summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/heap.h
blob: ee1fca906c5e3d23e7ef3d7f2c6a0f1267cf36b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_HEAP_HEAP_H_
#define V8_HEAP_HEAP_H_

#include <cmath>

#include "src/allocation.h"
#include "src/assert-scope.h"
#include "src/counters.h"
#include "src/globals.h"
#include "src/heap/gc-idle-time-handler.h"
#include "src/heap/gc-tracer.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact.h"
#include "src/heap/objects-visiting.h"
#include "src/heap/spaces.h"
#include "src/heap/store-buffer.h"
#include "src/list.h"
#include "src/splay-tree-inl.h"

namespace v8 {
namespace internal {

// Defines all the roots in Heap.
#define STRONG_ROOT_LIST(V)                                                    \
  V(Map, byte_array_map, ByteArrayMap)                                         \
  V(Map, free_space_map, FreeSpaceMap)                                         \
  V(Map, one_pointer_filler_map, OnePointerFillerMap)                          \
  V(Map, two_pointer_filler_map, TwoPointerFillerMap)                          \
  /* Cluster the most popular ones in a few cache lines here at the top.    */ \
  V(Smi, store_buffer_top, StoreBufferTop)                                     \
  V(Oddball, undefined_value, UndefinedValue)                                  \
  V(Oddball, the_hole_value, TheHoleValue)                                     \
  V(Oddball, null_value, NullValue)                                            \
  V(Oddball, true_value, TrueValue)                                            \
  V(Oddball, false_value, FalseValue)                                          \
  V(Oddball, uninitialized_value, UninitializedValue)                          \
  V(Oddball, exception, Exception)                                             \
  V(Map, cell_map, CellMap)                                                    \
  V(Map, global_property_cell_map, GlobalPropertyCellMap)                      \
  V(Map, shared_function_info_map, SharedFunctionInfoMap)                      \
  V(Map, meta_map, MetaMap)                                                    \
  V(Map, heap_number_map, HeapNumberMap)                                       \
  V(Map, mutable_heap_number_map, MutableHeapNumberMap)                        \
  V(Map, native_context_map, NativeContextMap)                                 \
  V(Map, fixed_array_map, FixedArrayMap)                                       \
  V(Map, code_map, CodeMap)                                                    \
  V(Map, scope_info_map, ScopeInfoMap)                                         \
  V(Map, fixed_cow_array_map, FixedCOWArrayMap)                                \
  V(Map, fixed_double_array_map, FixedDoubleArrayMap)                          \
  V(Map, constant_pool_array_map, ConstantPoolArrayMap)                        \
  V(Map, weak_cell_map, WeakCellMap)                                           \
  V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel)      \
  V(Map, hash_table_map, HashTableMap)                                         \
  V(Map, ordered_hash_table_map, OrderedHashTableMap)                          \
  V(FixedArray, empty_fixed_array, EmptyFixedArray)                            \
  V(ByteArray, empty_byte_array, EmptyByteArray)                               \
  V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray)             \
  V(ConstantPoolArray, empty_constant_pool_array, EmptyConstantPoolArray)      \
  V(Oddball, arguments_marker, ArgumentsMarker)                                \
  /* The roots above this line should be boring from a GC point of view.    */ \
  /* This means they are never in new space and never on a page that is     */ \
  /* being compacted.                                                       */ \
  V(FixedArray, number_string_cache, NumberStringCache)                        \
  V(Object, instanceof_cache_function, InstanceofCacheFunction)                \
  V(Object, instanceof_cache_map, InstanceofCacheMap)                          \
  V(Object, instanceof_cache_answer, InstanceofCacheAnswer)                    \
  V(FixedArray, single_character_string_cache, SingleCharacterStringCache)     \
  V(FixedArray, string_split_cache, StringSplitCache)                          \
  V(FixedArray, regexp_multiple_cache, RegExpMultipleCache)                    \
  V(Oddball, termination_exception, TerminationException)                      \
  V(Smi, hash_seed, HashSeed)                                                  \
  V(Map, symbol_map, SymbolMap)                                                \
  V(Map, string_map, StringMap)                                                \
  V(Map, one_byte_string_map, OneByteStringMap)                                \
  V(Map, cons_string_map, ConsStringMap)                                       \
  V(Map, cons_one_byte_string_map, ConsOneByteStringMap)                       \
  V(Map, sliced_string_map, SlicedStringMap)                                   \
  V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap)                   \
  V(Map, external_string_map, ExternalStringMap)                               \
  V(Map, external_string_with_one_byte_data_map,                               \
    ExternalStringWithOneByteDataMap)                                          \
  V(Map, external_one_byte_string_map, ExternalOneByteStringMap)               \
  V(Map, native_source_string_map, NativeSourceStringMap)                      \
  V(Map, short_external_string_map, ShortExternalStringMap)                    \
  V(Map, short_external_string_with_one_byte_data_map,                         \
    ShortExternalStringWithOneByteDataMap)                                     \
  V(Map, internalized_string_map, InternalizedStringMap)                       \
  V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap)       \
  V(Map, external_internalized_string_map, ExternalInternalizedStringMap)      \
  V(Map, external_internalized_string_with_one_byte_data_map,                  \
    ExternalInternalizedStringWithOneByteDataMap)                              \
  V(Map, external_one_byte_internalized_string_map,                            \
    ExternalOneByteInternalizedStringMap)                                      \
  V(Map, short_external_internalized_string_map,                               \
    ShortExternalInternalizedStringMap)                                        \
  V(Map, short_external_internalized_string_with_one_byte_data_map,            \
    ShortExternalInternalizedStringWithOneByteDataMap)                         \
  V(Map, short_external_one_byte_internalized_string_map,                      \
    ShortExternalOneByteInternalizedStringMap)                                 \
  V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap)    \
  V(Map, undetectable_string_map, UndetectableStringMap)                       \
  V(Map, undetectable_one_byte_string_map, UndetectableOneByteStringMap)       \
  V(Map, external_int8_array_map, ExternalInt8ArrayMap)                        \
  V(Map, external_uint8_array_map, ExternalUint8ArrayMap)                      \
  V(Map, external_int16_array_map, ExternalInt16ArrayMap)                      \
  V(Map, external_uint16_array_map, ExternalUint16ArrayMap)                    \
  V(Map, external_int32_array_map, ExternalInt32ArrayMap)                      \
  V(Map, external_uint32_array_map, ExternalUint32ArrayMap)                    \
  V(Map, external_float32_array_map, ExternalFloat32ArrayMap)                  \
  V(Map, external_float64_array_map, ExternalFloat64ArrayMap)                  \
  V(Map, external_uint8_clamped_array_map, ExternalUint8ClampedArrayMap)       \
  V(ExternalArray, empty_external_int8_array, EmptyExternalInt8Array)          \
  V(ExternalArray, empty_external_uint8_array, EmptyExternalUint8Array)        \
  V(ExternalArray, empty_external_int16_array, EmptyExternalInt16Array)        \
  V(ExternalArray, empty_external_uint16_array, EmptyExternalUint16Array)      \
  V(ExternalArray, empty_external_int32_array, EmptyExternalInt32Array)        \
  V(ExternalArray, empty_external_uint32_array, EmptyExternalUint32Array)      \
  V(ExternalArray, empty_external_float32_array, EmptyExternalFloat32Array)    \
  V(ExternalArray, empty_external_float64_array, EmptyExternalFloat64Array)    \
  V(ExternalArray, empty_external_uint8_clamped_array,                         \
    EmptyExternalUint8ClampedArray)                                            \
  V(Map, fixed_uint8_array_map, FixedUint8ArrayMap)                            \
  V(Map, fixed_int8_array_map, FixedInt8ArrayMap)                              \
  V(Map, fixed_uint16_array_map, FixedUint16ArrayMap)                          \
  V(Map, fixed_int16_array_map, FixedInt16ArrayMap)                            \
  V(Map, fixed_uint32_array_map, FixedUint32ArrayMap)                          \
  V(Map, fixed_int32_array_map, FixedInt32ArrayMap)                            \
  V(Map, fixed_float32_array_map, FixedFloat32ArrayMap)                        \
  V(Map, fixed_float64_array_map, FixedFloat64ArrayMap)                        \
  V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap)             \
  V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array)        \
  V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array)          \
  V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array)      \
  V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array)        \
  V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array)      \
  V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array)        \
  V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array)    \
  V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array)    \
  V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array,                      \
    EmptyFixedUint8ClampedArray)                                               \
  V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap)            \
  V(Map, function_context_map, FunctionContextMap)                             \
  V(Map, catch_context_map, CatchContextMap)                                   \
  V(Map, with_context_map, WithContextMap)                                     \
  V(Map, block_context_map, BlockContextMap)                                   \
  V(Map, module_context_map, ModuleContextMap)                                 \
  V(Map, global_context_map, GlobalContextMap)                                 \
  V(Map, undefined_map, UndefinedMap)                                          \
  V(Map, the_hole_map, TheHoleMap)                                             \
  V(Map, null_map, NullMap)                                                    \
  V(Map, boolean_map, BooleanMap)                                              \
  V(Map, uninitialized_map, UninitializedMap)                                  \
  V(Map, arguments_marker_map, ArgumentsMarkerMap)                             \
  V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap)   \
  V(Map, exception_map, ExceptionMap)                                          \
  V(Map, termination_exception_map, TerminationExceptionMap)                   \
  V(Map, message_object_map, JSMessageObjectMap)                               \
  V(Map, foreign_map, ForeignMap)                                              \
  V(HeapNumber, nan_value, NanValue)                                           \
  V(HeapNumber, infinity_value, InfinityValue)                                 \
  V(HeapNumber, minus_zero_value, MinusZeroValue)                              \
  V(Map, neander_map, NeanderMap)                                              \
  V(JSObject, message_listeners, MessageListeners)                             \
  V(UnseededNumberDictionary, code_stubs, CodeStubs)                           \
  V(UnseededNumberDictionary, non_monomorphic_cache, NonMonomorphicCache)      \
  V(PolymorphicCodeCache, polymorphic_code_cache, PolymorphicCodeCache)        \
  V(Code, js_entry_code, JsEntryCode)                                          \
  V(Code, js_construct_entry_code, JsConstructEntryCode)                       \
  V(FixedArray, natives_source_cache, NativesSourceCache)                      \
  V(Script, empty_script, EmptyScript)                                         \
  V(NameDictionary, intrinsic_function_names, IntrinsicFunctionNames)          \
  V(Cell, undefined_cell, UndefineCell)                                        \
  V(JSObject, observation_state, ObservationState)                             \
  V(Map, external_map, ExternalMap)                                            \
  V(Object, symbol_registry, SymbolRegistry)                                   \
  V(SeededNumberDictionary, empty_slow_element_dictionary,                     \
    EmptySlowElementDictionary)                                                \
  V(FixedArray, materialized_objects, MaterializedObjects)                     \
  V(FixedArray, allocation_sites_scratchpad, AllocationSitesScratchpad)        \
  V(FixedArray, microtask_queue, MicrotaskQueue)

