summaryrefslogtreecommitdiff
path: root/deps/v8/src/arm/codegen-arm.h
blob: 6a33667eb411bed3f515d4dd616ef17c805f330f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_ARM_CODEGEN_ARM_H_
#define V8_ARM_CODEGEN_ARM_H_

#include "ic-inl.h"
#include "ast.h"

namespace v8 {
namespace internal {

// Forward declarations
class CompilationInfo;
class DeferredCode;
class JumpTarget;
class RegisterAllocator;
class RegisterFile;

enum InitState { CONST_INIT, NOT_CONST_INIT };
enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
enum GenerateInlineSmi { DONT_GENERATE_INLINE_SMI, GENERATE_INLINE_SMI };


// -------------------------------------------------------------------------
// Reference support

// A reference is a C++ stack-allocated object that puts a
// reference on the virtual frame.  The reference may be consumed
// by GetValue, TakeValue, SetValue, and Codegen::UnloadReference.
// When the lifetime (scope) of a valid reference ends, it must have
// been consumed, and be in state UNLOADED.
class Reference BASE_EMBEDDED {
 public:
  // The values of the types is important, see size().
  enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
  Reference(CodeGenerator* cgen,
            Expression* expression,
            bool persist_after_get = false);
  ~Reference();

  Expression* expression() const { return expression_; }
  Type type() const { return type_; }
  void set_type(Type value) {
    ASSERT_EQ(ILLEGAL, type_);
    type_ = value;
  }

  void set_unloaded() {
    ASSERT_NE(ILLEGAL, type_);
    ASSERT_NE(UNLOADED, type_);
    type_ = UNLOADED;
  }
  // The size the reference takes up on the stack.
  int size() const {
    return (type_ < SLOT) ? 0 : type_;
  }

  bool is_illegal() const { return type_ == ILLEGAL; }
  bool is_slot() const { return type_ == SLOT; }
  bool is_property() const { return type_ == NAMED || type_ == KEYED; }
  bool is_unloaded() const { return type_ == UNLOADED; }

  // Return the name.  Only valid for named property references.
  Handle<String> GetName();

  // Generate code to push the value of the reference on top of the
  // expression stack.  The reference is expected to be already on top of
  // the expression stack, and it is consumed by the call unless the
  // reference is for a compound assignment.
  // If the reference is not consumed, it is left in place under its value.
  void GetValue();

  // Generate code to store the value on top of the expression stack in the
  // reference.  The reference is expected to be immediately below the value
  // on the expression stack.  The  value is stored in the location specified
  // by the reference, and is left on top of the stack, after the reference
  // is popped from beneath it (unloaded).
  void SetValue(InitState init_state);

  // This is in preparation for something that uses the reference on the stack.
  // If we need this reference afterwards get then dup it now.  Otherwise mark
  // it as used.
  inline void DupIfPersist();

 private:
  CodeGenerator* cgen_;
  Expression* expression_;
  Type type_;
  // Keep the reference on the stack after get, so it can be used by set later.
  bool persist_after_get_;
};


// -------------------------------------------------------------------------
// Code generation state

// The state is passed down the AST by the code generator (and back up, in
// the form of the state of the label pair).  It is threaded through the
// call stack.  Constructing a state implicitly pushes it on the owning code
// generator's stack of states, and destroying one implicitly pops it.

class CodeGenState BASE_EMBEDDED {
 public:
  // Create an initial code generator state.  Destroying the initial state
  // leaves the code generator with a NULL state.
  explicit CodeGenState(CodeGenerator* owner);

  // Destroy a code generator state and restore the owning code generator's
  // previous state.
  virtual ~CodeGenState();

  virtual JumpTarget* true_target() const { return NULL; }
  virtual JumpTarget* false_target() const { return NULL; }

 protected:
  inline CodeGenerator* owner() { return owner_; }
  inline CodeGenState* previous() const { return previous_; }

 private:
  CodeGenerator* owner_;
  CodeGenState* previous_;
};


class ConditionCodeGenState : public CodeGenState {
 public:
  // Create a code generator state based on a code generator's current
  // state.  The new state has its own pair of branch labels.
  ConditionCodeGenState(CodeGenerator* owner,
                        JumpTarget* true_target,
                        JumpTarget* false_target);

  virtual JumpTarget* true_target() const { return true_target_; }
  virtual JumpTarget* false_target() const { return false_target_; }

 private:
  JumpTarget* true_target_;
  JumpTarget* false_target_;
};


class TypeInfoCodeGenState : public CodeGenState {
 public:
  TypeInfoCodeGenState(CodeGenerator* owner,
                       Slot* slot_number,
                       TypeInfo info);
  ~TypeInfoCodeGenState();

  virtual JumpTarget* true_target() const { return previous()->true_target(); }
  virtual JumpTarget* false_target() const {
    return previous()->false_target();
  }

 private:
  Slot* slot_;
  TypeInfo old_type_info_;
};


