summaryrefslogtreecommitdiff
path: root/deps/v8/src/serialize.cc
blob: d960afde401c1cf958862183f915302ae085324e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "accessors.h"
#include "api.h"
#include "bootstrapper.h"
#include "execution.h"
#include "global-handles.h"
#include "ic-inl.h"
#include "natives.h"
#include "platform.h"
#include "runtime.h"
#include "serialize.h"
#include "stub-cache.h"
#include "v8threads.h"

namespace v8 {
namespace internal {


// -----------------------------------------------------------------------------
// Coding of external references.

// The encoding of an external reference. The type is in the high word.
// The id is in the low word.
static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
  return static_cast<uint32_t>(type) << 16 | id;
}


static int* GetInternalPointer(StatsCounter* counter) {
  // All counters refer to dummy_counter, if deserializing happens without
  // setting up counters.
  static int dummy_counter = 0;
  return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
}


// ExternalReferenceTable is a helper class that defines the relationship
// between external references and their encodings. It is used to build
// hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder.
class ExternalReferenceTable {
 public:
  static ExternalReferenceTable* instance(Isolate* isolate) {
    ExternalReferenceTable* external_reference_table =
        isolate->external_reference_table();
    if (external_reference_table == NULL) {
      external_reference_table = new ExternalReferenceTable(isolate);
      isolate->set_external_reference_table(external_reference_table);
    }
    return external_reference_table;
  }

  int size() const { return refs_.length(); }

  Address address(int i) { return refs_[i].address; }

  uint32_t code(int i) { return refs_[i].code; }

  const char* name(int i) { return refs_[i].name; }

  int max_id(int code) { return max_id_[code]; }

 private:
  explicit ExternalReferenceTable(Isolate* isolate) : refs_(64) {
      PopulateTable(isolate);
  }
  ~ExternalReferenceTable() { }

  struct ExternalReferenceEntry {
    Address address;
    uint32_t code;
    const char* name;
  };

  void PopulateTable(Isolate* isolate);

  // For a few types of references, we can get their address from their id.
  void AddFromId(TypeCode type,
                 uint16_t id,
                 const char* name,
                 Isolate* isolate);

  // For other types of references, the caller will figure out the address.
  void Add(Address address, TypeCode type, uint16_t id, const char* name);

  List<ExternalReferenceEntry> refs_;
  int max_id_[kTypeCodeCount];
};


void ExternalReferenceTable::AddFromId(TypeCode type,
                                       uint16_t id,
                                       const char* name,
                                       Isolate* isolate) {
  Address address;
  switch (type) {
    case C_BUILTIN: {
      ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate);
      address = ref.address();
      break;
    }
    case BUILTIN: {
      ExternalReference ref(static_cast<Builtins::Name>(id), isolate);
      address = ref.address();
      break;
    }
    case RUNTIME_FUNCTION: {
      ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate);
      address = ref.address();
      break;
    }
    case IC_UTILITY: {
      ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)),
                            isolate);
      address = ref.address();
      break;
    }
    default:
      UNREACHABLE();
      return;
  }
  Add(address, type, id, name);
}


void ExternalReferenceTable::Add(Address address,
                                 TypeCode type,
                                 uint16_t id,
                                 const char* name) {
  ASSERT_NE(NULL, address);
  ExternalReferenceEntry entry;
  entry.address = address;
  entry.code = EncodeExternal(type, id);
  entry.name = name;
  ASSERT_NE(0, entry.code);
  refs_.Add(entry);
  if (id > max_id_[type]) max_id_[type] = id;
}


void ExternalReferenceTable::PopulateTable(Isolate* isolate) {
  for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
    max_id_[type_code] = 0;
  }

  // The following populates all of the different type of external references
  // into the ExternalReferenceTable.
  //
  // NOTE: This function was originally 100k of code.  It has since been
  // rewritten to be mostly table driven, as the callback macro style tends to
  // very easily cause code bloat.  Please be careful in the future when adding
  // new references.

  struct RefTableEntry {
    TypeCode type;
    uint16_t id;
    const char* name;
  };

  static const RefTableEntry ref_table[] = {
  // Builtins
#define DEF_ENTRY_C(name, ignored) \
  { C_BUILTIN, \
    Builtins::c_##name, \
    "Builtins::" #name },

  BUILTIN_LIST_C(DEF_ENTRY_C)
#undef DEF_ENTRY_C

#define DEF_ENTRY_C(name, ignored) \
  { BUILTIN, \
    Builtins::k##name, \
    "Builtins::" #name },
#define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored)

  BUILTIN_LIST_C(DEF_ENTRY_C)
  BUILTIN_LIST_A(DEF_ENTRY_A)
  BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
#undef DEF_ENTRY_C
#undef DEF_ENTRY_A

  // Runtime functions
#define RUNTIME_ENTRY(name, nargs, ressize) \
  { RUNTIME_FUNCTION, \
    Runtime::k##name, \
    "Runtime::" #name },

  RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
#undef RUNTIME_ENTRY

  // IC utilities
#define IC_ENTRY(name) \
  { IC_UTILITY, \
    IC::k##name, \
    "IC::" #name },

  IC_UTIL_LIST(IC_ENTRY)
#undef IC_ENTRY
  };  // end of ref_table[].

  for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) {
    AddFromId(ref_table[i].type,
              ref_table[i].id,
              ref_table[i].name,
              isolate);
  }

#ifdef ENABLE_DEBUGGER_SUPPORT
  // Debug addresses
  Add(Debug_Address(Debug::k_after_break_target_address).address(isolate),
      DEBUG_ADDRESS,
      Debug::k_after_break_target_address << kDebugIdShift,
      "Debug::after_break_target_address()");
  Add(Debug_Address(Debug::k_debug_break_slot_address).address(isolate),
      DEBUG_ADDRESS,
      Debug::k_debug_break_slot_address << kDebugIdShift,
      "Debug::debug_break_slot_address()");
  Add(Debug_Address(Debug::k_debug_break_return_address).address(isolate),
      DEBUG_ADDRESS,
      Debug::k_debug_break_return_address << kDebugIdShift,
      "Debug::debug_break_return_address()");
  Add(Debug_Address(Debug::k_restarter_frame_function_pointer).address(isolate),
      DEBUG_ADDRESS,
      Debug::k_restarter_frame_function_pointer << kDebugIdShift,
      "Debug::restarter_frame_function_pointer_address()");
#endif

  // Stat counters
  struct StatsRefTableEntry {
    StatsCounter* (Counters::*counter)();
    uint16_t id;
    const char* name;
  };

  const StatsRefTableEntry stats_ref_table[] = {
#define COUNTER_ENTRY(name, caption) \
  { &Counters::name,    \
    Counters::k_##name, \
    "Counters::" #name },

  STATS_COUNTER_LIST_1(COUNTER_ENTRY)
  STATS_COUNTER_LIST_2(COUNTER_ENTRY)
#undef COUNTER_ENTRY
  };  // end of stats_ref_table[].