// Entries in this list are limited to Smis and are not visited during GC.
#define SMI_ROOT_LIST(V)                                                   \
  V(Smi, stack_limit, StackLimit)                                          \
  V(Smi, real_stack_limit, RealStackLimit)                                 \
  V(Smi, last_script_id, LastScriptId)                                     \
  V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset) \
  V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset)       \
  V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset)             \
  V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset)

#define ROOT_LIST(V)  \
  STRONG_ROOT_LIST(V) \
  SMI_ROOT_LIST(V)    \
  V(StringTable, string_table, StringTable)

#define INTERNALIZED_STRING_LIST(V)                        \
  V(Object_string, "Object")                               \
  V(proto_string, "__proto__")                             \
  V(arguments_string, "arguments")                         \
  V(Arguments_string, "Arguments")                         \
  V(caller_string, "caller")                               \
  V(boolean_string, "boolean")                             \
  V(Boolean_string, "Boolean")                             \
  V(callee_string, "callee")                               \
  V(constructor_string, "constructor")                     \
  V(dot_result_string, ".result")                          \
  V(dot_for_string, ".for.")                               \
  V(eval_string, "eval")                                   \
  V(empty_string, "")                                      \
  V(function_string, "function")                           \
  V(Function_string, "Function")                           \
  V(length_string, "length")                               \
  V(name_string, "name")                                   \
  V(null_string, "null")                                   \
  V(number_string, "number")                               \
  V(Number_string, "Number")                               \
  V(nan_string, "NaN")                                     \
  V(source_string, "source")                               \
  V(source_url_string, "source_url")                       \
  V(source_mapping_url_string, "source_mapping_url")       \
  V(global_string, "global")                               \
  V(ignore_case_string, "ignoreCase")                      \
  V(multiline_string, "multiline")                         \
  V(sticky_string, "sticky")                               \
  V(harmony_regexps_string, "harmony_regexps")             \
  V(input_string, "input")                                 \
  V(index_string, "index")                                 \
  V(last_index_string, "lastIndex")                        \
  V(object_string, "object")                               \
  V(prototype_string, "prototype")                         \
  V(string_string, "string")                               \
  V(String_string, "String")                               \
  V(symbol_string, "symbol")                               \
  V(Symbol_string, "Symbol")                               \
  V(Map_string, "Map")                                     \
  V(Set_string, "Set")                                     \
  V(WeakMap_string, "WeakMap")                             \
  V(WeakSet_string, "WeakSet")                             \
  V(for_string, "for")                                     \
  V(for_api_string, "for_api")                             \
  V(for_intern_string, "for_intern")                       \
  V(private_api_string, "private_api")                     \
  V(private_intern_string, "private_intern")               \
  V(Date_string, "Date")                                   \
  V(char_at_string, "CharAt")                              \
  V(undefined_string, "undefined")                         \
  V(value_of_string, "valueOf")                            \
  V(stack_string, "stack")                                 \
  V(toJSON_string, "toJSON")                               \
  V(KeyedLoadMonomorphic_string, "KeyedLoadMonomorphic")   \
  V(KeyedStoreMonomorphic_string, "KeyedStoreMonomorphic") \
  V(stack_overflow_string, "kStackOverflowBoilerplate")    \
  V(illegal_access_string, "illegal access")               \
  V(cell_value_string, "%cell_value")                      \
  V(illegal_argument_string, "illegal argument")           \
  V(identity_hash_string, "v8::IdentityHash")              \
  V(closure_string, "(closure)")                           \
  V(dot_string, ".")                                       \
  V(compare_ic_string, "==")                               \
  V(strict_compare_ic_string, "===")                       \
  V(infinity_string, "Infinity")                           \
  V(minus_infinity_string, "-Infinity")                    \
  V(query_colon_string, "(?:)")                            \
  V(Generator_string, "Generator")                         \
  V(throw_string, "throw")                                 \
  V(done_string, "done")                                   \
  V(value_string, "value")                                 \
  V(next_string, "next")                                   \
  V(byte_length_string, "byteLength")                      \
  V(byte_offset_string, "byteOffset")                      \
  V(minus_zero_string, "-0")                               \
  V(Array_string, "Array")                                 \
  V(Error_string, "Error")                                 \
  V(RegExp_string, "RegExp")

#define PRIVATE_SYMBOL_LIST(V)      \
  V(frozen_symbol)                  \
  V(nonexistent_symbol)             \
  V(elements_transition_symbol)     \
  V(observed_symbol)                \
  V(uninitialized_symbol)           \
  V(megamorphic_symbol)             \
  V(premonomorphic_symbol)          \
  V(generic_symbol)                 \
  V(stack_trace_symbol)             \
  V(detailed_stack_trace_symbol)    \
  V(normal_ic_symbol)               \
  V(home_object_symbol)             \
  V(intl_initialized_marker_symbol) \
  V(intl_impl_object_symbol)        \
  V(promise_debug_marker_symbol)    \
  V(promise_has_handler_symbol)     \
  V(class_script_symbol)            \
  V(class_start_position_symbol)    \
  V(class_end_position_symbol)

// Heap roots that are known to be immortal immovable, for which we can safely
// skip write barriers. This list is not complete and has omissions.
#define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \
  V(ByteArrayMap)                       \
  V(FreeSpaceMap)                       \
  V(OnePointerFillerMap)                \
  V(TwoPointerFillerMap)                \
  V(UndefinedValue)                     \
  V(TheHoleValue)                       \
  V(NullValue)                          \
  V(TrueValue)                          \
  V(FalseValue)                         \
  V(UninitializedValue)                 \
  V(CellMap)                            \
  V(GlobalPropertyCellMap)              \
  V(SharedFunctionInfoMap)              \
  V(MetaMap)                            \
  V(HeapNumberMap)                      \
  V(MutableHeapNumberMap)               \
  V(NativeContextMap)                   \
  V(FixedArrayMap)                      \
  V(CodeMap)                            \
  V(ScopeInfoMap)                       \
  V(FixedCOWArrayMap)                   \
  V(FixedDoubleArrayMap)                \
  V(ConstantPoolArrayMap)               \
  V(WeakCellMap)                        \
  V(NoInterceptorResultSentinel)        \
  V(HashTableMap)                       \
  V(OrderedHashTableMap)                \
  V(EmptyFixedArray)                    \
  V(EmptyByteArray)                     \
  V(EmptyDescriptorArray)               \
  V(EmptyConstantPoolArray)             \
  V(ArgumentsMarker)                    \
  V(SymbolMap)                          \
  V(SloppyArgumentsElementsMap)         \
  V(FunctionContextMap)                 \
  V(CatchContextMap)                    \
  V(WithContextMap)                     \
  V(BlockContextMap)                    \
  V(ModuleContextMap)                   \
  V(GlobalContextMap)                   \
  V(UndefinedMap)                       \
  V(TheHoleMap)                         \
  V(NullMap)                            \
  V(BooleanMap)                         \
  V(UninitializedMap)                   \
  V(ArgumentsMarkerMap)                 \
  V(JSMessageObjectMap)                 \
  V(ForeignMap)                         \
  V(NeanderMap)                         \
  PRIVATE_SYMBOL_LIST(V)

// Forward declarations.
class HeapStats;
class Isolate;
class WeakObjectRetainer;


typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
                                                      Object** pointer);

class StoreBufferRebuilder {
 public:
  explicit StoreBufferRebuilder(StoreBuffer* store_buffer)
      : store_buffer_(store_buffer) {}

  void Callback(MemoryChunk* page, StoreBufferEvent event);

 private:
  StoreBuffer* store_buffer_;

  // We record in this variable how full the store buffer was when we started
  // iterating over the current page, finding pointers to new space.  If the
  // store buffer overflows again we can exempt the page from the store buffer
  // by rewinding to this point instead of having to search the store buffer.
  Object*** start_of_current_page_;
  // The current page we are scanning in the store buffer iterator.
  MemoryChunk* current_page_;
};


// A queue of objects promoted during scavenge. Each object is accompanied
// by it's size to avoid dereferencing a map pointer for scanning.
class PromotionQueue {
 public:
  explicit PromotionQueue(Heap* heap)
      : front_(NULL),
        rear_(NULL),
        limit_(NULL),
        emergency_stack_(0),
        heap_(heap) {}

  void Initialize();

  void Destroy() {
    DCHECK(is_empty());
    delete emergency_stack_;
    emergency_stack_ = NULL;
  }

  Page* GetHeadPage() {
    return Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
  }

  void SetNewLimit(Address limit) {
    limit_ = reinterpret_cast<intptr_t*>(limit);

    if (limit_ <= rear_) {
      return;
    }

    RelocateQueueHead();
  }

  bool IsBelowPromotionQueue(Address to_space_top) {
    // If the given to-space top pointer and the head of the promotion queue
    // are not on the same page, then the to-space objects are below the
    // promotion queue.
    if (GetHeadPage() != Page::FromAddress(to_space_top)) {
      return true;
    }
    // If the to space top pointer is smaller or equal than the promotion
    // queue head, then the to-space objects are below the promotion queue.
    return reinterpret_cast<intptr_t*>(to_space_top) <= rear_;
  }

  bool is_empty() {
    return (front_ == rear_) &&
           (emergency_stack_ == NULL || emergency_stack_->length() == 0);
  }

  inline void insert(HeapObject* target, int size);

  void remove(HeapObject** target, int* size) {
    DCHECK(!is_empty());
    if (front_ == rear_) {
      Entry e = emergency_stack_->RemoveLast();
      *target = e.obj_;
      *size = e.size_;
      return;
    }

    if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(front_))) {
      NewSpacePage* front_page =
          NewSpacePage::FromAddress(reinterpret_cast<Address>(front_));
      DCHECK(!front_page->prev_page()->is_anchor());
      front_ = reinterpret_cast<intptr_t*>(front_page->prev_page()->area_end());
    }
    *target = reinterpret_cast<HeapObject*>(*(--front_));
    *size = static_cast<int>(*(--front_));
    // Assert no underflow.
    SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
                                reinterpret_cast<Address>(front_));
  }

 private:
  // The front of the queue is higher in the memory page chain than the rear.
  intptr_t* front_;
  intptr_t* rear_;
  intptr_t* limit_;

  static const int kEntrySizeInWords = 2;

  struct Entry {
    Entry(HeapObject* obj, int size) : obj_(obj), size_(size) {}

    HeapObject* obj_;
    int size_;
  };
  List<Entry>* emergency_stack_;

  Heap* heap_;

  void RelocateQueueHead();

  DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
};


typedef void (*ScavengingCallback)(Map* map, HeapObject** slot,
                                   HeapObject* object);


// External strings table is a place where all external strings are
// registered.  We need to keep track of such strings to properly
// finalize them.
class ExternalStringTable {
 public:
  // Registers an external string.
  inline void AddString(String* string);

  inline void Iterate(ObjectVisitor* v);

  // Restores internal invariant and gets rid of collected strings.
  // Must be called after each Iterate() that modified the strings.
  void CleanUp();

