summaryrefslogtreecommitdiff
path: root/deps/v8/src/mips/deoptimizer-mips.cc
blob: 57d3880edecdc2af02c90fb859fa2fad4c268919 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "codegen.h"
#include "deoptimizer.h"
#include "full-codegen.h"
#include "safepoint-table.h"

namespace v8 {
namespace internal {


int Deoptimizer::patch_size() {
  const int kCallInstructionSizeInWords = 4;
  return kCallInstructionSizeInWords * Assembler::kInstrSize;
}


void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
  Address code_start_address = code->instruction_start();
  // Invalidate the relocation information, as it will become invalid by the
  // code patching below, and is not needed any more.
  code->InvalidateRelocation();

  // For each LLazyBailout instruction insert a call to the corresponding
  // deoptimization entry.
  DeoptimizationInputData* deopt_data =
      DeoptimizationInputData::cast(code->deoptimization_data());
#ifdef DEBUG
  Address prev_call_address = NULL;
#endif
  for (int i = 0; i < deopt_data->DeoptCount(); i++) {
    if (deopt_data->Pc(i)->value() == -1) continue;
    Address call_address = code_start_address + deopt_data->Pc(i)->value();
    Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
    int call_size_in_bytes = MacroAssembler::CallSize(deopt_entry,
                                                      RelocInfo::NONE32);
    int call_size_in_words = call_size_in_bytes / Assembler::kInstrSize;
    ASSERT(call_size_in_bytes % Assembler::kInstrSize == 0);
    ASSERT(call_size_in_bytes <= patch_size());
    CodePatcher patcher(call_address, call_size_in_words);
    patcher.masm()->Call(deopt_entry, RelocInfo::NONE32);
    ASSERT(prev_call_address == NULL ||
           call_address >= prev_call_address + patch_size());
    ASSERT(call_address + patch_size() <= code->instruction_end());

#ifdef DEBUG
    prev_call_address = call_address;
#endif
  }
}


// This structure comes from FullCodeGenerator::EmitBackEdgeBookkeeping.
// The back edge bookkeeping code matches the pattern:
//
// sltu at, sp, t0 / slt at, a3, zero_reg (in case of count based interrupts)
// beq at, zero_reg, ok
// lui t9, <interrupt stub address> upper
// ori t9, <interrupt stub address> lower
// jalr t9
// nop
// ok-label ----- pc_after points here
//
// We patch the code to the following form:
//
// addiu at, zero_reg, 1
// beq at, zero_reg, ok  ;; Not changed
// lui t9, <on-stack replacement address> upper
// ori t9, <on-stack replacement address> lower
// jalr t9  ;; Not changed
// nop  ;; Not changed
// ok-label ----- pc_after points here

void Deoptimizer::PatchInterruptCodeAt(Code* unoptimized_code,
                                        Address pc_after,
                                        Code* interrupt_code,
                                        Code* replacement_code) {
  ASSERT(!InterruptCodeIsPatched(unoptimized_code,
                                 pc_after,
                                 interrupt_code,
                                 replacement_code));
  static const int kInstrSize = Assembler::kInstrSize;
  // Replace the sltu instruction with load-imm 1 to at, so beq is not taken.
  CodePatcher patcher(pc_after - 6 * kInstrSize, 1);
  patcher.masm()->addiu(at, zero_reg, 1);
  // Replace the stack check address in the load-immediate (lui/ori pair)
  // with the entry address of the replacement code.
  Assembler::set_target_address_at(pc_after - 4 * kInstrSize,
                                   replacement_code->entry());

  unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
      unoptimized_code, pc_after - 4 * kInstrSize, replacement_code);
}


void Deoptimizer::RevertInterruptCodeAt(Code* unoptimized_code,
                                        Address pc_after,
                                        Code* interrupt_code,
                                        Code* replacement_code) {
  ASSERT(InterruptCodeIsPatched(unoptimized_code,
                                 pc_after,
                                 interrupt_code,
                                 replacement_code));
  static const int kInstrSize = Assembler::kInstrSize;
  // Restore the sltu instruction so beq can be taken again.
  CodePatcher patcher(pc_after - 6 * kInstrSize, 1);
  patcher.masm()->slt(at, a3, zero_reg);
  // Restore the original call address.
  Assembler::set_target_address_at(pc_after - 4 * kInstrSize,
                                   interrupt_code->entry());

  interrupt_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
      unoptimized_code, pc_after - 4 * kInstrSize, interrupt_code);
}