  Counters* counters = isolate->counters();
  for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) {
    Add(reinterpret_cast<Address>(GetInternalPointer(
            (counters->*(stats_ref_table[i].counter))())),
        STATS_COUNTER,
        stats_ref_table[i].id,
        stats_ref_table[i].name);
  }

  // Top addresses

  const char* AddressNames[] = {
#define C(name) "Isolate::" #name,
    ISOLATE_ADDRESS_LIST(C)
    ISOLATE_ADDRESS_LIST_PROF(C)
    NULL
#undef C
  };

  for (uint16_t i = 0; i < Isolate::k_isolate_address_count; ++i) {
    Add(isolate->get_address_from_id((Isolate::AddressId)i),
        TOP_ADDRESS, i, AddressNames[i]);
  }

  // Accessors
#define ACCESSOR_DESCRIPTOR_DECLARATION(name) \
  Add((Address)&Accessors::name, \
      ACCESSOR, \
      Accessors::k##name, \
      "Accessors::" #name);

  ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION)
#undef ACCESSOR_DESCRIPTOR_DECLARATION

  StubCache* stub_cache = isolate->stub_cache();

  // Stub cache tables
  Add(stub_cache->key_reference(StubCache::kPrimary).address(),
      STUB_CACHE_TABLE,
      1,
      "StubCache::primary_->key");
  Add(stub_cache->value_reference(StubCache::kPrimary).address(),
      STUB_CACHE_TABLE,
      2,
      "StubCache::primary_->value");
  Add(stub_cache->key_reference(StubCache::kSecondary).address(),
      STUB_CACHE_TABLE,
      3,
      "StubCache::secondary_->key");
  Add(stub_cache->value_reference(StubCache::kSecondary).address(),
      STUB_CACHE_TABLE,
      4,
      "StubCache::secondary_->value");

  // Runtime entries
  Add(ExternalReference::perform_gc_function(isolate).address(),
      RUNTIME_ENTRY,
      1,
      "Runtime::PerformGC");
  Add(ExternalReference::fill_heap_number_with_random_function(
          isolate).address(),
      RUNTIME_ENTRY,
      2,
      "V8::FillHeapNumberWithRandom");
  Add(ExternalReference::random_uint32_function(isolate).address(),
      RUNTIME_ENTRY,
      3,
      "V8::Random");
  Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
      RUNTIME_ENTRY,
      4,
      "HandleScope::DeleteExtensions");

  // Miscellaneous
  Add(ExternalReference::the_hole_value_location(isolate).address(),
      UNCLASSIFIED,
      2,
      "Factory::the_hole_value().location()");
  Add(ExternalReference::roots_address(isolate).address(),
      UNCLASSIFIED,
      3,
      "Heap::roots_address()");
  Add(ExternalReference::address_of_stack_limit(isolate).address(),
      UNCLASSIFIED,
      4,
      "StackGuard::address_of_jslimit()");
  Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
      UNCLASSIFIED,
      5,
      "StackGuard::address_of_real_jslimit()");
#ifndef V8_INTERPRETED_REGEXP
  Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
      UNCLASSIFIED,
      6,
      "RegExpStack::limit_address()");
  Add(ExternalReference::address_of_regexp_stack_memory_address(
          isolate).address(),
      UNCLASSIFIED,
      7,
      "RegExpStack::memory_address()");
  Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
      UNCLASSIFIED,
      8,
      "RegExpStack::memory_size()");
  Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
      UNCLASSIFIED,
      9,
      "OffsetsVector::static_offsets_vector");
#endif  // V8_INTERPRETED_REGEXP
  Add(ExternalReference::new_space_start(isolate).address(),
      UNCLASSIFIED,
      10,
      "Heap::NewSpaceStart()");
  Add(ExternalReference::new_space_mask(isolate).address(),
      UNCLASSIFIED,
      11,
      "Heap::NewSpaceMask()");
  Add(ExternalReference::heap_always_allocate_scope_depth(isolate).address(),
      UNCLASSIFIED,
      12,
      "Heap::always_allocate_scope_depth()");
  Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
      UNCLASSIFIED,
      13,
      "Heap::NewSpaceAllocationLimitAddress()");
  Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
      UNCLASSIFIED,
      14,
      "Heap::NewSpaceAllocationTopAddress()");
#ifdef ENABLE_DEBUGGER_SUPPORT
  Add(ExternalReference::debug_break(isolate).address(),
      UNCLASSIFIED,
      15,
      "Debug::Break()");
  Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
      UNCLASSIFIED,
      16,
      "Debug::step_in_fp_addr()");
#endif
  Add(ExternalReference::double_fp_operation(Token::ADD, isolate).address(),
      UNCLASSIFIED,
      17,
      "add_two_doubles");
  Add(ExternalReference::double_fp_operation(Token::SUB, isolate).address(),
      UNCLASSIFIED,
      18,
      "sub_two_doubles");
  Add(ExternalReference::double_fp_operation(Token::MUL, isolate).address(),
      UNCLASSIFIED,
      19,
      "mul_two_doubles");
  Add(ExternalReference::double_fp_operation(Token::DIV, isolate).address(),
      UNCLASSIFIED,
      20,
      "div_two_doubles");
  Add(ExternalReference::double_fp_operation(Token::MOD, isolate).address(),
      UNCLASSIFIED,
      21,
      "mod_two_doubles");
  Add(ExternalReference::compare_doubles(isolate).address(),
      UNCLASSIFIED,
      22,
      "compare_doubles");
#ifndef V8_INTERPRETED_REGEXP
  Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
      UNCLASSIFIED,
      23,
      "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
  Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
      UNCLASSIFIED,
      24,
      "RegExpMacroAssembler*::CheckStackGuardState()");
  Add(ExternalReference::re_grow_stack(isolate).address(),
      UNCLASSIFIED,
      25,
      "NativeRegExpMacroAssembler::GrowStack()");
  Add(ExternalReference::re_word_character_map().address(),
      UNCLASSIFIED,
      26,
      "NativeRegExpMacroAssembler::word_character_map");
#endif  // V8_INTERPRETED_REGEXP
  // Keyed lookup cache.
  Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
      UNCLASSIFIED,
      27,
      "KeyedLookupCache::keys()");
  Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
      UNCLASSIFIED,
      28,
      "KeyedLookupCache::field_offsets()");
  Add(ExternalReference::transcendental_cache_array_address(isolate).address(),
      UNCLASSIFIED,
      29,
      "TranscendentalCache::caches()");
  Add(ExternalReference::handle_scope_next_address().address(),
      UNCLASSIFIED,
      30,
      "HandleScope::next");
  Add(ExternalReference::handle_scope_limit_address().address(),
      UNCLASSIFIED,
      31,
      "HandleScope::limit");
  Add(ExternalReference::handle_scope_level_address().address(),
      UNCLASSIFIED,
      32,
      "HandleScope::level");
  Add(ExternalReference::new_deoptimizer_function(isolate).address(),
      UNCLASSIFIED,
      33,
      "Deoptimizer::New()");
  Add(ExternalReference::compute_output_frames_function(isolate).address(),
      UNCLASSIFIED,
      34,
      "Deoptimizer::ComputeOutputFrames()");
  Add(ExternalReference::address_of_min_int().address(),
      UNCLASSIFIED,
      35,
      "LDoubleConstant::min_int");
  Add(ExternalReference::address_of_one_half().address(),
      UNCLASSIFIED,
      36,
      "LDoubleConstant::one_half");
  Add(ExternalReference::isolate_address().address(),
      UNCLASSIFIED,
      37,
      "isolate");
  Add(ExternalReference::address_of_minus_zero().address(),
      UNCLASSIFIED,
      38,
      "LDoubleConstant::minus_zero");
  Add(ExternalReference::address_of_negative_infinity().address(),
      UNCLASSIFIED,
      39,
      "LDoubleConstant::negative_infinity");
  Add(ExternalReference::power_double_double_function(isolate).address(),
      UNCLASSIFIED,
      40,
      "power_double_double_function");
  Add(ExternalReference::power_double_int_function(isolate).address(),
      UNCLASSIFIED,
      41,
      "power_double_int_function");
  Add(ExternalReference::arguments_marker_location(isolate).address(),
      UNCLASSIFIED,
      42,
      "Factory::arguments_marker().location()");
}


