1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
|
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
// A lightweight X64 Assembler.
#ifndef V8_X64_ASSEMBLER_X64_H_
#define V8_X64_ASSEMBLER_X64_H_
#include "serialize.h"
namespace v8 {
namespace internal {
// Utility functions
// Test whether a 64-bit value is in a specific range.
inline bool is_uint32(int64_t x) {
static const uint64_t kMaxUInt32 = V8_UINT64_C(0xffffffff);
return static_cast<uint64_t>(x) <= kMaxUInt32;
}
inline bool is_int32(int64_t x) {
static const int64_t kMinInt32 = -V8_INT64_C(0x80000000);
return is_uint32(x - kMinInt32);
}
inline bool uint_is_int32(uint64_t x) {
static const uint64_t kMaxInt32 = V8_UINT64_C(0x7fffffff);
return x <= kMaxInt32;
}
inline bool is_uint32(uint64_t x) {
static const uint64_t kMaxUInt32 = V8_UINT64_C(0xffffffff);
return x <= kMaxUInt32;
}
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
//
struct Register {
// The non-allocatable registers are:
// rsp - stack pointer
// rbp - frame pointer
// rsi - context register
// r10 - fixed scratch register
// r12 - smi constant register
// r13 - root register
static const int kNumRegisters = 16;
static const int kNumAllocatableRegisters = 10;
static int ToAllocationIndex(Register reg) {
return kAllocationIndexByRegisterCode[reg.code()];
}
static Register FromAllocationIndex(int index) {
ASSERT(index >= 0 && index < kNumAllocatableRegisters);
Register result = { kRegisterCodeByAllocationIndex[index] };
return result;
}
static const char* AllocationIndexToString(int index) {
ASSERT(index >= 0 && index < kNumAllocatableRegisters);
const char* const names[] = {
"rax",
"rbx",
"rdx",
"rcx",
"rdi",
"r8",
"r9",
"r11",
"r14",
"r15"
};
return names[index];
}
static Register from_code(int code) {
Register r = { code };
return r;
}
bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
bool is(Register reg) const { return code_ == reg.code_; }
// rax, rbx, rcx and rdx are byte registers, the rest are not.
bool is_byte_register() const { return code_ <= 3; }
int code() const {
ASSERT(is_valid());
return code_;
}
int bit() const {
return 1 << code_;
}
// Return the high bit of the register code as a 0 or 1. Used often
// when constructing the REX prefix byte.
int high_bit() const {
return code_ >> 3;
}
// Return the 3 low bits of the register code. Used when encoding registers
// in modR/M, SIB, and opcode bytes.
int low_bits() const {
return code_ & 0x7;
}
// Unfortunately we can't make this private in a struct when initializing
// by assignment.
int code_;
private:
static const int kRegisterCodeByAllocationIndex[kNumAllocatableRegisters];
static const int kAllocationIndexByRegisterCode[kNumRegisters];
};
const int kRegister_rax_Code = 0;
const int kRegister_rcx_Code = 1;
const int kRegister_rdx_Code = 2;
const int kRegister_rbx_Code = 3;
const int kRegister_rsp_Code = 4;
const int kRegister_rbp_Code = 5;
const int kRegister_rsi_Code = 6;
const int kRegister_rdi_Code = 7;
const int kRegister_r8_Code = 8;
const int kRegister_r9_Code = 9;
const int kRegister_r10_Code = 10;
const int kRegister_r11_Code = 11;
const int kRegister_r12_Code = 12;
const int kRegister_r13_Code = 13;
const int kRegister_r14_Code = 14;
const int kRegister_r15_Code = 15;
const int kRegister_no_reg_Code = -1;
const Register rax = { kRegister_rax_Code };
const Register rcx = { kRegister_rcx_Code };
const Register rdx = { kRegister_rdx_Code };
const Register rbx = { kRegister_rbx_Code };
const Register rsp = { kRegister_rsp_Code };
const Register rbp = { kRegister_rbp_Code };
const Register rsi = { kRegister_rsi_Code };
const Register rdi = { kRegister_rdi_Code };
const Register r8 = { kRegister_r8_Code };
const Register r9 = { kRegister_r9_Code };
const Register r10 = { kRegister_r10_Code };
const Register r11 = { kRegister_r11_Code };
const Register r12 = { kRegister_r12_Code };
const Register r13 = { kRegister_r13_Code };
const Register r14 = { kRegister_r14_Code };
const Register r15 = { kRegister_r15_Code };
const Register no_reg = { kRegister_no_reg_Code };
struct XMMRegister {
static const int kNumRegisters = 16;
static const int kNumAllocatableRegisters = 15;
static int ToAllocationIndex(XMMRegister reg) {
ASSERT(reg.code() != 0);
return reg.code() - 1;
}
static XMMRegister FromAllocationIndex(int index) {
ASSERT(0 <= index && index < kNumAllocatableRegisters);
XMMRegister result = { index + 1 };
return result;
}
static const char* AllocationIndexToString(int index) {
ASSERT(index >= 0 && index < kNumAllocatableRegisters);
const char* const names[] = {
"xmm1",
"xmm2",
"xmm3",
"xmm4",
"xmm5",
"xmm6",
"xmm7",
"xmm8",
"xmm9",
"xmm10",
"xmm11",
"xmm12",
"xmm13",
"xmm14",
"xmm15"
};
return names[index];
}
static XMMRegister from_code(int code) {
ASSERT(code >= 0);
ASSERT(code < kNumRegisters);
XMMRegister r = { code };
return r;
}
bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
bool is(XMMRegister reg) const { return code_ == reg.code_; }
int code() const {
ASSERT(is_valid());
return code_;
}
// Return the high bit of the register code as a 0 or 1. Used often
// when constructing the REX prefix byte.
int high_bit() const {
return code_ >> 3;
}
// Return the 3 low bits of the register code. Used when encoding registers
// in modR/M, SIB, and opcode bytes.
