1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
|
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This module contains the platform-specific code. This make the rest of the
// code less dependent on operating system, compilers and runtime libraries.
// This module does specifically not deal with differences between different
// processor architecture.
// The platform classes have the same definition for all platforms. The
// implementation for a particular platform is put in platform_<os>.cc.
// The build system then uses the implementation for the target platform.
//
// This design has been chosen because it is simple and fast. Alternatively,
// the platform dependent classes could have been implemented using abstract
// superclasses with virtual methods and having specializations for each
// platform. This design was rejected because it was more complicated and
// slower. It would require factory methods for selecting the right
// implementation and the overhead of virtual methods for performance
// sensitive like mutex locking/unlocking.
#ifndef V8_PLATFORM_H_
#define V8_PLATFORM_H_
#include <cstdarg>
#include "platform/mutex.h"
#include "platform/semaphore.h"
#include "utils.h"
#include "v8globals.h"
#ifdef __sun
# ifndef signbit
namespace std {
int signbit(double x);
}
# endif
#endif
// Microsoft Visual C++ specific stuff.
#if V8_CC_MSVC
#include "win32-headers.h"
#include "win32-math.h"
int strncasecmp(const char* s1, const char* s2, int n);
inline int lrint(double flt) {
int intgr;
#if V8_TARGET_ARCH_IA32
__asm {
fld flt
fistp intgr
};
#else
intgr = static_cast<int>(flt + 0.5);
if ((intgr & 1) != 0 && intgr - flt == 0.5) {
// If the number is halfway between two integers, round to the even one.
intgr--;
}
#endif
return intgr;
}
#endif // V8_CC_MSVC
namespace v8 {
namespace internal {
double ceiling(double x);
double modulo(double x, double y);
// Custom implementation of math functions.
double fast_sin(double input);
double fast_cos(double input);
double fast_tan(double input);
double fast_log(double input);
double fast_exp(double input);
double fast_sqrt(double input);
// The custom exp implementation needs 16KB of lookup data; initialize it
// on demand.
void lazily_initialize_fast_exp();
// ----------------------------------------------------------------------------
// Fast TLS support
#ifndef V8_NO_FAST_TLS
#if defined(_MSC_VER) && V8_HOST_ARCH_IA32
#define V8_FAST_TLS_SUPPORTED 1
INLINE(intptr_t InternalGetExistingThreadLocal(intptr_t index));
inline intptr_t InternalGetExistingThreadLocal(intptr_t index) {
const intptr_t kTibInlineTlsOffset = 0xE10;
const intptr_t kTibExtraTlsOffset = 0xF94;
const intptr_t kMaxInlineSlots = 64;
const intptr_t kMaxSlots = kMaxInlineSlots + 1024;
ASSERT(0 <= index && index < kMaxSlots);
if (index < kMaxInlineSlots) {
return static_cast<intptr_t>(__readfsdword(kTibInlineTlsOffset +
kPointerSize * index));
}
intptr_t extra = static_cast<intptr_t>(__readfsdword(kTibExtraTlsOffset));
ASSERT(extra != 0);
return *reinterpret_cast<intptr_t*>(extra +
kPointerSize * (index - kMaxInlineSlots));
}
#elif defined(__APPLE__) && (V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64)
#define V8_FAST_TLS_SUPPORTED 1
extern intptr_t kMacTlsBaseOffset;
INLINE(intptr_t InternalGetExistingThreadLocal(intptr_t index));
inline intptr_t InternalGetExistingThreadLocal(intptr_t index) {
intptr_t result;
#if V8_HOST_ARCH_IA32
asm("movl %%gs:(%1,%2,4), %0;"
:"=r"(result) // Output must be a writable register.
:"r"(kMacTlsBaseOffset), "r"(index));
#else
asm("movq %%gs:(%1,%2,8), %0;"
:"=r"(result)
:"r"(kMacTlsBaseOffset), "r"(index));
#endif
return result;
}
#endif
#endif // V8_NO_FAST_TLS
// ----------------------------------------------------------------------------
// OS
//
// This class has static methods for the different platform specific
// functions. Add methods here to cope with differences between the
// supported platforms.
class OS {
public:
// Initializes the platform OS support that depend on CPU features. This is
// called after CPU initialization.
static void PostSetUp();
// Returns the accumulated user time for thread. This routine
// can be used for profiling. The implementation should
// strive for high-precision timer resolution, preferable
// micro-second resolution.
