summaryrefslogtreecommitdiff
path: root/deps/v8/src/ia32/assembler-ia32.h
blob: 79637a1901044acf6944037d2ac6aa9d505876c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2006-2008 the V8 project authors. All rights reserved.

// A light-weight IA32 Assembler.

#ifndef V8_IA32_ASSEMBLER_IA32_H_
#define V8_IA32_ASSEMBLER_IA32_H_

#include "serialize.h"

namespace v8 {
namespace internal {

// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
//
struct Register {
  bool is_valid() const { return 0 <= code_ && code_ < 8; }
  bool is(Register reg) const { return code_ == reg.code_; }
  // eax, ebx, ecx and edx are byte registers, the rest are not.
  bool is_byte_register() const { return code_ <= 3; }
  int code() const {
    ASSERT(is_valid());
    return code_;
  }
  int bit() const {
    ASSERT(is_valid());
    return 1 << code_;
  }

  // Unfortunately we can't make this private in a struct.
  int code_;
};

const Register eax = { 0 };
const Register ecx = { 1 };
const Register edx = { 2 };
const Register ebx = { 3 };
const Register esp = { 4 };
const Register ebp = { 5 };
const Register esi = { 6 };
const Register edi = { 7 };
const Register no_reg = { -1 };


struct XMMRegister {
  bool is_valid() const { return 0 <= code_ && code_ < 8; }
  int code() const {
    ASSERT(is_valid());
    return code_;
  }

  int code_;
};

const XMMRegister xmm0 = { 0 };
const XMMRegister xmm1 = { 1 };
const XMMRegister xmm2 = { 2 };
const XMMRegister xmm3 = { 3 };
const XMMRegister xmm4 = { 4 };
const XMMRegister xmm5 = { 5 };
const XMMRegister xmm6 = { 6 };
const XMMRegister xmm7 = { 7 };

enum Condition {
  // any value < 0 is considered no_condition
  no_condition  = -1,

  overflow      =  0,
  no_overflow   =  1,
  below         =  2,
  above_equal   =  3,
  equal         =  4,
  not_equal     =  5,
  below_equal   =  6,
  above         =  7,
  negative      =  8,
  positive      =  9,
  parity_even   = 10,
  parity_odd    = 11,
  less          = 12,
  greater_equal = 13,
  less_equal    = 14,
  greater       = 15,

  // aliases
  carry         = below,
  not_carry     = above_equal,
  zero          = equal,
  not_zero      = not_equal,
  sign          = negative,
  not_sign      = positive
};


// Returns the equivalent of !cc.
// Negation of the default no_condition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc) {
  return static_cast<Condition>(cc ^ 1);
}


// Corresponds to transposing the operands of a comparison.
inline Condition ReverseCondition(Condition cc) {
  switch (cc) {
    case below:
      return above;
    case above:
      return below;
    case above_equal:
      return below_equal;
    case below_equal:
      return above_equal;
    case less:
      return greater;
    case greater:
      return less;
    case greater_equal:
      return less_equal;
    case less_equal:
      return greater_equal;
    default:
      return cc;
  };
}


enum Hint {
  no_hint = 0,
  not_taken = 0x2e,
  taken = 0x3e
};


// The result of negating a hint is as if the corresponding condition
// were negated by NegateCondition.  That is, no_hint is mapped to
// itself and not_taken and taken are mapped to each other.
inline Hint NegateHint(Hint hint) {
  return (hint == no_hint)
      ? no_hint
      : ((hint == not_taken) ? taken : not_taken);
}


// -----------------------------------------------------------------------------
// Machine instruction Immediates

class Immediate BASE_EMBEDDED {
 public:
  inline explicit Immediate(int x);
  inline explicit Immediate(const ExternalReference& ext);
  inline explicit Immediate(Handle<Object> handle);
  inline explicit Immediate(Smi* value);

  static Immediate CodeRelativeOffset(Label* label) {
    return Immediate(label);
  }

  bool is_zero() const { return x_ == 0 && rmode_ == RelocInfo::NONE; }
  bool is_int8() const {
    return -128 <= x_ && x_ < 128 && rmode_ == RelocInfo::NONE;
  }
  bool is_int16() const {
    return -32768 <= x_ && x_ < 32768 && rmode_ == RelocInfo::NONE;
  }

 private:
  inline explicit Immediate(Label* value);

  int x_;
  RelocInfo::Mode rmode_;

  friend class Assembler;
};


