1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
|
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_MARK_COMPACT_H_
#define V8_MARK_COMPACT_H_
#include "compiler-intrinsics.h"
#include "spaces.h"
namespace v8 {
namespace internal {
// Callback function, returns whether an object is alive. The heap size
// of the object is returned in size. It optionally updates the offset
// to the first live object in the page (only used for old and map objects).
typedef bool (*IsAliveFunction)(HeapObject* obj, int* size, int* offset);
// Forward declarations.
class CodeFlusher;
class GCTracer;
class MarkCompactCollector;
class MarkingVisitor;
class RootMarkingVisitor;
class Marking {
public:
explicit Marking(Heap* heap)
: heap_(heap) {
}
static inline MarkBit MarkBitFrom(Address addr);
static inline MarkBit MarkBitFrom(HeapObject* obj) {
return MarkBitFrom(reinterpret_cast<Address>(obj));
}
// Impossible markbits: 01
static const char* kImpossibleBitPattern;
static inline bool IsImpossible(MarkBit mark_bit) {
return !mark_bit.Get() && mark_bit.Next().Get();
}
// Black markbits: 10 - this is required by the sweeper.
static const char* kBlackBitPattern;
static inline bool IsBlack(MarkBit mark_bit) {
return mark_bit.Get() && !mark_bit.Next().Get();
}
// White markbits: 00 - this is required by the mark bit clearer.
static const char* kWhiteBitPattern;
static inline bool IsWhite(MarkBit mark_bit) {
return !mark_bit.Get();
}
// Grey markbits: 11
static const char* kGreyBitPattern;
static inline bool IsGrey(MarkBit mark_bit) {
return mark_bit.Get() && mark_bit.Next().Get();
}
static inline void MarkBlack(MarkBit mark_bit) {
mark_bit.Set();
mark_bit.Next().Clear();
}
static inline void BlackToGrey(MarkBit markbit) {
markbit.Next().Set();
}
static inline void WhiteToGrey(MarkBit markbit) {
markbit.Set();
markbit.Next().Set();
}
static inline void GreyToBlack(MarkBit markbit) {
markbit.Next().Clear();
}
static inline void BlackToGrey(HeapObject* obj) {
BlackToGrey(MarkBitFrom(obj));
}
static inline void AnyToGrey(MarkBit markbit) {
markbit.Set();
markbit.Next().Set();
}
// Returns true if the the object whose mark is transferred is marked black.
bool TransferMark(Address old_start, Address new_start);
#ifdef DEBUG
enum ObjectColor {
BLACK_OBJECT,
WHITE_OBJECT,
GREY_OBJECT,
IMPOSSIBLE_COLOR
};
static const char* ColorName(ObjectColor color) {
switch (color) {
case BLACK_OBJECT: return "black";
case WHITE_OBJECT: return "white";
case GREY_OBJECT: return "grey";
case IMPOSSIBLE_COLOR: return "impossible";
}
return "error";
}
static ObjectColor Color(HeapObject* obj) {
return Color(Marking::MarkBitFrom(obj));
}
static ObjectColor Color(MarkBit mark_bit) {
if (IsBlack(mark_bit)) return BLACK_OBJECT;
if (IsWhite(mark_bit)) return WHITE_OBJECT;
if (IsGrey(mark_bit)) return GREY_OBJECT;
UNREACHABLE();
return IMPOSSIBLE_COLOR;
}
#endif
// Returns true if the transferred color is black.
INLINE(static bool TransferColor(HeapObject* from,
HeapObject* to)) {
MarkBit from_mark_bit = MarkBitFrom(from);
MarkBit to_mark_bit = MarkBitFrom(to);
bool is_black = false;
if (from_mark_bit.Get()) {
to_mark_bit.Set();
is_black = true; // Looks black so far.
}
if (from_mark_bit.Next().Get()) {
to_mark_bit.Next().Set();
is_black = false; // Was actually gray.