  // Destroys all allocated memory.
  void TearDown();

 private:
  explicit ExternalStringTable(Heap* heap) : heap_(heap) {}

  friend class Heap;

  inline void Verify();

  inline void AddOldString(String* string);

  // Notifies the table that only a prefix of the new list is valid.
  inline void ShrinkNewStrings(int position);

  // To speed up scavenge collections new space string are kept
  // separate from old space strings.
  List<Object*> new_space_strings_;
  List<Object*> old_space_strings_;

  Heap* heap_;

  DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
};


enum ArrayStorageAllocationMode {
  DONT_INITIALIZE_ARRAY_ELEMENTS,
  INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
};


class Heap {
 public:
  // Configure heap size in MB before setup. Return false if the heap has been
  // set up already.
  bool ConfigureHeap(int max_semi_space_size, int max_old_space_size,
                     int max_executable_size, size_t code_range_size);
  bool ConfigureHeapDefault();

  // Prepares the heap, setting up memory areas that are needed in the isolate
  // without actually creating any objects.
  bool SetUp();

  // Bootstraps the object heap with the core set of objects required to run.
  // Returns whether it succeeded.
  bool CreateHeapObjects();

  // Destroys all memory allocated by the heap.
  void TearDown();

  // Set the stack limit in the roots_ array.  Some architectures generate
  // code that looks here, because it is faster than loading from the static
  // jslimit_/real_jslimit_ variable in the StackGuard.
  void SetStackLimits();

  // Notifies the heap that is ok to start marking or other activities that
  // should not happen during deserialization.
  void NotifyDeserializationComplete();

  // Returns whether SetUp has been called.
  bool HasBeenSetUp();

  // Returns the maximum amount of memory reserved for the heap.  For
  // the young generation, we reserve 4 times the amount needed for a
  // semi space.  The young generation consists of two semi spaces and
  // we reserve twice the amount needed for those in order to ensure
  // that new space can be aligned to its size.
  intptr_t MaxReserved() {
    return 4 * reserved_semispace_size_ + max_old_generation_size_;
  }
  int MaxSemiSpaceSize() { return max_semi_space_size_; }
  int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
  int InitialSemiSpaceSize() { return initial_semispace_size_; }
  int TargetSemiSpaceSize() { return target_semispace_size_; }
  intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
  intptr_t MaxExecutableSize() { return max_executable_size_; }

  // Returns the capacity of the heap in bytes w/o growing. Heap grows when
  // more spaces are needed until it reaches the limit.
  intptr_t Capacity();

  // Returns the amount of memory currently committed for the heap.
  intptr_t CommittedMemory();

  // Returns the amount of executable memory currently committed for the heap.
  intptr_t CommittedMemoryExecutable();

  // Returns the amount of phyical memory currently committed for the heap.
  size_t CommittedPhysicalMemory();

  // Returns the maximum amount of memory ever committed for the heap.
  intptr_t MaximumCommittedMemory() { return maximum_committed_; }

  // Updates the maximum committed memory for the heap. Should be called
  // whenever a space grows.
  void UpdateMaximumCommitted();

  // Returns the available bytes in space w/o growing.
  // Heap doesn't guarantee that it can allocate an object that requires
  // all available bytes. Check MaxHeapObjectSize() instead.
  intptr_t Available();

  // Returns of size of all objects residing in the heap.
  intptr_t SizeOfObjects();

  // Return the starting address and a mask for the new space.  And-masking an
  // address with the mask will result in the start address of the new space
  // for all addresses in either semispace.
  Address NewSpaceStart() { return new_space_.start(); }
  uintptr_t NewSpaceMask() { return new_space_.mask(); }
  Address NewSpaceTop() { return new_space_.top(); }

  NewSpace* new_space() { return &new_space_; }
  OldSpace* old_pointer_space() { return old_pointer_space_; }
  OldSpace* old_data_space() { return old_data_space_; }
  OldSpace* code_space() { return code_space_; }
  MapSpace* map_space() { return map_space_; }
  CellSpace* cell_space() { return cell_space_; }
  PropertyCellSpace* property_cell_space() { return property_cell_space_; }
  LargeObjectSpace* lo_space() { return lo_space_; }
  PagedSpace* paged_space(int idx) {
    switch (idx) {
      case OLD_POINTER_SPACE:
        return old_pointer_space();
      case OLD_DATA_SPACE:
        return old_data_space();
      case MAP_SPACE:
        return map_space();
      case CELL_SPACE:
        return cell_space();
      case PROPERTY_CELL_SPACE:
        return property_cell_space();
      case CODE_SPACE:
        return code_space();
      case NEW_SPACE:
      case LO_SPACE:
        UNREACHABLE();
    }
    return NULL;
  }

  bool always_allocate() { return always_allocate_scope_depth_ != 0; }
  Address always_allocate_scope_depth_address() {
    return reinterpret_cast<Address>(&always_allocate_scope_depth_);
  }

  Address* NewSpaceAllocationTopAddress() {
    return new_space_.allocation_top_address();
  }
  Address* NewSpaceAllocationLimitAddress() {
    return new_space_.allocation_limit_address();
  }

  Address* OldPointerSpaceAllocationTopAddress() {
    return old_pointer_space_->allocation_top_address();
  }
  Address* OldPointerSpaceAllocationLimitAddress() {
    return old_pointer_space_->allocation_limit_address();
  }

  Address* OldDataSpaceAllocationTopAddress() {
    return old_data_space_->allocation_top_address();
  }
  Address* OldDataSpaceAllocationLimitAddress() {
    return old_data_space_->allocation_limit_address();
  }

  // Returns a deep copy of the JavaScript object.
  // Properties and elements are copied too.
  // Optionally takes an AllocationSite to be appended in an AllocationMemento.
  MUST_USE_RESULT AllocationResult
      CopyJSObject(JSObject* source, AllocationSite* site = NULL);

  // Clear the Instanceof cache (used when a prototype changes).
  inline void ClearInstanceofCache();

  // Iterates the whole code space to clear all ICs of the given kind.
  void ClearAllICsByKind(Code::Kind kind);

  // For use during bootup.
  void RepairFreeListsAfterBoot();

  template <typename T>
  static inline bool IsOneByte(T t, int chars);

  // Move len elements within a given array from src_index index to dst_index
  // index.
  void MoveElements(FixedArray* array, int dst_index, int src_index, int len);

  // Sloppy mode arguments object size.
  static const int kSloppyArgumentsObjectSize =
      JSObject::kHeaderSize + 2 * kPointerSize;
  // Strict mode arguments has no callee so it is smaller.
  static const int kStrictArgumentsObjectSize =
      JSObject::kHeaderSize + 1 * kPointerSize;
  // Indicies for direct access into argument objects.
  static const int kArgumentsLengthIndex = 0;
  // callee is only valid in sloppy mode.
  static const int kArgumentsCalleeIndex = 1;

  // Finalizes an external string by deleting the associated external
  // data and clearing the resource pointer.
  inline void FinalizeExternalString(String* string);

  // Initialize a filler object to keep the ability to iterate over the heap
  // when introducing gaps within pages.
  void CreateFillerObjectAt(Address addr, int size);

  bool CanMoveObjectStart(HeapObject* object);

  // Indicates whether live bytes adjustment is triggered from within the GC
  // code or from mutator code.
  enum InvocationMode { FROM_GC, FROM_MUTATOR };

  // Maintain consistency of live bytes during incremental marking.
  void AdjustLiveBytes(Address address, int by, InvocationMode mode);

  // Trim the given array from the left. Note that this relocates the object
  // start and hence is only valid if there is only a single reference to it.
  FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);

  // Trim the given array from the right.
  template<Heap::InvocationMode mode>
  void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);

  // Converts the given boolean condition to JavaScript boolean value.
  inline Object* ToBoolean(bool condition);

  // Performs garbage collection operation.
  // Returns whether there is a chance that another major GC could
  // collect more garbage.
  inline bool CollectGarbage(
      AllocationSpace space, const char* gc_reason = NULL,
      const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);

  static const int kNoGCFlags = 0;
  static const int kReduceMemoryFootprintMask = 1;
  static const int kAbortIncrementalMarkingMask = 2;

  // Making the heap iterable requires us to abort incremental marking.
  static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;

  // Performs a full garbage collection.  If (flags & kMakeHeapIterableMask) is
  // non-zero, then the slower precise sweeper is used, which leaves the heap
  // in a state where we can iterate over the heap visiting all objects.
  void CollectAllGarbage(
      int flags, const char* gc_reason = NULL,
      const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);

  // Last hope GC, should try to squeeze as much as possible.
  void CollectAllAvailableGarbage(const char* gc_reason = NULL);

  // Check whether the heap is currently iterable.
  bool IsHeapIterable();

  // Notify the heap that a context has been disposed.
  int NotifyContextDisposed();

  inline void increment_scan_on_scavenge_pages() {
    scan_on_scavenge_pages_++;
    if (FLAG_gc_verbose) {
      PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
    }
  }

  inline void decrement_scan_on_scavenge_pages() {
    scan_on_scavenge_pages_--;
    if (FLAG_gc_verbose) {
      PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
    }
  }

  PromotionQueue* promotion_queue() { return &promotion_queue_; }

  void AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback,
                             GCType gc_type_filter, bool pass_isolate = true);
  void RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback);

  void AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback,
                             GCType gc_type_filter, bool pass_isolate = true);
  void RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback);

// Heap root getters.  We have versions with and without type::cast() here.
// You can't use type::cast during GC because the assert fails.
// TODO(1490): Try removing the unchecked accessors, now that GC marking does
// not corrupt the map.
#define ROOT_ACCESSOR(type, name, camel_name)                           \
  type* name() { return type::cast(roots_[k##camel_name##RootIndex]); } \
  type* raw_unchecked_##name() {                                        \
    return reinterpret_cast<type*>(roots_[k##camel_name##RootIndex]);   \
  }
  ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR

// Utility type maps
#define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
  Map* name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); }
  STRUCT_LIST(STRUCT_MAP_ACCESSOR)
#undef STRUCT_MAP_ACCESSOR

#define STRING_ACCESSOR(name, str) \
  String* name() { return String::cast(roots_[k##name##RootIndex]); }
  INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
#undef STRING_ACCESSOR

#define SYMBOL_ACCESSOR(name) \
  Symbol* name() { return Symbol::cast(roots_[k##name##RootIndex]); }
  PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
#undef SYMBOL_ACCESSOR

  // The hidden_string is special because it is the empty string, but does
  // not match the empty string.
  String* hidden_string() { return hidden_string_; }

  void set_native_contexts_list(Object* object) {
    native_contexts_list_ = object;
  }
  Object* native_contexts_list() const { return native_contexts_list_; }

  void set_array_buffers_list(Object* object) { array_buffers_list_ = object; }
  Object* array_buffers_list() const { return array_buffers_list_; }

  void set_allocation_sites_list(Object* object) {
    allocation_sites_list_ = object;
  }
  Object* allocation_sites_list() { return allocation_sites_list_; }