// -------------------------------------------------------------------------
// Arguments allocation mode

enum ArgumentsAllocationMode {
  NO_ARGUMENTS_ALLOCATION,
  EAGER_ARGUMENTS_ALLOCATION,
  LAZY_ARGUMENTS_ALLOCATION
};


// Different nop operations are used by the code generator to detect certain
// states of the generated code.
enum NopMarkerTypes {
  NON_MARKING_NOP = 0,
  PROPERTY_ACCESS_INLINED
};


// -------------------------------------------------------------------------
// CodeGenerator

class CodeGenerator: public AstVisitor {
 public:
  // Takes a function literal, generates code for it. This function should only
  // be called by compiler.cc.
  static Handle<Code> MakeCode(CompilationInfo* info);

  // Printing of AST, etc. as requested by flags.
  static void MakeCodePrologue(CompilationInfo* info);

  // Allocate and install the code.
  static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm,
                                       Code::Flags flags,
                                       CompilationInfo* info);

#ifdef ENABLE_LOGGING_AND_PROFILING
  static bool ShouldGenerateLog(Expression* type);
#endif

  static void SetFunctionInfo(Handle<JSFunction> fun,
                              FunctionLiteral* lit,
                              bool is_toplevel,
                              Handle<Script> script);

  static void RecordPositions(MacroAssembler* masm, int pos);

  // Accessors
  MacroAssembler* masm() { return masm_; }
  VirtualFrame* frame() const { return frame_; }
  inline Handle<Script> script();

  bool has_valid_frame() const { return frame_ != NULL; }

  // Set the virtual frame to be new_frame, with non-frame register
  // reference counts given by non_frame_registers.  The non-frame
  // register reference counts of the old frame are returned in
  // non_frame_registers.
  void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);

  void DeleteFrame();

  RegisterAllocator* allocator() const { return allocator_; }

  CodeGenState* state() { return state_; }
  void set_state(CodeGenState* state) { state_ = state; }

  TypeInfo type_info(Slot* slot) {
    int index = NumberOfSlot(slot);
    if (index == kInvalidSlotNumber) return TypeInfo::Unknown();
    return (*type_info_)[index];
  }

  TypeInfo set_type_info(Slot* slot, TypeInfo info) {
    int index = NumberOfSlot(slot);
    ASSERT(index >= kInvalidSlotNumber);
    if (index != kInvalidSlotNumber) {
      TypeInfo previous_value = (*type_info_)[index];
      (*type_info_)[index] = info;
      return previous_value;
    }
    return TypeInfo::Unknown();
  }

  void AddDeferred(DeferredCode* code) { deferred_.Add(code); }

  static const int kUnknownIntValue = -1;

  // If the name is an inline runtime function call return the number of
  // expected arguments. Otherwise return -1.
  static int InlineRuntimeCallArgumentsCount(Handle<String> name);

  // Constants related to patching of inlined load/store.
  static const int kInlinedKeyedLoadInstructionsAfterPatch = 17;
  static const int kInlinedKeyedStoreInstructionsAfterPatch = 5;

 private:
  // Construction/Destruction
  explicit CodeGenerator(MacroAssembler* masm);

  // Accessors
  inline bool is_eval();
  inline Scope* scope();

  // Generating deferred code.
  void ProcessDeferred();

  static const int kInvalidSlotNumber = -1;

  int NumberOfSlot(Slot* slot);

  // State
  bool has_cc() const  { return cc_reg_ != al; }
  JumpTarget* true_target() const  { return state_->true_target(); }
  JumpTarget* false_target() const  { return state_->false_target(); }

  // Track loop nesting level.
  int loop_nesting() const { return loop_nesting_; }
  void IncrementLoopNesting() { loop_nesting_++; }
  void DecrementLoopNesting() { loop_nesting_--; }