ExternalReferenceEncoder::ExternalReferenceEncoder()
    : encodings_(Match),
      isolate_(Isolate::Current()) {
  ExternalReferenceTable* external_references =
      ExternalReferenceTable::instance(isolate_);
  for (int i = 0; i < external_references->size(); ++i) {
    Put(external_references->address(i), i);
  }
}


uint32_t ExternalReferenceEncoder::Encode(Address key) const {
  int index = IndexOf(key);
  ASSERT(key == NULL || index >= 0);
  return index >=0 ?
         ExternalReferenceTable::instance(isolate_)->code(index) : 0;
}


const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
  int index = IndexOf(key);
  return index >= 0 ?
      ExternalReferenceTable::instance(isolate_)->name(index) : NULL;
}


int ExternalReferenceEncoder::IndexOf(Address key) const {
  if (key == NULL) return -1;
  HashMap::Entry* entry =
      const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false);
  return entry == NULL
      ? -1
      : static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
}


void ExternalReferenceEncoder::Put(Address key, int index) {
  HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
  entry->value = reinterpret_cast<void*>(index);
}


ExternalReferenceDecoder::ExternalReferenceDecoder()
    : encodings_(NewArray<Address*>(kTypeCodeCount)),
      isolate_(Isolate::Current()) {
  ExternalReferenceTable* external_references =
      ExternalReferenceTable::instance(isolate_);
  for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
    int max = external_references->max_id(type) + 1;
    encodings_[type] = NewArray<Address>(max + 1);
  }
  for (int i = 0; i < external_references->size(); ++i) {
    Put(external_references->code(i), external_references->address(i));
  }
}


ExternalReferenceDecoder::~ExternalReferenceDecoder() {
  for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
    DeleteArray(encodings_[type]);
  }
  DeleteArray(encodings_);
}


bool Serializer::serialization_enabled_ = false;
bool Serializer::too_late_to_enable_now_ = false;


Deserializer::Deserializer(SnapshotByteSource* source)
    : isolate_(NULL),
      source_(source),
      external_reference_decoder_(NULL) {
}


// This routine both allocates a new object, and also keeps
// track of where objects have been allocated so that we can
// fix back references when deserializing.
Address Deserializer::Allocate(int space_index, Space* space, int size) {
  Address address;
  if (!SpaceIsLarge(space_index)) {
    ASSERT(!SpaceIsPaged(space_index) ||
           size <= Page::kPageSize - Page::kObjectStartOffset);
    MaybeObject* maybe_new_allocation;
    if (space_index == NEW_SPACE) {
      maybe_new_allocation =
          reinterpret_cast<NewSpace*>(space)->AllocateRaw(size);
    } else {
      maybe_new_allocation =
          reinterpret_cast<PagedSpace*>(space)->AllocateRaw(size);
    }
    Object* new_allocation = maybe_new_allocation->ToObjectUnchecked();
    HeapObject* new_object = HeapObject::cast(new_allocation);
    address = new_object->address();
    high_water_[space_index] = address + size;
  } else {
    ASSERT(SpaceIsLarge(space_index));
    LargeObjectSpace* lo_space = reinterpret_cast<LargeObjectSpace*>(space);
    Object* new_allocation;
    if (space_index == kLargeData) {
      new_allocation = lo_space->AllocateRaw(size)->ToObjectUnchecked();
    } else if (space_index == kLargeFixedArray) {
      new_allocation =
          lo_space->AllocateRawFixedArray(size)->ToObjectUnchecked();
    } else {
      ASSERT_EQ(kLargeCode, space_index);
      new_allocation = lo_space->AllocateRawCode(size)->ToObjectUnchecked();
    }
    HeapObject* new_object = HeapObject::cast(new_allocation);
    // Record all large objects in the same space.
    address = new_object->address();
    pages_[LO_SPACE].Add(address);
  }
  last_object_address_ = address;
  return address;
}


// This returns the address of an object that has been described in the
// snapshot as being offset bytes back in a particular space.
HeapObject* Deserializer::GetAddressFromEnd(int space) {
  int offset = source_->GetInt();
  ASSERT(!SpaceIsLarge(space));
  offset <<= kObjectAlignmentBits;
  return HeapObject::FromAddress(high_water_[space] - offset);
}