#ifdef DEBUG
bool Deoptimizer::InterruptCodeIsPatched(Code* unoptimized_code,
                                         Address pc_after,
                                         Code* interrupt_code,
                                         Code* replacement_code) {
  static const int kInstrSize = Assembler::kInstrSize;
  ASSERT(Assembler::IsBeq(Assembler::instr_at(pc_after - 5 * kInstrSize)));
  if (Assembler::IsAddImmediate(
      Assembler::instr_at(pc_after - 6 * kInstrSize))) {
    ASSERT(reinterpret_cast<uint32_t>(
        Assembler::target_address_at(pc_after - 4 * kInstrSize)) ==
        reinterpret_cast<uint32_t>(replacement_code->entry()));
    return true;
  } else {
    ASSERT(reinterpret_cast<uint32_t>(
        Assembler::target_address_at(pc_after - 4 * kInstrSize)) ==
        reinterpret_cast<uint32_t>(interrupt_code->entry()));
    return false;
  }
}
#endif  // DEBUG


static int LookupBailoutId(DeoptimizationInputData* data, BailoutId ast_id) {
  ByteArray* translations = data->TranslationByteArray();
  int length = data->DeoptCount();
  for (int i = 0; i < length; i++) {
    if (data->AstId(i) == ast_id) {
      TranslationIterator it(translations,  data->TranslationIndex(i)->value());
      int value = it.Next();
      ASSERT(Translation::BEGIN == static_cast<Translation::Opcode>(value));
      // Read the number of frames.
      value = it.Next();
      if (value == 1) return i;
    }
  }
  UNREACHABLE();
  return -1;
}


void Deoptimizer::DoComputeOsrOutputFrame() {
  DeoptimizationInputData* data = DeoptimizationInputData::cast(
      compiled_code_->deoptimization_data());
  unsigned ast_id = data->OsrAstId()->value();

  int bailout_id = LookupBailoutId(data, BailoutId(ast_id));
  unsigned translation_index = data->TranslationIndex(bailout_id)->value();
  ByteArray* translations = data->TranslationByteArray();

  TranslationIterator iterator(translations, translation_index);
  Translation::Opcode opcode =
      static_cast<Translation::Opcode>(iterator.Next());
  ASSERT(Translation::BEGIN == opcode);
  USE(opcode);
  int count = iterator.Next();
  iterator.Skip(1);  // Drop JS frame count.
  ASSERT(count == 1);
  USE(count);

  opcode = static_cast<Translation::Opcode>(iterator.Next());
  USE(opcode);
  ASSERT(Translation::JS_FRAME == opcode);
  unsigned node_id = iterator.Next();
  USE(node_id);
  ASSERT(node_id == ast_id);
  int closure_id = iterator.Next();
  USE(closure_id);
  ASSERT_EQ(Translation::kSelfLiteralId, closure_id);
  unsigned height = iterator.Next();
  unsigned height_in_bytes = height * kPointerSize;
  USE(height_in_bytes);

  unsigned fixed_size = ComputeFixedSize(function_);
  unsigned input_frame_size = input_->GetFrameSize();
  ASSERT(fixed_size + height_in_bytes == input_frame_size);

  unsigned stack_slot_size = compiled_code_->stack_slots() * kPointerSize;
  unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value();
  unsigned outgoing_size = outgoing_height * kPointerSize;
  unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size;
  ASSERT(outgoing_size == 0);  // OSR does not happen in the middle of a call.