}
return is_black;
}
private:
Heap* heap_;
};
// ----------------------------------------------------------------------------
// Marking deque for tracing live objects.
class MarkingDeque {
public:
MarkingDeque()
: array_(NULL), top_(0), bottom_(0), mask_(0), overflowed_(false) { }
void Initialize(Address low, Address high) {
HeapObject** obj_low = reinterpret_cast<HeapObject**>(low);
HeapObject** obj_high = reinterpret_cast<HeapObject**>(high);
array_ = obj_low;
mask_ = RoundDownToPowerOf2(static_cast<int>(obj_high - obj_low)) - 1;
top_ = bottom_ = 0;
overflowed_ = false;
}
inline bool IsFull() { return ((top_ + 1) & mask_) == bottom_; }
inline bool IsEmpty() { return top_ == bottom_; }
bool overflowed() const { return overflowed_; }
void ClearOverflowed() { overflowed_ = false; }
void SetOverflowed() { overflowed_ = true; }
// Push the (marked) object on the marking stack if there is room,
// otherwise mark the object as overflowed and wait for a rescan of the
// heap.
inline void PushBlack(HeapObject* object) {
ASSERT(object->IsHeapObject());
if (IsFull()) {
Marking::BlackToGrey(object);
MemoryChunk::IncrementLiveBytesFromGC(object->address(), -object->Size());
SetOverflowed();
} else {
array_[top_] = object;
top_ = ((top_ + 1) & mask_);
}
}
inline void PushGrey(HeapObject* object) {
ASSERT(object->IsHeapObject());
if (IsFull()) {
SetOverflowed();
} else {
array_[top_] = object;
top_ = ((top_ + 1) & mask_);
}
}
inline HeapObject* Pop() {
ASSERT(!IsEmpty());
top_ = ((top_ - 1) & mask_);
HeapObject* object = array_[top_];
ASSERT(object->IsHeapObject());
return object;
}
inline void UnshiftGrey(HeapObject* object) {
ASSERT(object->IsHeapObject());
if (IsFull()) {
SetOverflowed();
} else {
bottom_ = ((bottom_ - 1) & mask_);
array_[bottom_] = object;
}
}
HeapObject** array() { return array_; }
int bottom() { return bottom_; }
int top() { return top_; }
int mask() { return mask_; }
void set_top(int top) { top_ = top; }
private:
HeapObject** array_;
// array_[(top - 1) & mask_] is the top element in the deque. The Deque is
// empty when top_ == bottom_. It is full when top_ + 1 == bottom
// (mod mask + 1).
int top_;
int bottom_;
int mask_;
bool overflowed_;
DISALLOW_COPY_AND_ASSIGN(MarkingDeque);
};
class SlotsBufferAllocator {
public:
SlotsBuffer* AllocateBuffer(SlotsBuffer* next_buffer);
void DeallocateBuffer(SlotsBuffer* buffer);
void DeallocateChain(SlotsBuffer** buffer_address);
};
// SlotsBuffer records a sequence of slots that has to be updated
// after live objects were relocated from evacuation candidates.
// All slots are either untyped or typed:
// - Untyped slots are expected to contain a tagged object pointer.
// They are recorded by an address.
// - Typed slots are expected to contain an encoded pointer to a heap
// object where the way of encoding depends on the type of the slot.
// They are recorded as a pair (SlotType, slot address).