  // Used in CreateAllocationSiteStub and the (de)serializer.
  Object** allocation_sites_list_address() { return &allocation_sites_list_; }

  Object* weak_object_to_code_table() { return weak_object_to_code_table_; }

  void set_encountered_weak_collections(Object* weak_collection) {
    encountered_weak_collections_ = weak_collection;
  }
  Object* encountered_weak_collections() const {
    return encountered_weak_collections_;
  }

  void set_encountered_weak_cells(Object* weak_cell) {
    encountered_weak_cells_ = weak_cell;
  }
  Object* encountered_weak_cells() const { return encountered_weak_cells_; }

  // Number of mark-sweeps.
  unsigned int ms_count() { return ms_count_; }

  // Iterates over all roots in the heap.
  void IterateRoots(ObjectVisitor* v, VisitMode mode);
  // Iterates over all strong roots in the heap.
  void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
  // Iterates over entries in the smi roots list.  Only interesting to the
  // serializer/deserializer, since GC does not care about smis.
  void IterateSmiRoots(ObjectVisitor* v);
  // Iterates over all the other roots in the heap.
  void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);

  // Iterate pointers to from semispace of new space found in memory interval
  // from start to end.
  void IterateAndMarkPointersToFromSpace(Address start, Address end,
                                         ObjectSlotCallback callback);

  // Returns whether the object resides in new space.
  inline bool InNewSpace(Object* object);
  inline bool InNewSpace(Address address);
  inline bool InNewSpacePage(Address address);
  inline bool InFromSpace(Object* object);
  inline bool InToSpace(Object* object);

  // Returns whether the object resides in old pointer space.
  inline bool InOldPointerSpace(Address address);
  inline bool InOldPointerSpace(Object* object);

  // Returns whether the object resides in old data space.
  inline bool InOldDataSpace(Address address);
  inline bool InOldDataSpace(Object* object);

  // Checks whether an address/object in the heap (including auxiliary
  // area and unused area).
  bool Contains(Address addr);
  bool Contains(HeapObject* value);

  // Checks whether an address/object in a space.
  // Currently used by tests, serialization and heap verification only.
  bool InSpace(Address addr, AllocationSpace space);
  bool InSpace(HeapObject* value, AllocationSpace space);

  // Finds out which space an object should get promoted to based on its type.
  inline OldSpace* TargetSpace(HeapObject* object);
  static inline AllocationSpace TargetSpaceId(InstanceType type);

  // Checks whether the given object is allowed to be migrated from it's
  // current space into the given destination space. Used for debugging.
  inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);

  // Sets the stub_cache_ (only used when expanding the dictionary).
  void public_set_code_stubs(UnseededNumberDictionary* value) {
    roots_[kCodeStubsRootIndex] = value;
  }

  // Support for computing object sizes for old objects during GCs. Returns
  // a function that is guaranteed to be safe for computing object sizes in
  // the current GC phase.
  HeapObjectCallback GcSafeSizeOfOldObjectFunction() {
    return gc_safe_size_of_old_object_;
  }

  // Sets the non_monomorphic_cache_ (only used when expanding the dictionary).
  void public_set_non_monomorphic_cache(UnseededNumberDictionary* value) {
    roots_[kNonMonomorphicCacheRootIndex] = value;
  }

  void public_set_empty_script(Script* script) {
    roots_[kEmptyScriptRootIndex] = script;
  }

  void public_set_store_buffer_top(Address* top) {
    roots_[kStoreBufferTopRootIndex] = reinterpret_cast<Smi*>(top);
  }

  void public_set_materialized_objects(FixedArray* objects) {
    roots_[kMaterializedObjectsRootIndex] = objects;
  }

  // Generated code can embed this address to get access to the roots.
  Object** roots_array_start() { return roots_; }

  Address* store_buffer_top_address() {
    return reinterpret_cast<Address*>(&roots_[kStoreBufferTopRootIndex]);
  }

  static bool RootIsImmortalImmovable(int root_index);

#ifdef VERIFY_HEAP
  // Verify the heap is in its normal state before or after a GC.
  void Verify();


  bool weak_embedded_objects_verification_enabled() {
    return no_weak_object_verification_scope_depth_ == 0;
  }
#endif

#ifdef DEBUG
  void Print();
  void PrintHandles();

  void OldPointerSpaceCheckStoreBuffer();
  void MapSpaceCheckStoreBuffer();
  void LargeObjectSpaceCheckStoreBuffer();

  // Report heap statistics.
  void ReportHeapStatistics(const char* title);
  void ReportCodeStatistics(const char* title);
#endif

  // Zapping is needed for verify heap, and always done in debug builds.
  static inline bool ShouldZapGarbage() {
#ifdef DEBUG
    return true;
#else
#ifdef VERIFY_HEAP
    return FLAG_verify_heap;
#else
    return false;
#endif
#endif
  }

  // Number of "runtime allocations" done so far.
  uint32_t allocations_count() { return allocations_count_; }

  // Returns deterministic "time" value in ms. Works only with
  // FLAG_verify_predictable.
  double synthetic_time() { return allocations_count_ / 2.0; }

  // Print short heap statistics.
  void PrintShortHeapStatistics();

  // Write barrier support for address[offset] = o.
  INLINE(void RecordWrite(Address address, int offset));

  // Write barrier support for address[start : start + len[ = o.
  INLINE(void RecordWrites(Address address, int start, int len));

  enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
  inline HeapState gc_state() { return gc_state_; }

  inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }

#ifdef DEBUG
  void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }

  void TracePathToObjectFrom(Object* target, Object* root);
  void TracePathToObject(Object* target);
  void TracePathToGlobal();
#endif

  // Callback function passed to Heap::Iterate etc.  Copies an object if
  // necessary, the object might be promoted to an old space.  The caller must
  // ensure the precondition that the object is (a) a heap object and (b) in
  // the heap's from space.
  static inline void ScavengePointer(HeapObject** p);
  static inline void ScavengeObject(HeapObject** p, HeapObject* object);

  enum ScratchpadSlotMode { IGNORE_SCRATCHPAD_SLOT, RECORD_SCRATCHPAD_SLOT };

  // If an object has an AllocationMemento trailing it, return it, otherwise
  // return NULL;
  inline AllocationMemento* FindAllocationMemento(HeapObject* object);

  // An object may have an AllocationSite associated with it through a trailing
  // AllocationMemento. Its feedback should be updated when objects are found
  // in the heap.
  static inline void UpdateAllocationSiteFeedback(HeapObject* object,
                                                  ScratchpadSlotMode mode);

  // Support for partial snapshots.  After calling this we have a linear
  // space to write objects in each space.
  struct Chunk {
    uint32_t size;
    Address start;
    Address end;
  };

  typedef List<Chunk> Reservation;

  // Returns false if not able to reserve.
  bool ReserveSpace(Reservation* reservations);

  //
  // Support for the API.
  //

  void CreateApiObjects();

  inline intptr_t PromotedTotalSize() {
    int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
    if (total > kMaxInt) return static_cast<intptr_t>(kMaxInt);
    if (total < 0) return 0;
    return static_cast<intptr_t>(total);
  }

  inline intptr_t OldGenerationSpaceAvailable() {
    return old_generation_allocation_limit_ - PromotedTotalSize();
  }

  inline intptr_t OldGenerationCapacityAvailable() {
    return max_old_generation_size_ - PromotedTotalSize();
  }

  static const intptr_t kMinimumOldGenerationAllocationLimit =
      8 * (Page::kPageSize > MB ? Page::kPageSize : MB);

  static const int kPointerMultiplier = i::kPointerSize / 4;

  // The new space size has to be a power of 2. Sizes are in MB.
  static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier;
  static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier;
  static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier;
  static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier;

  // The old space size has to be a multiple of Page::kPageSize.
  // Sizes are in MB.
  static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier;
  static const int kMaxOldSpaceSizeMediumMemoryDevice =
      256 * kPointerMultiplier;
  static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier;
  static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier;

  // The executable size has to be a multiple of Page::kPageSize.
  // Sizes are in MB.
  static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
  static const int kMaxExecutableSizeMediumMemoryDevice =
      192 * kPointerMultiplier;
  static const int kMaxExecutableSizeHighMemoryDevice =
      256 * kPointerMultiplier;
  static const int kMaxExecutableSizeHugeMemoryDevice =
      256 * kPointerMultiplier;

  intptr_t OldGenerationAllocationLimit(intptr_t old_gen_size,
                                        int freed_global_handles);

  // Indicates whether inline bump-pointer allocation has been disabled.
  bool inline_allocation_disabled() { return inline_allocation_disabled_; }

  // Switch whether inline bump-pointer allocation should be used.
  void EnableInlineAllocation();
  void DisableInlineAllocation();

  // Implements the corresponding V8 API function.
  bool IdleNotification(int idle_time_in_ms);

  // Declare all the root indices.  This defines the root list order.
  enum RootListIndex {
#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
    STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
#undef ROOT_INDEX_DECLARATION

#define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
    INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
#undef STRING_DECLARATION

#define SYMBOL_INDEX_DECLARATION(name) k##name##RootIndex,
    PRIVATE_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
#undef SYMBOL_INDEX_DECLARATION

// Utility type maps
#define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
    STRUCT_LIST(DECLARE_STRUCT_MAP)
#undef DECLARE_STRUCT_MAP
    kStringTableRootIndex,

#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
    SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
#undef ROOT_INDEX_DECLARATION
    kRootListLength,
    kStrongRootListLength = kStringTableRootIndex,
    kSmiRootsStart = kStringTableRootIndex + 1
  };

  Object* root(RootListIndex index) { return roots_[index]; }

  STATIC_ASSERT(kUndefinedValueRootIndex ==
                Internals::kUndefinedValueRootIndex);
  STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
  STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
  STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
  STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);

  // Generated code can embed direct references to non-writable roots if
  // they are in new space.
  static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
  // Generated code can treat direct references to this root as constant.
  bool RootCanBeTreatedAsConstant(RootListIndex root_index);

  Map* MapForFixedTypedArray(ExternalArrayType array_type);
  RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type);

  Map* MapForExternalArrayType(ExternalArrayType array_type);
  RootListIndex RootIndexForExternalArrayType(ExternalArrayType array_type);

  RootListIndex RootIndexForEmptyExternalArray(ElementsKind kind);
  RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind);
  ExternalArray* EmptyExternalArrayForMap(Map* map);
  FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map);

  void RecordStats(HeapStats* stats, bool take_snapshot = false);

  // Copy block of memory from src to dst. Size of block should be aligned
  // by pointer size.
  static inline void CopyBlock(Address dst, Address src, int byte_size);

  // Optimized version of memmove for blocks with pointer size aligned sizes and
  // pointer size aligned addresses.
  static inline void MoveBlock(Address dst, Address src, int byte_size);