  if (FLAG_trace_osr) {
    PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ",
           reinterpret_cast<intptr_t>(function_));
    PrintFunctionName();
    PrintF(" => node=%u, frame=%d->%d]\n",
           ast_id,
           input_frame_size,
           output_frame_size);
  }

  // There's only one output frame in the OSR case.
  output_count_ = 1;
  output_ = new FrameDescription*[1];
  output_[0] = new(output_frame_size) FrameDescription(
      output_frame_size, function_);
  output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT);

  // Clear the incoming parameters in the optimized frame to avoid
  // confusing the garbage collector.
  unsigned output_offset = output_frame_size - kPointerSize;
  int parameter_count = function_->shared()->formal_parameter_count() + 1;
  for (int i = 0; i < parameter_count; ++i) {
    output_[0]->SetFrameSlot(output_offset, 0);
    output_offset -= kPointerSize;
  }

  // Translate the incoming parameters. This may overwrite some of the
  // incoming argument slots we've just cleared.
  int input_offset = input_frame_size - kPointerSize;
  bool ok = true;
  int limit = input_offset - (parameter_count * kPointerSize);
  while (ok && input_offset > limit) {
    ok = DoOsrTranslateCommand(&iterator, &input_offset);
  }

  // There are no translation commands for the caller's pc and fp, the
  // context, and the function.  Set them up explicitly.
  for (int i =  StandardFrameConstants::kCallerPCOffset;
       ok && i >=  StandardFrameConstants::kMarkerOffset;
       i -= kPointerSize) {
    uint32_t input_value = input_->GetFrameSlot(input_offset);
    if (FLAG_trace_osr) {
      const char* name = "UNKNOWN";
      switch (i) {
        case StandardFrameConstants::kCallerPCOffset:
          name = "caller's pc";
          break;
        case StandardFrameConstants::kCallerFPOffset:
          name = "fp";
          break;
        case StandardFrameConstants::kContextOffset:
          name = "context";
          break;
        case StandardFrameConstants::kMarkerOffset:
          name = "function";
          break;
      }
      PrintF("    [sp + %d] <- 0x%08x ; [sp + %d] (fixed part - %s)\n",
             output_offset,
             input_value,
             input_offset,
             name);
    }

    output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset));
    input_offset -= kPointerSize;
    output_offset -= kPointerSize;
  }

  // Translate the rest of the frame.
  while (ok && input_offset >= 0) {
    ok = DoOsrTranslateCommand(&iterator, &input_offset);
  }

  // If translation of any command failed, continue using the input frame.
  if (!ok) {
    delete output_[0];
    output_[0] = input_;
    output_[0]->SetPc(reinterpret_cast<uint32_t>(from_));
  } else {
    // Set up the frame pointer and the context pointer.
    output_[0]->SetRegister(fp.code(), input_->GetRegister(fp.code()));
    output_[0]->SetRegister(cp.code(), input_->GetRegister(cp.code()));

    unsigned pc_offset = data->OsrPcOffset()->value();
    uint32_t pc = reinterpret_cast<uint32_t>(
        compiled_code_->entry() + pc_offset);
    output_[0]->SetPc(pc);
  }
  Code* continuation = isolate_->builtins()->builtin(Builtins::kNotifyOSR);
  output_[0]->SetContinuation(
      reinterpret_cast<uint32_t>(continuation->entry()));

  if (FLAG_trace_osr) {
    PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ",
           ok ? "finished" : "aborted",
           reinterpret_cast<intptr_t>(function_));
    PrintFunctionName();
    PrintF(" => pc=0x%0x]\n", output_[0]->GetPc());
  }
}


void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
  // Set the register values. The values are not important as there are no
  // callee saved registers in JavaScript frames, so all registers are
  // spilled. Registers fp and sp are set to the correct values though.