  // Node visitors.
  void VisitStatements(ZoneList<Statement*>* statements);

#define DEF_VISIT(type) \
  void Visit##type(type* node);
  AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT

  // Main code generation function
  void Generate(CompilationInfo* info);

  // Returns the arguments allocation mode.
  ArgumentsAllocationMode ArgumentsMode();

  // Store the arguments object and allocate it if necessary.
  void StoreArgumentsObject(bool initial);

  // The following are used by class Reference.
  void LoadReference(Reference* ref);
  void UnloadReference(Reference* ref);

  static MemOperand ContextOperand(Register context, int index) {
    return MemOperand(context, Context::SlotOffset(index));
  }

  MemOperand SlotOperand(Slot* slot, Register tmp);

  MemOperand ContextSlotOperandCheckExtensions(Slot* slot,
                                               Register tmp,
                                               Register tmp2,
                                               JumpTarget* slow);

  // Expressions
  static MemOperand GlobalObject()  {
    return ContextOperand(cp, Context::GLOBAL_INDEX);
  }

  void LoadCondition(Expression* x,
                     JumpTarget* true_target,
                     JumpTarget* false_target,
                     bool force_cc);
  void Load(Expression* expr);
  void LoadGlobal();
  void LoadGlobalReceiver(Register scratch);

  // Read a value from a slot and leave it on top of the expression stack.
  void LoadFromSlot(Slot* slot, TypeofState typeof_state);
  void LoadFromSlotCheckForArguments(Slot* slot, TypeofState state);

  // Store the value on top of the stack to a slot.
  void StoreToSlot(Slot* slot, InitState init_state);

  // Support for compiling assignment expressions.
  void EmitSlotAssignment(Assignment* node);
  void EmitNamedPropertyAssignment(Assignment* node);
  void EmitKeyedPropertyAssignment(Assignment* node);

  // Load a named property, returning it in r0. The receiver is passed on the
  // stack, and remains there.
  void EmitNamedLoad(Handle<String> name, bool is_contextual);

  // Store to a named property. If the store is contextual, value is passed on
  // the frame and consumed. Otherwise, receiver and value are passed on the
  // frame and consumed. The result is returned in r0.
  void EmitNamedStore(Handle<String> name, bool is_contextual);

  // Load a keyed property, leaving it in r0.  The receiver and key are
  // passed on the stack, and remain there.
  void EmitKeyedLoad();

  // Store a keyed property. Key and receiver are on the stack and the value is
  // in r0. Result is returned in r0.
  void EmitKeyedStore(StaticType* key_type);

  void LoadFromGlobalSlotCheckExtensions(Slot* slot,
                                         TypeofState typeof_state,
                                         JumpTarget* slow);

  // Support for loading from local/global variables and arguments
  // whose location is known unless they are shadowed by
  // eval-introduced bindings. Generates no code for unsupported slot
  // types and therefore expects to fall through to the slow jump target.
  void EmitDynamicLoadFromSlotFastCase(Slot* slot,
                                       TypeofState typeof_state,
                                       JumpTarget* slow,
                                       JumpTarget* done);

  // Special code for typeof expressions: Unfortunately, we must
  // be careful when loading the expression in 'typeof'
  // expressions. We are not allowed to throw reference errors for
  // non-existing properties of the global object, so we must make it
  // look like an explicit property access, instead of an access
  // through the context chain.
  void LoadTypeofExpression(Expression* x);

  void ToBoolean(JumpTarget* true_target, JumpTarget* false_target);

  // Generate code that computes a shortcutting logical operation.
  void GenerateLogicalBooleanOperation(BinaryOperation* node);

  void GenericBinaryOperation(Token::Value op,
                              OverwriteMode overwrite_mode,
                              GenerateInlineSmi inline_smi,
                              int known_rhs = kUnknownIntValue);
  void Comparison(Condition cc,
                  Expression* left,
                  Expression* right,
                  bool strict = false);

  void SmiOperation(Token::Value op,
                    Handle<Object> value,
                    bool reversed,
                    OverwriteMode mode);

  void CallWithArguments(ZoneList<Expression*>* arguments,
                         CallFunctionFlags flags,
                         int position);

  // An optimized implementation of expressions of the form
  // x.apply(y, arguments).  We call x the applicand and y the receiver.
  // The optimization avoids allocating an arguments object if possible.
  void CallApplyLazy(Expression* applicand,
                     Expression* receiver,
                     VariableProxy* arguments,
                     int position);