// This returns the address of an object that has been described in the
// snapshot as being offset bytes into a particular space.
HeapObject* Deserializer::GetAddressFromStart(int space) {
  int offset = source_->GetInt();
  if (SpaceIsLarge(space)) {
    // Large spaces have one object per 'page'.
    return HeapObject::FromAddress(pages_[LO_SPACE][offset]);
  }
  offset <<= kObjectAlignmentBits;
  if (space == NEW_SPACE) {
    // New space has only one space - numbered 0.
    return HeapObject::FromAddress(pages_[space][0] + offset);
  }
  ASSERT(SpaceIsPaged(space));
  int page_of_pointee = offset >> kPageSizeBits;
  Address object_address = pages_[space][page_of_pointee] +
                           (offset & Page::kPageAlignmentMask);
  return HeapObject::FromAddress(object_address);
}


void Deserializer::Deserialize() {
  isolate_ = Isolate::Current();
  // Don't GC while deserializing - just expand the heap.
  AlwaysAllocateScope always_allocate;
  // Don't use the free lists while deserializing.
  LinearAllocationScope allocate_linearly;
  // No active threads.
  ASSERT_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
  // No active handles.
  ASSERT(isolate_->handle_scope_implementer()->blocks()->is_empty());
  // Make sure the entire partial snapshot cache is traversed, filling it with
  // valid object pointers.
  isolate_->set_serialize_partial_snapshot_cache_length(
      Isolate::kPartialSnapshotCacheCapacity);
  ASSERT_EQ(NULL, external_reference_decoder_);
  external_reference_decoder_ = new ExternalReferenceDecoder();
  isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
  isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);

  isolate_->heap()->set_global_contexts_list(
      isolate_->heap()->undefined_value());
}


void Deserializer::DeserializePartial(Object** root) {
  isolate_ = Isolate::Current();
  // Don't GC while deserializing - just expand the heap.
  AlwaysAllocateScope always_allocate;
  // Don't use the free lists while deserializing.
  LinearAllocationScope allocate_linearly;
  if (external_reference_decoder_ == NULL) {
    external_reference_decoder_ = new ExternalReferenceDecoder();
  }
  VisitPointer(root);
}


Deserializer::~Deserializer() {
  ASSERT(source_->AtEOF());
  if (external_reference_decoder_) {
    delete external_reference_decoder_;
    external_reference_decoder_ = NULL;
  }
}


// This is called on the roots.  It is the driver of the deserialization
// process.  It is also called on the body of each function.
void Deserializer::VisitPointers(Object** start, Object** end) {
  // The space must be new space.  Any other space would cause ReadChunk to try
  // to update the remembered using NULL as the address.
  ReadChunk(start, end, NEW_SPACE, NULL);
}


// This routine writes the new object into the pointer provided and then
// returns true if the new object was in young space and false otherwise.
// The reason for this strange interface is that otherwise the object is
// written very late, which means the ByteArray map is not set up by the
// time we need to use it to mark the space at the end of a page free (by
// making it into a byte array).
void Deserializer::ReadObject(int space_number,
                              Space* space,
                              Object** write_back) {
  int size = source_->GetInt() << kObjectAlignmentBits;
  Address address = Allocate(space_number, space, size);
  *write_back = HeapObject::FromAddress(address);
  Object** current = reinterpret_cast<Object**>(address);
  Object** limit = current + (size >> kPointerSizeLog2);
  if (FLAG_log_snapshot_positions) {
    LOG(isolate_, SnapshotPositionEvent(address, source_->position()));
  }
  ReadChunk(current, limit, space_number, address);
#ifdef DEBUG
  bool is_codespace = (space == HEAP->code_space()) ||
      ((space == HEAP->lo_space()) && (space_number == kLargeCode));
  ASSERT(HeapObject::FromAddress(address)->IsCode() == is_codespace);
#endif
}


// This macro is always used with a constant argument so it should all fold
// away to almost nothing in the generated code.  It might be nicer to do this
// with the ternary operator but there are type issues with that.
#define ASSIGN_DEST_SPACE(space_number)                                        \
  Space* dest_space;                                                           \
  if (space_number == NEW_SPACE) {                                             \
    dest_space = isolate->heap()->new_space();                                \
  } else if (space_number == OLD_POINTER_SPACE) {                              \
    dest_space = isolate->heap()->old_pointer_space();                         \
  } else if (space_number == OLD_DATA_SPACE) {                                 \
    dest_space = isolate->heap()->old_data_space();                            \
  } else if (space_number == CODE_SPACE) {                                     \
    dest_space = isolate->heap()->code_space();                                \
  } else if (space_number == MAP_SPACE) {                                      \
    dest_space = isolate->heap()->map_space();                                 \
  } else if (space_number == CELL_SPACE) {                                     \
    dest_space = isolate->heap()->cell_space();                                \
  } else {                                                                     \
    ASSERT(space_number >= LO_SPACE);                                          \
    dest_space = isolate->heap()->lo_space();                                  \
  }


static const int kUnknownOffsetFromStart = -1;


void Deserializer::ReadChunk(Object** current,
                             Object** limit,
                             int source_space,
                             Address address) {
  Isolate* const isolate = isolate_;
  while (current < limit) {
    int data = source_->Get();
    switch (data) {
#define CASE_STATEMENT(where, how, within, space_number)                       \
      case where + how + within + space_number:                                \
      ASSERT((where & ~kPointedToMask) == 0);                                  \
      ASSERT((how & ~kHowToCodeMask) == 0);                                    \
      ASSERT((within & ~kWhereToPointMask) == 0);                              \
      ASSERT((space_number & ~kSpaceMask) == 0);

#define CASE_BODY(where, how, within, space_number_if_any, offset_from_start)  \
      {                                                                        \
        bool emit_write_barrier = false;                                       \
        bool current_was_incremented = false;                                  \
        int space_number =  space_number_if_any == kAnyOldSpace ?              \
                            (data & kSpaceMask) : space_number_if_any;         \
        if (where == kNewObject && how == kPlain && within == kStartOfObject) {\
          ASSIGN_DEST_SPACE(space_number)                                      \
          ReadObject(space_number, dest_space, current);                       \
          emit_write_barrier =                                                 \
            (space_number == NEW_SPACE && source_space != NEW_SPACE);          \
        } else {                                                               \
          Object* new_object = NULL;  /* May not be a real Object pointer. */  \
          if (where == kNewObject) {                                           \
            ASSIGN_DEST_SPACE(space_number)                                    \
            ReadObject(space_number, dest_space, &new_object);                 \
          } else if (where == kRootArray) {                                    \
            int root_id = source_->GetInt();                                   \
            new_object = isolate->heap()->roots_address()[root_id];            \
          } else if (where == kPartialSnapshotCache) {                         \
            int cache_index = source_->GetInt();                               \
            new_object = isolate->serialize_partial_snapshot_cache()           \
                [cache_index];                                                 \
          } else if (where == kExternalReference) {                            \
            int reference_id = source_->GetInt();                              \
            Address address = external_reference_decoder_->                    \
                Decode(reference_id);                                          \
            new_object = reinterpret_cast<Object*>(address);                   \
          } else if (where == kBackref) {                                      \
            emit_write_barrier =                                               \
              (space_number == NEW_SPACE && source_space != NEW_SPACE);        \
            new_object = GetAddressFromEnd(data & kSpaceMask);                 \
          } else {                                                             \
            ASSERT(where == kFromStart);                                       \
            if (offset_from_start == kUnknownOffsetFromStart) {                \
              emit_write_barrier =                                             \
                (space_number == NEW_SPACE && source_space != NEW_SPACE);      \
              new_object = GetAddressFromStart(data & kSpaceMask);             \
            } else {                                                           \
              Address object_address = pages_[space_number][0] +               \
                  (offset_from_start << kObjectAlignmentBits);                 \
              new_object = HeapObject::FromAddress(object_address);            \
            }                                                                  \
          }                                                                    \
          if (within == kFirstInstruction) {                                   \
            Code* new_code_object = reinterpret_cast<Code*>(new_object);       \
            new_object = reinterpret_cast<Object*>(                            \
                new_code_object->instruction_start());                         \
          }                                                                    \
          if (how == kFromCode) {                                              \
            Address location_of_branch_data =                                  \
                reinterpret_cast<Address>(current);                            \
            Assembler::set_target_at(location_of_branch_data,                  \
                                     reinterpret_cast<Address>(new_object));   \
            if (within == kFirstInstruction) {                                 \
              location_of_branch_data += Assembler::kCallTargetSize;           \
              current = reinterpret_cast<Object**>(location_of_branch_data);   \
              current_was_incremented = true;                                  \
            }                                                                  \
          } else {                                                             \
            *current = new_object;                                             \
          }                                                                    \
        }                                                                      \
        if (emit_write_barrier) {                                              \
          isolate->heap()->RecordWrite(address, static_cast<int>(              \
              reinterpret_cast<Address>(current) - address));                  \
        }                                                                      \
        if (!current_was_incremented) {                                        \
          current++;   /* Increment current if it wasn't done above. */        \
        }                                                                      \
        break;                                                                 \
      }                                                                        \