  // Check new space expansion criteria and expand semispaces if it was hit.
  void CheckNewSpaceExpansionCriteria();

  inline void IncrementPromotedObjectsSize(int object_size) {
    DCHECK(object_size > 0);
    promoted_objects_size_ += object_size;
  }

  inline void IncrementSemiSpaceCopiedObjectSize(int object_size) {
    DCHECK(object_size > 0);
    semi_space_copied_object_size_ += object_size;
  }

  inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }

  inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }

  inline void IncrementNodesPromoted() { nodes_promoted_++; }

  inline void IncrementYoungSurvivorsCounter(int survived) {
    DCHECK(survived >= 0);
    survived_since_last_expansion_ += survived;
  }

  inline bool NextGCIsLikelyToBeFull() {
    if (FLAG_gc_global) return true;

    if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true;

    intptr_t adjusted_allocation_limit =
        old_generation_allocation_limit_ - new_space_.Capacity();

    if (PromotedTotalSize() >= adjusted_allocation_limit) return true;

    return false;
  }

  void UpdateNewSpaceReferencesInExternalStringTable(
      ExternalStringTableUpdaterCallback updater_func);

  void UpdateReferencesInExternalStringTable(
      ExternalStringTableUpdaterCallback updater_func);

  void ProcessWeakReferences(WeakObjectRetainer* retainer);

  void VisitExternalResources(v8::ExternalResourceVisitor* visitor);

  // An object should be promoted if the object has survived a
  // scavenge operation.
  inline bool ShouldBePromoted(Address old_address, int object_size);

  void ClearJSFunctionResultCaches();

  void ClearNormalizedMapCaches();

  GCTracer* tracer() { return &tracer_; }

  // Returns the size of objects residing in non new spaces.
  intptr_t PromotedSpaceSizeOfObjects();

  double total_regexp_code_generated() { return total_regexp_code_generated_; }
  void IncreaseTotalRegexpCodeGenerated(int size) {
    total_regexp_code_generated_ += size;
  }

  void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
    if (is_crankshafted) {
      crankshaft_codegen_bytes_generated_ += size;
    } else {
      full_codegen_bytes_generated_ += size;
    }
  }

  // Update GC statistics that are tracked on the Heap.
  void UpdateCumulativeGCStatistics(double duration, double spent_in_mutator,
                                    double marking_time);

  // Returns maximum GC pause.
  double get_max_gc_pause() { return max_gc_pause_; }

  // Returns maximum size of objects alive after GC.
  intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }

  // Returns minimal interval between two subsequent collections.
  double get_min_in_mutator() { return min_in_mutator_; }

  MarkCompactCollector* mark_compact_collector() {
    return &mark_compact_collector_;
  }

  StoreBuffer* store_buffer() { return &store_buffer_; }

  Marking* marking() { return &marking_; }

  IncrementalMarking* incremental_marking() { return &incremental_marking_; }

  ExternalStringTable* external_string_table() {
    return &external_string_table_;
  }

  // Returns the current sweep generation.
  int sweep_generation() { return sweep_generation_; }

  inline Isolate* isolate();

  void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
  void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);

  inline bool OldGenerationAllocationLimitReached();

  inline void DoScavengeObject(Map* map, HeapObject** slot, HeapObject* obj) {
    scavenging_visitors_table_.GetVisitor(map)(map, slot, obj);
  }

  void QueueMemoryChunkForFree(MemoryChunk* chunk);
  void FreeQueuedChunks();

  int gc_count() const { return gc_count_; }

  // Completely clear the Instanceof cache (to stop it keeping objects alive
  // around a GC).
  inline void CompletelyClearInstanceofCache();

  // The roots that have an index less than this are always in old space.
  static const int kOldSpaceRoots = 0x20;

  uint32_t HashSeed() {
    uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
    DCHECK(FLAG_randomize_hashes || seed == 0);
    return seed;
  }

  void SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
    DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::FromInt(0));
    set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
  }

  void SetConstructStubDeoptPCOffset(int pc_offset) {
    DCHECK(construct_stub_deopt_pc_offset() == Smi::FromInt(0));
    set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
  }

  void SetGetterStubDeoptPCOffset(int pc_offset) {
    DCHECK(getter_stub_deopt_pc_offset() == Smi::FromInt(0));
    set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
  }

  void SetSetterStubDeoptPCOffset(int pc_offset) {
    DCHECK(setter_stub_deopt_pc_offset() == Smi::FromInt(0));
    set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
  }

  // For post mortem debugging.
  void RememberUnmappedPage(Address page, bool compacted);

  // Global inline caching age: it is incremented on some GCs after context
  // disposal. We use it to flush inline caches.
  int global_ic_age() { return global_ic_age_; }

  void AgeInlineCaches() {
    global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
  }

  bool flush_monomorphic_ics() { return flush_monomorphic_ics_; }

  int64_t amount_of_external_allocated_memory() {
    return amount_of_external_allocated_memory_;
  }

  void DeoptMarkedAllocationSites();

  bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }

  bool DeoptMaybeTenuredAllocationSites() {
    return new_space_.IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
  }

  // ObjectStats are kept in two arrays, counts and sizes. Related stats are
  // stored in a contiguous linear buffer. Stats groups are stored one after
  // another.
  enum {
    FIRST_CODE_KIND_SUB_TYPE = LAST_TYPE + 1,
    FIRST_FIXED_ARRAY_SUB_TYPE =
        FIRST_CODE_KIND_SUB_TYPE + Code::NUMBER_OF_KINDS,
    FIRST_CODE_AGE_SUB_TYPE =
        FIRST_FIXED_ARRAY_SUB_TYPE + LAST_FIXED_ARRAY_SUB_TYPE + 1,
    OBJECT_STATS_COUNT = FIRST_CODE_AGE_SUB_TYPE + Code::kCodeAgeCount + 1
  };

  void RecordObjectStats(InstanceType type, size_t size) {
    DCHECK(type <= LAST_TYPE);
    object_counts_[type]++;
    object_sizes_[type] += size;
  }

  void RecordCodeSubTypeStats(int code_sub_type, int code_age, size_t size) {
    int code_sub_type_index = FIRST_CODE_KIND_SUB_TYPE + code_sub_type;
    int code_age_index =
        FIRST_CODE_AGE_SUB_TYPE + code_age - Code::kFirstCodeAge;
    DCHECK(code_sub_type_index >= FIRST_CODE_KIND_SUB_TYPE &&
           code_sub_type_index < FIRST_CODE_AGE_SUB_TYPE);
    DCHECK(code_age_index >= FIRST_CODE_AGE_SUB_TYPE &&
           code_age_index < OBJECT_STATS_COUNT);
    object_counts_[code_sub_type_index]++;
    object_sizes_[code_sub_type_index] += size;
    object_counts_[code_age_index]++;
    object_sizes_[code_age_index] += size;
  }

  void RecordFixedArraySubTypeStats(int array_sub_type, size_t size) {
    DCHECK(array_sub_type <= LAST_FIXED_ARRAY_SUB_TYPE);
    object_counts_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type]++;
    object_sizes_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type] += size;
  }

  void CheckpointObjectStats();

  // We don't use a LockGuard here since we want to lock the heap
  // only when FLAG_concurrent_recompilation is true.
  class RelocationLock {
   public:
    explicit RelocationLock(Heap* heap) : heap_(heap) {
      heap_->relocation_mutex_.Lock();
    }


    ~RelocationLock() { heap_->relocation_mutex_.Unlock(); }

   private:
    Heap* heap_;
  };

  void AddWeakObjectToCodeDependency(Handle<Object> obj,
                                     Handle<DependentCode> dep);

  DependentCode* LookupWeakObjectToCodeDependency(Handle<Object> obj);

  void InitializeWeakObjectToCodeTable() {
    set_weak_object_to_code_table(undefined_value());
  }

  void EnsureWeakObjectToCodeTable();

  static void FatalProcessOutOfMemory(const char* location,
                                      bool take_snapshot = false);

  // This event is triggered after successful allocation of a new object made
  // by runtime. Allocations of target space for object evacuation do not
  // trigger the event. In order to track ALL allocations one must turn off
  // FLAG_inline_new and FLAG_use_allocation_folding.
  inline void OnAllocationEvent(HeapObject* object, int size_in_bytes);

  // This event is triggered after object is moved to a new place.
  inline void OnMoveEvent(HeapObject* target, HeapObject* source,
                          int size_in_bytes);

  bool deserialization_complete() const { return deserialization_complete_; }

 protected:
  // Methods made available to tests.

  // Allocates a JS Map in the heap.
  MUST_USE_RESULT AllocationResult
      AllocateMap(InstanceType instance_type, int instance_size,
                  ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);

  // Allocates and initializes a new JavaScript object based on a
  // constructor.
  // If allocation_site is non-null, then a memento is emitted after the object
  // that points to the site.
  MUST_USE_RESULT AllocationResult
      AllocateJSObject(JSFunction* constructor,
                       PretenureFlag pretenure = NOT_TENURED,
                       AllocationSite* allocation_site = NULL);

  // Allocates and initializes a new JavaScript object based on a map.
  // Passing an allocation site means that a memento will be created that
  // points to the site.
  MUST_USE_RESULT AllocationResult
      AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED,
                              bool alloc_props = true,
                              AllocationSite* allocation_site = NULL);

  // Allocated a HeapNumber from value.
  MUST_USE_RESULT AllocationResult
      AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE,
                         PretenureFlag pretenure = NOT_TENURED);

  // Allocate a byte array of the specified length
  MUST_USE_RESULT AllocationResult
      AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED);

  // Copy the code and scope info part of the code object, but insert
  // the provided data as the relocation information.
  MUST_USE_RESULT AllocationResult
      CopyCode(Code* code, Vector<byte> reloc_info);

  MUST_USE_RESULT AllocationResult CopyCode(Code* code);

  // Allocates a fixed array initialized with undefined values
  MUST_USE_RESULT AllocationResult
      AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED);

 private:
  Heap();

  // The amount of external memory registered through the API kept alive
  // by global handles
  int64_t amount_of_external_allocated_memory_;

  // Caches the amount of external memory registered at the last global gc.
  int64_t amount_of_external_allocated_memory_at_last_global_gc_;

  // This can be calculated directly from a pointer to the heap; however, it is
  // more expedient to get at the isolate directly from within Heap methods.
  Isolate* isolate_;

  Object* roots_[kRootListLength];

  size_t code_range_size_;
  int reserved_semispace_size_;
  int max_semi_space_size_;
  int initial_semispace_size_;
  int target_semispace_size_;
  intptr_t max_old_generation_size_;
  intptr_t max_executable_size_;
  intptr_t maximum_committed_;

  // For keeping track of how much data has survived
  // scavenge since last new space expansion.
  int survived_since_last_expansion_;

  // For keeping track on when to flush RegExp code.
  int sweep_generation_;

  int always_allocate_scope_depth_;

  // For keeping track of context disposals.
  int contexts_disposed_;

  int global_ic_age_;

  bool flush_monomorphic_ics_;

  int scan_on_scavenge_pages_;

  NewSpace new_space_;
  OldSpace* old_pointer_space_;
  OldSpace* old_data_space_;
  OldSpace* code_space_;
  MapSpace* map_space_;
  CellSpace* cell_space_;
  PropertyCellSpace* property_cell_space_;
  LargeObjectSpace* lo_space_;
  HeapState gc_state_;
  int gc_post_processing_depth_;
  Address new_space_top_after_last_gc_;

