1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
|
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "bootstrapper.h"
#include "codegen-inl.h"
#include "compiler.h"
#include "debug.h"
#include "ic-inl.h"
#include "parser.h"
#include "regexp-macro-assembler.h"
#include "register-allocator-inl.h"
#include "scopes.h"
#include "virtual-frame-inl.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
// -------------------------------------------------------------------------
// Platform-specific FrameRegisterState functions.
void FrameRegisterState::Save(MacroAssembler* masm) const {
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
int action = registers_[i];
if (action == kPush) {
__ push(RegisterAllocator::ToRegister(i));
} else if (action != kIgnore && (action & kSyncedFlag) == 0) {
__ movq(Operand(rbp, action), RegisterAllocator::ToRegister(i));
}
}
}
void FrameRegisterState::Restore(MacroAssembler* masm) const {
// Restore registers in reverse order due to the stack.
for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
int action = registers_[i];
if (action == kPush) {
__ pop(RegisterAllocator::ToRegister(i));
} else if (action != kIgnore) {
action &= ~kSyncedFlag;
__ movq(RegisterAllocator::ToRegister(i), Operand(rbp, action));
}
}
}
#undef __
#define __ ACCESS_MASM(masm_)
// -------------------------------------------------------------------------
// Platform-specific DeferredCode functions.
void DeferredCode::SaveRegisters() {
frame_state_.Save(masm_);
}
void DeferredCode::RestoreRegisters() {
frame_state_.Restore(masm_);
}
// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.
void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
frame_state_->Save(masm);
}
void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
frame_state_->Restore(masm);
}
void ICRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
masm->EnterInternalFrame();
}
void ICRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
masm->LeaveInternalFrame();
}
// -------------------------------------------------------------------------
// CodeGenState implementation.
CodeGenState::CodeGenState(CodeGenerator* owner)
: owner_(owner),
destination_(NULL),
previous_(NULL) {
owner_->set_state(this);
}
CodeGenState::CodeGenState(CodeGenerator* owner,
ControlDestination* destination)
: owner_(owner),
destination_(destination),
previous_(owner->state()) {
owner_->set_state(this);
}
CodeGenState::~CodeGenState() {
ASSERT(owner_->state() == this);
owner_->set_state(previous_);
}
// -------------------------------------------------------------------------
// Deferred code objects
//
// These subclasses of DeferredCode add pieces of code to the end of generated
// code. They are branched to from the generated code, and
// keep some slower code out of the main body of the generated code.
// Many of them call a code stub or a runtime function.
class DeferredInlineSmiAdd: public DeferredCode {
public:
DeferredInlineSmiAdd(Register dst,
Smi* value,
OverwriteMode overwrite_mode)
: dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiAdd");
}
virtual void Generate();
private:
Register dst_;
Smi* value_;
OverwriteMode overwrite_mode_;
};
// The result of value + src is in dst. It either overflowed or was not
// smi tagged. Undo the speculative addition and call the appropriate
// specialized stub for add. The result is left in dst.
class DeferredInlineSmiAddReversed: public DeferredCode {
public:
DeferredInlineSmiAddReversed(Register dst,
Smi* value,
OverwriteMode overwrite_mode)
: dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiAddReversed");
}
virtual void Generate();
private:
Register dst_;
Smi* value_;
OverwriteMode overwrite_mode_;
};
class DeferredInlineSmiSub: public DeferredCode {
public:
DeferredInlineSmiSub(Register dst,
Smi* value,
OverwriteMode overwrite_mode)
: dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiSub");
}
virtual void Generate();
private:
Register dst_;
Smi* value_;
OverwriteMode overwrite_mode_;
};
// Call the appropriate binary operation stub to compute src op value
// and leave the result in dst.
class DeferredInlineSmiOperation: public DeferredCode {
public:
DeferredInlineSmiOperation(Token::Value op,
Register dst,
Register src,
Smi* value,
OverwriteMode overwrite_mode)
: op_(op),
dst_(dst),
src_(src),
value_(value),
overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiOperation");
}
virtual void Generate();
private:
Token::Value op_;
Register dst_;
Register src_;
Smi* value_;
OverwriteMode overwrite_mode_;
};
// Call the appropriate binary operation stub to compute value op src
// and leave the result in dst.
class DeferredInlineSmiOperationReversed: public DeferredCode {
public:
DeferredInlineSmiOperationReversed(Token::Value op,
Register dst,
Smi* value,
Register src,
OverwriteMode overwrite_mode)
: op_(op),
dst_(dst),
value_(value),
src_(src),
overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiOperationReversed");
}
virtual void Generate();
private:
Token::Value op_;
Register dst_;
Smi* value_;
Register src_;
OverwriteMode overwrite_mode_;
};
class FloatingPointHelper : public AllStatic {
public:
// Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
// If the operands are not both numbers, jump to not_numbers.