int low_bits() const {
return code_ & 0x7;
}
int code_;
};
const XMMRegister xmm0 = { 0 };
const XMMRegister xmm1 = { 1 };
const XMMRegister xmm2 = { 2 };
const XMMRegister xmm3 = { 3 };
const XMMRegister xmm4 = { 4 };
const XMMRegister xmm5 = { 5 };
const XMMRegister xmm6 = { 6 };
const XMMRegister xmm7 = { 7 };
const XMMRegister xmm8 = { 8 };
const XMMRegister xmm9 = { 9 };
const XMMRegister xmm10 = { 10 };
const XMMRegister xmm11 = { 11 };
const XMMRegister xmm12 = { 12 };
const XMMRegister xmm13 = { 13 };
const XMMRegister xmm14 = { 14 };
const XMMRegister xmm15 = { 15 };
typedef XMMRegister DoubleRegister;
enum Condition {
// any value < 0 is considered no_condition
no_condition = -1,
overflow = 0,
no_overflow = 1,
below = 2,
above_equal = 3,
equal = 4,
not_equal = 5,
below_equal = 6,
above = 7,
negative = 8,
positive = 9,
parity_even = 10,
parity_odd = 11,
less = 12,
greater_equal = 13,
less_equal = 14,
greater = 15,
// Fake conditions that are handled by the
// opcodes using them.
always = 16,
never = 17,
// aliases
carry = below,
not_carry = above_equal,
zero = equal,
not_zero = not_equal,
sign = negative,
not_sign = positive,
last_condition = greater
};
// Returns the equivalent of !cc.
// Negation of the default no_condition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc) {
return static_cast<Condition>(cc ^ 1);
}
// Corresponds to transposing the operands of a comparison.
inline Condition ReverseCondition(Condition cc) {
switch (cc) {
case below:
return above;
case above:
return below;
case above_equal:
return below_equal;
case below_equal:
return above_equal;
case less:
return greater;
case greater:
return less;
case greater_equal:
return less_equal;
case less_equal:
return greater_equal;
default:
return cc;
};
}
// -----------------------------------------------------------------------------
// Machine instruction Immediates
class Immediate BASE_EMBEDDED {
public:
explicit Immediate(int32_t value) : value_(value) {}
private:
int32_t value_;
friend class Assembler;
};
// -----------------------------------------------------------------------------
// Machine instruction Operands
enum ScaleFactor {
times_1 = 0,
times_2 = 1,
times_4 = 2,
times_8 = 3,
times_int_size = times_4,
times_pointer_size = times_8
};
class Operand BASE_EMBEDDED {
public:
// [base + disp/r]
Operand(Register base, int32_t disp);
// [base + index*scale + disp/r]
Operand(Register base,
Register index,
ScaleFactor scale,
int32_t disp);
// [index*scale + disp/r]
Operand(Register index,
ScaleFactor scale,
int32_t disp);
// Offset from existing memory operand.
// Offset is added to existing displacement as 32-bit signed values and
// this must not overflow.
Operand(const Operand& base, int32_t offset);
// Checks whether either base or index register is the given register.
// Does not check the "reg" part of the Operand.
bool AddressUsesRegister(Register reg) const;
// Queries related to the size of the generated instruction.
// Whether the generated instruction will have a REX prefix.
bool requires_rex() const { return rex_ != 0; }
// Size of the ModR/M, SIB and displacement parts of the generated
// instruction.
int operand_size() const { return len_; }
private:
byte rex_;
byte buf_[6];
// The number of bytes of buf_ in use.
byte len_;
// Set the ModR/M byte without an encoded 'reg' register. The
// register is encoded later as part of the emit_operand operation.
// set_modrm can be called before or after set_sib and set_disp*.
inline void set_modrm(int mod, Register rm);
// Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
inline void set_sib(ScaleFactor scale, Register index, Register base);
// Adds operand displacement fields (offsets added to the memory address).
// Needs to be called after set_sib, not before it.
inline void set_disp8(int disp);
inline void set_disp32(int disp);
friend class Assembler;
};
// CpuFeatures keeps track of which features are supported by the target CPU.
// Supported features must be enabled by a Scope before use.
// Example:
// if (CpuFeatures::IsSupported(SSE3)) {
// CpuFeatures::Scope fscope(SSE3);
// // Generate SSE3 floating point code.
// } else {
// // Generate standard x87 or SSE2 floating point code.
// }
class CpuFeatures : public AllStatic {
public:
// Detect features of the target CPU. Set safe defaults if the serializer
// is enabled (snapshots must be portable).
static void Probe();
// Check whether a feature is supported by the target CPU.
static bool IsSupported(CpuFeature f) {
ASSERT(initialized_);
if (f == SSE2 && !FLAG_enable_sse2) return false;
if (f == SSE3 && !FLAG_enable_sse3) return false;
if (f == SSE4_1 && !FLAG_enable_sse4_1) return false;
if (f == CMOV && !FLAG_enable_cmov) return false;
if (f == RDTSC && !FLAG_enable_rdtsc) return false;
if (f == SAHF && !FLAG_enable_sahf) return false;
return (supported_ & (V8_UINT64_C(1) << f)) != 0;
}
#ifdef DEBUG
// Check whether a feature is currently enabled.
static bool IsEnabled(CpuFeature f) {
ASSERT(initialized_);
Isolate* isolate = Isolate::UncheckedCurrent();
if (isolate == NULL) {
// When no isolate is available, work as if we're running in
// release mode.
return IsSupported(f);
}
uint64_t enabled = isolate->enabled_cpu_features();
return (enabled & (V8_UINT64_C(1) << f)) != 0;
}
#endif
// Enable a specified feature within a scope.
class Scope BASE_EMBEDDED {
#ifdef DEBUG
public:
explicit Scope(CpuFeature f) {
uint64_t mask = V8_UINT64_C(1) << f;
ASSERT(CpuFeatures::IsSupported(f));
ASSERT(!Serializer::enabled() ||
(CpuFeatures::found_by_runtime_probing_ & mask) == 0);
isolate_ = Isolate::UncheckedCurrent();
old_enabled_ = 0;
if (isolate_ != NULL) {
old_enabled_ = isolate_->enabled_cpu_features();
isolate_->set_enabled_cpu_features(old_enabled_ | mask);
}
}
~Scope() {
ASSERT_EQ(Isolate::UncheckedCurrent(), isolate_);
if (isolate_ != NULL) {
isolate_->set_enabled_cpu_features(old_enabled_);
}
}
private:
Isolate* isolate_;
uint64_t old_enabled_;
#else
public:
explicit Scope(CpuFeature f) {}
#endif
};
private:
// Safe defaults include SSE2 and CMOV for X64. It is always available, if
// anyone checks, but they shouldn't need to check.