  // Returns the amount of external memory registered since last global gc.
  int64_t PromotedExternalMemorySize();

  // How many "runtime allocations" happened.
  uint32_t allocations_count_;

  // Running hash over allocations performed.
  uint32_t raw_allocations_hash_;

  // Countdown counter, dumps allocation hash when 0.
  uint32_t dump_allocations_hash_countdown_;

  // How many mark-sweep collections happened.
  unsigned int ms_count_;

  // How many gc happened.
  unsigned int gc_count_;

  // For post mortem debugging.
  static const int kRememberedUnmappedPages = 128;
  int remembered_unmapped_pages_index_;
  Address remembered_unmapped_pages_[kRememberedUnmappedPages];

  // Total length of the strings we failed to flatten since the last GC.
  int unflattened_strings_length_;

#define ROOT_ACCESSOR(type, name, camel_name)                                 \
  inline void set_##name(type* value) {                                       \
    /* The deserializer makes use of the fact that these common roots are */  \
    /* never in new space and never on a page that is being compacted.    */  \
    DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
    roots_[k##camel_name##RootIndex] = value;                                 \
  }
  ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR

#ifdef DEBUG
  // If the --gc-interval flag is set to a positive value, this
  // variable holds the value indicating the number of allocations
  // remain until the next failure and garbage collection.
  int allocation_timeout_;
#endif  // DEBUG

  // Limit that triggers a global GC on the next (normally caused) GC.  This
  // is checked when we have already decided to do a GC to help determine
  // which collector to invoke, before expanding a paged space in the old
  // generation and on every allocation in large object space.
  intptr_t old_generation_allocation_limit_;

  // Indicates that an allocation has failed in the old generation since the
  // last GC.
  bool old_gen_exhausted_;

  // Indicates that inline bump-pointer allocation has been globally disabled
  // for all spaces. This is used to disable allocations in generated code.
  bool inline_allocation_disabled_;

  // Weak list heads, threaded through the objects.
  // List heads are initilized lazily and contain the undefined_value at start.
  Object* native_contexts_list_;
  Object* array_buffers_list_;
  Object* allocation_sites_list_;

  // WeakHashTable that maps objects embedded in optimized code to dependent
  // code list. It is initilized lazily and contains the undefined_value at
  // start.
  Object* weak_object_to_code_table_;

  // List of encountered weak collections (JSWeakMap and JSWeakSet) during
  // marking. It is initialized during marking, destroyed after marking and
  // contains Smi(0) while marking is not active.
  Object* encountered_weak_collections_;

  Object* encountered_weak_cells_;

  StoreBufferRebuilder store_buffer_rebuilder_;

  struct StringTypeTable {
    InstanceType type;
    int size;
    RootListIndex index;
  };

  struct ConstantStringTable {
    const char* contents;
    RootListIndex index;
  };

  struct StructTable {
    InstanceType type;
    int size;
    RootListIndex index;
  };

  static const StringTypeTable string_type_table[];
  static const ConstantStringTable constant_string_table[];
  static const StructTable struct_table[];

  // The special hidden string which is an empty string, but does not match
  // any string when looked up in properties.
  String* hidden_string_;

  // GC callback function, called before and after mark-compact GC.
  // Allocations in the callback function are disallowed.
  struct GCPrologueCallbackPair {
    GCPrologueCallbackPair(v8::Isolate::GCPrologueCallback callback,
                           GCType gc_type, bool pass_isolate)
        : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {}
    bool operator==(const GCPrologueCallbackPair& pair) const {
      return pair.callback == callback;
    }
    v8::Isolate::GCPrologueCallback callback;
    GCType gc_type;
    // TODO(dcarney): remove variable
    bool pass_isolate_;
  };
  List<GCPrologueCallbackPair> gc_prologue_callbacks_;

  struct GCEpilogueCallbackPair {
    GCEpilogueCallbackPair(v8::Isolate::GCPrologueCallback callback,
                           GCType gc_type, bool pass_isolate)
        : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {}
    bool operator==(const GCEpilogueCallbackPair& pair) const {
      return pair.callback == callback;
    }
    v8::Isolate::GCPrologueCallback callback;
    GCType gc_type;
    // TODO(dcarney): remove variable
    bool pass_isolate_;
  };
  List<GCEpilogueCallbackPair> gc_epilogue_callbacks_;

  // Support for computing object sizes during GC.
  HeapObjectCallback gc_safe_size_of_old_object_;
  static int GcSafeSizeOfOldObject(HeapObject* object);

  // Update the GC state. Called from the mark-compact collector.
  void MarkMapPointersAsEncoded(bool encoded) {
    DCHECK(!encoded);
    gc_safe_size_of_old_object_ = &GcSafeSizeOfOldObject;
  }

  // Code that should be run before and after each GC.  Includes some
  // reporting/verification activities when compiled with DEBUG set.
  void GarbageCollectionPrologue();
  void GarbageCollectionEpilogue();

  // Pretenuring decisions are made based on feedback collected during new
  // space evacuation. Note that between feedback collection and calling this
  // method object in old space must not move.
  // Right now we only process pretenuring feedback in high promotion mode.
  void ProcessPretenuringFeedback();

  // Checks whether a global GC is necessary
  GarbageCollector SelectGarbageCollector(AllocationSpace space,
                                          const char** reason);

  // Make sure there is a filler value behind the top of the new space
  // so that the GC does not confuse some unintialized/stale memory
  // with the allocation memento of the object at the top
  void EnsureFillerObjectAtTop();

  // Ensure that we have swept all spaces in such a way that we can iterate
  // over all objects.  May cause a GC.
  void MakeHeapIterable();

  // Performs garbage collection operation.
  // Returns whether there is a chance that another major GC could
  // collect more garbage.
  bool CollectGarbage(
      GarbageCollector collector, const char* gc_reason,
      const char* collector_reason,
      const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);

  // Performs garbage collection
  // Returns whether there is a chance another major GC could
  // collect more garbage.
  bool PerformGarbageCollection(
      GarbageCollector collector,
      const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);

  inline void UpdateOldSpaceLimits();

  // Selects the proper allocation space depending on the given object
  // size, pretenuring decision, and preferred old-space.
  static AllocationSpace SelectSpace(int object_size,
                                     AllocationSpace preferred_old_space,
                                     PretenureFlag pretenure) {
    DCHECK(preferred_old_space == OLD_POINTER_SPACE ||
           preferred_old_space == OLD_DATA_SPACE);
    if (object_size > Page::kMaxRegularHeapObjectSize) return LO_SPACE;
    return (pretenure == TENURED) ? preferred_old_space : NEW_SPACE;
  }

  // Allocate an uninitialized object.  The memory is non-executable if the
  // hardware and OS allow.  This is the single choke-point for allocations
  // performed by the runtime and should not be bypassed (to extend this to
  // inlined allocations, use the Heap::DisableInlineAllocation() support).
  MUST_USE_RESULT inline AllocationResult AllocateRaw(
      int size_in_bytes, AllocationSpace space, AllocationSpace retry_space);

  // Allocates a heap object based on the map.
  MUST_USE_RESULT AllocationResult
      Allocate(Map* map, AllocationSpace space,
               AllocationSite* allocation_site = NULL);

  // Allocates a partial map for bootstrapping.
  MUST_USE_RESULT AllocationResult
      AllocatePartialMap(InstanceType instance_type, int instance_size);

  // Initializes a JSObject based on its map.
  void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties,
                                 Map* map);
  void InitializeAllocationMemento(AllocationMemento* memento,
                                   AllocationSite* allocation_site);

  // Allocate a block of memory in the given space (filled with a filler).
  // Used as a fall-back for generated code when the space is full.
  MUST_USE_RESULT AllocationResult
      AllocateFillerObject(int size, bool double_align, AllocationSpace space);

  // Allocate an uninitialized fixed array.
  MUST_USE_RESULT AllocationResult
      AllocateRawFixedArray(int length, PretenureFlag pretenure);

  // Allocate an uninitialized fixed double array.
  MUST_USE_RESULT AllocationResult
      AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure);

  // Allocate an initialized fixed array with the given filler value.
  MUST_USE_RESULT AllocationResult
      AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure,
                                   Object* filler);

  // Allocate and partially initializes a String.  There are two String
  // encodings: one-byte and two-byte.  These functions allocate a string of
  // the given length and set its map and length fields.  The characters of
  // the string are uninitialized.
  MUST_USE_RESULT AllocationResult
      AllocateRawOneByteString(int length, PretenureFlag pretenure);
  MUST_USE_RESULT AllocationResult
      AllocateRawTwoByteString(int length, PretenureFlag pretenure);

  bool CreateInitialMaps();
  void CreateInitialObjects();

  // Allocates an internalized string in old space based on the character
  // stream.
  MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8(
      Vector<const char> str, int chars, uint32_t hash_field);

  MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString(
      Vector<const uint8_t> str, uint32_t hash_field);

  MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString(
      Vector<const uc16> str, uint32_t hash_field);

  template <bool is_one_byte, typename T>
  MUST_USE_RESULT AllocationResult
      AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field);

  template <typename T>
  MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl(
      T t, int chars, uint32_t hash_field);

  // Allocates an uninitialized fixed array. It must be filled by the caller.
  MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length);

  // Make a copy of src and return it. Returns
  // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
  MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src);

  // Make a copy of src, set the map, and return the copy. Returns
  // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
  MUST_USE_RESULT AllocationResult
      CopyFixedArrayWithMap(FixedArray* src, Map* map);

  // Make a copy of src and return it. Returns
  // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
  MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray(
      FixedDoubleArray* src);

  // Make a copy of src and return it. Returns
  // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
  MUST_USE_RESULT inline AllocationResult CopyConstantPoolArray(
      ConstantPoolArray* src);


  // Computes a single character string where the character has code.
  // A cache is used for one-byte (Latin1) codes.
  MUST_USE_RESULT AllocationResult
      LookupSingleCharacterStringFromCode(uint16_t code);

  // Allocate a symbol in old space.
  MUST_USE_RESULT AllocationResult AllocateSymbol();

  // Make a copy of src, set the map, and return the copy.
  MUST_USE_RESULT AllocationResult
      CopyConstantPoolArrayWithMap(ConstantPoolArray* src, Map* map);

  MUST_USE_RESULT AllocationResult AllocateConstantPoolArray(
      const ConstantPoolArray::NumberOfEntries& small);

  MUST_USE_RESULT AllocationResult AllocateExtendedConstantPoolArray(
      const ConstantPoolArray::NumberOfEntries& small,
      const ConstantPoolArray::NumberOfEntries& extended);

  // Allocates an external array of the specified length and type.
  MUST_USE_RESULT AllocationResult
      AllocateExternalArray(int length, ExternalArrayType array_type,
                            void* external_pointer, PretenureFlag pretenure);