// -----------------------------------------------------------------------------
// Machine instruction Operands

enum ScaleFactor {
  times_1 = 0,
  times_2 = 1,
  times_4 = 2,
  times_8 = 3,
  times_int_size = times_4,
  times_half_pointer_size = times_2,
  times_pointer_size = times_4,
  times_twice_pointer_size = times_8
};


class Operand BASE_EMBEDDED {
 public:
  // reg
  INLINE(explicit Operand(Register reg));

  // XMM reg
  INLINE(explicit Operand(XMMRegister xmm_reg));

  // [disp/r]
  INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
  // disp only must always be relocated

  // [base + disp/r]
  explicit Operand(Register base, int32_t disp,
                   RelocInfo::Mode rmode = RelocInfo::NONE);

  // [base + index*scale + disp/r]
  explicit Operand(Register base,
                   Register index,
                   ScaleFactor scale,
                   int32_t disp,
                   RelocInfo::Mode rmode = RelocInfo::NONE);

  // [index*scale + disp/r]
  explicit Operand(Register index,
                   ScaleFactor scale,
                   int32_t disp,
                   RelocInfo::Mode rmode = RelocInfo::NONE);

  static Operand StaticVariable(const ExternalReference& ext) {
    return Operand(reinterpret_cast<int32_t>(ext.address()),
                   RelocInfo::EXTERNAL_REFERENCE);
  }

  static Operand StaticArray(Register index,
                             ScaleFactor scale,
                             const ExternalReference& arr) {
    return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
                   RelocInfo::EXTERNAL_REFERENCE);
  }

  // Returns true if this Operand is a wrapper for the specified register.
  bool is_reg(Register reg) const;

 private:
  byte buf_[6];
  // The number of bytes in buf_.
  unsigned int len_;
  // Only valid if len_ > 4.
  RelocInfo::Mode rmode_;

  // Set the ModRM byte without an encoded 'reg' register. The
  // register is encoded later as part of the emit_operand operation.
  inline void set_modrm(int mod, Register rm);

  inline void set_sib(ScaleFactor scale, Register index, Register base);
  inline void set_disp8(int8_t disp);
  inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);

  friend class Assembler;
};


// -----------------------------------------------------------------------------
// A Displacement describes the 32bit immediate field of an instruction which
// may be used together with a Label in order to refer to a yet unknown code
// position. Displacements stored in the instruction stream are used to describe
// the instruction and to chain a list of instructions using the same Label.
// A Displacement contains 2 different fields:
//
// next field: position of next displacement in the chain (0 = end of list)
// type field: instruction type
//
// A next value of null (0) indicates the end of a chain (note that there can
// be no displacement at position zero, because there is always at least one
// instruction byte before the displacement).
//
// Displacement _data field layout
//
// |31.....2|1......0|
// [  next  |  type  |

class Displacement BASE_EMBEDDED {
 public:
  enum Type {
    UNCONDITIONAL_JUMP,
    CODE_RELATIVE,
    OTHER
  };

  int data() const { return data_; }
  Type type() const { return TypeField::decode(data_); }
  void next(Label* L) const {
    int n = NextField::decode(data_);
    n > 0 ? L->link_to(n) : L->Unuse();
  }
  void link_to(Label* L) { init(L, type()); }

  explicit Displacement(int data) { data_ = data; }

  Displacement(Label* L, Type type) { init(L, type); }

  void print() {
    PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
                       NextField::decode(data_));
  }

 private:
  int data_;

  class TypeField: public BitField<Type, 0, 2> {};
  class NextField: public BitField<int,  2, 32-2> {};

  void init(Label* L, Type type);
};



