summaryrefslogtreecommitdiff
path: root/deps/v8/src/js/math.js
blob: f8ad6b1fe67ebc9e3cdf5e6ad9720414aefaa7c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

(function(global, utils) {
"use strict";

%CheckIsBootstrapping();

// -------------------------------------------------------------------
// Imports

// The first two slots are reserved to persist PRNG state.
define kRandomNumberStart = 2;

var GlobalFloat64Array = global.Float64Array;
var GlobalMath = global.Math;
var GlobalObject = global.Object;
var InternalArray = utils.InternalArray;
var NaN = %GetRootNaN();
var nextRandomIndex = 0;
var randomNumbers = UNDEFINED;
var toStringTagSymbol = utils.ImportNow("to_string_tag_symbol");

//-------------------------------------------------------------------

// ECMA 262 - 15.8.2.1
function MathAbs(x) {
  x = +x;
  return (x > 0) ? x : 0 - x;
}

// ECMA 262 - 15.8.2.5
// The naming of y and x matches the spec, as does the order in which
// ToNumber (valueOf) is called.
function MathAtan2JS(y, x) {
  y = +y;
  x = +x;
  return %MathAtan2(y, x);
}

// ECMA 262 - 15.8.2.8
function MathExp(x) {
  return %MathExpRT(TO_NUMBER(x));
}

// ECMA 262 - 15.8.2.10
function MathLog(x) {
  return %_MathLogRT(TO_NUMBER(x));
}

// ECMA 262 - 15.8.2.13
function MathPowJS(x, y) {
  return %_MathPow(TO_NUMBER(x), TO_NUMBER(y));
}

// ECMA 262 - 15.8.2.14
function MathRandom() {
  // While creating a startup snapshot, %GenerateRandomNumbers returns a
  // normal array containing a single random number, and has to be called for
  // every new random number.
  // Otherwise, it returns a pre-populated typed array of random numbers. The
  // first two elements are reserved for the PRNG state.
  if (nextRandomIndex <= kRandomNumberStart) {
    randomNumbers = %GenerateRandomNumbers(randomNumbers);
    nextRandomIndex = randomNumbers.length;
  }
  return randomNumbers[--nextRandomIndex];
}

function MathRandomRaw() {
  if (nextRandomIndex <= kRandomNumberStart) {
    randomNumbers = %GenerateRandomNumbers(randomNumbers);
    nextRandomIndex = randomNumbers.length;
  }
  return %_DoubleLo(randomNumbers[--nextRandomIndex]) & 0x3FFFFFFF;
}

// ES6 draft 09-27-13, section 20.2.2.28.
function MathSign(x) {
  x = +x;
  if (x > 0) return 1;
  if (x < 0) return -1;
  // -0, 0 or NaN.
  return x;
}

// ES6 draft 09-27-13, section 20.2.2.5.
function MathAsinh(x) {
  x = TO_NUMBER(x);
  // Idempotent for NaN, +/-0 and +/-Infinity.
  if (x === 0 || !NUMBER_IS_FINITE(x)) return x;
  if (x > 0) return MathLog(x + %math_sqrt(x * x + 1));
  // This is to prevent numerical errors caused by large negative x.
  return -MathLog(-x + %math_sqrt(x * x + 1));
}

// ES6 draft 09-27-13, section 20.2.2.3.
function MathAcosh(x) {
  x = TO_NUMBER(x);
  if (x < 1) return NaN;
  // Idempotent for NaN and +Infinity.
  if (!NUMBER_IS_FINITE(x)) return x;
  return MathLog(x + %math_sqrt(x + 1) * %math_sqrt(x - 1));
}

// ES6 draft 09-27-13, section 20.2.2.7.
function MathAtanh(x) {
  x = TO_NUMBER(x);
  // Idempotent for +/-0.
  if (x === 0) return x;
  // Returns NaN for NaN and +/- Infinity.
  if (!NUMBER_IS_FINITE(x)) return NaN;
  return 0.5 * MathLog((1 + x) / (1 - x));
}