  // Allocates a fixed typed array of the specified length and type.
  MUST_USE_RESULT AllocationResult
      AllocateFixedTypedArray(int length, ExternalArrayType array_type,
                              PretenureFlag pretenure);

  // Make a copy of src and return it.
  MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src);

  // Make a copy of src, set the map, and return the copy.
  MUST_USE_RESULT AllocationResult
      CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map);

  // Allocates a fixed double array with uninitialized values. Returns
  MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray(
      int length, PretenureFlag pretenure = NOT_TENURED);

  // These five Create*EntryStub functions are here and forced to not be inlined
  // because of a gcc-4.4 bug that assigns wrong vtable entries.
  NO_INLINE(void CreateJSEntryStub());
  NO_INLINE(void CreateJSConstructEntryStub());

  void CreateFixedStubs();

  // Allocate empty fixed array.
  MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray();

  // Allocate empty external array of given type.
  MUST_USE_RESULT AllocationResult
      AllocateEmptyExternalArray(ExternalArrayType array_type);

  // Allocate empty fixed typed array of given type.
  MUST_USE_RESULT AllocationResult
      AllocateEmptyFixedTypedArray(ExternalArrayType array_type);

  // Allocate empty constant pool array.
  MUST_USE_RESULT AllocationResult AllocateEmptyConstantPoolArray();

  // Allocate a tenured simple cell.
  MUST_USE_RESULT AllocationResult AllocateCell(Object* value);

  // Allocate a tenured JS global property cell initialized with the hole.
  MUST_USE_RESULT AllocationResult AllocatePropertyCell();

  MUST_USE_RESULT AllocationResult AllocateWeakCell(HeapObject* value);

  // Allocates a new utility object in the old generation.
  MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type);

  // Allocates a new foreign object.
  MUST_USE_RESULT AllocationResult
      AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED);

  MUST_USE_RESULT AllocationResult
      AllocateCode(int object_size, bool immovable);

  MUST_USE_RESULT AllocationResult InternalizeStringWithKey(HashTableKey* key);

  MUST_USE_RESULT AllocationResult InternalizeString(String* str);

  // Performs a minor collection in new generation.
  void Scavenge();

  // Commits from space if it is uncommitted.
  void EnsureFromSpaceIsCommitted();

  // Uncommit unused semi space.
  bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }

  // Fill in bogus values in from space
  void ZapFromSpace();

  static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
      Heap* heap, Object** pointer);

  Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
  static void ScavengeStoreBufferCallback(Heap* heap, MemoryChunk* page,
                                          StoreBufferEvent event);

  // Performs a major collection in the whole heap.
  void MarkCompact();

  // Code to be run before and after mark-compact.
  void MarkCompactPrologue();

  void ProcessNativeContexts(WeakObjectRetainer* retainer);
  void ProcessArrayBuffers(WeakObjectRetainer* retainer);
  void ProcessAllocationSites(WeakObjectRetainer* retainer);

  // Deopts all code that contains allocation instruction which are tenured or
  // not tenured. Moreover it clears the pretenuring allocation site statistics.
  void ResetAllAllocationSitesDependentCode(PretenureFlag flag);

  // Evaluates local pretenuring for the old space and calls
  // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
  // the old space.
  void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);

  // Called on heap tear-down.
  void TearDownArrayBuffers();

  // Record statistics before and after garbage collection.
  void ReportStatisticsBeforeGC();
  void ReportStatisticsAfterGC();

  // Slow part of scavenge object.
  static void ScavengeObjectSlow(HeapObject** p, HeapObject* object);

  // Total RegExp code ever generated
  double total_regexp_code_generated_;

  GCTracer tracer_;

  // Creates and installs the full-sized number string cache.
  int FullSizeNumberStringCacheLength();
  // Flush the number to string cache.
  void FlushNumberStringCache();

  // Sets used allocation sites entries to undefined.
  void FlushAllocationSitesScratchpad();

  // Initializes the allocation sites scratchpad with undefined values.
  void InitializeAllocationSitesScratchpad();

  // Adds an allocation site to the scratchpad if there is space left.
  void AddAllocationSiteToScratchpad(AllocationSite* site,
                                     ScratchpadSlotMode mode);

  void UpdateSurvivalStatistics(int start_new_space_size);

  static const int kYoungSurvivalRateHighThreshold = 90;
  static const int kYoungSurvivalRateAllowedDeviation = 15;

  static const int kOldSurvivalRateLowThreshold = 10;

  int high_survival_rate_period_length_;
  intptr_t promoted_objects_size_;
  double promotion_rate_;
  intptr_t semi_space_copied_object_size_;
  double semi_space_copied_rate_;
  int nodes_died_in_new_space_;
  int nodes_copied_in_new_space_;
  int nodes_promoted_;

  // This is the pretenuring trigger for allocation sites that are in maybe
  // tenure state. When we switched to the maximum new space size we deoptimize
  // the code that belongs to the allocation site and derive the lifetime
  // of the allocation site.
  unsigned int maximum_size_scavenges_;

  // TODO(hpayer): Allocation site pretenuring may make this method obsolete.
  // Re-visit incremental marking heuristics.
  bool IsHighSurvivalRate() { return high_survival_rate_period_length_ > 0; }

  void SelectScavengingVisitorsTable();

  void IdleMarkCompact(const char* message);

  void TryFinalizeIdleIncrementalMarking(
      size_t idle_time_in_ms, size_t size_of_objects,
      size_t mark_compact_speed_in_bytes_per_ms);

  bool WorthActivatingIncrementalMarking();

  void ClearObjectStats(bool clear_last_time_stats = false);

  void set_weak_object_to_code_table(Object* value) {
    DCHECK(!InNewSpace(value));
    weak_object_to_code_table_ = value;
  }

  Object** weak_object_to_code_table_address() {
    return &weak_object_to_code_table_;
  }

  inline void UpdateAllocationsHash(HeapObject* object);
  inline void UpdateAllocationsHash(uint32_t value);
  inline void PrintAlloctionsHash();

  static const int kInitialStringTableSize = 2048;
  static const int kInitialEvalCacheSize = 64;
  static const int kInitialNumberStringCacheSize = 256;

  // Object counts and used memory by InstanceType
  size_t object_counts_[OBJECT_STATS_COUNT];
  size_t object_counts_last_time_[OBJECT_STATS_COUNT];
  size_t object_sizes_[OBJECT_STATS_COUNT];
  size_t object_sizes_last_time_[OBJECT_STATS_COUNT];

  // Maximum GC pause.
  double max_gc_pause_;

  // Total time spent in GC.
  double total_gc_time_ms_;

  // Maximum size of objects alive after GC.
  intptr_t max_alive_after_gc_;

  // Minimal interval between two subsequent collections.
  double min_in_mutator_;

  // Cumulative GC time spent in marking
  double marking_time_;

  // Cumulative GC time spent in sweeping
  double sweeping_time_;

  MarkCompactCollector mark_compact_collector_;

  StoreBuffer store_buffer_;

  Marking marking_;

  IncrementalMarking incremental_marking_;

  GCIdleTimeHandler gc_idle_time_handler_;
  unsigned int gc_count_at_last_idle_gc_;

  // These two counters are monotomically increasing and never reset.
  size_t full_codegen_bytes_generated_;
  size_t crankshaft_codegen_bytes_generated_;

  // If the --deopt_every_n_garbage_collections flag is set to a positive value,
  // this variable holds the number of garbage collections since the last
  // deoptimization triggered by garbage collection.
  int gcs_since_last_deopt_;

#ifdef VERIFY_HEAP
  int no_weak_object_verification_scope_depth_;
#endif

  static const int kAllocationSiteScratchpadSize = 256;
  int allocation_sites_scratchpad_length_;

  static const int kMaxMarkCompactsInIdleRound = 7;
  static const int kIdleScavengeThreshold = 5;

  // Shared state read by the scavenge collector and set by ScavengeObject.
  PromotionQueue promotion_queue_;

  // Flag is set when the heap has been configured.  The heap can be repeatedly
  // configured through the API until it is set up.
  bool configured_;

  ExternalStringTable external_string_table_;

  VisitorDispatchTable<ScavengingCallback> scavenging_visitors_table_;

  MemoryChunk* chunks_queued_for_free_;

  base::Mutex relocation_mutex_;

  int gc_callbacks_depth_;

  bool deserialization_complete_;

  friend class AlwaysAllocateScope;
  friend class Deserializer;
  friend class Factory;
  friend class GCCallbacksScope;
  friend class GCTracer;
  friend class HeapIterator;
  friend class Isolate;
  friend class MarkCompactCollector;
  friend class MarkCompactMarkingVisitor;
  friend class MapCompact;
#ifdef VERIFY_HEAP
  friend class NoWeakObjectVerificationScope;
#endif
  friend class Page;

  DISALLOW_COPY_AND_ASSIGN(Heap);
};


class HeapStats {
 public:
  static const int kStartMarker = 0xDECADE00;
  static const int kEndMarker = 0xDECADE01;

  int* start_marker;                       //  0
  int* new_space_size;                     //  1
  int* new_space_capacity;                 //  2
  intptr_t* old_pointer_space_size;        //  3
  intptr_t* old_pointer_space_capacity;    //  4
  intptr_t* old_data_space_size;           //  5
  intptr_t* old_data_space_capacity;       //  6
  intptr_t* code_space_size;               //  7
  intptr_t* code_space_capacity;           //  8
  intptr_t* map_space_size;                //  9
  intptr_t* map_space_capacity;            // 10
  intptr_t* cell_space_size;               // 11
  intptr_t* cell_space_capacity;           // 12
  intptr_t* lo_space_size;                 // 13
  int* global_handle_count;                // 14
  int* weak_global_handle_count;           // 15
  int* pending_global_handle_count;        // 16
  int* near_death_global_handle_count;     // 17
  int* free_global_handle_count;           // 18
  intptr_t* memory_allocator_size;         // 19
  intptr_t* memory_allocator_capacity;     // 20
  int* objects_per_type;                   // 21
  int* size_per_type;                      // 22
  int* os_error;                           // 23
  int* end_marker;                         // 24
  intptr_t* property_cell_space_size;      // 25
  intptr_t* property_cell_space_capacity;  // 26
};


class AlwaysAllocateScope {
 public:
  explicit inline AlwaysAllocateScope(Isolate* isolate);
  inline ~AlwaysAllocateScope();

 private:
  // Implicitly disable artificial allocation failures.
  Heap* heap_;
  DisallowAllocationFailure daf_;
};


#ifdef VERIFY_HEAP
class NoWeakObjectVerificationScope {
 public:
  inline NoWeakObjectVerificationScope();
  inline ~NoWeakObjectVerificationScope();
};
#endif


class GCCallbacksScope {
 public:
  explicit inline GCCallbacksScope(Heap* heap);
  inline ~GCCallbacksScope();

  inline bool CheckReenter();

 private:
  Heap* heap_;
};


// Visitor class to verify interior pointers in spaces that do not contain
// or care about intergenerational references. All heap object pointers have to
// point into the heap to a location that has a map pointer at its first word.
// Caveat: Heap::Contains is an approximation because it can return true for
// objects in a heap space but above the allocation pointer.
class VerifyPointersVisitor : public ObjectVisitor {
 public:
  inline void VisitPointers(Object** start, Object** end);
};