// The required user mode extensions in X64 are (from AMD64 ABI Table A.1):
// fpu, tsc, cx8, cmov, mmx, sse, sse2, fxsr, syscall
static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV);
#ifdef DEBUG
static bool initialized_;
#endif
static uint64_t supported_;
static uint64_t found_by_runtime_probing_;
DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
};
class Assembler : public AssemblerBase {
private:
// We check before assembling an instruction that there is sufficient
// space to write an instruction and its relocation information.
// The relocation writer's position must be kGap bytes above the end of
// the generated instructions. This leaves enough space for the
// longest possible x64 instruction, 15 bytes, and the longest possible
// relocation information encoding, RelocInfoWriter::kMaxLength == 16.
// (There is a 15 byte limit on x64 instruction length that rules out some
// otherwise valid instructions.)
// This allows for a single, fast space check per instruction.
static const int kGap = 32;
public:
// Create an assembler. Instructions and relocation information are emitted
// into a buffer, with the instructions starting from the beginning and the
// relocation information starting from the end of the buffer. See CodeDesc
// for a detailed comment on the layout (globals.h).
//
// If the provided buffer is NULL, the assembler allocates and grows its own
// buffer, and buffer_size determines the initial buffer size. The buffer is
// owned by the assembler and deallocated upon destruction of the assembler.
//
// If the provided buffer is not NULL, the assembler uses the provided buffer
// for code generation and assumes its size to be buffer_size. If the buffer
// is too small, a fatal error occurs. No deallocation of the buffer is done
// upon destruction of the assembler.
Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler();
// Overrides the default provided by FLAG_debug_code.
void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
// Avoids using instructions that vary in size in unpredictable ways between
// the snapshot and the running VM. This is needed by the full compiler so
// that it can recompile code with debug support and fix the PC.
void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
// GetCode emits any pending (non-emitted) code and fills the descriptor
// desc. GetCode() is idempotent; it returns the same result if no other
// Assembler functions are invoked in between GetCode() calls.
void GetCode(CodeDesc* desc);
// Read/Modify the code target in the relative branch/call instruction at pc.
// On the x64 architecture, we use relative jumps with a 32-bit displacement
// to jump to other Code objects in the Code space in the heap.
// Jumps to C functions are done indirectly through a 64-bit register holding
// the absolute address of the target.
// These functions convert between absolute Addresses of Code objects and
// the relative displacements stored in the code.
static inline Address target_address_at(Address pc);
static inline void set_target_address_at(Address pc, Address target);
// Return the code target address at a call site from the return address
// of that call in the instruction stream.
static inline Address target_address_from_return_address(Address pc);
// This sets the branch destination (which is in the instruction on x64).
// This is for calls and branches within generated code.
inline static void deserialization_set_special_target_at(
Address instruction_payload, Address target) {
set_target_address_at(instruction_payload, target);
}
// This sets the branch destination (which is a load instruction on x64).
// This is for calls and branches to runtime code.
inline static void set_external_target_at(Address instruction_payload,
Address target) {
*reinterpret_cast<Address*>(instruction_payload) = target;
}
inline Handle<Object> code_target_object_handle_at(Address pc);
// Number of bytes taken up by the branch target in the code.
static const int kSpecialTargetSize = 4; // Use 32-bit displacement.
// Distance between the address of the code target in the call instruction
// and the return address pushed on the stack.
static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement.
// Distance between the start of the JS return sequence and where the
// 32-bit displacement of a near call would be, relative to the pushed
// return address. TODO: Use return sequence length instead.
// Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
static const int kPatchReturnSequenceAddressOffset = 13 - 4;
// Distance between start of patched debug break slot and where the
// 32-bit displacement of a near call would be, relative to the pushed
// return address. TODO: Use return sequence length instead.
// Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
static const int kPatchDebugBreakSlotAddressOffset = 13 - 4;
// TODO(X64): Rename this, removing the "Real", after changing the above.
static const int kRealPatchReturnSequenceAddressOffset = 2;
// Some x64 JS code is padded with int3 to make it large
// enough to hold an instruction when the debugger patches it.
static const int kJumpInstructionLength = 13;
static const int kCallInstructionLength = 13;
static const int kJSReturnSequenceLength = 13;
static const int kShortCallInstructionLength = 5;
static const int kPatchDebugBreakSlotReturnOffset = 4;
// The debug break slot must be able to contain a call instruction.
static const int kDebugBreakSlotLength = kCallInstructionLength;
// One byte opcode for test eax,0xXXXXXXXX.
static const byte kTestEaxByte = 0xA9;
// One byte opcode for test al, 0xXX.
static const byte kTestAlByte = 0xA8;
// One byte opcode for nop.
static const byte kNopByte = 0x90;
// One byte prefix for a short conditional jump.
static const byte kJccShortPrefix = 0x70;
static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
static const byte kJcShortOpcode = kJccShortPrefix | carry;
static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
static const byte kJzShortOpcode = kJccShortPrefix | zero;
// ---------------------------------------------------------------------------
// Code generation
//
// Function names correspond one-to-one to x64 instruction mnemonics.
// Unless specified otherwise, instructions operate on 64-bit operands.
//
// If we need versions of an assembly instruction that operate on different
// width arguments, we add a single-letter suffix specifying the width.