static int GetUserTime(uint32_t* secs, uint32_t* usecs);
// Returns current time as the number of milliseconds since
// 00:00:00 UTC, January 1, 1970.
static double TimeCurrentMillis();
// Returns a string identifying the current time zone. The
// timestamp is used for determining if DST is in effect.
static const char* LocalTimezone(double time);
// Returns the local time offset in milliseconds east of UTC without
// taking daylight savings time into account.
static double LocalTimeOffset();
// Returns the daylight savings offset for the given time.
static double DaylightSavingsOffset(double time);
// Returns last OS error.
static int GetLastError();
static FILE* FOpen(const char* path, const char* mode);
static bool Remove(const char* path);
// Opens a temporary file, the file is auto removed on close.
static FILE* OpenTemporaryFile();
// Log file open mode is platform-dependent due to line ends issues.
static const char* const LogFileOpenMode;
// Print output to console. This is mostly used for debugging output.
// On platforms that has standard terminal output, the output
// should go to stdout.
static void Print(const char* format, ...);
static void VPrint(const char* format, va_list args);
// Print output to a file. This is mostly used for debugging output.
static void FPrint(FILE* out, const char* format, ...);
static void VFPrint(FILE* out, const char* format, va_list args);
// Print error output to console. This is mostly used for error message
// output. On platforms that has standard terminal output, the output
// should go to stderr.
static void PrintError(const char* format, ...);
static void VPrintError(const char* format, va_list args);
// Allocate/Free memory used by JS heap. Pages are readable/writable, but
// they are not guaranteed to be executable unless 'executable' is true.
// Returns the address of allocated memory, or NULL if failed.
static void* Allocate(const size_t requested,
size_t* allocated,
bool is_executable);
static void Free(void* address, const size_t size);
// This is the granularity at which the ProtectCode(...) call can set page
// permissions.
static intptr_t CommitPageSize();
// Mark code segments non-writable.
static void ProtectCode(void* address, const size_t size);
// Assign memory as a guard page so that access will cause an exception.
static void Guard(void* address, const size_t size);
// Generate a random address to be used for hinting mmap().
static void* GetRandomMmapAddr();
// Get the Alignment guaranteed by Allocate().
static size_t AllocateAlignment();
// Sleep for a number of milliseconds.
static void Sleep(const int milliseconds);
// Abort the current process.
static void Abort();
// Debug break.
static void DebugBreak();
// Dump C++ current stack trace (only functional on Linux).
static void DumpBacktrace();
// Walk the stack.
static const int kStackWalkError = -1;
static const int kStackWalkMaxNameLen = 256;
static const int kStackWalkMaxTextLen = 256;
struct StackFrame {
void* address;
char text[kStackWalkMaxTextLen];
};
static int StackWalk(Vector<StackFrame> frames);
class MemoryMappedFile {
public:
static MemoryMappedFile* open(const char* name);
static MemoryMappedFile* create(const char* name, int size, void* initial);
virtual ~MemoryMappedFile() { }
virtual void* memory() = 0;
virtual int size() = 0;
};
// Safe formatting print. Ensures that str is always null-terminated.
// Returns the number of chars written, or -1 if output was truncated.
static int SNPrintF(Vector<char> str, const char* format, ...);
static int VSNPrintF(Vector<char> str,
const char* format,
va_list args);
static char* StrChr(char* str, int c);
static void StrNCpy(Vector<char> dest, const char* src, size_t n);
// Support for the profiler. Can do nothing, in which case ticks
// occuring in shared libraries will not be properly accounted for.
static void LogSharedLibraryAddresses(Isolate* isolate);
// Support for the profiler. Notifies the external profiling
// process that a code moving garbage collection starts. Can do
// nothing, in which case the code objects must not move (e.g., by
// using --never-compact) if accurate profiling is desired.
static void SignalCodeMovingGC();
// The return value indicates the CPU features we are sure of because of the
// OS. For example MacOSX doesn't run on any x86 CPUs that don't have SSE2
// instructions.