// We assume that zero-page is never mapped this allows us to distinguish
// untyped slots from typed slots during iteration by a simple comparison:
// if element of slots buffer is less than NUMBER_OF_SLOT_TYPES then it
// is the first element of typed slot's pair.
class SlotsBuffer {
public:
typedef Object** ObjectSlot;
explicit SlotsBuffer(SlotsBuffer* next_buffer)
: idx_(0), chain_length_(1), next_(next_buffer) {
if (next_ != NULL) {
chain_length_ = next_->chain_length_ + 1;
}
}
~SlotsBuffer() {
}
void Add(ObjectSlot slot) {
ASSERT(0 <= idx_ && idx_ < kNumberOfElements);
slots_[idx_++] = slot;
}
enum SlotType {
EMBEDDED_OBJECT_SLOT,
RELOCATED_CODE_OBJECT,
CODE_TARGET_SLOT,
CODE_ENTRY_SLOT,
DEBUG_TARGET_SLOT,
JS_RETURN_SLOT,
NUMBER_OF_SLOT_TYPES
};
void UpdateSlots(Heap* heap);
void UpdateSlotsWithFilter(Heap* heap);
SlotsBuffer* next() { return next_; }
static int SizeOfChain(SlotsBuffer* buffer) {
if (buffer == NULL) return 0;
return static_cast<int>(buffer->idx_ +
(buffer->chain_length_ - 1) * kNumberOfElements);
}
inline bool IsFull() {
return idx_ == kNumberOfElements;
}
inline bool HasSpaceForTypedSlot() {
return idx_ < kNumberOfElements - 1;
}
static void UpdateSlotsRecordedIn(Heap* heap,
SlotsBuffer* buffer,
bool code_slots_filtering_required) {
while (buffer != NULL) {
if (code_slots_filtering_required) {
buffer->UpdateSlotsWithFilter(heap);
} else {
buffer->UpdateSlots(heap);
}
buffer = buffer->next();
}
}
enum AdditionMode {
FAIL_ON_OVERFLOW,
IGNORE_OVERFLOW
};
static bool ChainLengthThresholdReached(SlotsBuffer* buffer) {
return buffer != NULL && buffer->chain_length_ >= kChainLengthThreshold;
}
static bool AddTo(SlotsBufferAllocator* allocator,
SlotsBuffer** buffer_address,
ObjectSlot slot,
AdditionMode mode) {
SlotsBuffer* buffer = *buffer_address;
if (buffer == NULL || buffer->IsFull()) {
if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
allocator->DeallocateChain(buffer_address);
return false;
}
buffer = allocator->AllocateBuffer(buffer);
*buffer_address = buffer;
}
buffer->Add(slot);
return true;
}
static bool IsTypedSlot(ObjectSlot slot);
static bool AddTo(SlotsBufferAllocator* allocator,
SlotsBuffer** buffer_address,
SlotType type,
Address addr,
AdditionMode mode);
static const int kNumberOfElements = 1021;
private:
static const int kChainLengthThreshold = 15;
intptr_t idx_;
intptr_t chain_length_;
SlotsBuffer* next_;
ObjectSlot slots_[kNumberOfElements];
};
// -------------------------------------------------------------------------
// Marker shared between incremental and non-incremental marking
template<class BaseMarker> class Marker {
public:
Marker(BaseMarker* base_marker, MarkCompactCollector* mark_compact_collector)
: base_marker_(base_marker),
mark_compact_collector_(mark_compact_collector) {}
// Mark pointers in a Map and its DescriptorArray together, possibly
// treating transitions or back pointers weak.
void MarkMapContents(Map* map);
void MarkDescriptorArray(DescriptorArray* descriptors);
void MarkAccessorPairSlot(AccessorPair* accessors, int offset);
private:
BaseMarker* base_marker() {
return base_marker_;
}
MarkCompactCollector* mark_compact_collector() {
return mark_compact_collector_;
}
BaseMarker* base_marker_;
MarkCompactCollector* mark_compact_collector_;
};
// Defined in isolate.h.
class ThreadLocalTop;
// -------------------------------------------------------------------------
// Mark-Compact collector
class MarkCompactCollector {
public:
// Type of functions to compute forwarding addresses of objects in
// compacted spaces. Given an object and its size, return a (non-failure)
// Object* that will be the object after forwarding. There is a separate
// allocation function for each (compactable) space based on the location
// of the object before compaction.
typedef MaybeObject* (*AllocationFunction)(Heap* heap,
HeapObject* object,
int object_size);
// Type of functions to encode the forwarding address for an object.