// This is done for the following instructions: mov, cmp, inc, dec,
// add, sub, and test.
// There are no versions of these instructions without the suffix.
// - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
// - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
// - Instructions on 32-bit (doubleword) operands/registers use 'l'.
// - Instructions on 64-bit (quadword) operands/registers use 'q'.
//
// Some mnemonics, such as "and", are the same as C++ keywords.
// Naming conflicts with C++ keywords are resolved by adding a trailing '_'.
// Insert the smallest number of nop instructions
// possible to align the pc offset to a multiple
// of m, where m must be a power of 2.
void Align(int m);
void Nop(int bytes = 1);
// Aligns code to something that's optimal for a jump target for the platform.
void CodeTargetAlign();
// Stack
void pushfq();
void popfq();
void push(Immediate value);
// Push a 32 bit integer, and guarantee that it is actually pushed as a
// 32 bit value, the normal push will optimize the 8 bit case.
void push_imm32(int32_t imm32);
void push(Register src);
void push(const Operand& src);
void pop(Register dst);
void pop(const Operand& dst);
void enter(Immediate size);
void leave();
// Moves
void movb(Register dst, const Operand& src);
void movb(Register dst, Immediate imm);
void movb(const Operand& dst, Register src);
// Move the low 16 bits of a 64-bit register value to a 16-bit
// memory location.
void movw(const Operand& dst, Register src);
void movl(Register dst, Register src);
void movl(Register dst, const Operand& src);
void movl(const Operand& dst, Register src);
void movl(const Operand& dst, Immediate imm);
// Load a 32-bit immediate value, zero-extended to 64 bits.
void movl(Register dst, Immediate imm32);
// Move 64 bit register value to 64-bit memory location.
void movq(const Operand& dst, Register src);
// Move 64 bit memory location to 64-bit register value.
void movq(Register dst, const Operand& src);
void movq(Register dst, Register src);
// Sign extends immediate 32-bit value to 64 bits.
void movq(Register dst, Immediate x);
// Move the offset of the label location relative to the current
// position (after the move) to the destination.
void movl(const Operand& dst, Label* src);
// Move sign extended immediate to memory location.
void movq(const Operand& dst, Immediate value);
// Instructions to load a 64-bit immediate into a register.
// All 64-bit immediates must have a relocation mode.
void movq(Register dst, void* ptr, RelocInfo::Mode rmode);
void movq(Register dst, int64_t value, RelocInfo::Mode rmode);
void movq(Register dst, const char* s, RelocInfo::Mode rmode);
// Moves the address of the external reference into the register.
void movq(Register dst, ExternalReference ext);
void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode);
void movsxbq(Register dst, const Operand& src);
void movsxwq(Register dst, const Operand& src);
void movsxlq(Register dst, Register src);
void movsxlq(Register dst, const Operand& src);
void movzxbq(Register dst, const Operand& src);
void movzxbl(Register dst, const Operand& src);
void movzxwq(Register dst, const Operand& src);
void movzxwl(Register dst, const Operand& src);
// Repeated moves.
void repmovsb();
void repmovsw();
void repmovsl();
void repmovsq();
// Instruction to load from an immediate 64-bit pointer into RAX.
void load_rax(void* ptr, RelocInfo::Mode rmode);
void load_rax(ExternalReference ext);
// Conditional moves.
void cmovq(Condition cc, Register dst, Register src);
void cmovq(Condition cc, Register dst, const Operand& src);
void cmovl(Condition cc, Register dst, Register src);
void cmovl(Condition cc, Register dst, const Operand& src);
// Exchange two registers
void xchg(Register dst, Register src);
// Arithmetics
void addl(Register dst, Register src) {
arithmetic_op_32(0x03, dst, src);
}
void addl(Register dst, Immediate src) {
immediate_arithmetic_op_32(0x0, dst, src);
}
void addl(Register dst, const Operand& src) {
arithmetic_op_32(0x03, dst, src);
}
void addl(const Operand& dst, Immediate src) {
immediate_arithmetic_op_32(0x0, dst, src);
}
void addl(const Operand& dst, Register src) {
arithmetic_op_32(0x01, src, dst);
}
void addq(Register dst, Register src) {
arithmetic_op(0x03, dst, src);
}
void addq(Register dst, const Operand& src) {
arithmetic_op(0x03, dst, src);
}
void addq(const Operand& dst, Register src) {
arithmetic_op(0x01, src, dst);
}
void addq(Register dst, Immediate src) {
immediate_arithmetic_op(0x0, dst, src);
}
void addq(const Operand& dst, Immediate src) {
immediate_arithmetic_op(0x0, dst, src);
}
void sbbl(Register dst, Register src) {
arithmetic_op_32(0x1b, dst, src);
}
void sbbq(Register dst, Register src) {
arithmetic_op(0x1b, dst, src);
}
void cmpb(Register dst, Immediate src) {
immediate_arithmetic_op_8(0x7, dst, src);
}
void cmpb_al(Immediate src);
void cmpb(Register dst, Register src) {
arithmetic_op(0x3A, dst, src);
}
void cmpb(Register dst, const Operand& src) {