// Leaves rdx and rax unchanged. SmiOperands assumes both are smis.
// NumberOperands assumes both are smis or heap numbers.
static void LoadSSE2SmiOperands(MacroAssembler* masm);
static void LoadSSE2NumberOperands(MacroAssembler* masm);
static void LoadSSE2UnknownOperands(MacroAssembler* masm,
Label* not_numbers);
// Takes the operands in rdx and rax and loads them as integers in rax
// and rcx.
static void LoadAsIntegers(MacroAssembler* masm,
Label* operand_conversion_failure,
Register heap_number_map);
// As above, but we know the operands to be numbers. In that case,
// conversion can't fail.
static void LoadNumbersAsIntegers(MacroAssembler* masm);
};
// -----------------------------------------------------------------------------
// CodeGenerator implementation.
CodeGenerator::CodeGenerator(MacroAssembler* masm)
: deferred_(8),
masm_(masm),
info_(NULL),
frame_(NULL),
allocator_(NULL),
state_(NULL),
loop_nesting_(0),
function_return_is_shadowed_(false),
in_spilled_code_(false) {
}
void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals. The inevitable call
// will sync frame elements to memory anyway, so we do it eagerly to
// allow us to push the arguments directly into place.
frame_->SyncRange(0, frame_->element_count() - 1);
__ movq(kScratchRegister, pairs, RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(rsi); // The context is the first argument.
frame_->EmitPush(kScratchRegister);
frame_->EmitPush(Smi::FromInt(is_eval() ? 1 : 0));
Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
// Return value is ignored.
}
void CodeGenerator::Generate(CompilationInfo* info) {
// Record the position for debugging purposes.
CodeForFunctionPosition(info->function());
Comment cmnt(masm_, "[ function compiled by virtual frame code generator");
// Initialize state.
info_ = info;
ASSERT(allocator_ == NULL);
RegisterAllocator register_allocator(this);
allocator_ = ®ister_allocator;
ASSERT(frame_ == NULL);
frame_ = new VirtualFrame();
set_in_spilled_code(false);
// Adjust for function-level loop nesting.
ASSERT_EQ(0, loop_nesting_);
loop_nesting_ += info->loop_nesting();
JumpTarget::set_compiling_deferred_code(false);
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
frame_->SpillAll();
__ int3();
}
#endif
// New scope to get automatic timing calculation.
{ HistogramTimerScope codegen_timer(&Counters::code_generation);
CodeGenState state(this);
// Entry:
// Stack: receiver, arguments, return address.
// rbp: caller's frame pointer
// rsp: stack pointer
// rdi: called JS function
// rsi: callee's context
allocator_->Initialize();
if (info->mode() == CompilationInfo::PRIMARY) {
frame_->Enter();
// Allocate space for locals and initialize them.
frame_->AllocateStackSlots();
// Allocate the local context if needed.
int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment cmnt(masm_, "[ allocate local context");
// Allocate local context.
// Get outer context and create a new context based on it.
frame_->PushFunction();
Result context;
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(heap_slots);
context = frame_->CallStub(&stub, 1);
} else {
context = frame_->CallRuntime(Runtime::kNewContext, 1);
}
// Update context local.
frame_->SaveContextRegister();
// Verify that the runtime call result and rsi agree.
if (FLAG_debug_code) {
__ cmpq(context.reg(), rsi);
__ Assert(equal, "Runtime::NewContext should end up in rsi");
}
}
// TODO(1241774): Improve this code:
// 1) only needed if we have a context
// 2) no need to recompute context ptr every single time
// 3) don't copy parameter operand code from SlotOperand!
{
Comment cmnt2(masm_, "[ copy context parameters into .context");
// Note that iteration order is relevant here! If we have the same
// parameter twice (e.g., function (x, y, x)), and that parameter
// needs to be copied into the context, it must be the last argument
// passed to the parameter that needs to be copied. This is a rare
// case so we don't check for it, instead we rely on the copying
// order: such a parameter is copied repeatedly into the same
// context location and thus the last value is what is seen inside
// the function.
for (int i = 0; i < scope()->num_parameters(); i++) {
Variable* par = scope()->parameter(i);
Slot* slot = par->slot();
if (slot != NULL && slot->type() == Slot::CONTEXT) {
// The use of SlotOperand below is safe in unspilled code
// because the slot is guaranteed to be a context slot.
//
// There are no parameters in the global scope.
ASSERT(!scope()->is_global_scope());
frame_->PushParameterAt(i);
Result value = frame_->Pop();
value.ToRegister();
// SlotOperand loads context.reg() with the context object
// stored to, used below in RecordWrite.