// CpuFeatures keeps track of which features are supported by the target CPU.
// Supported features must be enabled by a Scope before use.
// Example:
//   if (CpuFeatures::IsSupported(SSE2)) {
//     CpuFeatures::Scope fscope(SSE2);
//     // Generate SSE2 floating point code.
//   } else {
//     // Generate standard x87 floating point code.
//   }
class CpuFeatures : public AllStatic {
 public:
  // Detect features of the target CPU. Set safe defaults if the serializer
  // is enabled (snapshots must be portable).
  static void Probe();
  // Check whether a feature is supported by the target CPU.
  static bool IsSupported(CpuFeature f) {
    if (f == SSE2 && !FLAG_enable_sse2) return false;
    if (f == SSE3 && !FLAG_enable_sse3) return false;
    if (f == SSE4_1 && !FLAG_enable_sse4_1) return false;
    if (f == CMOV && !FLAG_enable_cmov) return false;
    if (f == RDTSC && !FLAG_enable_rdtsc) return false;
    return (supported_ & (static_cast<uint64_t>(1) << f)) != 0;
  }
  // Check whether a feature is currently enabled.
  static bool IsEnabled(CpuFeature f) {
    return (enabled_ & (static_cast<uint64_t>(1) << f)) != 0;
  }
  // Enable a specified feature within a scope.
  class Scope BASE_EMBEDDED {
#ifdef DEBUG
   public:
    explicit Scope(CpuFeature f) {
      uint64_t mask = static_cast<uint64_t>(1) << f;
      ASSERT(CpuFeatures::IsSupported(f));
      ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
      old_enabled_ = CpuFeatures::enabled_;
      CpuFeatures::enabled_ |= mask;
    }
    ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
   private:
    uint64_t old_enabled_;
#else
   public:
    explicit Scope(CpuFeature f) {}
#endif
  };
 private:
  static uint64_t supported_;
  static uint64_t enabled_;
  static uint64_t found_by_runtime_probing_;
};


class Assembler : public Malloced {
 private:
  // We check before assembling an instruction that there is sufficient
  // space to write an instruction and its relocation information.
  // The relocation writer's position must be kGap bytes above the end of
  // the generated instructions. This leaves enough space for the
  // longest possible ia32 instruction, 15 bytes, and the longest possible
  // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
  // (There is a 15 byte limit on ia32 instruction length that rules out some
  // otherwise valid instructions.)
  // This allows for a single, fast space check per instruction.
  static const int kGap = 32;

 public:
  // Create an assembler. Instructions and relocation information are emitted
  // into a buffer, with the instructions starting from the beginning and the
  // relocation information starting from the end of the buffer. See CodeDesc
  // for a detailed comment on the layout (globals.h).
  //
  // If the provided buffer is NULL, the assembler allocates and grows its own
  // buffer, and buffer_size determines the initial buffer size. The buffer is
  // owned by the assembler and deallocated upon destruction of the assembler.
  //
  // If the provided buffer is not NULL, the assembler uses the provided buffer
  // for code generation and assumes its size to be buffer_size. If the buffer
  // is too small, a fatal error occurs. No deallocation of the buffer is done
  // upon destruction of the assembler.
  Assembler(void* buffer, int buffer_size);
  ~Assembler();

  // GetCode emits any pending (non-emitted) code and fills the descriptor
  // desc. GetCode() is idempotent; it returns the same result if no other
  // Assembler functions are invoked in between GetCode() calls.
  void GetCode(CodeDesc* desc);

  // Read/Modify the code target in the branch/call instruction at pc.
  inline static Address target_address_at(Address pc);
  inline static void set_target_address_at(Address pc, Address target);

  // This sets the branch destination (which is in the instruction on x86).
  // This is for calls and branches within generated code.
  inline static void set_target_at(Address instruction_payload,
                                   Address target) {
    set_target_address_at(instruction_payload, target);
  }

  // This sets the branch destination (which is in the instruction on x86).
  // This is for calls and branches to runtime code.
  inline static void set_external_target_at(Address instruction_payload,
                                            Address target) {
    set_target_address_at(instruction_payload, target);
  }

  static const int kCallTargetSize = kPointerSize;
  static const int kExternalTargetSize = kPointerSize;

  // Distance between the address of the code target in the call instruction
  // and the return address
  static const int kCallTargetAddressOffset = kPointerSize;
  // Distance between start of patched return sequence and the emitted address
  // to jump to.
  static const int kPatchReturnSequenceAddressOffset = 1;  // JMP imm32.