// ES6 draft 09-27-13, section 20.2.2.17.
function MathHypot(x, y) {  // Function length is 2.
  // We may want to introduce fast paths for two arguments and when
  // normalization to avoid overflow is not necessary.  For now, we
  // simply assume the general case.
  var length = arguments.length;
  var max = 0;
  for (var i = 0; i < length; i++) {
    var n = MathAbs(arguments[i]);
    if (n > max) max = n;
    arguments[i] = n;
  }
  if (max === INFINITY) return INFINITY;

  // Kahan summation to avoid rounding errors.
  // Normalize the numbers to the largest one to avoid overflow.
  if (max === 0) max = 1;
  var sum = 0;
  var compensation = 0;
  for (var i = 0; i < length; i++) {
    var n = arguments[i] / max;
    var summand = n * n - compensation;
    var preliminary = sum + summand;
    compensation = (preliminary - sum) - summand;
    sum = preliminary;
  }
  return %math_sqrt(sum) * max;
}

// ES6 draft 09-27-13, section 20.2.2.9.
// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm
// Using initial approximation adapted from Kahan's cbrt and 4 iterations
// of Newton's method.
function MathCbrt(x) {
  x = TO_NUMBER(x);
  if (x == 0 || !NUMBER_IS_FINITE(x)) return x;
  return x >= 0 ? CubeRoot(x) : -CubeRoot(-x);
}

macro NEWTON_ITERATION_CBRT(x, approx)
  (1.0 / 3.0) * (x / (approx * approx) + 2 * approx);
endmacro

function CubeRoot(x) {
  var approx_hi = %math_floor(%_DoubleHi(x) / 3) + 0x2A9F7893;
  var approx = %_ConstructDouble(approx_hi | 0, 0);
  approx = NEWTON_ITERATION_CBRT(x, approx);
  approx = NEWTON_ITERATION_CBRT(x, approx);
  approx = NEWTON_ITERATION_CBRT(x, approx);
  return NEWTON_ITERATION_CBRT(x, approx);
}

// -------------------------------------------------------------------

%InstallToContext([
  "math_pow", MathPowJS,
]);

%AddNamedProperty(GlobalMath, toStringTagSymbol, "Math", READ_ONLY | DONT_ENUM);

// Set up math constants.
utils.InstallConstants(GlobalMath, [
  // ECMA-262, section 15.8.1.1.
  "E", 2.7182818284590452354,
  // ECMA-262, section 15.8.1.2.
  "LN10", 2.302585092994046,
  // ECMA-262, section 15.8.1.3.
  "LN2", 0.6931471805599453,
  // ECMA-262, section 15.8.1.4.
  "LOG2E", 1.4426950408889634,
  "LOG10E", 0.4342944819032518,
  "PI", 3.1415926535897932,
  "SQRT1_2", 0.7071067811865476,
  "SQRT2", 1.4142135623730951
]);

// Set up non-enumerable functions of the Math object and
// set their names.
utils.InstallFunctions(GlobalMath, DONT_ENUM, [
  "random", MathRandom,
  "abs", MathAbs,
  "exp", MathExp,
  "log", MathLog,
  "atan2", MathAtan2JS,
  "pow", MathPowJS,
  "sign", MathSign,
  "asinh", MathAsinh,
  "acosh", MathAcosh,
  "atanh", MathAtanh,
  "hypot", MathHypot,
  "cbrt", MathCbrt
]);

%SetForceInlineFlag(MathAbs);
%SetForceInlineFlag(MathAtan2JS);
%SetForceInlineFlag(MathRandom);
%SetForceInlineFlag(MathSign);

// -------------------------------------------------------------------
// Exports

utils.Export(function(to) {
  to.MathAbs = MathAbs;
  to.MathExp = MathExp;
  to.IntRandom = MathRandomRaw;
});

})