Result context = allocator_->Allocate();
ASSERT(context.is_valid());
__ movq(SlotOperand(slot, context.reg()), value.reg());
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
Result scratch = allocator_->Allocate();
ASSERT(scratch.is_valid());
frame_->Spill(context.reg());
frame_->Spill(value.reg());
__ RecordWrite(context.reg(), offset, value.reg(), scratch.reg());
}
}
}
// Store the arguments object. This must happen after context
// initialization because the arguments object may be stored in
// the context.
if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) {
StoreArgumentsObject(true);
}
// Initialize ThisFunction reference if present.
if (scope()->is_function_scope() && scope()->function() != NULL) {
frame_->Push(Factory::the_hole_value());
StoreToSlot(scope()->function()->slot(), NOT_CONST_INIT);
}
} else {
// When used as the secondary compiler for splitting, rbp, rsi,
// and rdi have been pushed on the stack. Adjust the virtual
// frame to match this state.
frame_->Adjust(3);
allocator_->Unuse(rdi);
// Bind all the bailout labels to the beginning of the function.
List<CompilationInfo::Bailout*>* bailouts = info->bailouts();
for (int i = 0; i < bailouts->length(); i++) {
__ bind(bailouts->at(i)->label());
}
}
// Initialize the function return target after the locals are set
// up, because it needs the expected frame height from the frame.
function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
function_return_is_shadowed_ = false;
// Generate code to 'execute' declarations and initialize functions
// (source elements). In case of an illegal redeclaration we need to
// handle that instead of processing the declarations.
if (scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ illegal redeclarations");
scope()->VisitIllegalRedeclaration(this);
} else {
Comment cmnt(masm_, "[ declarations");
ProcessDeclarations(scope()->declarations());
// Bail out if a stack-overflow exception occurred when processing
// declarations.
if (HasStackOverflow()) return;
}
if (FLAG_trace) {
frame_->CallRuntime(Runtime::kTraceEnter, 0);
// Ignore the return value.
}
CheckStack();
// Compile the body of the function in a vanilla state. Don't
// bother compiling all the code if the scope has an illegal
// redeclaration.
if (!scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ function body");
#ifdef DEBUG
bool is_builtin = Bootstrapper::IsActive();
bool should_trace =
is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
if (should_trace) {
frame_->CallRuntime(Runtime::kDebugTrace, 0);
// Ignore the return value.
}
#endif
VisitStatements(info->function()->body());
// Handle the return from the function.
if (has_valid_frame()) {
// If there is a valid frame, control flow can fall off the end of
// the body. In that case there is an implicit return statement.
ASSERT(!function_return_is_shadowed_);
CodeForReturnPosition(info->function());
frame_->PrepareForReturn();
Result undefined(Factory::undefined_value());
if (function_return_.is_bound()) {
function_return_.Jump(&undefined);
} else {
function_return_.Bind(&undefined);
GenerateReturnSequence(&undefined);
}
} else if (function_return_.is_linked()) {
// If the return target has dangling jumps to it, then we have not
// yet generated the return sequence. This can happen when (a)
// control does not flow off the end of the body so we did not
// compile an artificial return statement just above, and (b) there
// are return statements in the body but (c) they are all shadowed.
Result return_value;
function_return_.Bind(&return_value);
GenerateReturnSequence(&return_value);
}
}
}
// Adjust for function-level loop nesting.
ASSERT_EQ(loop_nesting_, info->loop_nesting());
loop_nesting_ = 0;
// Code generation state must be reset.
ASSERT(state_ == NULL);
ASSERT(!function_return_is_shadowed_);
function_return_.Unuse();
DeleteFrame();
// Process any deferred code using the register allocator.
if (!HasStackOverflow()) {
HistogramTimerScope deferred_timer(&Counters::deferred_code_generation);
JumpTarget::set_compiling_deferred_code(true);
ProcessDeferred();
JumpTarget::set_compiling_deferred_code(false);
}
// There is no need to delete the register allocator, it is a
// stack-allocated local.
allocator_ = NULL;
}
void CodeGenerator::GenerateReturnSequence(Result* return_value) {
// The return value is a live (but not currently reference counted)
// reference to rax. This is safe because the current frame does not
// contain a reference to rax (it is prepared for the return by spilling
// all registers).
if (FLAG_trace) {
frame_->Push(return_value);
*return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
}
return_value->ToRegister(rax);
// Add a label for checking the size of the code used for returning.
#ifdef DEBUG
Label check_exit_codesize;
masm_->bind(&check_exit_codesize);
#endif
// Leave the frame and return popping the arguments and the
// receiver.
frame_->Exit();
masm_->ret((scope()->num_parameters() + 1) * kPointerSize);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Add padding that will be overwritten by a debugger breakpoint.