// Verify that all objects are Smis.
class VerifySmisVisitor : public ObjectVisitor {
 public:
  inline void VisitPointers(Object** start, Object** end);
};


// Space iterator for iterating over all spaces of the heap.  Returns each space
// in turn, and null when it is done.
class AllSpaces BASE_EMBEDDED {
 public:
  explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
  Space* next();

 private:
  Heap* heap_;
  int counter_;
};


// Space iterator for iterating over all old spaces of the heap: Old pointer
// space, old data space and code space.  Returns each space in turn, and null
// when it is done.
class OldSpaces BASE_EMBEDDED {
 public:
  explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
  OldSpace* next();

 private:
  Heap* heap_;
  int counter_;
};


// Space iterator for iterating over all the paged spaces of the heap: Map
// space, old pointer space, old data space, code space and cell space.  Returns
// each space in turn, and null when it is done.
class PagedSpaces BASE_EMBEDDED {
 public:
  explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
  PagedSpace* next();

 private:
  Heap* heap_;
  int counter_;
};


// Space iterator for iterating over all spaces of the heap.
// For each space an object iterator is provided. The deallocation of the
// returned object iterators is handled by the space iterator.
class SpaceIterator : public Malloced {
 public:
  explicit SpaceIterator(Heap* heap);
  SpaceIterator(Heap* heap, HeapObjectCallback size_func);
  virtual ~SpaceIterator();

  bool has_next();
  ObjectIterator* next();

 private:
  ObjectIterator* CreateIterator();

  Heap* heap_;
  int current_space_;         // from enum AllocationSpace.
  ObjectIterator* iterator_;  // object iterator for the current space.
  HeapObjectCallback size_func_;
};


// A HeapIterator provides iteration over the whole heap. It
// aggregates the specific iterators for the different spaces as
// these can only iterate over one space only.
//
// HeapIterator ensures there is no allocation during its lifetime
// (using an embedded DisallowHeapAllocation instance).
//
// HeapIterator can skip free list nodes (that is, de-allocated heap
// objects that still remain in the heap). As implementation of free
// nodes filtering uses GC marks, it can't be used during MS/MC GC
// phases. Also, it is forbidden to interrupt iteration in this mode,
// as this will leave heap objects marked (and thus, unusable).
class HeapObjectsFilter;

class HeapIterator BASE_EMBEDDED {
 public:
  enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };

  explicit HeapIterator(Heap* heap);
  HeapIterator(Heap* heap, HeapObjectsFiltering filtering);
  ~HeapIterator();

  HeapObject* next();
  void reset();

 private:
  struct MakeHeapIterableHelper {
    explicit MakeHeapIterableHelper(Heap* heap) { heap->MakeHeapIterable(); }
  };

  // Perform the initialization.
  void Init();
  // Perform all necessary shutdown (destruction) work.
  void Shutdown();
  HeapObject* NextObject();

  MakeHeapIterableHelper make_heap_iterable_helper_;
  DisallowHeapAllocation no_heap_allocation_;
  Heap* heap_;
  HeapObjectsFiltering filtering_;
  HeapObjectsFilter* filter_;
  // Space iterator for iterating all the spaces.
  SpaceIterator* space_iterator_;
  // Object iterator for the space currently being iterated.
  ObjectIterator* object_iterator_;
};


// Cache for mapping (map, property name) into field offset.
// Cleared at startup and prior to mark sweep collection.
class KeyedLookupCache {
 public:
  // Lookup field offset for (map, name). If absent, -1 is returned.
  int Lookup(Handle<Map> map, Handle<Name> name);

  // Update an element in the cache.
  void Update(Handle<Map> map, Handle<Name> name, int field_offset);

  // Clear the cache.
  void Clear();

  static const int kLength = 256;
  static const int kCapacityMask = kLength - 1;
  static const int kMapHashShift = 5;
  static const int kHashMask = -4;  // Zero the last two bits.
  static const int kEntriesPerBucket = 4;
  static const int kEntryLength = 2;
  static const int kMapIndex = 0;
  static const int kKeyIndex = 1;
  static const int kNotFound = -1;

  // kEntriesPerBucket should be a power of 2.
  STATIC_ASSERT((kEntriesPerBucket & (kEntriesPerBucket - 1)) == 0);
  STATIC_ASSERT(kEntriesPerBucket == -kHashMask);

 private:
  KeyedLookupCache() {
    for (int i = 0; i < kLength; ++i) {
      keys_[i].map = NULL;
      keys_[i].name = NULL;
      field_offsets_[i] = kNotFound;
    }
  }

  static inline int Hash(Handle<Map> map, Handle<Name> name);

  // Get the address of the keys and field_offsets arrays.  Used in
  // generated code to perform cache lookups.
  Address keys_address() { return reinterpret_cast<Address>(&keys_); }

  Address field_offsets_address() {
    return reinterpret_cast<Address>(&field_offsets_);
  }

  struct Key {
    Map* map;
    Name* name;
  };

  Key keys_[kLength];
  int field_offsets_[kLength];

  friend class ExternalReference;
  friend class Isolate;
  DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache);
};


// Cache for mapping (map, property name) into descriptor index.
// The cache contains both positive and negative results.
// Descriptor index equals kNotFound means the property is absent.
// Cleared at startup and prior to any gc.
class DescriptorLookupCache {
 public:
  // Lookup descriptor index for (map, name).
  // If absent, kAbsent is returned.
  int Lookup(Map* source, Name* name) {
    if (!name->IsUniqueName()) return kAbsent;
    int index = Hash(source, name);
    Key& key = keys_[index];
    if ((key.source == source) && (key.name == name)) return results_[index];
    return kAbsent;
  }

  // Update an element in the cache.
  void Update(Map* source, Name* name, int result) {
    DCHECK(result != kAbsent);
    if (name->IsUniqueName()) {
      int index = Hash(source, name);
      Key& key = keys_[index];
      key.source = source;
      key.name = name;
      results_[index] = result;
    }
  }

  // Clear the cache.
  void Clear();

  static const int kAbsent = -2;

 private:
  DescriptorLookupCache() {
    for (int i = 0; i < kLength; ++i) {
      keys_[i].source = NULL;
      keys_[i].name = NULL;
      results_[i] = kAbsent;
    }
  }

  static int Hash(Object* source, Name* name) {
    // Uses only lower 32 bits if pointers are larger.
    uint32_t source_hash =
        static_cast<uint32_t>(reinterpret_cast<uintptr_t>(source)) >>
        kPointerSizeLog2;
    uint32_t name_hash =
        static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name)) >>
        kPointerSizeLog2;
    return (source_hash ^ name_hash) % kLength;
  }

  static const int kLength = 64;
  struct Key {
    Map* source;
    Name* name;
  };

  Key keys_[kLength];
  int results_[kLength];

  friend class Isolate;
  DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache);
};


class RegExpResultsCache {
 public:
  enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };

  // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
  // On success, the returned result is guaranteed to be a COW-array.
  static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern,
                        ResultsCacheType type);
  // Attempt to add value_array to the cache specified by type.  On success,
  // value_array is turned into a COW-array.
  static void Enter(Isolate* isolate, Handle<String> key_string,
                    Handle<Object> key_pattern, Handle<FixedArray> value_array,
                    ResultsCacheType type);
  static void Clear(FixedArray* cache);
  static const int kRegExpResultsCacheSize = 0x100;

 private:
  static const int kArrayEntriesPerCacheEntry = 4;
  static const int kStringOffset = 0;
  static const int kPatternOffset = 1;
  static const int kArrayOffset = 2;
};


// Abstract base class for checking whether a weak object should be retained.
class WeakObjectRetainer {
 public:
  virtual ~WeakObjectRetainer() {}

  // Return whether this object should be retained. If NULL is returned the
  // object has no references. Otherwise the address of the retained object
  // should be returned as in some GC situations the object has been moved.
  virtual Object* RetainAs(Object* object) = 0;
};


// Intrusive object marking uses least significant bit of
// heap object's map word to mark objects.
// Normally all map words have least significant bit set
// because they contain tagged map pointer.
// If the bit is not set object is marked.
// All objects should be unmarked before resuming
// JavaScript execution.
class IntrusiveMarking {
 public:
  static bool IsMarked(HeapObject* object) {
    return (object->map_word().ToRawValue() & kNotMarkedBit) == 0;
  }

  static void ClearMark(HeapObject* object) {
    uintptr_t map_word = object->map_word().ToRawValue();
    object->set_map_word(MapWord::FromRawValue(map_word | kNotMarkedBit));
    DCHECK(!IsMarked(object));
  }

  static void SetMark(HeapObject* object) {
    uintptr_t map_word = object->map_word().ToRawValue();
    object->set_map_word(MapWord::FromRawValue(map_word & ~kNotMarkedBit));
    DCHECK(IsMarked(object));
  }

  static Map* MapOfMarkedObject(HeapObject* object) {
    uintptr_t map_word = object->map_word().ToRawValue();
    return MapWord::FromRawValue(map_word | kNotMarkedBit).ToMap();
  }

  static int SizeOfMarkedObject(HeapObject* object) {
    return object->SizeFromMap(MapOfMarkedObject(object));
  }

 private:
  static const uintptr_t kNotMarkedBit = 0x1;
  STATIC_ASSERT((kHeapObjectTag & kNotMarkedBit) != 0);  // NOLINT
};


#ifdef DEBUG
// Helper class for tracing paths to a search target Object from all roots.
// The TracePathFrom() method can be used to trace paths from a specific
// object to the search target object.
class PathTracer : public ObjectVisitor {
 public:
  enum WhatToFind {
    FIND_ALL,   // Will find all matches.
    FIND_FIRST  // Will stop the search after first match.
  };

  // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
  static const int kMarkTag = 2;

  // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
  // after the first match.  If FIND_ALL is specified, then tracing will be
  // done for all matches.
  PathTracer(Object* search_target, WhatToFind what_to_find,
             VisitMode visit_mode)
      : search_target_(search_target),
        found_target_(false),
        found_target_in_trace_(false),
        what_to_find_(what_to_find),
        visit_mode_(visit_mode),
        object_stack_(20),
        no_allocation() {}

  virtual void VisitPointers(Object** start, Object** end);

  void Reset();
  void TracePathFrom(Object** root);

  bool found() const { return found_target_; }

  static Object* const kAnyGlobalObject;

 protected:
  class MarkVisitor;
  class UnmarkVisitor;

  void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
  void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
  virtual void ProcessResults();

  Object* search_target_;
  bool found_target_;
  bool found_target_in_trace_;
  WhatToFind what_to_find_;
  VisitMode visit_mode_;
  List<Object*> object_stack_;

  DisallowHeapAllocation no_allocation;  // i.e. no gc allowed.

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
};
#endif  // DEBUG
}
}  // namespace v8::internal

#endif  // V8_HEAP_HEAP_H_