1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/branch-elimination.h"
#include "src/base/small-vector.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/simplified-operator.h"
namespace v8 {
namespace internal {
namespace compiler {
BranchElimination::BranchElimination(Editor* editor, JSGraph* js_graph,
Zone* zone, Phase phase)
: AdvancedReducer(editor),
jsgraph_(js_graph),
node_conditions_(js_graph->graph()->NodeCount(), zone),
reduced_(js_graph->graph()->NodeCount(), zone),
zone_(zone),
dead_(js_graph->Dead()),
phase_(phase) {}
BranchElimination::~BranchElimination() = default;
Reduction BranchElimination::Reduce(Node* node) {
switch (node->opcode()) {
case IrOpcode::kDead:
return NoChange();
case IrOpcode::kDeoptimizeIf:
case IrOpcode::kDeoptimizeUnless:
return ReduceDeoptimizeConditional(node);
case IrOpcode::kMerge:
return ReduceMerge(node);
case IrOpcode::kLoop:
return ReduceLoop(node);
case IrOpcode::kBranch:
return ReduceBranch(node);
case IrOpcode::kIfFalse:
return ReduceIf(node, false);
case IrOpcode::kIfTrue:
return ReduceIf(node, true);
case IrOpcode::kStart:
return ReduceStart(node);
default:
if (node->op()->ControlOutputCount() > 0) {
return ReduceOtherControl(node);
}
break;
}
return NoChange();
}
void BranchElimination::SimplifyBranchCondition(Node* branch) {
// Try to use a phi as a branch condition if the control flow from the branch
// is known from previous branches. For example, in the graph below, the
// control flow of the second_branch is predictable because the first_branch
// use the same branch condition. In such case, create a new phi with constant
// inputs and let the second branch use the phi as its branch condition. From
// this transformation, more branch folding opportunities would be exposed to
// later passes through branch cloning in effect-control-linearizer.
//
// condition condition
// | \ |
// | first_branch first_branch
// | / \ / \
// | / \ / \
// |first_true first_false first_true first_false
// | \ / \ /
// | \ / \ /
// | first_merge ==> first_merge
// | | |
// second_branch 1 0 |
// / \ \ / |
// / \ phi |
// second_true second_false \ |
// second_branch
// / \
// / \
// second_true second_false
//
DCHECK_EQ(IrOpcode::kBranch, branch->opcode());
Node* merge = NodeProperties::GetControlInput(branch);
if (merge->opcode() != IrOpcode::kMerge) return;
Node* branch_condition = branch->InputAt(0);
Node* previous_branch;
bool condition_value;
Graph* graph = jsgraph()->graph();
base::SmallVector<Node*, 2> phi_inputs;
Node::Inputs inputs = merge->inputs();
int input_count = inputs.count();
for (int i = 0; i != input_count; ++i) {
Node* input = inputs[i];
ControlPathConditions from_input = node_conditions_.Get(input);
if (!from_input.LookupCondition(branch_condition, &previous_branch,
&condition_value))
return;
if (phase_ == kEARLY) {
phi_inputs.emplace_back(condition_value ? jsgraph()->TrueConstant()
: jsgraph()->FalseConstant());
} else {
phi_inputs.emplace_back(
condition_value
? graph->NewNode(jsgraph()->common()->Int32Constant(1))
: graph->NewNode(jsgraph()->common()->Int32Constant(0)));
}
}
phi_inputs.emplace_back(merge);
Node* new_phi = graph->NewNode(
common()->Phi(phase_ == kEARLY ? MachineRepresentation::kTagged
: MachineRepresentation::kWord32,
input_count),
input_count + 1, &phi_inputs.at(0));
// Replace the branch condition with the new phi.
NodeProperties::ReplaceValueInput(branch, new_phi, 0);
}
Reduction BranchElimination::ReduceBranch(Node* node) {
Node* condition = node->InputAt(0);
Node* control_input = NodeProperties::GetControlInput(node, 0);
ControlPathConditions from_input = node_conditions_.Get(control_input);
Node* branch;
bool condition_value;
// If we know the condition we can discard the branch.
if (from_input.LookupCondition(condition, &branch, &condition_value)) {
// Mark the branch as a safety check if necessary.
// Check if {branch} is dead because we might have a stale side-table entry.
if (!branch->IsDead() && branch->opcode() != IrOpcode::kDead) {
IsSafetyCheck branch_safety = IsSafetyCheckOf(branch->op());
IsSafetyCheck combined_safety =
CombineSafetyChecks(branch_safety, IsSafetyCheckOf(node->op()));
if (branch_safety != combined_safety) {
NodeProperties::ChangeOp(
branch, common()->MarkAsSafetyCheck(branch->op(), combined_safety));
}
}
for (Node* const use : node->uses()) {
switch (use->opcode()) {
case IrOpcode::kIfTrue:
Replace(use, condition_value ? control_input : dead());
break;
case IrOpcode::kIfFalse:
Replace(use, condition_value ? dead() : control_input);
break;
default:
UNREACHABLE();
}
}
return Replace(dead());
}
SimplifyBranchCondition(node);
// Trigger revisits of the IfTrue/IfFalse projections, since they depend on
// the branch condition.
for (Node* const use : node->uses()) {
Revisit(use);
}
return TakeConditionsFromFirstControl(node);
}
Reduction BranchElimination::ReduceDeoptimizeConditional(Node* node) {
DCHECK(node->opcode() == IrOpcode::kDeoptimizeIf ||
node->opcode() == IrOpcode::kDeoptimizeUnless);
bool condition_is_true = node->opcode() == IrOpcode::kDeoptimizeUnless;
DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
Node* condition = NodeProperties::GetValueInput(node, 0);
Node* frame_state = NodeProperties::GetValueInput(node, 1);
Node* effect = NodeProperties::GetEffectInput(node);
Node* control = NodeProperties::GetControlInput(node);
// If we do not know anything about the predecessor, do not propagate just
// yet because we will have to recompute anyway once we compute the
// predecessor.
if (!reduced_.Get(control)) {
return NoChange();
}
ControlPathConditions conditions = node_conditions_.Get(control);
bool condition_value;
Node* branch;
if (conditions.LookupCondition(condition, &branch, &condition_value)) {
// Mark the branch as a safety check.