  // Distance between start of patched debug break slot and the emitted address
  // to jump to.
  static const int kPatchDebugBreakSlotAddressOffset = 1;  // JMP imm32.

  static const int kCallInstructionLength = 5;
  static const int kJSReturnSequenceLength = 6;

  // The debug break slot must be able to contain a call instruction.
  static const int kDebugBreakSlotLength = kCallInstructionLength;

  // ---------------------------------------------------------------------------
  // Code generation
  //
  // - function names correspond one-to-one to ia32 instruction mnemonics
  // - unless specified otherwise, instructions operate on 32bit operands
  // - instructions on 8bit (byte) operands/registers have a trailing '_b'
  // - instructions on 16bit (word) operands/registers have a trailing '_w'
  // - naming conflicts with C++ keywords are resolved via a trailing '_'

  // NOTE ON INTERFACE: Currently, the interface is not very consistent
  // in the sense that some operations (e.g. mov()) can be called in more
  // the one way to generate the same instruction: The Register argument
  // can in some cases be replaced with an Operand(Register) argument.
  // This should be cleaned up and made more orthogonal. The questions
  // is: should we always use Operands instead of Registers where an
  // Operand is possible, or should we have a Register (overloaded) form
  // instead? We must be careful to make sure that the selected instruction
  // is obvious from the parameters to avoid hard-to-find code generation
  // bugs.

  // Insert the smallest number of nop instructions
  // possible to align the pc offset to a multiple
  // of m. m must be a power of 2.
  void Align(int m);
  // Aligns code to something that's optimal for a jump target for the platform.
  void CodeTargetAlign();

  // Stack
  void pushad();
  void popad();

  void pushfd();
  void popfd();

  void push(const Immediate& x);
  void push(Register src);
  void push(const Operand& src);

  void pop(Register dst);
  void pop(const Operand& dst);

  void enter(const Immediate& size);
  void leave();

  // Moves
  void mov_b(Register dst, const Operand& src);
  void mov_b(const Operand& dst, int8_t imm8);
  void mov_b(const Operand& dst, Register src);

  void mov_w(Register dst, const Operand& src);
  void mov_w(const Operand& dst, Register src);

  void mov(Register dst, int32_t imm32);
  void mov(Register dst, const Immediate& x);
  void mov(Register dst, Handle<Object> handle);
  void mov(Register dst, const Operand& src);
  void mov(Register dst, Register src);
  void mov(const Operand& dst, const Immediate& x);
  void mov(const Operand& dst, Handle<Object> handle);
  void mov(const Operand& dst, Register src);

  void movsx_b(Register dst, const Operand& src);

  void movsx_w(Register dst, const Operand& src);

  void movzx_b(Register dst, const Operand& src);

  void movzx_w(Register dst, const Operand& src);

  // Conditional moves
  void cmov(Condition cc, Register dst, int32_t imm32);
  void cmov(Condition cc, Register dst, Handle<Object> handle);
  void cmov(Condition cc, Register dst, const Operand& src);

  // Flag management.
  void cld();

  // Repetitive string instructions.
  void rep_movs();
  void rep_stos();
  void stos();

  // Exchange two registers
  void xchg(Register dst, Register src);

