#include #include #include #include #include #include #include // This executable takes a Windows DLL and uses it to generate // a module-definition file [1] which forwards all the exported // symbols from the DLL and redirects them back to the DLL. // This allows node.exe to export the same symbols as libnode.dll // when building Node.js as a shared library. This is conceptually // similary to the create_expfile.sh script used on AIX. // // Generating this .def file requires parsing data out of the // PE32/PE32+ file format. Helper structs are defined in // hence why this is an executable and not a script. See [2] for // details on the PE format. // // [1]: https://docs.microsoft.com/en-us/cpp/build/reference/module-definition-dot-def-files // [2]: https://docs.microsoft.com/en-us/windows/win32/debug/pe-format // The PE32 format encodes pointers as Relative Virtual Addresses // which are 32 bit offsets from the start of the image. This helper // class hides the mess of the pointer arithmetic struct RelativeAddress { uintptr_t root; uintptr_t offset = 0; RelativeAddress(HMODULE handle) noexcept : root(reinterpret_cast(handle)) {} RelativeAddress(HMODULE handle, uintptr_t offset) noexcept : root(reinterpret_cast(handle)), offset(offset) {} RelativeAddress(uintptr_t root, uintptr_t offset) noexcept : root(root), offset(offset) {} template const T* AsPtrTo() const noexcept { return reinterpret_cast(root + offset); } template T Read() const noexcept { return *AsPtrTo(); } RelativeAddress AtOffset(uintptr_t amount) const noexcept { return {root, offset + amount}; } RelativeAddress operator+(uintptr_t amount) const noexcept { return {root, offset + amount}; } RelativeAddress ReadRelativeAddress() const noexcept { return {root, Read()}; } }; // A wrapper around a dynamically loaded Windows DLL. This steps through the // PE file structure to find the export directory and pulls out a list of // all the exported symbol names. struct Library { HMODULE library; std::string libraryName; std::vector exportedSymbols; Library(HMODULE library) : library(library) { auto libnode = RelativeAddress(library); // At relative offset 0x3C is a 32 bit offset to the COFF signature, 4 bytes // after that is the start of the COFF header. auto coffHeaderPtr = libnode.AtOffset(0x3C).ReadRelativeAddress().AtOffset(4); auto coffHeader = coffHeaderPtr.AsPtrTo(); // After the coff header is the Optional Header (which is not optional). We // don't know what type of optional header we have without examining the // magic number auto optionalHeaderPtr = coffHeaderPtr.AtOffset(sizeof(IMAGE_FILE_HEADER)); auto optionalHeader = optionalHeaderPtr.AsPtrTo(); auto exportDirectory = (optionalHeader->Magic == 0x20b) ? optionalHeaderPtr.AsPtrTo() ->DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT] : optionalHeaderPtr.AsPtrTo() ->DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]; auto exportTable = libnode.AtOffset(exportDirectory.VirtualAddress) .AsPtrTo(); // This is the name of the library without the suffix, this is more robust // than parsing the filename as this is what the linker uses. libraryName = libnode.AtOffset(exportTable->Name).AsPtrTo(); libraryName = libraryName.substr(0, libraryName.size() - 4); const uint32_t* functionNameTable = libnode.AtOffset(exportTable->AddressOfNames).AsPtrTo(); // Given an RVA, parse it as a std::string. The resulting string is empty // if the symbol does not have a name (i.e. it is ordinal only). auto nameRvaToName = [&](uint32_t rva) -> std::string { auto namePtr = libnode.AtOffset(rva).AsPtrTo(); if (namePtr == nullptr) return {}; return {namePtr}; }; std::transform(functionNameTable, functionNameTable + exportTable->NumberOfNames, std::back_inserter(exportedSymbols), nameRvaToName); } ~Library() { FreeLibrary(library); } }; bool IsPageExecutable(void* address) { MEMORY_BASIC_INFORMATION memoryInformation; size_t rc = VirtualQuery( address, &memoryInformation, sizeof(MEMORY_BASIC_INFORMATION)); if (rc != 0 && memoryInformation.Protect != 0) { return memoryInformation.Protect == PAGE_EXECUTE || memoryInformation.Protect == PAGE_EXECUTE_READ || memoryInformation.Protect == PAGE_EXECUTE_READWRITE || memoryInformation.Protect == PAGE_EXECUTE_WRITECOPY; } return false; } Library LoadLibraryOrExit(const char* dllPath) { auto library = LoadLibrary(dllPath); if (library != nullptr) return library; auto error = GetLastError(); std::cerr << "ERROR: Failed to load " << dllPath << std::endl; LPCSTR buffer = nullptr; auto rc = FormatMessageA( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, nullptr, error, LANG_USER_DEFAULT, (LPSTR)&buffer, 0, nullptr); if (rc != 0) { std::cerr << buffer << std::endl; LocalFree((HLOCAL)buffer); } exit(1); } int main(int argc, char** argv) { if (argc != 3) { std::cerr << "Usage: " << argv[0] << " path\\to\\libnode.dll path\\to\\node.def" << std::endl; return 1; } auto libnode = LoadLibraryOrExit(argv[1]); auto defFile = std::ofstream(argv[2]); defFile << "EXPORTS" << std::endl; for (const std::string& functionName : libnode.exportedSymbols) { // If a symbol doesn't have a name then it has been exported as an // ordinal only. We assume that only named symbols are exported. if (functionName.empty()) continue; // Every name in the exported symbols table should be resolvable // to an address because we have actually loaded the library into // our address space. auto address = GetProcAddress(libnode.library, functionName.c_str()); if (address == nullptr) { std::cerr << "WARNING: " << functionName << " appears in export table but is not a valid symbol" << std::endl; continue; } defFile << " " << functionName << " = " << libnode.libraryName << "." << functionName; // Nothing distinguishes exported global data from exported functions // with C linkage. If we do not specify the DATA keyword for such symbols // then consumers of the .def file will get a linker error. This manifests // as nodedbg_ symbols not being found. We assert that if the symbol is in // an executable page in this process then it is a function, not data. if (!IsPageExecutable(address)) { defFile << " DATA"; } defFile << std::endl; } return 0; }