arithmetic_op(0x3A, dst, src);
}
void cmpb(const Operand& dst, Register src) {
arithmetic_op(0x38, src, dst);
}
void cmpb(const Operand& dst, Immediate src) {
immediate_arithmetic_op_8(0x7, dst, src);
}
void cmpw(const Operand& dst, Immediate src) {
immediate_arithmetic_op_16(0x7, dst, src);
}
void cmpw(Register dst, Immediate src) {
immediate_arithmetic_op_16(0x7, dst, src);
}
void cmpw(Register dst, const Operand& src) {
arithmetic_op_16(0x3B, dst, src);
}
void cmpw(Register dst, Register src) {
arithmetic_op_16(0x3B, dst, src);
}
void cmpw(const Operand& dst, Register src) {
arithmetic_op_16(0x39, src, dst);
}
void cmpl(Register dst, Register src) {
arithmetic_op_32(0x3B, dst, src);
}
void cmpl(Register dst, const Operand& src) {
arithmetic_op_32(0x3B, dst, src);
}
void cmpl(const Operand& dst, Register src) {
arithmetic_op_32(0x39, src, dst);
}
void cmpl(Register dst, Immediate src) {
immediate_arithmetic_op_32(0x7, dst, src);
}
void cmpl(const Operand& dst, Immediate src) {
immediate_arithmetic_op_32(0x7, dst, src);
}
void cmpq(Register dst, Register src) {
arithmetic_op(0x3B, dst, src);
}
void cmpq(Register dst, const Operand& src) {
arithmetic_op(0x3B, dst, src);
}
void cmpq(const Operand& dst, Register src) {
arithmetic_op(0x39, src, dst);
}
void cmpq(Register dst, Immediate src) {
immediate_arithmetic_op(0x7, dst, src);
}
void cmpq(const Operand& dst, Immediate src) {
immediate_arithmetic_op(0x7, dst, src);
}
void and_(Register dst, Register src) {
arithmetic_op(0x23, dst, src);
}
void and_(Register dst, const Operand& src) {
arithmetic_op(0x23, dst, src);
}
void and_(const Operand& dst, Register src) {
arithmetic_op(0x21, src, dst);
}
void and_(Register dst, Immediate src) {
immediate_arithmetic_op(0x4, dst, src);
}
void and_(const Operand& dst, Immediate src) {
immediate_arithmetic_op(0x4, dst, src);
}
void andl(Register dst, Immediate src) {
immediate_arithmetic_op_32(0x4, dst, src);
}
void andl(Register dst, Register src) {
arithmetic_op_32(0x23, dst, src);
}
void andl(Register dst, const Operand& src) {
arithmetic_op_32(0x23, dst, src);
}
void andb(Register dst, Immediate src) {
immediate_arithmetic_op_8(0x4, dst, src);
}
void decq(Register dst);
void decq(const Operand& dst);
void decl(Register dst);
void decl(const Operand& dst);
void decb(Register dst);
void decb(const Operand& dst);
// Sign-extends rax into rdx:rax.
void cqo();
// Sign-extends eax into edx:eax.
void cdq();
// Divide rdx:rax by src. Quotient in rax, remainder in rdx.
void idivq(Register src);
// Divide edx:eax by lower 32 bits of src. Quotient in eax, rem. in edx.
void idivl(Register src);
// Signed multiply instructions.
void imul(Register src); // rdx:rax = rax * src.
void imul(Register dst, Register src); // dst = dst * src.
void imul(Register dst, const Operand& src); // dst = dst * src.
void imul(Register dst, Register src, Immediate imm); // dst = src * imm.
// Signed 32-bit multiply instructions.
void imull(Register dst, Register src); // dst = dst * src.
void imull(Register dst, const Operand& src); // dst = dst * src.
void imull(Register dst, Register src, Immediate imm); // dst = src * imm.
void incq(Register dst);
void incq(const Operand& dst);
void incl(Register dst);
void incl(const Operand& dst);
void lea(Register dst, const Operand& src);
void leal(Register dst, const Operand& src);
// Multiply rax by src, put the result in rdx:rax.
void mul(Register src);
void neg(Register dst);
void neg(const Operand& dst);
void negl(Register dst);
void not_(Register dst);
void not_(const Operand& dst);
void notl(Register dst);
void or_(Register dst, Register src) {
arithmetic_op(0x0B, dst, src);
}
void orl(Register dst, Register src) {
arithmetic_op_32(0x0B, dst, src);
}
void or_(Register dst, const Operand& src) {
arithmetic_op(0x0B, dst, src);
}
void orl(Register dst, const Operand& src) {
arithmetic_op_32(0x0B, dst, src);
}
void or_(const Operand& dst, Register src) {
arithmetic_op(0x09, src, dst);
}
void or_(Register dst, Immediate src) {
immediate_arithmetic_op(0x1, dst, src);
}
void orl(Register dst, Immediate src) {
immediate_arithmetic_op_32(0x1, dst, src);
}
void or_(const Operand& dst, Immediate src) {
immediate_arithmetic_op(0x1, dst, src);
}
void orl(const Operand& dst, Immediate src) {
immediate_arithmetic_op_32(0x1, dst, src);
}
void rcl(Register dst, Immediate imm8) {
shift(dst, imm8, 0x2);
}
void rol(Register dst, Immediate imm8) {
shift(dst, imm8, 0x0);
}
void rcr(Register dst, Immediate imm8) {
shift(dst, imm8, 0x3);
}
void ror(Register dst, Immediate imm8) {
shift(dst, imm8, 0x1);
}
// Shifts dst:src left by cl bits, affecting only dst.
void shld(Register dst, Register src);
// Shifts src:dst right by cl bits, affecting only dst.
void shrd(Register dst, Register src);
// Shifts dst right, duplicating sign bit, by shift_amount bits.
// Shifting by 1 is handled efficiently.
void sar(Register dst, Immediate shift_amount) {
shift(dst, shift_amount, 0x7);
}
// Shifts dst right, duplicating sign bit, by shift_amount bits.