  // Control flow
  void Branch(bool if_true, JumpTarget* target);
  void CheckStack();

  struct InlineRuntimeLUT {
    void (CodeGenerator::*method)(ZoneList<Expression*>*);
    const char* name;
    int nargs;
  };

  static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name);
  bool CheckForInlineRuntimeCall(CallRuntime* node);
  static bool PatchInlineRuntimeEntry(Handle<String> name,
                                      const InlineRuntimeLUT& new_entry,
                                      InlineRuntimeLUT* old_entry);

  static Handle<Code> ComputeLazyCompile(int argc);
  void ProcessDeclarations(ZoneList<Declaration*>* declarations);

  static Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop);

  static Handle<Code> ComputeKeyedCallInitialize(int argc, InLoopFlag in_loop);

  // Declare global variables and functions in the given array of
  // name/value pairs.
  void DeclareGlobals(Handle<FixedArray> pairs);

  // Instantiate the function based on the shared function info.
  void InstantiateFunction(Handle<SharedFunctionInfo> function_info);

  // Support for type checks.
  void GenerateIsSmi(ZoneList<Expression*>* args);
  void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
  void GenerateIsArray(ZoneList<Expression*>* args);
  void GenerateIsRegExp(ZoneList<Expression*>* args);
  void GenerateIsObject(ZoneList<Expression*>* args);
  void GenerateIsFunction(ZoneList<Expression*>* args);
  void GenerateIsUndetectableObject(ZoneList<Expression*>* args);

  // Support for construct call checks.
  void GenerateIsConstructCall(ZoneList<Expression*>* args);

  // Support for arguments.length and arguments[?].
  void GenerateArgumentsLength(ZoneList<Expression*>* args);
  void GenerateArguments(ZoneList<Expression*>* args);

  // Support for accessing the class and value fields of an object.
  void GenerateClassOf(ZoneList<Expression*>* args);
  void GenerateValueOf(ZoneList<Expression*>* args);
  void GenerateSetValueOf(ZoneList<Expression*>* args);

  // Fast support for charCodeAt(n).
  void GenerateStringCharCodeAt(ZoneList<Expression*>* args);

  // Fast support for string.charAt(n) and string[n].
  void GenerateStringCharFromCode(ZoneList<Expression*>* args);

  // Fast support for string.charAt(n) and string[n].
  void GenerateStringCharAt(ZoneList<Expression*>* args);

  // Fast support for object equality testing.
  void GenerateObjectEquals(ZoneList<Expression*>* args);

  void GenerateLog(ZoneList<Expression*>* args);

  // Fast support for Math.random().
  void GenerateRandomHeapNumber(ZoneList<Expression*>* args);

  // Fast support for StringAdd.
  void GenerateStringAdd(ZoneList<Expression*>* args);

  // Fast support for SubString.
  void GenerateSubString(ZoneList<Expression*>* args);

  // Fast support for StringCompare.
  void GenerateStringCompare(ZoneList<Expression*>* args);

  // Support for direct calls from JavaScript to native RegExp code.
  void GenerateRegExpExec(ZoneList<Expression*>* args);

  void GenerateRegExpConstructResult(ZoneList<Expression*>* args);

  // Support for fast native caches.
  void GenerateGetFromCache(ZoneList<Expression*>* args);

  // Fast support for number to string.
  void GenerateNumberToString(ZoneList<Expression*>* args);

  // Fast swapping of elements.
  void GenerateSwapElements(ZoneList<Expression*>* args);

  // Fast call for custom callbacks.
  void GenerateCallFunction(ZoneList<Expression*>* args);

  // Fast call to math functions.
  void GenerateMathPow(ZoneList<Expression*>* args);
  void GenerateMathSin(ZoneList<Expression*>* args);
  void GenerateMathCos(ZoneList<Expression*>* args);
  void GenerateMathSqrt(ZoneList<Expression*>* args);

  // Simple condition analysis.
  enum ConditionAnalysis {
    ALWAYS_TRUE,
    ALWAYS_FALSE,
    DONT_KNOW
  };
  ConditionAnalysis AnalyzeCondition(Expression* cond);