// This generates a case and a body for each space.  The large object spaces are
// very rare in snapshots so they are grouped in one body.
#define ONE_PER_SPACE(where, how, within)                                      \
  CASE_STATEMENT(where, how, within, NEW_SPACE)                                \
  CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart)            \
  CASE_STATEMENT(where, how, within, OLD_DATA_SPACE)                           \
  CASE_BODY(where, how, within, OLD_DATA_SPACE, kUnknownOffsetFromStart)       \
  CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE)                        \
  CASE_BODY(where, how, within, OLD_POINTER_SPACE, kUnknownOffsetFromStart)    \
  CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
  CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart)           \
  CASE_STATEMENT(where, how, within, CELL_SPACE)                               \
  CASE_BODY(where, how, within, CELL_SPACE, kUnknownOffsetFromStart)           \
  CASE_STATEMENT(where, how, within, MAP_SPACE)                                \
  CASE_BODY(where, how, within, MAP_SPACE, kUnknownOffsetFromStart)            \
  CASE_STATEMENT(where, how, within, kLargeData)                               \
  CASE_STATEMENT(where, how, within, kLargeCode)                               \
  CASE_STATEMENT(where, how, within, kLargeFixedArray)                         \
  CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)

// This generates a case and a body for the new space (which has to do extra
// write barrier handling) and handles the other spaces with 8 fall-through
// cases and one body.
#define ALL_SPACES(where, how, within)                                         \
  CASE_STATEMENT(where, how, within, NEW_SPACE)                                \
  CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart)            \
  CASE_STATEMENT(where, how, within, OLD_DATA_SPACE)                           \
  CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE)                        \
  CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
  CASE_STATEMENT(where, how, within, CELL_SPACE)                               \
  CASE_STATEMENT(where, how, within, MAP_SPACE)                                \
  CASE_STATEMENT(where, how, within, kLargeData)                               \
  CASE_STATEMENT(where, how, within, kLargeCode)                               \
  CASE_STATEMENT(where, how, within, kLargeFixedArray)                         \
  CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)

#define ONE_PER_CODE_SPACE(where, how, within)                                 \
  CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
  CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart)           \
  CASE_STATEMENT(where, how, within, kLargeCode)                               \
  CASE_BODY(where, how, within, kLargeCode, kUnknownOffsetFromStart)

#define EMIT_COMMON_REFERENCE_PATTERNS(pseudo_space_number,                    \
                                       space_number,                           \
                                       offset_from_start)                      \
  CASE_STATEMENT(kFromStart, kPlain, kStartOfObject, pseudo_space_number)      \
  CASE_BODY(kFromStart, kPlain, kStartOfObject, space_number, offset_from_start)

      // We generate 15 cases and bodies that process special tags that combine
      // the raw data tag and the length into one byte.
#define RAW_CASE(index, size)                                      \
      case kRawData + index: {                                     \
        byte* raw_data_out = reinterpret_cast<byte*>(current);     \
        source_->CopyRaw(raw_data_out, size);                      \
        current = reinterpret_cast<Object**>(raw_data_out + size); \
        break;                                                     \
      }
      COMMON_RAW_LENGTHS(RAW_CASE)
#undef RAW_CASE

      // Deserialize a chunk of raw data that doesn't have one of the popular
      // lengths.
      case kRawData: {
        int size = source_->GetInt();
        byte* raw_data_out = reinterpret_cast<byte*>(current);
        source_->CopyRaw(raw_data_out, size);
        current = reinterpret_cast<Object**>(raw_data_out + size);
        break;
      }

      // Deserialize a new object and write a pointer to it to the current
      // object.
      ONE_PER_SPACE(kNewObject, kPlain, kStartOfObject)
      // Support for direct instruction pointers in functions
      ONE_PER_CODE_SPACE(kNewObject, kPlain, kFirstInstruction)
      // Deserialize a new code object and write a pointer to its first
      // instruction to the current code object.
      ONE_PER_SPACE(kNewObject, kFromCode, kFirstInstruction)
      // Find a recently deserialized object using its offset from the current
      // allocation point and write a pointer to it to the current object.
      ALL_SPACES(kBackref, kPlain, kStartOfObject)
      // Find a recently deserialized code object using its offset from the
      // current allocation point and write a pointer to its first instruction
      // to the current code object or the instruction pointer in a function
      // object.
      ALL_SPACES(kBackref, kFromCode, kFirstInstruction)
      ALL_SPACES(kBackref, kPlain, kFirstInstruction)
      // Find an already deserialized object using its offset from the start
      // and write a pointer to it to the current object.
      ALL_SPACES(kFromStart, kPlain, kStartOfObject)
      ALL_SPACES(kFromStart, kPlain, kFirstInstruction)
      // Find an already deserialized code object using its offset from the
      // start and write a pointer to its first instruction to the current code
      // object.
      ALL_SPACES(kFromStart, kFromCode, kFirstInstruction)
      // Find an already deserialized object at one of the predetermined popular
      // offsets from the start and write a pointer to it in the current object.
      COMMON_REFERENCE_PATTERNS(EMIT_COMMON_REFERENCE_PATTERNS)
      // Find an object in the roots array and write a pointer to it to the
      // current object.
      CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
      CASE_BODY(kRootArray, kPlain, kStartOfObject, 0, kUnknownOffsetFromStart)
      // Find an object in the partial snapshots cache and write a pointer to it
      // to the current object.
      CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
      CASE_BODY(kPartialSnapshotCache,
                kPlain,
                kStartOfObject,
                0,
                kUnknownOffsetFromStart)
      // Find an code entry in the partial snapshots cache and
      // write a pointer to it to the current object.
      CASE_STATEMENT(kPartialSnapshotCache, kPlain, kFirstInstruction, 0)
      CASE_BODY(kPartialSnapshotCache,
                kPlain,
                kFirstInstruction,
                0,
                kUnknownOffsetFromStart)
      // Find an external reference and write a pointer to it to the current
      // object.
      CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
      CASE_BODY(kExternalReference,
                kPlain,
                kStartOfObject,
                0,
                kUnknownOffsetFromStart)
      // Find an external reference and write a pointer to it in the current
      // code object.
      CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
      CASE_BODY(kExternalReference,
                kFromCode,
                kStartOfObject,
                0,
                kUnknownOffsetFromStart)

