1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "hydrogen-infer-representation.h"
namespace v8 {
namespace internal {
void HInferRepresentationPhase::AddToWorklist(HValue* current) {
if (current->representation().IsTagged()) return;
if (!current->CheckFlag(HValue::kFlexibleRepresentation)) return;
if (in_worklist_.Contains(current->id())) return;
worklist_.Add(current, zone());
in_worklist_.Add(current->id());
}
void HInferRepresentationPhase::Run() {
// (1) Initialize bit vectors and count real uses. Each phi gets a
// bit-vector of length <number of phis>.
const ZoneList<HPhi*>* phi_list = graph()->phi_list();
int phi_count = phi_list->length();
ZoneList<BitVector*> connected_phis(phi_count, zone());
for (int i = 0; i < phi_count; ++i) {
phi_list->at(i)->InitRealUses(i);
BitVector* connected_set = new(zone()) BitVector(phi_count, zone());
connected_set->Add(i);
connected_phis.Add(connected_set, zone());
}
// (2) Do a fixed point iteration to find the set of connected phis. A
// phi is connected to another phi if its value is used either directly or
// indirectly through a transitive closure of the def-use relation.
bool change = true;
while (change) {
change = false;
// We normally have far more "forward edges" than "backward edges",
// so we terminate faster when we walk backwards.
for (int i = phi_count - 1; i >= 0; --i) {
HPhi* phi = phi_list->at(i);
for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (use->IsPhi()) {
int id = HPhi::cast(use)->phi_id();
if (connected_phis[i]->UnionIsChanged(*connected_phis[id]))
change = true;
}
}
}
}
// Set truncation flags for groups of connected phis. This is a conservative
// approximation; the flag will be properly re-computed after representations
// have been determined.
if (phi_count > 0) {
BitVector done(phi_count, zone());
for (int i = 0; i < phi_count; ++i) {
if (done.Contains(i)) continue;
// Check if all uses of all connected phis in this group are truncating.
bool all_uses_everywhere_truncating = true;
for (BitVector::Iterator it(connected_phis[i]);
!it.Done();
it.Advance()) {
int index = it.Current();
all_uses_everywhere_truncating &=
phi_list->at(index)->CheckFlag(HInstruction::kTruncatingToInt32);
done.Add(index);
}
if (all_uses_everywhere_truncating) {
continue; // Great, nothing to do.
}
// Clear truncation flag of this group of connected phis.
for (BitVector::Iterator it(connected_phis[i]);
!it.Done();
it.Advance()) {
int index = it.Current();
phi_list->at(index)->ClearFlag(HInstruction::kTruncatingToInt32);
}
}
}
// Simplify constant phi inputs where possible.
// This step uses kTruncatingToInt32 flags of phis.
for (int i = 0; i < phi_count; ++i) {
phi_list->at(i)->SimplifyConstantInputs();
}
// Use the phi reachability information from step 2 to
// sum up the non-phi use counts of all connected phis.
for (int i = 0; i < phi_count; ++i) {
HPhi* phi = phi_list->at(i);
for (BitVector::Iterator it(connected_phis[i]);
!it.Done();
it.Advance()) {
int index = it.Current();
HPhi* it_use = phi_list->at(index);
if (index != i) phi->AddNonPhiUsesFrom(it_use); // Don't count twice.
}
}
// Initialize work list
for (int i = 0; i < graph()->blocks()->length(); ++i) {
HBasicBlock* block = graph()->blocks()->at(i);
const ZoneList<HPhi*>* phis = block->phis();
for (int j = 0; j < phis->length(); ++j) {
AddToWorklist(phis->at(j));
}
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
AddToWorklist(current);
}
}
// Do a fixed point iteration, trying to improve representations
while (!worklist_.is_empty()) {
HValue* current = worklist_.RemoveLast();
in_worklist_.Remove(current->id());
current->InferRepresentation(this);
}
// Lastly: any instruction that we don't have representation information
// for defaults to Tagged.
for (int i = 0; i < graph()->blocks()->length(); ++i) {
HBasicBlock* block = graph()->blocks()->at(i);
const ZoneList<HPhi*>* phis = block->phis();
for (int j = 0; j < phis->length(); ++j) {
HPhi* phi = phis->at(j);
if (phi->representation().IsNone()) {
phi->ChangeRepresentation(Representation::Tagged());
}
}
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
if (current->representation().IsNone() &&
current->CheckFlag(HInstruction::kFlexibleRepresentation)) {
if (current->CheckFlag(HInstruction::kCannotBeTagged)) {
current->ChangeRepresentation(Representation::Double());
} else {
current->ChangeRepresentation(Representation::Tagged());
}
}
}
}
}
} } // namespace v8::internal
|