// Given the object, its size, and the new (non-failure) object it will be
// forwarded to, encode the forwarding address. For paged spaces, the
// 'offset' input/output parameter contains the offset of the forwarded
// object from the forwarding address of the previous live object in the
// page as input, and is updated to contain the offset to be used for the
// next live object in the same page. For spaces using a different
// encoding (i.e., contiguous spaces), the offset parameter is ignored.
typedef void (*EncodingFunction)(Heap* heap,
HeapObject* old_object,
int object_size,
Object* new_object,
int* offset);
// Type of functions to process non-live objects.
typedef void (*ProcessNonLiveFunction)(HeapObject* object, Isolate* isolate);
// Pointer to member function, used in IterateLiveObjects.
typedef int (MarkCompactCollector::*LiveObjectCallback)(HeapObject* obj);
// Set the global flags, it must be called before Prepare to take effect.
inline void SetFlags(int flags);
static void Initialize();
void CollectEvacuationCandidates(PagedSpace* space);
void AddEvacuationCandidate(Page* p);
// Prepares for GC by resetting relocation info in old and map spaces and
// choosing spaces to compact.
void Prepare(GCTracer* tracer);
// Performs a global garbage collection.
void CollectGarbage();
enum CompactionMode {
INCREMENTAL_COMPACTION,
NON_INCREMENTAL_COMPACTION
};
bool StartCompaction(CompactionMode mode);
void AbortCompaction();
// During a full GC, there is a stack-allocated GCTracer that is used for
// bookkeeping information. Return a pointer to that tracer.
GCTracer* tracer() { return tracer_; }
#ifdef DEBUG
// Checks whether performing mark-compact collection.
bool in_use() { return state_ > PREPARE_GC; }
bool are_map_pointers_encoded() { return state_ == UPDATE_POINTERS; }
#endif
// Determine type of object and emit deletion log event.
static void ReportDeleteIfNeeded(HeapObject* obj, Isolate* isolate);
// Distinguishable invalid map encodings (for single word and multiple words)
// that indicate free regions.
static const uint32_t kSingleFreeEncoding = 0;
static const uint32_t kMultiFreeEncoding = 1;
static inline bool IsMarked(Object* obj);
inline Heap* heap() const { return heap_; }
CodeFlusher* code_flusher() { return code_flusher_; }
inline bool is_code_flushing_enabled() const { return code_flusher_ != NULL; }
void EnableCodeFlushing(bool enable);
enum SweeperType {
CONSERVATIVE,
LAZY_CONSERVATIVE,
PRECISE
};
#ifdef DEBUG
void VerifyMarkbitsAreClean();
static void VerifyMarkbitsAreClean(PagedSpace* space);
static void VerifyMarkbitsAreClean(NewSpace* space);
#endif
// Sweep a single page from the given space conservatively.
// Return a number of reclaimed bytes.
static intptr_t SweepConservatively(PagedSpace* space, Page* p);
INLINE(static bool ShouldSkipEvacuationSlotRecording(Object** anchor)) {
return Page::FromAddress(reinterpret_cast<Address>(anchor))->
ShouldSkipEvacuationSlotRecording();
}
INLINE(static bool ShouldSkipEvacuationSlotRecording(Object* host)) {
return Page::FromAddress(reinterpret_cast<Address>(host))->
ShouldSkipEvacuationSlotRecording();
}
INLINE(static bool IsOnEvacuationCandidate(Object* obj)) {
return Page::FromAddress(reinterpret_cast<Address>(obj))->
IsEvacuationCandidate();
}
void EvictEvacuationCandidate(Page* page) {
if (FLAG_trace_fragmentation) {
PrintF("Page %p is too popular. Disabling evacuation.\n",
reinterpret_cast<void*>(page));
}
// TODO(gc) If all evacuation candidates are too popular we
// should stop slots recording entirely.