#undef CASE_STATEMENT
#undef CASE_BODY
#undef ONE_PER_SPACE
#undef ALL_SPACES
#undef EMIT_COMMON_REFERENCE_PATTERNS
#undef ASSIGN_DEST_SPACE

      case kNewPage: {
        int space = source_->Get();
        pages_[space].Add(last_object_address_);
        if (space == CODE_SPACE) {
          CPU::FlushICache(last_object_address_, Page::kPageSize);
        }
        break;
      }

      case kNativesStringResource: {
        int index = source_->Get();
        Vector<const char> source_vector = Natives::GetRawScriptSource(index);
        NativesExternalStringResource* resource =
            new NativesExternalStringResource(isolate->bootstrapper(),
                                              source_vector.start(),
                                              source_vector.length());
        *current++ = reinterpret_cast<Object*>(resource);
        break;
      }

      case kSynchronize: {
        // If we get here then that indicates that you have a mismatch between
        // the number of GC roots when serializing and deserializing.
        UNREACHABLE();
      }

      default:
        UNREACHABLE();
    }
  }
  ASSERT_EQ(current, limit);
}


void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) {
  const int max_shift = ((kPointerSize * kBitsPerByte) / 7) * 7;
  for (int shift = max_shift; shift > 0; shift -= 7) {
    if (integer >= static_cast<uintptr_t>(1u) << shift) {
      Put((static_cast<int>((integer >> shift)) & 0x7f) | 0x80, "IntPart");
    }
  }
  PutSection(static_cast<int>(integer & 0x7f), "IntLastPart");
}

#ifdef DEBUG

void Deserializer::Synchronize(const char* tag) {
  int data = source_->Get();
  // If this assert fails then that indicates that you have a mismatch between
  // the number of GC roots when serializing and deserializing.
  ASSERT_EQ(kSynchronize, data);
  do {
    int character = source_->Get();
    if (character == 0) break;
    if (FLAG_debug_serialization) {
      PrintF("%c", character);
    }
  } while (true);
  if (FLAG_debug_serialization) {
    PrintF("\n");
  }
}


void Serializer::Synchronize(const char* tag) {
  sink_->Put(kSynchronize, tag);
  int character;
  do {
    character = *tag++;
    sink_->PutSection(character, "TagCharacter");
  } while (character != 0);
}

#endif

Serializer::Serializer(SnapshotByteSink* sink)
    : sink_(sink),
      current_root_index_(0),
      external_reference_encoder_(new ExternalReferenceEncoder),
      large_object_total_(0) {
  // The serializer is meant to be used only to generate initial heap images
  // from a context in which there is only one isolate.
  ASSERT(Isolate::Current()->IsDefaultIsolate());
  for (int i = 0; i <= LAST_SPACE; i++) {
    fullness_[i] = 0;
  }
}


Serializer::~Serializer() {
  delete external_reference_encoder_;
}


void StartupSerializer::SerializeStrongReferences() {
  Isolate* isolate = Isolate::Current();
  // No active threads.
  CHECK_EQ(NULL, Isolate::Current()->thread_manager()->FirstThreadStateInUse());
  // No active or weak handles.
  CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
  CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
  // We don't support serializing installed extensions.
  for (RegisteredExtension* ext = v8::RegisteredExtension::first_extension();
       ext != NULL;
       ext = ext->next()) {
    CHECK_NE(v8::INSTALLED, ext->state());
  }
  HEAP->IterateStrongRoots(this, VISIT_ONLY_STRONG);
}


void PartialSerializer::Serialize(Object** object) {
  this->VisitPointer(object);
  Isolate* isolate = Isolate::Current();

  // After we have done the partial serialization the partial snapshot cache
  // will contain some references needed to decode the partial snapshot.  We
  // fill it up with undefineds so it has a predictable length so the
  // deserialization code doesn't need to know the length.
  for (int index = isolate->serialize_partial_snapshot_cache_length();
       index < Isolate::kPartialSnapshotCacheCapacity;
       index++) {
    isolate->serialize_partial_snapshot_cache()[index] =
        isolate->heap()->undefined_value();
    startup_serializer_->VisitPointer(
        &isolate->serialize_partial_snapshot_cache()[index]);
  }
  isolate->set_serialize_partial_snapshot_cache_length(
      Isolate::kPartialSnapshotCacheCapacity);
}


void Serializer::VisitPointers(Object** start, Object** end) {
  for (Object** current = start; current < end; current++) {
    if ((*current)->IsSmi()) {
      sink_->Put(kRawData, "RawData");
      sink_->PutInt(kPointerSize, "length");
      for (int i = 0; i < kPointerSize; i++) {
        sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
      }
    } else {
      SerializeObject(*current, kPlain, kStartOfObject);
    }
  }
}


// This ensures that the partial snapshot cache keeps things alive during GC and
// tracks their movement.  When it is called during serialization of the startup
// snapshot the partial snapshot is empty, so nothing happens.  When the partial
// (context) snapshot is created, this array is populated with the pointers that
// the partial snapshot will need. As that happens we emit serialized objects to
// the startup snapshot that correspond to the elements of this cache array.  On
// deserialization we therefore need to visit the cache array.  This fills it up
// with pointers to deserialized objects.
void SerializerDeserializer::Iterate(ObjectVisitor* visitor) {
  Isolate* isolate = Isolate::Current();
  visitor->VisitPointers(
      isolate->serialize_partial_snapshot_cache(),
      &isolate->serialize_partial_snapshot_cache()[
          isolate->serialize_partial_snapshot_cache_length()]);
}