  // Arithmetics
  void adc(Register dst, int32_t imm32);
  void adc(Register dst, const Operand& src);

  void add(Register dst, const Operand& src);
  void add(const Operand& dst, const Immediate& x);

  void and_(Register dst, int32_t imm32);
  void and_(Register dst, const Immediate& x);
  void and_(Register dst, const Operand& src);
  void and_(const Operand& src, Register dst);
  void and_(const Operand& dst, const Immediate& x);

  void cmpb(const Operand& op, int8_t imm8);
  void cmpb(Register src, const Operand& dst);
  void cmpb(const Operand& dst, Register src);
  void cmpb_al(const Operand& op);
  void cmpw_ax(const Operand& op);
  void cmpw(const Operand& op, Immediate imm16);
  void cmp(Register reg, int32_t imm32);
  void cmp(Register reg, Handle<Object> handle);
  void cmp(Register reg, const Operand& op);
  void cmp(const Operand& op, const Immediate& imm);
  void cmp(const Operand& op, Handle<Object> handle);

  void dec_b(Register dst);
  void dec_b(const Operand& dst);

  void dec(Register dst);
  void dec(const Operand& dst);

  void cdq();

  void idiv(Register src);

  // Signed multiply instructions.
  void imul(Register src);                               // edx:eax = eax * src.
  void imul(Register dst, const Operand& src);           // dst = dst * src.
  void imul(Register dst, Register src, int32_t imm32);  // dst = src * imm32.

  void inc(Register dst);
  void inc(const Operand& dst);

  void lea(Register dst, const Operand& src);

  // Unsigned multiply instruction.
  void mul(Register src);                                // edx:eax = eax * reg.

  void neg(Register dst);

  void not_(Register dst);

  void or_(Register dst, int32_t imm32);
  void or_(Register dst, const Operand& src);
  void or_(const Operand& dst, Register src);
  void or_(const Operand& dst, const Immediate& x);

  void rcl(Register dst, uint8_t imm8);
  void rcr(Register dst, uint8_t imm8);

  void sar(Register dst, uint8_t imm8);
  void sar_cl(Register dst);

  void sbb(Register dst, const Operand& src);

  void shld(Register dst, const Operand& src);

  void shl(Register dst, uint8_t imm8);
  void shl_cl(Register dst);

  void shrd(Register dst, const Operand& src);

  void shr(Register dst, uint8_t imm8);
  void shr_cl(Register dst);

  void subb(const Operand& dst, int8_t imm8);
  void subb(Register dst, const Operand& src);
  void sub(const Operand& dst, const Immediate& x);
  void sub(Register dst, const Operand& src);
  void sub(const Operand& dst, Register src);

  void test(Register reg, const Immediate& imm);
  void test(Register reg, const Operand& op);
  void test_b(Register reg, const Operand& op);
  void test(const Operand& op, const Immediate& imm);
  void test_b(const Operand& op, uint8_t imm8);

  void xor_(Register dst, int32_t imm32);
  void xor_(Register dst, const Operand& src);
  void xor_(const Operand& src, Register dst);
  void xor_(const Operand& dst, const Immediate& x);

  // Bit operations.
  void bt(const Operand& dst, Register src);
  void bts(const Operand& dst, Register src);

  // Miscellaneous
  void hlt();
  void int3();
  void nop();
  void rdtsc();
  void ret(int imm16);

  // Label operations & relative jumps (PPUM Appendix D)
  //
  // Takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;    // unbound label
  // j(cc, &L);  // forward branch to unbound label
  // bind(&L);   // bind label to the current pc
  // j(cc, &L);  // backward branch to bound label
  // bind(&L);   // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.

  void bind(Label* L);  // binds an unbound label L to the current code position
  void bind(NearLabel* L);

  // Calls
  void call(Label* L);
  void call(byte* entry, RelocInfo::Mode rmode);
  void call(const Operand& adr);
  void call(Handle<Code> code, RelocInfo::Mode rmode);

  // Jumps
  void jmp(Label* L);  // unconditional jump to L
  void jmp(byte* entry, RelocInfo::Mode rmode);
  void jmp(const Operand& adr);
  void jmp(Handle<Code> code, RelocInfo::Mode rmode);

  // Short jump
  void jmp(NearLabel* L);

  // Conditional jumps
  void j(Condition cc, Label* L, Hint hint = no_hint);
  void j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint = no_hint);
  void j(Condition cc, Handle<Code> code, Hint hint = no_hint);