  // Methods used to indicate which source code is generated for. Source
  // positions are collected by the assembler and emitted with the relocation
  // information.
  void CodeForFunctionPosition(FunctionLiteral* fun);
  void CodeForReturnPosition(FunctionLiteral* fun);
  void CodeForStatementPosition(Statement* node);
  void CodeForDoWhileConditionPosition(DoWhileStatement* stmt);
  void CodeForSourcePosition(int pos);

#ifdef DEBUG
  // True if the registers are valid for entry to a block.
  bool HasValidEntryRegisters();
#endif

  List<DeferredCode*> deferred_;

  // Assembler
  MacroAssembler* masm_;  // to generate code

  CompilationInfo* info_;

  // Code generation state
  VirtualFrame* frame_;
  RegisterAllocator* allocator_;
  Condition cc_reg_;
  CodeGenState* state_;
  int loop_nesting_;

  Vector<TypeInfo>* type_info_;

  // Jump targets
  BreakTarget function_return_;

  // True if the function return is shadowed (ie, jumping to the target
  // function_return_ does not jump to the true function return, but rather
  // to some unlinking code).
  bool function_return_is_shadowed_;

  static InlineRuntimeLUT kInlineRuntimeLUT[];

  friend class VirtualFrame;
  friend class JumpTarget;
  friend class Reference;
  friend class FastCodeGenerator;
  friend class FullCodeGenerator;
  friend class FullCodeGenSyntaxChecker;

  DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
};


class GenericBinaryOpStub : public CodeStub {
 public:
  GenericBinaryOpStub(Token::Value op,
                      OverwriteMode mode,
                      Register lhs,
                      Register rhs,
                      int constant_rhs = CodeGenerator::kUnknownIntValue)
      : op_(op),
        mode_(mode),
        lhs_(lhs),
        rhs_(rhs),
        constant_rhs_(constant_rhs),
        specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op, constant_rhs)),
        runtime_operands_type_(BinaryOpIC::DEFAULT),
        name_(NULL) { }

  GenericBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info)
      : op_(OpBits::decode(key)),
        mode_(ModeBits::decode(key)),
        lhs_(LhsRegister(RegisterBits::decode(key))),
        rhs_(RhsRegister(RegisterBits::decode(key))),
        constant_rhs_(KnownBitsForMinorKey(KnownIntBits::decode(key))),
        specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op_, constant_rhs_)),
        runtime_operands_type_(type_info),
        name_(NULL) { }

 private:
  Token::Value op_;
  OverwriteMode mode_;
  Register lhs_;
  Register rhs_;
  int constant_rhs_;
  bool specialized_on_rhs_;
  BinaryOpIC::TypeInfo runtime_operands_type_;
  char* name_;

  static const int kMaxKnownRhs = 0x40000000;
  static const int kKnownRhsKeyBits = 6;

  // Minor key encoding in 17 bits.
  class ModeBits: public BitField<OverwriteMode, 0, 2> {};
  class OpBits: public BitField<Token::Value, 2, 6> {};
  class TypeInfoBits: public BitField<int, 8, 2> {};
  class RegisterBits: public BitField<bool, 10, 1> {};
  class KnownIntBits: public BitField<int, 11, kKnownRhsKeyBits> {};

  Major MajorKey() { return GenericBinaryOp; }
  int MinorKey() {
    ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
           (lhs_.is(r1) && rhs_.is(r0)));
    // Encode the parameters in a unique 18 bit value.
    return OpBits::encode(op_)
           | ModeBits::encode(mode_)
           | KnownIntBits::encode(MinorKeyForKnownInt())
           | TypeInfoBits::encode(runtime_operands_type_)
           | RegisterBits::encode(lhs_.is(r0));
  }

  void Generate(MacroAssembler* masm);
  void HandleNonSmiBitwiseOp(MacroAssembler* masm, Register lhs, Register rhs);
  void HandleBinaryOpSlowCases(MacroAssembler* masm,
                               Label* not_smi,
                               Register lhs,
                               Register rhs,
                               const Builtins::JavaScript& builtin);
  void GenerateTypeTransition(MacroAssembler* masm);

  static bool RhsIsOneWeWantToOptimizeFor(Token::Value op, int constant_rhs) {
    if (constant_rhs == CodeGenerator::kUnknownIntValue) return false;
    if (op == Token::DIV) return constant_rhs >= 2 && constant_rhs <= 3;
    if (op == Token::MOD) {
      if (constant_rhs <= 1) return false;
      if (constant_rhs <= 10) return true;
      if (constant_rhs <= kMaxKnownRhs && IsPowerOf2(constant_rhs)) return true;
      return false;
    }
    return false;
  }