// When deserializing we need to set the size of the snapshot cache.  This means
// the root iteration code (above) will iterate over array elements, writing the
// references to deserialized objects in them.
void SerializerDeserializer::SetSnapshotCacheSize(int size) {
  Isolate::Current()->set_serialize_partial_snapshot_cache_length(size);
}


int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
  Isolate* isolate = Isolate::Current();

  for (int i = 0;
       i < isolate->serialize_partial_snapshot_cache_length();
       i++) {
    Object* entry = isolate->serialize_partial_snapshot_cache()[i];
    if (entry == heap_object) return i;
  }

  // We didn't find the object in the cache.  So we add it to the cache and
  // then visit the pointer so that it becomes part of the startup snapshot
  // and we can refer to it from the partial snapshot.
  int length = isolate->serialize_partial_snapshot_cache_length();
  CHECK(length < Isolate::kPartialSnapshotCacheCapacity);
  isolate->serialize_partial_snapshot_cache()[length] = heap_object;
  startup_serializer_->VisitPointer(
      &isolate->serialize_partial_snapshot_cache()[length]);
  // We don't recurse from the startup snapshot generator into the partial
  // snapshot generator.
  ASSERT(length == isolate->serialize_partial_snapshot_cache_length());
  isolate->set_serialize_partial_snapshot_cache_length(length + 1);
  return length;
}


int PartialSerializer::RootIndex(HeapObject* heap_object) {
  for (int i = 0; i < Heap::kRootListLength; i++) {
    Object* root = HEAP->roots_address()[i];
    if (root == heap_object) return i;
  }
  return kInvalidRootIndex;
}


// Encode the location of an already deserialized object in order to write its
// location into a later object.  We can encode the location as an offset from
// the start of the deserialized objects or as an offset backwards from the
// current allocation pointer.
void Serializer::SerializeReferenceToPreviousObject(
    int space,
    int address,
    HowToCode how_to_code,
    WhereToPoint where_to_point) {
  int offset = CurrentAllocationAddress(space) - address;
  bool from_start = true;
  if (SpaceIsPaged(space)) {
    // For paged space it is simple to encode back from current allocation if
    // the object is on the same page as the current allocation pointer.
    if ((CurrentAllocationAddress(space) >> kPageSizeBits) ==
        (address >> kPageSizeBits)) {
      from_start = false;
      address = offset;
    }
  } else if (space == NEW_SPACE) {
    // For new space it is always simple to encode back from current allocation.
    if (offset < address) {
      from_start = false;
      address = offset;
    }
  }
  // If we are actually dealing with real offsets (and not a numbering of
  // all objects) then we should shift out the bits that are always 0.
  if (!SpaceIsLarge(space)) address >>= kObjectAlignmentBits;
  if (from_start) {
#define COMMON_REFS_CASE(pseudo_space, actual_space, offset)                   \
    if (space == actual_space && address == offset &&                          \
        how_to_code == kPlain && where_to_point == kStartOfObject) {           \
      sink_->Put(kFromStart + how_to_code + where_to_point +                   \
                 pseudo_space, "RefSer");                                      \
    } else  /* NOLINT */
    COMMON_REFERENCE_PATTERNS(COMMON_REFS_CASE)
#undef COMMON_REFS_CASE
    {  /* NOLINT */
      sink_->Put(kFromStart + how_to_code + where_to_point + space, "RefSer");
      sink_->PutInt(address, "address");
    }
  } else {
    sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer");
    sink_->PutInt(address, "address");
  }
}


void StartupSerializer::SerializeObject(
    Object* o,
    HowToCode how_to_code,
    WhereToPoint where_to_point) {
  CHECK(o->IsHeapObject());
  HeapObject* heap_object = HeapObject::cast(o);

  if (address_mapper_.IsMapped(heap_object)) {
    int space = SpaceOfAlreadySerializedObject(heap_object);
    int address = address_mapper_.MappedTo(heap_object);
    SerializeReferenceToPreviousObject(space,
                                       address,
                                       how_to_code,
                                       where_to_point);
  } else {
    // Object has not yet been serialized.  Serialize it here.
    ObjectSerializer object_serializer(this,
                                       heap_object,
                                       sink_,
                                       how_to_code,
                                       where_to_point);
    object_serializer.Serialize();
  }
}


void StartupSerializer::SerializeWeakReferences() {
  for (int i = Isolate::Current()->serialize_partial_snapshot_cache_length();
       i < Isolate::kPartialSnapshotCacheCapacity;
       i++) {
    sink_->Put(kRootArray + kPlain + kStartOfObject, "RootSerialization");
    sink_->PutInt(Heap::kUndefinedValueRootIndex, "root_index");
  }
  HEAP->IterateWeakRoots(this, VISIT_ALL);
}


void PartialSerializer::SerializeObject(
    Object* o,
    HowToCode how_to_code,
    WhereToPoint where_to_point) {
  CHECK(o->IsHeapObject());
  HeapObject* heap_object = HeapObject::cast(o);

  int root_index;
  if ((root_index = RootIndex(heap_object)) != kInvalidRootIndex) {
    sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
    sink_->PutInt(root_index, "root_index");
    return;
  }

  if (ShouldBeInThePartialSnapshotCache(heap_object)) {
    int cache_index = PartialSnapshotCacheIndex(heap_object);
    sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
               "PartialSnapshotCache");
    sink_->PutInt(cache_index, "partial_snapshot_cache_index");
    return;
  }

  // Pointers from the partial snapshot to the objects in the startup snapshot
  // should go through the root array or through the partial snapshot cache.
  // If this is not the case you may have to add something to the root array.
  ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object));
  // All the symbols that the partial snapshot needs should be either in the
  // root table or in the partial snapshot cache.
  ASSERT(!heap_object->IsSymbol());

  if (address_mapper_.IsMapped(heap_object)) {
    int space = SpaceOfAlreadySerializedObject(heap_object);
    int address = address_mapper_.MappedTo(heap_object);
    SerializeReferenceToPreviousObject(space,
                                       address,
                                       how_to_code,
                                       where_to_point);
  } else {
    // Object has not yet been serialized.  Serialize it here.
    ObjectSerializer serializer(this,
                                heap_object,
                                sink_,
                                how_to_code,
                                where_to_point);
    serializer.Serialize();
  }
}


void Serializer::ObjectSerializer::Serialize() {
  int space = Serializer::SpaceOfObject(object_);
  int size = object_->Size();

  sink_->Put(kNewObject + reference_representation_ + space,
             "ObjectSerialization");
  sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");

  LOG(i::Isolate::Current(),
      SnapshotPositionEvent(object_->address(), sink_->Position()));

  // Mark this object as already serialized.
  bool start_new_page;
  int offset = serializer_->Allocate(space, size, &start_new_page);
  serializer_->address_mapper()->AddMapping(object_, offset);
  if (start_new_page) {
    sink_->Put(kNewPage, "NewPage");
    sink_->PutSection(space, "NewPageSpace");
  }