  // Conditional short jump
  void j(Condition cc, NearLabel* L, Hint hint = no_hint);

  // Floating-point operations
  void fld(int i);
  void fstp(int i);

  void fld1();
  void fldz();
  void fldpi();

  void fld_s(const Operand& adr);
  void fld_d(const Operand& adr);

  void fstp_s(const Operand& adr);
  void fstp_d(const Operand& adr);
  void fst_d(const Operand& adr);

  void fild_s(const Operand& adr);
  void fild_d(const Operand& adr);

  void fist_s(const Operand& adr);

  void fistp_s(const Operand& adr);
  void fistp_d(const Operand& adr);

  // The fisttp instructions require SSE3.
  void fisttp_s(const Operand& adr);
  void fisttp_d(const Operand& adr);

  void fabs();
  void fchs();
  void fcos();
  void fsin();

  void fadd(int i);
  void fsub(int i);
  void fmul(int i);
  void fdiv(int i);

  void fisub_s(const Operand& adr);

  void faddp(int i = 1);
  void fsubp(int i = 1);
  void fsubrp(int i = 1);
  void fmulp(int i = 1);
  void fdivp(int i = 1);
  void fprem();
  void fprem1();

  void fxch(int i = 1);
  void fincstp();
  void ffree(int i = 0);

  void ftst();
  void fucomp(int i);
  void fucompp();
  void fucomi(int i);
  void fucomip();
  void fcompp();
  void fnstsw_ax();
  void fwait();
  void fnclex();

  void frndint();

  void sahf();
  void setcc(Condition cc, Register reg);

  void cpuid();

  // SSE2 instructions
  void cvttss2si(Register dst, const Operand& src);
  void cvttsd2si(Register dst, const Operand& src);

  void cvtsi2sd(XMMRegister dst, const Operand& src);
  void cvtss2sd(XMMRegister dst, XMMRegister src);

  void addsd(XMMRegister dst, XMMRegister src);
  void subsd(XMMRegister dst, XMMRegister src);
  void mulsd(XMMRegister dst, XMMRegister src);
  void divsd(XMMRegister dst, XMMRegister src);
  void xorpd(XMMRegister dst, XMMRegister src);
  void sqrtsd(XMMRegister dst, XMMRegister src);

  void andpd(XMMRegister dst, XMMRegister src);

  void ucomisd(XMMRegister dst, XMMRegister src);
  void movmskpd(Register dst, XMMRegister src);

  void cmpltsd(XMMRegister dst, XMMRegister src);

  void movaps(XMMRegister dst, XMMRegister src);

  void movdqa(XMMRegister dst, const Operand& src);
  void movdqa(const Operand& dst, XMMRegister src);
  void movdqu(XMMRegister dst, const Operand& src);
  void movdqu(const Operand& dst, XMMRegister src);

  // Use either movsd or movlpd.
  void movdbl(XMMRegister dst, const Operand& src);
  void movdbl(const Operand& dst, XMMRegister src);

  void movd(XMMRegister dst, const Operand& src);
  void movsd(XMMRegister dst, XMMRegister src);

  void pxor(XMMRegister dst, XMMRegister src);
  void ptest(XMMRegister dst, XMMRegister src);

  void psllq(XMMRegister reg, int8_t imm8);

  // Parallel XMM operations.
  void movntdqa(XMMRegister src, const Operand& dst);
  void movntdq(const Operand& dst, XMMRegister src);
  // Prefetch src position into cache level.
  // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
  // non-temporal
  void prefetch(const Operand& src, int level);
  // TODO(lrn): Need SFENCE for movnt?