  int MinorKeyForKnownInt() {
    if (!specialized_on_rhs_) return 0;
    if (constant_rhs_ <= 10) return constant_rhs_ + 1;
    ASSERT(IsPowerOf2(constant_rhs_));
    int key = 12;
    int d = constant_rhs_;
    while ((d & 1) == 0) {
      key++;
      d >>= 1;
    }
    ASSERT(key >= 0 && key < (1 << kKnownRhsKeyBits));
    return key;
  }

  int KnownBitsForMinorKey(int key) {
    if (!key) return 0;
    if (key <= 11) return key - 1;
    int d = 1;
    while (key != 12) {
      key--;
      d <<= 1;
    }
    return d;
  }

  Register LhsRegister(bool lhs_is_r0) {
    return lhs_is_r0 ? r0 : r1;
  }

  Register RhsRegister(bool lhs_is_r0) {
    return lhs_is_r0 ? r1 : r0;
  }

  bool ShouldGenerateSmiCode() {
    return ((op_ != Token::DIV && op_ != Token::MOD) || specialized_on_rhs_) &&
        runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS &&
        runtime_operands_type_ != BinaryOpIC::STRINGS;
  }

  bool ShouldGenerateFPCode() {
    return runtime_operands_type_ != BinaryOpIC::STRINGS;
  }

  virtual int GetCodeKind() { return Code::BINARY_OP_IC; }

  virtual InlineCacheState GetICState() {
    return BinaryOpIC::ToState(runtime_operands_type_);
  }

  const char* GetName();

#ifdef DEBUG
  void Print() {
    if (!specialized_on_rhs_) {
      PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_));
    } else {
      PrintF("GenericBinaryOpStub (%s by %d)\n",
             Token::String(op_),
             constant_rhs_);
    }
  }
#endif
};


class StringHelper : public AllStatic {
 public:
  // Generate code for copying characters using a simple loop. This should only
  // be used in places where the number of characters is small and the
  // additional setup and checking in GenerateCopyCharactersLong adds too much
  // overhead. Copying of overlapping regions is not supported.
  // Dest register ends at the position after the last character written.
  static void GenerateCopyCharacters(MacroAssembler* masm,
                                     Register dest,
                                     Register src,
                                     Register count,
                                     Register scratch,
                                     bool ascii);

  // Generate code for copying a large number of characters. This function
  // is allowed to spend extra time setting up conditions to make copying
  // faster. Copying of overlapping regions is not supported.
  // Dest register ends at the position after the last character written.
  static void GenerateCopyCharactersLong(MacroAssembler* masm,
                                         Register dest,
                                         Register src,
                                         Register count,
                                         Register scratch1,
                                         Register scratch2,
                                         Register scratch3,
                                         Register scratch4,
                                         Register scratch5,
                                         int flags);


  // Probe the symbol table for a two character string. If the string is
  // not found by probing a jump to the label not_found is performed. This jump
  // does not guarantee that the string is not in the symbol table. If the
  // string is found the code falls through with the string in register r0.
  // Contents of both c1 and c2 registers are modified. At the exit c1 is
  // guaranteed to contain halfword with low and high bytes equal to
  // initial contents of c1 and c2 respectively.
  static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
                                                   Register c1,
                                                   Register c2,
                                                   Register scratch1,
                                                   Register scratch2,
                                                   Register scratch3,
                                                   Register scratch4,
                                                   Register scratch5,
                                                   Label* not_found);

  // Generate string hash.
  static void GenerateHashInit(MacroAssembler* masm,
                               Register hash,
                               Register character);

  static void GenerateHashAddCharacter(MacroAssembler* masm,
                                       Register hash,
                                       Register character);

  static void GenerateHashGetHash(MacroAssembler* masm,
                                  Register hash);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};


// Flag that indicates how to generate code for the stub StringAddStub.
enum StringAddFlags {
  NO_STRING_ADD_FLAGS = 0,
  NO_STRING_CHECK_IN_STUB = 1 << 0  // Omit string check in stub.
};


class StringAddStub: public CodeStub {
 public:
  explicit StringAddStub(StringAddFlags flags) {
    string_check_ = ((flags & NO_STRING_CHECK_IN_STUB) == 0);
  }

 private:
  Major MajorKey() { return StringAdd; }
  int MinorKey() { return string_check_ ? 0 : 1; }

  void Generate(MacroAssembler* masm);