// Shifting by 1 is handled efficiently.
void sarl(Register dst, Immediate shift_amount) {
shift_32(dst, shift_amount, 0x7);
}
// Shifts dst right, duplicating sign bit, by cl % 64 bits.
void sar_cl(Register dst) {
shift(dst, 0x7);
}
// Shifts dst right, duplicating sign bit, by cl % 64 bits.
void sarl_cl(Register dst) {
shift_32(dst, 0x7);
}
void shl(Register dst, Immediate shift_amount) {
shift(dst, shift_amount, 0x4);
}
void shl_cl(Register dst) {
shift(dst, 0x4);
}
void shll_cl(Register dst) {
shift_32(dst, 0x4);
}
void shll(Register dst, Immediate shift_amount) {
shift_32(dst, shift_amount, 0x4);
}
void shr(Register dst, Immediate shift_amount) {
shift(dst, shift_amount, 0x5);
}
void shr_cl(Register dst) {
shift(dst, 0x5);
}
void shrl_cl(Register dst) {
shift_32(dst, 0x5);
}
void shrl(Register dst, Immediate shift_amount) {
shift_32(dst, shift_amount, 0x5);
}
void store_rax(void* dst, RelocInfo::Mode mode);
void store_rax(ExternalReference ref);
void subq(Register dst, Register src) {
arithmetic_op(0x2B, dst, src);
}
void subq(Register dst, const Operand& src) {
arithmetic_op(0x2B, dst, src);
}
void subq(const Operand& dst, Register src) {
arithmetic_op(0x29, src, dst);
}
void subq(Register dst, Immediate src) {
immediate_arithmetic_op(0x5, dst, src);
}
void subq(const Operand& dst, Immediate src) {
immediate_arithmetic_op(0x5, dst, src);
}
void subl(Register dst, Register src) {
arithmetic_op_32(0x2B, dst, src);
}
void subl(Register dst, const Operand& src) {
arithmetic_op_32(0x2B, dst, src);
}
void subl(const Operand& dst, Immediate src) {
immediate_arithmetic_op_32(0x5, dst, src);
}
void subl(Register dst, Immediate src) {
immediate_arithmetic_op_32(0x5, dst, src);
}
void subb(Register dst, Immediate src) {
immediate_arithmetic_op_8(0x5, dst, src);
}
void testb(Register dst, Register src);
void testb(Register reg, Immediate mask);
void testb(const Operand& op, Immediate mask);
void testb(const Operand& op, Register reg);
void testl(Register dst, Register src);
void testl(Register reg, Immediate mask);
void testl(const Operand& op, Immediate mask);
void testq(const Operand& op, Register reg);
void testq(Register dst, Register src);
void testq(Register dst, Immediate mask);
void xor_(Register dst, Register src) {
if (dst.code() == src.code()) {
arithmetic_op_32(0x33, dst, src);
} else {
arithmetic_op(0x33, dst, src);
}
}
void xorl(Register dst, Register src) {
arithmetic_op_32(0x33, dst, src);
}
void xorl(Register dst, const Operand& src) {
arithmetic_op_32(0x33, dst, src);
}
void xorl(Register dst, Immediate src) {
immediate_arithmetic_op_32(0x6, dst, src);
}
void xorl(const Operand& dst, Immediate src) {
immediate_arithmetic_op_32(0x6, dst, src);
}
void xor_(Register dst, const Operand& src) {
arithmetic_op(0x33, dst, src);
}
void xor_(const Operand& dst, Register src) {
arithmetic_op(0x31, src, dst);
}
void xor_(Register dst, Immediate src) {
immediate_arithmetic_op(0x6, dst, src);
}
void xor_(const Operand& dst, Immediate src) {
immediate_arithmetic_op(0x6, dst, src);
}
// Bit operations.
void bt(const Operand& dst, Register src);
void bts(const Operand& dst, Register src);
// Miscellaneous
void clc();
void cld();
void cpuid();
void hlt();
void int3();
void nop();
void rdtsc();
void ret(int imm16);
void setcc(Condition cc, Register reg);
// Label operations & relative jumps (PPUM Appendix D)
//
// Takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// j(cc, &L); // forward branch to unbound label
// bind(&L); // bind label to the current pc
// j(cc, &L); // backward branch to bound label
// bind(&L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void bind(Label* L); // binds an unbound label L to the current code position
// Calls
// Call near relative 32-bit displacement, relative to next instruction.
void call(Label* L);
void call(Handle<Code> target,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
TypeFeedbackId ast_id = TypeFeedbackId::None());
// Calls directly to the given address using a relative offset.
// Should only ever be used in Code objects for calls within the
// same Code object. Should not be used when generating new code (use labels),
// but only when patching existing code.
void call(Address target);
// Call near absolute indirect, address in register
void call(Register adr);
// Call near indirect
void call(const Operand& operand);
// Jumps
// Jump short or near relative.
// Use a 32-bit signed displacement.
// Unconditional jump to L
void jmp(Label* L, Label::Distance distance = Label::kFar);
void jmp(Handle<Code> target, RelocInfo::Mode rmode);
// Jump near absolute indirect (r64)
void jmp(Register adr);
// Jump near absolute indirect (m64)
void jmp(const Operand& src);
// Conditional jumps
void j(Condition cc,
Label* L,
Label::Distance distance = Label::kFar);
void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
// Floating-point operations
void fld(int i);
void fld1();
void fldz();
void fldpi();
void fldln2();
void fld_s(const Operand& adr);
void fld_d(const Operand& adr);
void fstp_s(const Operand& adr);
void fstp_d(const Operand& adr);
void fstp(int index);
void fild_s(const Operand& adr);
void fild_d(const Operand& adr);
void fist_s(const Operand& adr);
void fistp_s(const Operand& adr);
void fistp_d(const Operand& adr);
void fisttp_s(const Operand& adr);
void fisttp_d(const Operand& adr);
void fabs();
void fchs();
void fadd(int i);
void fsub(int i);
void fmul(int i);
void fdiv(int i);
void fisub_s(const Operand& adr);
void faddp(int i = 1);
void fsubp(int i = 1);
void fsubrp(int i = 1);
void fmulp(int i = 1);
void fdivp(int i = 1);
void fprem();
void fprem1();
void fxch(int i = 1);
void fincstp();
void ffree(int i = 0);
void ftst();
void fucomp(int i);
void fucompp();
void fucomi(int i);
void fucomip();
void fcompp();
void fnstsw_ax();
void fwait();
void fnclex();
void fsin();
void fcos();
void fptan();
void fyl2x();
void f2xm1();
void fscale();
void fninit();
void frndint();
void sahf();
// SSE2 instructions
void movd(XMMRegister dst, Register src);
void movd(Register dst, XMMRegister src);
void movq(XMMRegister dst, Register src);
void movq(Register dst, XMMRegister src);
void movq(XMMRegister dst, XMMRegister src);
void extractps(Register dst, XMMRegister src, byte imm8);
// Don't use this unless it's important to keep the
// top half of the destination register unchanged.
