 && "unknown encoding"); break; } UNREACHABLE(); } MaybeLocal StringBytes::Encode(Isolate* isolate, const uint16_t* buf, size_t buflen, Local* error) { CHECK_BUFLEN_IN_RANGE(buflen); // Node's "ucs2" encoding expects LE character data inside a // Buffer, so we need to reorder on BE platforms. See // https://nodejs.org/api/buffer.html regarding Node's "ucs2" // encoding specification if (IsBigEndian()) { uint16_t* dst = node::UncheckedMalloc(buflen); if (dst == nullptr) { *error = node::ERR_MEMORY_ALLOCATION_FAILED(isolate); return MaybeLocal(); } size_t nbytes = buflen * sizeof(uint16_t); memcpy(dst, buf, nbytes); SwapBytes16(reinterpret_cast(dst), nbytes); return ExternTwoByteString::New(isolate, dst, buflen, error); } else { return ExternTwoByteString::NewFromCopy(isolate, buf, buflen, error); } } MaybeLocal StringBytes::Encode(Isolate* isolate, const char* buf, enum encoding encoding, Local* error) { const size_t len = strlen(buf); MaybeLocal ret; if (encoding == UCS2) { // In Node, UCS2 means utf16le. The data must be in little-endian // order and must be aligned on 2-bytes. This returns an empty // value if it's not aligned and ensures the appropriate byte order // on big endian architectures. const bool be = IsBigEndian(); if (len % 2 != 0) return ret; std::vector vec(len / 2); for (size_t i = 0, k = 0; i < len; i += 2, k += 1) { const uint8_t hi = static_cast(buf[i + 0]); const uint8_t lo = static_cast(buf[i + 1]); vec[k] = be ? static_cast(hi) << 8 | lo : static_cast(lo) << 8 | hi; } ret = vec.empty() ? static_cast< Local >(String::Empty(isolate)) : StringBytes::Encode(isolate, &vec[0], vec.size(), error); } else { ret = StringBytes::Encode(isolate, buf, len, encoding, error); } return ret; } } // namespace node