// This is a little messy because the interpretation is subject to the cross
// of the CPU and the OS. The bits in the answer correspond to the bit
// positions indicated by the members of the CpuFeature enum from globals.h
static uint64_t CpuFeaturesImpliedByPlatform();
// Maximum size of the virtual memory. 0 means there is no artificial
// limit.
static intptr_t MaxVirtualMemory();
// Returns the double constant NAN
static double nan_value();
// Support runtime detection of whether the hard float option of the
// EABI is used.
static bool ArmUsingHardFloat();
// Returns the activation frame alignment constraint or zero if
// the platform doesn't care. Guaranteed to be a power of two.
static int ActivationFrameAlignment();
#if defined(V8_TARGET_ARCH_IA32)
// Limit below which the extra overhead of the MemCopy function is likely
// to outweigh the benefits of faster copying.
static const int kMinComplexMemCopy = 64;
// Copy memory area. No restrictions.
static void MemMove(void* dest, const void* src, size_t size);
typedef void (*MemMoveFunction)(void* dest, const void* src, size_t size);
// Keep the distinction of "move" vs. "copy" for the benefit of other
// architectures.
static void MemCopy(void* dest, const void* src, size_t size) {
MemMove(dest, src, size);
}
#elif defined(V8_HOST_ARCH_ARM)
typedef void (*MemCopyUint8Function)(uint8_t* dest,
const uint8_t* src,
size_t size);
static MemCopyUint8Function memcopy_uint8_function;
static void MemCopyUint8Wrapper(uint8_t* dest,
const uint8_t* src,
size_t chars) {
memcpy(dest, src, chars);
}
// For values < 16, the assembler function is slower than the inlined C code.
static const int kMinComplexMemCopy = 16;
static void MemCopy(void* dest, const void* src, size_t size) {
(*memcopy_uint8_function)(reinterpret_cast<uint8_t*>(dest),
reinterpret_cast<const uint8_t*>(src),
size);
}
static void MemMove(void* dest, const void* src, size_t size) {
memmove(dest, src, size);
}
typedef void (*MemCopyUint16Uint8Function)(uint16_t* dest,
const uint8_t* src,
size_t size);
static MemCopyUint16Uint8Function memcopy_uint16_uint8_function;
static void MemCopyUint16Uint8Wrapper(uint16_t* dest,
const uint8_t* src,
size_t chars);
// For values < 12, the assembler function is slower than the inlined C code.
static const int kMinComplexConvertMemCopy = 12;
static void MemCopyUint16Uint8(uint16_t* dest,
const uint8_t* src,
size_t size) {
(*memcopy_uint16_uint8_function)(dest, src, size);
}
#else
// Copy memory area to disjoint memory area.
static void MemCopy(void* dest, const void* src, size_t size) {
memcpy(dest, src, size);
}
static void MemMove(void* dest, const void* src, size_t size) {
memmove(dest, src, size);
}
static const int kMinComplexMemCopy = 16 * kPointerSize;
#endif // V8_TARGET_ARCH_IA32
static int GetCurrentProcessId();
private:
static const int msPerSecond = 1000;
DISALLOW_IMPLICIT_CONSTRUCTORS(OS);
};
// Represents and controls an area of reserved memory.
// Control of the reserved memory can be assigned to another VirtualMemory
// object by assignment or copy-contructing. This removes the reserved memory
// from the original object.
class VirtualMemory {
public:
// Empty VirtualMemory object, controlling no reserved memory.
VirtualMemory();
// Reserves virtual memory with size.
explicit VirtualMemory(size_t size);
// Reserves virtual memory containing an area of the given size that
// is aligned per alignment. This may not be at the position returned
// by address().
VirtualMemory(size_t size, size_t alignment);
// Releases the reserved memory, if any, controlled by this VirtualMemory
// object.
~VirtualMemory();
// Returns whether the memory has been reserved.
bool IsReserved();
// Initialize or resets an embedded VirtualMemory object.
void Reset();
// Returns the start address of the reserved memory.
// If the memory was reserved with an alignment, this address is not
// necessarily aligned. The user might need to round it up to a multiple of
// the alignment to get the start of the aligned block.
void* address() {
ASSERT(IsReserved());
return address_;
}
// Returns the size of the reserved memory. The returned value is only
// meaningful when IsReserved() returns true.
// If the memory was reserved with an alignment, this size may be larger
// than the requested size.
size_t size() { return size_; }
// Commits real memory. Returns whether the operation succeeded.
bool Commit(void* address, size_t size, bool is_executable);
// Uncommit real memory. Returns whether the operation succeeded.
bool Uncommit(void* address, size_t size);
// Creates a single guard page at the given address.
bool Guard(void* address);
void Release() {
ASSERT(IsReserved());
// Notice: Order is important here. The VirtualMemory object might live
// inside the allocated region.
void* address = address_;
size_t size = size_;
Reset();
bool result = ReleaseRegion(address, size);
USE(result);
ASSERT(result);
}
// Assign control of the reserved region to a different VirtualMemory object.