// Used movaps when moving double values and movq for integer
// values in xmm registers.
void movsd(XMMRegister dst, XMMRegister src);
void movsd(const Operand& dst, XMMRegister src);
void movsd(XMMRegister dst, const Operand& src);
void movdqa(const Operand& dst, XMMRegister src);
void movdqa(XMMRegister dst, const Operand& src);
void movapd(XMMRegister dst, XMMRegister src);
void movaps(XMMRegister dst, XMMRegister src);
void movss(XMMRegister dst, const Operand& src);
void movss(const Operand& dst, XMMRegister src);
void cvttss2si(Register dst, const Operand& src);
void cvttss2si(Register dst, XMMRegister src);
void cvttsd2si(Register dst, const Operand& src);
void cvttsd2si(Register dst, XMMRegister src);
void cvttsd2siq(Register dst, XMMRegister src);
void cvtlsi2sd(XMMRegister dst, const Operand& src);
void cvtlsi2sd(XMMRegister dst, Register src);
void cvtqsi2sd(XMMRegister dst, const Operand& src);
void cvtqsi2sd(XMMRegister dst, Register src);
void cvtlsi2ss(XMMRegister dst, Register src);
void cvtss2sd(XMMRegister dst, XMMRegister src);
void cvtss2sd(XMMRegister dst, const Operand& src);
void cvtsd2ss(XMMRegister dst, XMMRegister src);
void cvtsd2si(Register dst, XMMRegister src);
void cvtsd2siq(Register dst, XMMRegister src);
void addsd(XMMRegister dst, XMMRegister src);
void subsd(XMMRegister dst, XMMRegister src);
void mulsd(XMMRegister dst, XMMRegister src);
void divsd(XMMRegister dst, XMMRegister src);
void andpd(XMMRegister dst, XMMRegister src);
void orpd(XMMRegister dst, XMMRegister src);
void xorpd(XMMRegister dst, XMMRegister src);
void xorps(XMMRegister dst, XMMRegister src);
void sqrtsd(XMMRegister dst, XMMRegister src);
void ucomisd(XMMRegister dst, XMMRegister src);
void ucomisd(XMMRegister dst, const Operand& src);
enum RoundingMode {
kRoundToNearest = 0x0,
kRoundDown = 0x1,
kRoundUp = 0x2,
kRoundToZero = 0x3
};
void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
void movmskpd(Register dst, XMMRegister src);
// The first argument is the reg field, the second argument is the r/m field.
void emit_sse_operand(XMMRegister dst, XMMRegister src);
void emit_sse_operand(XMMRegister reg, const Operand& adr);
void emit_sse_operand(XMMRegister dst, Register src);
void emit_sse_operand(Register dst, XMMRegister src);
// Debugging
void Print();
// Check the code size generated from label to here.
int SizeOfCodeGeneratedSince(Label* label) {
return pc_offset() - label->pos();
}
// Mark address of the ExitJSFrame code.
void RecordJSReturn();
// Mark address of a debug break slot.
void RecordDebugBreakSlot();
// Record a comment relocation entry that can be used by a disassembler.
// Use --code-comments to enable.
void RecordComment(const char* msg, bool force = false);
// Writes a single word of data in the code stream.
// Used for inline tables, e.g., jump-tables.
void db(uint8_t data);
void dd(uint32_t data);
int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
PositionsRecorder* positions_recorder() { return &positions_recorder_; }
// Check if there is less than kGap bytes available in the buffer.
// If this is the case, we need to grow the buffer before emitting
// an instruction or relocation information.
inline bool buffer_overflow() const {
return pc_ >= reloc_info_writer.pos() - kGap;
}
// Get the number of bytes available in the buffer.
inline int available_space() const {
return static_cast<int>(reloc_info_writer.pos() - pc_);
}
static bool IsNop(Address addr);
// Avoid overflows for displacements etc.
static const int kMaximalBufferSize = 512*MB;
static const int kMinimalBufferSize = 4*KB;
byte byte_at(int pos) { return buffer_[pos]; }
void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
protected:
bool emit_debug_code() const { return emit_debug_code_; }
bool predictable_code_size() const { return predictable_code_size_; }
private:
byte* addr_at(int pos) { return buffer_ + pos; }
uint32_t long_at(int pos) {
return *reinterpret_cast<uint32_t*>(addr_at(pos));
}
void long_at_put(int pos, uint32_t x) {
*reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
}
// code emission
void GrowBuffer();
void emit(byte x) { *pc_++ = x; }
inline void emitl(uint32_t x);
inline void emitq(uint64_t x, RelocInfo::Mode rmode);
inline void emitw(uint16_t x);
inline void emit_code_target(Handle<Code> target,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id = TypeFeedbackId::None());
void emit(Immediate x) { emitl(x.value_); }
// Emits a REX prefix that encodes a 64-bit operand size and
// the top bit of both register codes.
// High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
// REX.W is set.
inline void emit_rex_64(XMMRegister reg, Register rm_reg);
inline void emit_rex_64(Register reg, XMMRegister rm_reg);
inline void emit_rex_64(Register reg, Register rm_reg);
// Emits a REX prefix that encodes a 64-bit operand size and
// the top bit of the destination, index, and base register codes.
// The high bit of reg is used for REX.R, the high bit of op's base
// register is used for REX.B, and the high bit of op's index register
// is used for REX.X. REX.W is set.
inline void emit_rex_64(Register reg, const Operand& op);
inline void emit_rex_64(XMMRegister reg, const Operand& op);
// Emits a REX prefix that encodes a 64-bit operand size and
// the top bit of the register code.
// The high bit of register is used for REX.B.
// REX.W is set and REX.R and REX.X are clear.
inline void emit_rex_64(Register rm_reg);
// Emits a REX prefix that encodes a 64-bit operand size and
// the top bit of the index and base register codes.