  for (int i = 0; i < Register::kNumRegisters; i++) {
    input_->SetRegister(i, i * 4);
  }
  input_->SetRegister(sp.code(), reinterpret_cast<intptr_t>(frame->sp()));
  input_->SetRegister(fp.code(), reinterpret_cast<intptr_t>(frame->fp()));
  for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) {
    input_->SetDoubleRegister(i, 0.0);
  }

  // Fill the frame content from the actual data on the frame.
  for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
    input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
  }
}


void Deoptimizer::SetPlatformCompiledStubRegisters(
    FrameDescription* output_frame, CodeStubInterfaceDescriptor* descriptor) {
  ApiFunction function(descriptor->deoptimization_handler_);
  ExternalReference xref(&function, ExternalReference::BUILTIN_CALL, isolate_);
  intptr_t handler = reinterpret_cast<intptr_t>(xref.address());
  int params = descriptor->register_param_count_;
  if (descriptor->stack_parameter_count_ != NULL) {
    params++;
  }
  output_frame->SetRegister(s0.code(), params);
  output_frame->SetRegister(s1.code(), (params - 1) * kPointerSize);
  output_frame->SetRegister(s2.code(), handler);
}


void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
  for (int i = 0; i < DoubleRegister::kMaxNumRegisters; ++i) {
    double double_value = input_->GetDoubleRegister(i);
    output_frame->SetDoubleRegister(i, double_value);
  }
}


bool Deoptimizer::HasAlignmentPadding(JSFunction* function) {
  // There is no dynamic alignment padding on MIPS in the input frame.
  return false;
}


#define __ masm()->


// This code tries to be close to ia32 code so that any changes can be
// easily ported.
void Deoptimizer::EntryGenerator::Generate() {
  GeneratePrologue();

  // Unlike on ARM we don't save all the registers, just the useful ones.
  // For the rest, there are gaps on the stack, so the offsets remain the same.
  const int kNumberOfRegisters = Register::kNumRegisters;

  RegList restored_regs = kJSCallerSaved | kCalleeSaved;
  RegList saved_regs = restored_regs | sp.bit() | ra.bit();

  const int kDoubleRegsSize =
      kDoubleSize * FPURegister::kMaxNumAllocatableRegisters;

  // Save all FPU registers before messing with them.
  __ Subu(sp, sp, Operand(kDoubleRegsSize));
  for (int i = 0; i < FPURegister::kMaxNumAllocatableRegisters; ++i) {
    FPURegister fpu_reg = FPURegister::FromAllocationIndex(i);
    int offset = i * kDoubleSize;
    __ sdc1(fpu_reg, MemOperand(sp, offset));
  }

  // Push saved_regs (needed to populate FrameDescription::registers_).
  // Leave gaps for other registers.
  __ Subu(sp, sp, kNumberOfRegisters * kPointerSize);
  for (int16_t i = kNumberOfRegisters - 1; i >= 0; i--) {
    if ((saved_regs & (1 << i)) != 0) {
      __ sw(ToRegister(i), MemOperand(sp, kPointerSize * i));
    }
  }

  const int kSavedRegistersAreaSize =
      (kNumberOfRegisters * kPointerSize) + kDoubleRegsSize;

  // Get the bailout id from the stack.
  __ lw(a2, MemOperand(sp, kSavedRegistersAreaSize));

  // Get the address of the location in the code object (a3) (return
  // address for lazy deoptimization) and compute the fp-to-sp delta in
  // register t0.
  __ mov(a3, ra);
  // Correct one word for bailout id.
  __ Addu(t0, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize)));

