1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bootstrapper.h"
#include "debug.h"
#include "deoptimizer.h"
#include "heap-profiler.h"
#include "hydrogen.h"
#include "lithium-allocator.h"
#include "log.h"
#include "runtime-profiler.h"
#include "serialize.h"
#include "simulator.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
bool V8::is_running_ = false;
bool V8::has_been_setup_ = false;
bool V8::has_been_disposed_ = false;
bool V8::has_fatal_error_ = false;
bool V8::use_crankshaft_ = true;
bool V8::Initialize(Deserializer* des) {
bool create_heap_objects = des == NULL;
if (has_been_disposed_ || has_fatal_error_) return false;
if (IsRunning()) return true;
#if defined(V8_TARGET_ARCH_ARM) && !defined(USE_ARM_EABI)
use_crankshaft_ = false;
#else
use_crankshaft_ = FLAG_crankshaft;
#endif
// Peephole optimization might interfere with deoptimization.
FLAG_peephole_optimization = !use_crankshaft_;
is_running_ = true;
has_been_setup_ = true;
has_fatal_error_ = false;
has_been_disposed_ = false;
#ifdef DEBUG
// The initialization process does not handle memory exhaustion.
DisallowAllocationFailure disallow_allocation_failure;
#endif
// Enable logging before setting up the heap
Logger::Setup();
CpuProfiler::Setup();
HeapProfiler::Setup();
// Setup the platform OS support.
OS::Setup();
// Initialize other runtime facilities
#if defined(USE_SIMULATOR)
#if defined(V8_TARGET_ARCH_ARM)
Simulator::Initialize();
#elif defined(V8_TARGET_ARCH_MIPS)
::assembler::mips::Simulator::Initialize();
#endif
#endif
{ // NOLINT
// Ensure that the thread has a valid stack guard. The v8::Locker object
// will ensure this too, but we don't have to use lockers if we are only
// using one thread.
ExecutionAccess lock;
StackGuard::InitThread(lock);
}
// Setup the object heap
ASSERT(!Heap::HasBeenSetup());
if (!Heap::Setup(create_heap_objects)) {
SetFatalError();
return false;
}
Bootstrapper::Initialize(create_heap_objects);
Builtins::Setup(create_heap_objects);
Top::Initialize();
if (FLAG_preemption) {
v8::Locker locker;
v8::Locker::StartPreemption(100);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
Debug::Setup(create_heap_objects);
#endif
StubCache::Initialize(create_heap_objects);
// If we are deserializing, read the state into the now-empty heap.
if (des != NULL) {
des->Deserialize();
StubCache::Clear();
}
// Deserializing may put strange things in the root array's copy of the
// stack guard.
Heap::SetStackLimits();
// Setup the CPU support. Must be done after heap setup and after
// any deserialization because we have to have the initial heap
// objects in place for creating the code object used for probing.
CPU::Setup();
Deoptimizer::Setup();
LAllocator::Setup();
RuntimeProfiler::Setup();
// If we are deserializing, log non-function code objects and compiled
// functions found in the snapshot.
if (des != NULL && FLAG_log_code) {
HandleScope scope;
LOG(LogCodeObjects());
LOG(LogCompiledFunctions());
}
return true;
}
void V8::SetFatalError() {
is_running_ = false;
has_fatal_error_ = true;
}
void V8::TearDown() {
if (!has_been_setup_ || has_been_disposed_) return;
if (FLAG_time_hydrogen) HStatistics::Instance()->Print();
// We must stop the logger before we tear down other components.
Logger::EnsureTickerStopped();
Deoptimizer::TearDown();
if (FLAG_preemption) {
v8::Locker locker;
v8::Locker::StopPreemption();
}
Builtins::TearDown();
Bootstrapper::TearDown();
Top::TearDown();
HeapProfiler::TearDown();
CpuProfiler::TearDown();
RuntimeProfiler::TearDown();
Logger::TearDown();
Heap::TearDown();
is_running_ = false;
has_been_disposed_ = true;
}
static uint32_t random_seed() {
if (FLAG_random_seed == 0) {
return random();
}
return FLAG_random_seed;
}
typedef struct {
uint32_t hi;
uint32_t lo;
} random_state;
// Random number generator using George Marsaglia's MWC algorithm.
static uint32_t random_base(random_state *state) {
// Initialize seed using the system random(). If one of the seeds
// should ever become zero again, or if random() returns zero, we
// avoid getting stuck with zero bits in hi or lo by re-initializing
// them on demand.
if (state->hi == 0) state->hi = random_seed();
if (state->lo == 0) state->lo = random_seed();
// Mix the bits.
state->hi = 36969 * (state->hi & 0xFFFF) + (state->hi >> 16);
state->lo = 18273 * (state->lo & 0xFFFF) + (state->lo >> 16);
return (state->hi << 16) + (state->lo & 0xFFFF);
}
// Used by JavaScript APIs
uint32_t V8::Random() {
static random_state state = {0, 0};
return random_base(&state);
}
// Used internally by the JIT and memory allocator for security
// purposes. So, we keep a different state to prevent informations
// leaks that could be used in an exploit.
uint32_t V8::RandomPrivate() {
static random_state state = {0, 0};
return random_base(&state);
}
bool V8::IdleNotification() {
// Returning true tells the caller that there is no need to call
// IdleNotification again.
if (!FLAG_use_idle_notification) return true;
// Tell the heap that it may want to adjust.
return Heap::IdleNotification();
}
// Use a union type to avoid type-aliasing optimizations in GCC.
typedef union {
double double_value;
uint64_t uint64_t_value;
} double_int_union;
Object* V8::FillHeapNumberWithRandom(Object* heap_number) {
uint64_t random_bits = Random();
// Make a double* from address (heap_number + sizeof(double)).
double_int_union* r = reinterpret_cast<double_int_union*>(
reinterpret_cast<char*>(heap_number) +
HeapNumber::kValueOffset - kHeapObjectTag);
// Convert 32 random bits to 0.(32 random bits) in a double
// by computing:
// ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
const double binary_million = 1048576.0;
r->double_value = binary_million;
r->uint64_t_value |= random_bits;
r->double_value -= binary_million;
return heap_number;
}
} } // namespace v8::internal
|