// The old object is no longer functional (IsReserved() returns false).
void TakeControl(VirtualMemory* from) {
ASSERT(!IsReserved());
address_ = from->address_;
size_ = from->size_;
from->Reset();
}
static void* ReserveRegion(size_t size);
static bool CommitRegion(void* base, size_t size, bool is_executable);
static bool UncommitRegion(void* base, size_t size);
// Must be called with a base pointer that has been returned by ReserveRegion
// and the same size it was reserved with.
static bool ReleaseRegion(void* base, size_t size);
// Returns true if OS performs lazy commits, i.e. the memory allocation call
// defers actual physical memory allocation till the first memory access.
// Otherwise returns false.
static bool HasLazyCommits();
private:
void* address_; // Start address of the virtual memory.
size_t size_; // Size of the virtual memory.
};
// ----------------------------------------------------------------------------
// Thread
//
// Thread objects are used for creating and running threads. When the start()
// method is called the new thread starts running the run() method in the new
// thread. The Thread object should not be deallocated before the thread has
// terminated.
class Thread {
public:
// Opaque data type for thread-local storage keys.
// LOCAL_STORAGE_KEY_MIN_VALUE and LOCAL_STORAGE_KEY_MAX_VALUE are specified
// to ensure that enumeration type has correct value range (see Issue 830 for
// more details).
enum LocalStorageKey {
LOCAL_STORAGE_KEY_MIN_VALUE = kMinInt,
LOCAL_STORAGE_KEY_MAX_VALUE = kMaxInt
};
class Options {
public:
Options() : name_("v8:<unknown>"), stack_size_(0) {}
Options(const char* name, int stack_size = 0)
: name_(name), stack_size_(stack_size) {}
const char* name() const { return name_; }
int stack_size() const { return stack_size_; }
private:
const char* name_;
int stack_size_;
};
// Create new thread.
explicit Thread(const Options& options);
virtual ~Thread();
// Start new thread by calling the Run() method on the new thread.
void Start();
// Start new thread and wait until Run() method is called on the new thread.
void StartSynchronously() {
start_semaphore_ = new Semaphore(0);
Start();
start_semaphore_->Wait();
delete start_semaphore_;
start_semaphore_ = NULL;
}
// Wait until thread terminates.
void Join();
inline const char* name() const {
return name_;
}
// Abstract method for run handler.
virtual void Run() = 0;
// Thread-local storage.
static LocalStorageKey CreateThreadLocalKey();
static void DeleteThreadLocalKey(LocalStorageKey key);
static void* GetThreadLocal(LocalStorageKey key);
static int GetThreadLocalInt(LocalStorageKey key) {
return static_cast<int>(reinterpret_cast<intptr_t>(GetThreadLocal(key)));
}
static void SetThreadLocal(LocalStorageKey key, void* value);
static void SetThreadLocalInt(LocalStorageKey key, int value) {
SetThreadLocal(key, reinterpret_cast<void*>(static_cast<intptr_t>(value)));
}
static bool HasThreadLocal(LocalStorageKey key) {
return GetThreadLocal(key) != NULL;
}
#ifdef V8_FAST_TLS_SUPPORTED
static inline void* GetExistingThreadLocal(LocalStorageKey key) {
void* result = reinterpret_cast<void*>(
InternalGetExistingThreadLocal(static_cast<intptr_t>(key)));
ASSERT(result == GetThreadLocal(key));
return result;
}
#else
static inline void* GetExistingThreadLocal(LocalStorageKey key) {
return GetThreadLocal(key);
}
#endif
// A hint to the scheduler to let another thread run.
static void YieldCPU();
// The thread name length is limited to 16 based on Linux's implementation of
// prctl().
static const int kMaxThreadNameLength = 16;
class PlatformData;
PlatformData* data() { return data_; }
void NotifyStartedAndRun() {
if (start_semaphore_) start_semaphore_->Signal();
Run();
}
private:
void set_name(const char* name);
PlatformData* data_;
char name_[kMaxThreadNameLength];
int stack_size_;
Semaphore* start_semaphore_;
DISALLOW_COPY_AND_ASSIGN(Thread);
};
} } // namespace v8::internal
#endif // V8_PLATFORM_H_
|