page->ClearEvacuationCandidate();
// We were not collecting slots on this page that point
// to other evacuation candidates thus we have to
// rescan the page after evacuation to discover and update all
// pointers to evacuated objects.
if (page->owner()->identity() == OLD_DATA_SPACE) {
evacuation_candidates_.RemoveElement(page);
} else {
page->SetFlag(Page::RESCAN_ON_EVACUATION);
}
}
void RecordRelocSlot(RelocInfo* rinfo, Object* target);
void RecordCodeEntrySlot(Address slot, Code* target);
INLINE(void RecordSlot(Object** anchor_slot, Object** slot, Object* object));
void MigrateObject(Address dst,
Address src,
int size,
AllocationSpace to_old_space);
bool TryPromoteObject(HeapObject* object, int object_size);
inline Object* encountered_weak_maps() { return encountered_weak_maps_; }
inline void set_encountered_weak_maps(Object* weak_map) {
encountered_weak_maps_ = weak_map;
}
void InvalidateCode(Code* code);
void ClearMarkbits();
bool is_compacting() const { return compacting_; }
private:
MarkCompactCollector();
~MarkCompactCollector();
bool MarkInvalidatedCode();
void RemoveDeadInvalidatedCode();
void ProcessInvalidatedCode(ObjectVisitor* visitor);
#ifdef DEBUG
enum CollectorState {
IDLE,
PREPARE_GC,
MARK_LIVE_OBJECTS,
SWEEP_SPACES,
ENCODE_FORWARDING_ADDRESSES,
UPDATE_POINTERS,
RELOCATE_OBJECTS
};
// The current stage of the collector.
CollectorState state_;
#endif
// Global flag that forces sweeping to be precise, so we can traverse the
// heap.
bool sweep_precisely_;
bool reduce_memory_footprint_;
bool abort_incremental_marking_;
// True if we are collecting slots to perform evacuation from evacuation
// candidates.
bool compacting_;
bool was_marked_incrementally_;
bool flush_monomorphic_ics_;
// A pointer to the current stack-allocated GC tracer object during a full
// collection (NULL before and after).
GCTracer* tracer_;
SlotsBufferAllocator slots_buffer_allocator_;
SlotsBuffer* migration_slots_buffer_;
// Finishes GC, performs heap verification if enabled.
void Finish();
// -----------------------------------------------------------------------
// Phase 1: Marking live objects.
//
// Before: The heap has been prepared for garbage collection by
// MarkCompactCollector::Prepare() and is otherwise in its
// normal state.
//
// After: Live objects are marked and non-live objects are unmarked.
friend class RootMarkingVisitor;
friend class MarkingVisitor;
friend class StaticMarkingVisitor;
friend class CodeMarkingVisitor;
friend class SharedFunctionInfoMarkingVisitor;
friend class Marker<IncrementalMarking>;
friend class Marker<MarkCompactCollector>;
// Mark non-optimize code for functions inlined into the given optimized
// code. This will prevent it from being flushed.
void MarkInlinedFunctionsCode(Code* code);
// Mark code objects that are active on the stack to prevent them
// from being flushed.
void PrepareThreadForCodeFlushing(Isolate* isolate, ThreadLocalTop* top);
void PrepareForCodeFlushing();
// Marking operations for objects reachable from roots.
void MarkLiveObjects();
void AfterMarking();
// Marks the object black and pushes it on the marking stack.
// Returns true if object needed marking and false otherwise.
// This is for non-incremental marking only.
INLINE(bool MarkObjectAndPush(HeapObject* obj));
// Marks the object black and pushes it on the marking stack.
// This is for non-incremental marking only.
INLINE(void MarkObject(HeapObject* obj, MarkBit mark_bit));
// Marks the object black without pushing it on the marking stack.
// Returns true if object needed marking and false otherwise.