  __ Subu(t0, fp, t0);

  // Allocate a new deoptimizer object.
  // Pass four arguments in a0 to a3 and fifth & sixth arguments on stack.
  __ PrepareCallCFunction(6, t1);
  __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
  __ li(a1, Operand(type()));  // bailout type,
  // a2: bailout id already loaded.
  // a3: code address or 0 already loaded.
  __ sw(t0, CFunctionArgumentOperand(5));  // Fp-to-sp delta.
  __ li(t1, Operand(ExternalReference::isolate_address(isolate())));
  __ sw(t1, CFunctionArgumentOperand(6));  // Isolate.
  // Call Deoptimizer::New().
  {
    AllowExternalCallThatCantCauseGC scope(masm());
    __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
  }

  // Preserve "deoptimizer" object in register v0 and get the input
  // frame descriptor pointer to a1 (deoptimizer->input_);
  // Move deopt-obj to a0 for call to Deoptimizer::ComputeOutputFrames() below.
  __ mov(a0, v0);
  __ lw(a1, MemOperand(v0, Deoptimizer::input_offset()));

  // Copy core registers into FrameDescription::registers_[kNumRegisters].
  ASSERT(Register::kNumRegisters == kNumberOfRegisters);
  for (int i = 0; i < kNumberOfRegisters; i++) {
    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    if ((saved_regs & (1 << i)) != 0) {
      __ lw(a2, MemOperand(sp, i * kPointerSize));
      __ sw(a2, MemOperand(a1, offset));
    } else if (FLAG_debug_code) {
      __ li(a2, kDebugZapValue);
      __ sw(a2, MemOperand(a1, offset));
    }
  }

  int double_regs_offset = FrameDescription::double_registers_offset();
  // Copy FPU registers to
  // double_registers_[DoubleRegister::kNumAllocatableRegisters]
  for (int i = 0; i < FPURegister::NumAllocatableRegisters(); ++i) {
    int dst_offset = i * kDoubleSize + double_regs_offset;
    int src_offset = i * kDoubleSize + kNumberOfRegisters * kPointerSize;
    __ ldc1(f0, MemOperand(sp, src_offset));
    __ sdc1(f0, MemOperand(a1, dst_offset));
  }

  // Remove the bailout id and the saved registers from the stack.
  __ Addu(sp, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize)));

  // Compute a pointer to the unwinding limit in register a2; that is
  // the first stack slot not part of the input frame.
  __ lw(a2, MemOperand(a1, FrameDescription::frame_size_offset()));
  __ Addu(a2, a2, sp);

  // Unwind the stack down to - but not including - the unwinding
  // limit and copy the contents of the activation frame to the input
  // frame description.
  __ Addu(a3, a1, Operand(FrameDescription::frame_content_offset()));
  Label pop_loop;
  Label pop_loop_header;
  __ Branch(&pop_loop_header);
  __ bind(&pop_loop);
  __ pop(t0);
  __ sw(t0, MemOperand(a3, 0));
  __ addiu(a3, a3, sizeof(uint32_t));
  __ bind(&pop_loop_header);
  __ Branch(&pop_loop, ne, a2, Operand(sp));

  // Compute the output frame in the deoptimizer.
  __ push(a0);  // Preserve deoptimizer object across call.
  // a0: deoptimizer object; a1: scratch.
  __ PrepareCallCFunction(1, a1);
  // Call Deoptimizer::ComputeOutputFrames().
  {
    AllowExternalCallThatCantCauseGC scope(masm());
    __ CallCFunction(
        ExternalReference::compute_output_frames_function(isolate()), 1);
  }
  __ pop(a0);  // Restore deoptimizer object (class Deoptimizer).