IsSafetyCheck branch_safety = IsSafetyCheckOf(branch->op());
IsSafetyCheck combined_safety =
CombineSafetyChecks(branch_safety, p.is_safety_check());
if (branch_safety != combined_safety) {
NodeProperties::ChangeOp(
branch, common()->MarkAsSafetyCheck(branch->op(), combined_safety));
}
// If we know the condition we can discard the branch.
if (condition_is_true == condition_value) {
// We don't update the conditions here, because we're replacing {node}
// with the {control} node that already contains the right information.
ReplaceWithValue(node, dead(), effect, control);
} else {
control = graph()->NewNode(
common()->Deoptimize(p.kind(), p.reason(), p.feedback()), frame_state,
effect, control);
// TODO(bmeurer): This should be on the AdvancedReducer somehow.
NodeProperties::MergeControlToEnd(graph(), common(), control);
Revisit(graph()->end());
}
return Replace(dead());
}
return UpdateConditions(node, conditions, condition, node, condition_is_true);
}
Reduction BranchElimination::ReduceIf(Node* node, bool is_true_branch) {
// Add the condition to the list arriving from the input branch.
Node* branch = NodeProperties::GetControlInput(node, 0);
ControlPathConditions from_branch = node_conditions_.Get(branch);
// If we do not know anything about the predecessor, do not propagate just
// yet because we will have to recompute anyway once we compute the
// predecessor.
if (!reduced_.Get(branch)) {
return NoChange();
}
Node* condition = branch->InputAt(0);
return UpdateConditions(node, from_branch, condition, branch, is_true_branch);
}
Reduction BranchElimination::ReduceLoop(Node* node) {
// Here we rely on having only reducible loops:
// The loop entry edge always dominates the header, so we can just use
// the information from the loop entry edge.
return TakeConditionsFromFirstControl(node);
}
Reduction BranchElimination::ReduceMerge(Node* node) {
// Shortcut for the case when we do not know anything about some
// input.
Node::Inputs inputs = node->inputs();
for (Node* input : inputs) {
if (!reduced_.Get(input)) {
return NoChange();
}
}
auto input_it = inputs.begin();
DCHECK_GT(inputs.count(), 0);
ControlPathConditions conditions = node_conditions_.Get(*input_it);
++input_it;
// Merge the first input's conditions with the conditions from the other
// inputs.
auto input_end = inputs.end();
for (; input_it != input_end; ++input_it) {
// Change the current condition list to a longest common tail
// of this condition list and the other list. (The common tail
// should correspond to the list from the common dominator.)
conditions.ResetToCommonAncestor(node_conditions_.Get(*input_it));
}
return UpdateConditions(node, conditions);
}
Reduction BranchElimination::ReduceStart(Node* node) {
return UpdateConditions(node, {});
}
Reduction BranchElimination::ReduceOtherControl(Node* node) {
DCHECK_EQ(1, node->op()->ControlInputCount());
return TakeConditionsFromFirstControl(node);
}
Reduction BranchElimination::TakeConditionsFromFirstControl(Node* node) {
// We just propagate the information from the control input (ideally,
// we would only revisit control uses if there is change).
Node* input = NodeProperties::GetControlInput(node, 0);
if (!reduced_.Get(input)) return NoChange();
return UpdateConditions(node, node_conditions_.Get(input));
}
Reduction BranchElimination::UpdateConditions(
Node* node, ControlPathConditions conditions) {
// Only signal that the node has Changed if the condition information has
// changed.
if (reduced_.Set(node, true) | node_conditions_.Set(node, conditions)) {
return Changed(node);
}
return NoChange();
}
Reduction BranchElimination::UpdateConditions(
Node* node, ControlPathConditions prev_conditions, Node* current_condition,
Node* current_branch, bool is_true_branch) {
ControlPathConditions original = node_conditions_.Get(node);
// The control path for the node is the path obtained by appending the
// current_condition to the prev_conditions. Use the original control path as
// a hint to avoid allocations.
prev_conditions.AddCondition(zone_, current_condition, current_branch,
is_true_branch, original);
return UpdateConditions(node, prev_conditions);
}
void BranchElimination::ControlPathConditions::AddCondition(
Zone* zone, Node* condition, Node* branch, bool is_true,
ControlPathConditions hint) {
DCHECK_EQ(false, LookupCondition(condition, nullptr, nullptr));
PushFront({condition, branch, is_true}, zone, hint);
}
bool BranchElimination::ControlPathConditions::LookupCondition(
Node* condition, Node** branch, bool* is_true) const {
for (BranchCondition element : *this) {
if (element.condition == condition) {
*is_true = element.is_true;
*branch = element.branch;
return true;
}
}
return false;
}
Graph* BranchElimination::graph() const { return jsgraph()->graph(); }
Isolate* BranchElimination::isolate() const { return jsgraph()->isolate(); }
CommonOperatorBuilder* BranchElimination::common() const {
return jsgraph()->common();
}
} // namespace compiler
} // namespace internal
} // namespace v8
|