  // Debugging
  void Print();

  // Check the code size generated from label to here.
  int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }

  // Mark address of the ExitJSFrame code.
  void RecordJSReturn();

  // Mark address of a debug break slot.
  void RecordDebugBreakSlot();

  // Record a comment relocation entry that can be used by a disassembler.
  // Use --debug_code to enable.
  void RecordComment(const char* msg);

  // Writes a single word of data in the code stream.
  // Used for inline tables, e.g., jump-tables.
  void dd(uint32_t data, RelocInfo::Mode reloc_info);

  int pc_offset() const { return pc_ - buffer_; }

  // Check if there is less than kGap bytes available in the buffer.
  // If this is the case, we need to grow the buffer before emitting
  // an instruction or relocation information.
  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }

  // Get the number of bytes available in the buffer.
  inline int available_space() const { return reloc_info_writer.pos() - pc_; }

  static bool IsNop(Address addr) { return *addr == 0x90; }

  PositionsRecorder* positions_recorder() { return &positions_recorder_; }

  // Avoid overflows for displacements etc.
  static const int kMaximalBufferSize = 512*MB;
  static const int kMinimalBufferSize = 4*KB;

 protected:
  void movsd(XMMRegister dst, const Operand& src);
  void movsd(const Operand& dst, XMMRegister src);

  void emit_sse_operand(XMMRegister reg, const Operand& adr);
  void emit_sse_operand(XMMRegister dst, XMMRegister src);
  void emit_sse_operand(Register dst, XMMRegister src);

 private:
  byte* addr_at(int pos)  { return buffer_ + pos; }
  byte byte_at(int pos)  { return buffer_[pos]; }
  void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
  uint32_t long_at(int pos)  {
    return *reinterpret_cast<uint32_t*>(addr_at(pos));
  }
  void long_at_put(int pos, uint32_t x)  {
    *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
  }

  // code emission
  void GrowBuffer();
  inline void emit(uint32_t x);
  inline void emit(Handle<Object> handle);
  inline void emit(uint32_t x, RelocInfo::Mode rmode);
  inline void emit(const Immediate& x);
  inline void emit_w(const Immediate& x);

  // Emit the code-object-relative offset of the label's position
  inline void emit_code_relative_offset(Label* label);

  // instruction generation
  void emit_arith_b(int op1, int op2, Register dst, int imm8);

  // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
  // with a given destination expression and an immediate operand.  It attempts
  // to use the shortest encoding possible.
  // sel specifies the /n in the modrm byte (see the Intel PRM).
  void emit_arith(int sel, Operand dst, const Immediate& x);

  void emit_operand(Register reg, const Operand& adr);

  void emit_farith(int b1, int b2, int i);

  // labels
  void print(Label* L);
  void bind_to(Label* L, int pos);

  // displacements
  inline Displacement disp_at(Label* L);
  inline void disp_at_put(Label* L, Displacement disp);
  inline void emit_disp(Label* L, Displacement::Type type);

  // record reloc info for current pc_
  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);

  friend class CodePatcher;
  friend class EnsureSpace;

  // Code buffer:
  // The buffer into which code and relocation info are generated.
  byte* buffer_;
  int buffer_size_;
  // True if the assembler owns the buffer, false if buffer is external.
  bool own_buffer_;
  // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
  static byte* spare_buffer_;

  // code generation
  byte* pc_;  // the program counter; moves forward
  RelocInfoWriter reloc_info_writer;

  // push-pop elimination
  byte* last_pc_;

  PositionsRecorder positions_recorder_;

  friend class PositionsRecorder;
};


// Helper class that ensures that there is enough space for generating
// instructions and relocation information.  The constructor makes
// sure that there is enough space and (in debug mode) the destructor
// checks that we did not generate too much.
class EnsureSpace BASE_EMBEDDED {
 public:
  explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
    if (assembler_->overflow()) assembler_->GrowBuffer();
#ifdef DEBUG
    space_before_ = assembler_->available_space();
#endif
  }

#ifdef DEBUG
  ~EnsureSpace() {
    int bytes_generated = space_before_ - assembler_->available_space();
    ASSERT(bytes_generated < assembler_->kGap);
  }
#endif

 private:
  Assembler* assembler_;
#ifdef DEBUG
  int space_before_;
#endif
};

} }  // namespace v8::internal

#endif  // V8_IA32_ASSEMBLER_IA32_H_