  // Replace the current (input) frame with the output frames.
  Label outer_push_loop, inner_push_loop,
      outer_loop_header, inner_loop_header;
  // Outer loop state: t0 = current "FrameDescription** output_",
  // a1 = one past the last FrameDescription**.
  __ lw(a1, MemOperand(a0, Deoptimizer::output_count_offset()));
  __ lw(t0, MemOperand(a0, Deoptimizer::output_offset()));  // t0 is output_.
  __ sll(a1, a1, kPointerSizeLog2);  // Count to offset.
  __ addu(a1, t0, a1);  // a1 = one past the last FrameDescription**.
  __ jmp(&outer_loop_header);
  __ bind(&outer_push_loop);
  // Inner loop state: a2 = current FrameDescription*, a3 = loop index.
  __ lw(a2, MemOperand(t0, 0));  // output_[ix]
  __ lw(a3, MemOperand(a2, FrameDescription::frame_size_offset()));
  __ jmp(&inner_loop_header);
  __ bind(&inner_push_loop);
  __ Subu(a3, a3, Operand(sizeof(uint32_t)));
  __ Addu(t2, a2, Operand(a3));
  __ lw(t3, MemOperand(t2, FrameDescription::frame_content_offset()));
  __ push(t3);
  __ bind(&inner_loop_header);
  __ Branch(&inner_push_loop, ne, a3, Operand(zero_reg));

  __ Addu(t0, t0, Operand(kPointerSize));
  __ bind(&outer_loop_header);
  __ Branch(&outer_push_loop, lt, t0, Operand(a1));

  __ lw(a1, MemOperand(a0, Deoptimizer::input_offset()));
  for (int i = 0; i < FPURegister::kMaxNumAllocatableRegisters; ++i) {
    const FPURegister fpu_reg = FPURegister::FromAllocationIndex(i);
    int src_offset = i * kDoubleSize + double_regs_offset;
    __ ldc1(fpu_reg, MemOperand(a1, src_offset));
  }

  // Push state, pc, and continuation from the last output frame.
  if (type() != OSR) {
    __ lw(t2, MemOperand(a2, FrameDescription::state_offset()));
    __ push(t2);
  }

  __ lw(t2, MemOperand(a2, FrameDescription::pc_offset()));
  __ push(t2);
  __ lw(t2, MemOperand(a2, FrameDescription::continuation_offset()));
  __ push(t2);


  // Technically restoring 'at' should work unless zero_reg is also restored
  // but it's safer to check for this.
  ASSERT(!(at.bit() & restored_regs));
  // Restore the registers from the last output frame.
  __ mov(at, a2);
  for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    if ((restored_regs & (1 << i)) != 0) {
      __ lw(ToRegister(i), MemOperand(at, offset));
    }
  }

  __ InitializeRootRegister();

  __ pop(at);  // Get continuation, leave pc on stack.
  __ pop(ra);
  __ Jump(at);
  __ stop("Unreachable.");
}


// Maximum size of a table entry generated below.
const int Deoptimizer::table_entry_size_ = 7 * Assembler::kInstrSize;

void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());

  // Create a sequence of deoptimization entries.
  // Note that registers are still live when jumping to an entry.
  Label table_start;
  __ bind(&table_start);
  for (int i = 0; i < count(); i++) {
    Label start;
    __ bind(&start);
    __ addiu(sp, sp, -1 * kPointerSize);
    // Jump over the remaining deopt entries (including this one).
    // This code is always reached by calling Jump, which puts the target (label
    // start) into t9.
    const int remaining_entries = (count() - i) * table_entry_size_;
    __ Addu(t9, t9, remaining_entries);
    // 'at' was clobbered so we can only load the current entry value here.
    __ li(at, i);
    __ jr(t9);  // Expose delay slot.
    __ sw(at, MemOperand(sp, 0 * kPointerSize));  // In the delay slot.

    // Pad the rest of the code.
    while (table_entry_size_ > (masm()->SizeOfCodeGeneratedSince(&start))) {
      __ nop();
    }

    ASSERT_EQ(table_entry_size_, masm()->SizeOfCodeGeneratedSince(&start));
  }

  ASSERT_EQ(masm()->SizeOfCodeGeneratedSince(&table_start),
      count() * table_entry_size_);
}


void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
  SetFrameSlot(offset, value);
}


void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
  SetFrameSlot(offset, value);
}


#undef __


} }  // namespace v8::internal