// This is for non-incremental marking only.
INLINE(bool MarkObjectWithoutPush(HeapObject* obj));
// Marks the object black assuming that it is not yet marked.
// This is for non-incremental marking only.
INLINE(void SetMark(HeapObject* obj, MarkBit mark_bit));
void ProcessNewlyMarkedObject(HeapObject* obj);
// Mark the heap roots and all objects reachable from them.
void MarkRoots(RootMarkingVisitor* visitor);
// Mark the symbol table specially. References to symbols from the
// symbol table are weak.
void MarkSymbolTable();
// Mark objects in object groups that have at least one object in the
// group marked.
void MarkObjectGroups();
// Mark objects in implicit references groups if their parent object
// is marked.
void MarkImplicitRefGroups();
// Mark all objects which are reachable due to host application
// logic like object groups or implicit references' groups.
void ProcessExternalMarking();
// Mark objects reachable (transitively) from objects in the marking stack
// or overflowed in the heap.
void ProcessMarkingDeque();
// Mark objects reachable (transitively) from objects in the marking
// stack. This function empties the marking stack, but may leave
// overflowed objects in the heap, in which case the marking stack's
// overflow flag will be set.
void EmptyMarkingDeque();
// Refill the marking stack with overflowed objects from the heap. This
// function either leaves the marking stack full or clears the overflow
// flag on the marking stack.
void RefillMarkingDeque();
// After reachable maps have been marked process per context object
// literal map caches removing unmarked entries.
void ProcessMapCaches();
// Callback function for telling whether the object *p is an unmarked
// heap object.
static bool IsUnmarkedHeapObject(Object** p);
// Map transitions from a live map to a dead map must be killed.
// We replace them with a null descriptor, with the same key.
void ClearNonLiveTransitions();
void ClearNonLivePrototypeTransitions(Map* map);
void ClearNonLiveMapTransitions(Map* map, MarkBit map_mark);
// Marking detaches initial maps from SharedFunctionInfo objects
// to make this reference weak. We need to reattach initial maps
// back after collection. This is either done during
// ClearNonLiveTransitions pass or by calling this function.
void ReattachInitialMaps();
// Mark all values associated with reachable keys in weak maps encountered
// so far. This might push new object or even new weak maps onto the
// marking stack.
void ProcessWeakMaps();
// After all reachable objects have been marked those weak map entries
// with an unreachable key are removed from all encountered weak maps.
// The linked list of all encountered weak maps is destroyed.
void ClearWeakMaps();
// -----------------------------------------------------------------------
// Phase 2: Sweeping to clear mark bits and free non-live objects for
// a non-compacting collection.
//
// Before: Live objects are marked and non-live objects are unmarked.
//
// After: Live objects are unmarked, non-live regions have been added to
// their space's free list. Active eden semispace is compacted by
// evacuation.
//
// If we are not compacting the heap, we simply sweep the spaces except
// for the large object space, clearing mark bits and adding unmarked
// regions to each space's free list.
void SweepSpaces();
void EvacuateNewSpace();
void EvacuateLiveObjectsFromPage(Page* p);
void EvacuatePages();
void EvacuateNewSpaceAndCandidates();
void SweepSpace(PagedSpace* space, SweeperType sweeper);
#ifdef DEBUG
friend class MarkObjectVisitor;
static void VisitObject(HeapObject* obj);
friend class UnmarkObjectVisitor;
static void UnmarkObject(HeapObject* obj);
#endif
Heap* heap_;
MarkingDeque marking_deque_;
CodeFlusher* code_flusher_;
Object* encountered_weak_maps_;
Marker<MarkCompactCollector> marker_;
List<Page*> evacuation_candidates_;
List<Code*> invalidated_code_;
friend class Heap;
};
const char* AllocationSpaceName(AllocationSpace space);
} } // namespace v8::internal
#endif // V8_MARK_COMPACT_H_
|