  // Serialize the map (first word of the object).
  serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject);

  // Serialize the rest of the object.
  CHECK_EQ(0, bytes_processed_so_far_);
  bytes_processed_so_far_ = kPointerSize;
  object_->IterateBody(object_->map()->instance_type(), size, this);
  OutputRawData(object_->address() + size);
}


void Serializer::ObjectSerializer::VisitPointers(Object** start,
                                                 Object** end) {
  Object** current = start;
  while (current < end) {
    while (current < end && (*current)->IsSmi()) current++;
    if (current < end) OutputRawData(reinterpret_cast<Address>(current));

    while (current < end && !(*current)->IsSmi()) {
      serializer_->SerializeObject(*current, kPlain, kStartOfObject);
      bytes_processed_so_far_ += kPointerSize;
      current++;
    }
  }
}


void Serializer::ObjectSerializer::VisitExternalReferences(Address* start,
                                                           Address* end) {
  Address references_start = reinterpret_cast<Address>(start);
  OutputRawData(references_start);

  for (Address* current = start; current < end; current++) {
    sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
    int reference_id = serializer_->EncodeExternalReference(*current);
    sink_->PutInt(reference_id, "reference id");
  }
  bytes_processed_so_far_ += static_cast<int>((end - start) * kPointerSize);
}


void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
  Address target_start = rinfo->target_address_address();
  OutputRawData(target_start);
  Address target = rinfo->target_address();
  uint32_t encoding = serializer_->EncodeExternalReference(target);
  CHECK(target == NULL ? encoding == 0 : encoding != 0);
  int representation;
  // Can't use a ternary operator because of gcc.
  if (rinfo->IsCodedSpecially()) {
    representation = kStartOfObject + kFromCode;
  } else {
    representation = kStartOfObject + kPlain;
  }
  sink_->Put(kExternalReference + representation, "ExternalReference");
  sink_->PutInt(encoding, "reference id");
  bytes_processed_so_far_ += rinfo->target_address_size();
}


void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
  CHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
  Address target_start = rinfo->target_address_address();
  OutputRawData(target_start);
  Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
  serializer_->SerializeObject(target, kFromCode, kFirstInstruction);
  bytes_processed_so_far_ += rinfo->target_address_size();
}


void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
  Code* target = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
  OutputRawData(entry_address);
  serializer_->SerializeObject(target, kPlain, kFirstInstruction);
  bytes_processed_so_far_ += kPointerSize;
}


void Serializer::ObjectSerializer::VisitGlobalPropertyCell(RelocInfo* rinfo) {
  // We shouldn't have any global property cell references in code
  // objects in the snapshot.
  UNREACHABLE();
}


void Serializer::ObjectSerializer::VisitExternalAsciiString(
    v8::String::ExternalAsciiStringResource** resource_pointer) {
  Address references_start = reinterpret_cast<Address>(resource_pointer);
  OutputRawData(references_start);
  for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
    Object* source = HEAP->natives_source_cache()->get(i);
    if (!source->IsUndefined()) {
      ExternalAsciiString* string = ExternalAsciiString::cast(source);
      typedef v8::String::ExternalAsciiStringResource Resource;
      Resource* resource = string->resource();
      if (resource == *resource_pointer) {
        sink_->Put(kNativesStringResource, "NativesStringResource");
        sink_->PutSection(i, "NativesStringResourceEnd");
        bytes_processed_so_far_ += sizeof(resource);
        return;
      }
    }
  }
  // One of the strings in the natives cache should match the resource.  We
  // can't serialize any other kinds of external strings.
  UNREACHABLE();
}


void Serializer::ObjectSerializer::OutputRawData(Address up_to) {
  Address object_start = object_->address();
  int up_to_offset = static_cast<int>(up_to - object_start);
  int skipped = up_to_offset - bytes_processed_so_far_;
  // This assert will fail if the reloc info gives us the target_address_address
  // locations in a non-ascending order.  Luckily that doesn't happen.
  ASSERT(skipped >= 0);
  if (skipped != 0) {
    Address base = object_start + bytes_processed_so_far_;
#define RAW_CASE(index, length)                                                \
    if (skipped == length) {                                                   \
      sink_->PutSection(kRawData + index, "RawDataFixed");                     \
    } else  /* NOLINT */
    COMMON_RAW_LENGTHS(RAW_CASE)
#undef RAW_CASE
    {  /* NOLINT */
      sink_->Put(kRawData, "RawData");
      sink_->PutInt(skipped, "length");
    }
    for (int i = 0; i < skipped; i++) {
      unsigned int data = base[i];
      sink_->PutSection(data, "Byte");
    }
    bytes_processed_so_far_ += skipped;
  }
}


int Serializer::SpaceOfObject(HeapObject* object) {
  for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
    AllocationSpace s = static_cast<AllocationSpace>(i);
    if (HEAP->InSpace(object, s)) {
      if (i == LO_SPACE) {
        if (object->IsCode()) {
          return kLargeCode;
        } else if (object->IsFixedArray()) {
          return kLargeFixedArray;
        } else {
          return kLargeData;
        }
      }
      return i;
    }
  }
  UNREACHABLE();
  return 0;
}


int Serializer::SpaceOfAlreadySerializedObject(HeapObject* object) {
  for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
    AllocationSpace s = static_cast<AllocationSpace>(i);
    if (HEAP->InSpace(object, s)) {
      return i;
    }
  }
  UNREACHABLE();
  return 0;
}


int Serializer::Allocate(int space, int size, bool* new_page) {
  CHECK(space >= 0 && space < kNumberOfSpaces);
  if (SpaceIsLarge(space)) {
    // In large object space we merely number the objects instead of trying to
    // determine some sort of address.
    *new_page = true;
    large_object_total_ += size;
    return fullness_[LO_SPACE]++;
  }
  *new_page = false;
  if (fullness_[space] == 0) {
    *new_page = true;
  }
  if (SpaceIsPaged(space)) {
    // Paged spaces are a little special.  We encode their addresses as if the
    // pages were all contiguous and each page were filled up in the range
    // 0 - Page::kObjectAreaSize.  In practice the pages may not be contiguous
    // and allocation does not start at offset 0 in the page, but this scheme
    // means the deserializer can get the page number quickly by shifting the
    // serialized address.
    CHECK(IsPowerOf2(Page::kPageSize));
    int used_in_this_page = (fullness_[space] & (Page::kPageSize - 1));
    CHECK(size <= Page::kObjectAreaSize);
    if (used_in_this_page + size > Page::kObjectAreaSize) {
      *new_page = true;
      fullness_[space] = RoundUp(fullness_[space], Page::kPageSize);
    }
  }
  int allocation_address = fullness_[space];
  fullness_[space] = allocation_address + size;
  return allocation_address;
}


} }  // namespace v8::internal