  // Should the stub check whether arguments are strings?
  bool string_check_;
};


class SubStringStub: public CodeStub {
 public:
  SubStringStub() {}

 private:
  Major MajorKey() { return SubString; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);
};



class StringCompareStub: public CodeStub {
 public:
  StringCompareStub() { }

  // Compare two flat ASCII strings and returns result in r0.
  // Does not use the stack.
  static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
                                              Register left,
                                              Register right,
                                              Register scratch1,
                                              Register scratch2,
                                              Register scratch3,
                                              Register scratch4);

 private:
  Major MajorKey() { return StringCompare; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);
};


// This stub can convert a signed int32 to a heap number (double).  It does
// not work for int32s that are in Smi range!  No GC occurs during this stub
// so you don't have to set up the frame.
class WriteInt32ToHeapNumberStub : public CodeStub {
 public:
  WriteInt32ToHeapNumberStub(Register the_int,
                             Register the_heap_number,
                             Register scratch)
      : the_int_(the_int),
        the_heap_number_(the_heap_number),
        scratch_(scratch) { }

 private:
  Register the_int_;
  Register the_heap_number_;
  Register scratch_;

  // Minor key encoding in 16 bits.
  class IntRegisterBits: public BitField<int, 0, 4> {};
  class HeapNumberRegisterBits: public BitField<int, 4, 4> {};
  class ScratchRegisterBits: public BitField<int, 8, 4> {};

  Major MajorKey() { return WriteInt32ToHeapNumber; }
  int MinorKey() {
    // Encode the parameters in a unique 16 bit value.
    return IntRegisterBits::encode(the_int_.code())
           | HeapNumberRegisterBits::encode(the_heap_number_.code())
           | ScratchRegisterBits::encode(scratch_.code());
  }

  void Generate(MacroAssembler* masm);

  const char* GetName() { return "WriteInt32ToHeapNumberStub"; }

#ifdef DEBUG
  void Print() { PrintF("WriteInt32ToHeapNumberStub\n"); }
#endif
};


class NumberToStringStub: public CodeStub {
 public:
  NumberToStringStub() { }

  // Generate code to do a lookup in the number string cache. If the number in
  // the register object is found in the cache the generated code falls through
  // with the result in the result register. The object and the result register
  // can be the same. If the number is not found in the cache the code jumps to
  // the label not_found with only the content of register object unchanged.
  static void GenerateLookupNumberStringCache(MacroAssembler* masm,
                                              Register object,
                                              Register result,
                                              Register scratch1,
                                              Register scratch2,
                                              Register scratch3,
                                              bool object_is_smi,
                                              Label* not_found);

 private:
  Major MajorKey() { return NumberToString; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);

  const char* GetName() { return "NumberToStringStub"; }

#ifdef DEBUG
  void Print() {
    PrintF("NumberToStringStub\n");
  }
#endif
};


class RecordWriteStub : public CodeStub {
 public:
  RecordWriteStub(Register object, Register offset, Register scratch)
      : object_(object), offset_(offset), scratch_(scratch) { }

  void Generate(MacroAssembler* masm);

 private:
  Register object_;
  Register offset_;
  Register scratch_;

#ifdef DEBUG
  void Print() {
    PrintF("RecordWriteStub (object reg %d), (offset reg %d),"
           " (scratch reg %d)\n",
           object_.code(), offset_.code(), scratch_.code());
  }
#endif

  // Minor key encoding in 12 bits. 4 bits for each of the three
  // registers (object, offset and scratch) OOOOAAAASSSS.
  class ScratchBits: public BitField<uint32_t, 0, 4> {};
  class OffsetBits: public BitField<uint32_t, 4, 4> {};
  class ObjectBits: public BitField<uint32_t, 8, 4> {};

  Major MajorKey() { return RecordWrite; }

  int MinorKey() {
    // Encode the registers.
    return ObjectBits::encode(object_.code()) |
           OffsetBits::encode(offset_.code()) |
           ScratchBits::encode(scratch_.code());
  }
};


} }  // namespace v8::internal

#endif  // V8_ARM_CODEGEN_ARM_H_