// The high bit of op's base register is used for REX.B, and the high
// bit of op's index register is used for REX.X.
// REX.W is set and REX.R clear.
inline void emit_rex_64(const Operand& op);
// Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
void emit_rex_64() { emit(0x48); }
// High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
// REX.W is clear.
inline void emit_rex_32(Register reg, Register rm_reg);
// The high bit of reg is used for REX.R, the high bit of op's base
// register is used for REX.B, and the high bit of op's index register
// is used for REX.X. REX.W is cleared.
inline void emit_rex_32(Register reg, const Operand& op);
// High bit of rm_reg goes to REX.B.
// REX.W, REX.R and REX.X are clear.
inline void emit_rex_32(Register rm_reg);
// High bit of base goes to REX.B and high bit of index to REX.X.
// REX.W and REX.R are clear.
inline void emit_rex_32(const Operand& op);
// High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
// REX.W is cleared. If no REX bits are set, no byte is emitted.
inline void emit_optional_rex_32(Register reg, Register rm_reg);
// The high bit of reg is used for REX.R, the high bit of op's base
// register is used for REX.B, and the high bit of op's index register
// is used for REX.X. REX.W is cleared. If no REX bits are set, nothing
// is emitted.
inline void emit_optional_rex_32(Register reg, const Operand& op);
// As for emit_optional_rex_32(Register, Register), except that
// the registers are XMM registers.
inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
// As for emit_optional_rex_32(Register, Register), except that
// one of the registers is an XMM registers.
inline void emit_optional_rex_32(XMMRegister reg, Register base);
// As for emit_optional_rex_32(Register, Register), except that
// one of the registers is an XMM registers.
inline void emit_optional_rex_32(Register reg, XMMRegister base);
// As for emit_optional_rex_32(Register, const Operand&), except that
// the register is an XMM register.
inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
// Optionally do as emit_rex_32(Register) if the register number has
// the high bit set.
inline void emit_optional_rex_32(Register rm_reg);
// Optionally do as emit_rex_32(const Operand&) if the operand register
// numbers have a high bit set.
inline void emit_optional_rex_32(const Operand& op);
// Emit the ModR/M byte, and optionally the SIB byte and
// 1- or 4-byte offset for a memory operand. Also encodes
// the second operand of the operation, a register or operation
// subcode, into the reg field of the ModR/M byte.
void emit_operand(Register reg, const Operand& adr) {
emit_operand(reg.low_bits(), adr);
}
// Emit the ModR/M byte, and optionally the SIB byte and
// 1- or 4-byte offset for a memory operand. Also used to encode
// a three-bit opcode extension into the ModR/M byte.
void emit_operand(int rm, const Operand& adr);
// Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
void emit_modrm(Register reg, Register rm_reg) {
emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
}
// Emit a ModR/M byte with an operation subcode in the reg field and
// a register in the rm_reg field.
void emit_modrm(int code, Register rm_reg) {
ASSERT(is_uint3(code));
emit(0xC0 | code << 3 | rm_reg.low_bits());
}
// Emit the code-object-relative offset of the label's position
inline void emit_code_relative_offset(Label* label);
// Emit machine code for one of the operations ADD, ADC, SUB, SBC,
// AND, OR, XOR, or CMP. The encodings of these operations are all
// similar, differing just in the opcode or in the reg field of the
// ModR/M byte.
void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
void arithmetic_op_32(byte opcode, Register reg, Register rm_reg);
void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg);
void arithmetic_op(byte opcode, Register reg, Register rm_reg);
void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg);
void immediate_arithmetic_op(byte subcode, Register dst, Immediate src);
void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src);
// Operate on a byte in memory or register.
void immediate_arithmetic_op_8(byte subcode,
Register dst,
Immediate src);
void immediate_arithmetic_op_8(byte subcode,
const Operand& dst,
Immediate src);
// Operate on a word in memory or register.
void immediate_arithmetic_op_16(byte subcode,
Register dst,
Immediate src);
void immediate_arithmetic_op_16(byte subcode,
const Operand& dst,
Immediate src);
// Operate on a 32-bit word in memory or register.
void immediate_arithmetic_op_32(byte subcode,
Register dst,
Immediate src);
void immediate_arithmetic_op_32(byte subcode,
const Operand& dst,
Immediate src);
// Emit machine code for a shift operation.
void shift(Register dst, Immediate shift_amount, int subcode);
void shift_32(Register dst, Immediate shift_amount, int subcode);
// Shift dst by cl % 64 bits.
void shift(Register dst, int subcode);
void shift_32(Register dst, int subcode);
void emit_farith(int b1, int b2, int i);
// labels
// void print(Label* L);
void bind_to(Label* L, int pos);
// record reloc info for current pc_
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
friend class CodePatcher;
friend class EnsureSpace;
friend class RegExpMacroAssemblerX64;
// Code buffer:
// The buffer into which code and relocation info are generated.
byte* buffer_;
int buffer_size_;
// True if the assembler owns the buffer, false if buffer is external.
bool own_buffer_;
// code generation
byte* pc_; // the program counter; moves forward
RelocInfoWriter reloc_info_writer;
List< Handle<Code> > code_targets_;
PositionsRecorder positions_recorder_;
bool emit_debug_code_;
bool predictable_code_size_;
friend class PositionsRecorder;
};
// Helper class that ensures that there is enough space for generating
// instructions and relocation information. The constructor makes
// sure that there is enough space and (in debug mode) the destructor
// checks that we did not generate too much.
class EnsureSpace BASE_EMBEDDED {
public:
explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
#ifdef DEBUG
space_before_ = assembler_->available_space();
#endif
}
#ifdef DEBUG
~EnsureSpace() {
int bytes_generated = space_before_ - assembler_->available_space();
ASSERT(bytes_generated < assembler_->kGap);
}
#endif
private:
Assembler* assembler_;
#ifdef DEBUG
int space_before_;
#endif
};
} } // namespace v8::internal
#endif // V8_X64_ASSEMBLER_X64_H_
|