// frame_->Exit() generates "movq rsp, rbp; pop rbp; ret k"
// with length 7 (3 + 1 + 3).
const int kPadding = Assembler::kJSReturnSequenceLength - 7;
for (int i = 0; i < kPadding; ++i) {
masm_->int3();
}
// Check that the size of the code used for returning matches what is
// expected by the debugger.
ASSERT_EQ(Assembler::kJSReturnSequenceLength,
masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
#endif
DeleteFrame();
}
#ifdef DEBUG
bool CodeGenerator::HasValidEntryRegisters() {
return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0))
&& (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0))
&& (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0))
&& (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0))
&& (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0))
&& (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0))
&& (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0))
&& (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0))
&& (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0))
&& (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0));
}
#endif
class DeferredReferenceGetKeyedValue: public DeferredCode {
public:
explicit DeferredReferenceGetKeyedValue(Register dst,
Register receiver,
Register key)
: dst_(dst), receiver_(receiver), key_(key) {
set_comment("[ DeferredReferenceGetKeyedValue");
}
virtual void Generate();
Label* patch_site() { return &patch_site_; }
private:
Label patch_site_;
Register dst_;
Register receiver_;
Register key_;
};
void DeferredReferenceGetKeyedValue::Generate() {
if (receiver_.is(rdx)) {
if (!key_.is(rax)) {
__ movq(rax, key_);
} // else do nothing.
} else if (receiver_.is(rax)) {
if (key_.is(rdx)) {
__ xchg(rax, rdx);
} else if (key_.is(rax)) {
__ movq(rdx, receiver_);
} else {
__ movq(rdx, receiver_);
__ movq(rax, key_);
}
} else if (key_.is(rax)) {
__ movq(rdx, receiver_);
} else {
__ movq(rax, key_);
__ movq(rdx, receiver_);
}
// Calculate the delta from the IC call instruction to the map check
// movq instruction in the inlined version. This delta is stored in
// a test(rax, delta) instruction after the call so that we can find
// it in the IC initialization code and patch the movq instruction.
// This means that we cannot allow test instructions after calls to
// KeyedLoadIC stubs in other places.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// The delta from the start of the map-compare instruction to the
// test instruction. We use masm_-> directly here instead of the __
// macro because the macro sometimes uses macro expansion to turn
// into something that can't return a value. This is encountered
// when doing generated code coverage tests.
int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
// Here we use masm_-> instead of the __ macro because this is the
// instruction that gets patched and coverage code gets in the way.
// TODO(X64): Consider whether it's worth switching the test to a
// 7-byte NOP with non-zero immediate (0f 1f 80 xxxxxxxx) which won't
// be generated normally.
masm_->testl(rax, Immediate(-delta_to_patch_site));
__ IncrementCounter(&Counters::keyed_load_inline_miss, 1);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
class DeferredReferenceSetKeyedValue: public DeferredCode {
public:
DeferredReferenceSetKeyedValue(Register value,
Register key,
Register receiver)
: value_(value), key_(key), receiver_(receiver) {
set_comment("[ DeferredReferenceSetKeyedValue");
}
virtual void Generate();
Label* patch_site() { return &patch_site_; }
private:
Register value_;
Register key_;
Register receiver_;
Label patch_site_;
};
void DeferredReferenceSetKeyedValue::Generate() {
__ IncrementCounter(&Counters::keyed_store_inline_miss, 1);
// Move value, receiver, and key to registers rax, rdx, and rcx, as
// the IC stub expects.
// Move value to rax, using xchg if the receiver or key is in rax.
if (!value_.is(rax)) {
if (!receiver_.is(rax) && !key_.is(rax)) {
__ movq(rax, value_);
} else {
__ xchg(rax, value_);
// Update receiver_ and key_ if they are affected by the swap.
if (receiver_.is(rax)) {
receiver_ = value_;
} else if (receiver_.is(value_)) {
receiver_ = rax;
}
if (key_.is(rax)) {
key_ = value_;
} else if (key_.is(value_)) {
key_ = rax;
}
}
}
// Value is now in rax. Its original location is remembered in value_,
// and the value is restored to value_ before returning.
// The variables receiver_ and key_ are not preserved.
// Move receiver and key to rdx and rcx, swapping if necessary.
if (receiver_.is(rdx)) {
if (!key_.is(rcx)) {
__ movq(rcx, key_);
} // Else everything is already in the right place.
} else if (receiver_.is(rcx)) {
if (key_.is(rdx)) {
__ xchg(rcx, rdx);
} else if (key_.is(rcx)) {
__ movq(rdx, receiver_);
} else {
__ movq(rdx, receiver_);
__ movq(rcx, key_);
}
} else if (key_.is(rcx)) {
__ movq(rdx, receiver_);
} else {
__ movq(rcx, key_);
__ movq(rdx, receiver_);
}
// Call the IC stub.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// The delta from the start of the map-compare instructions (initial movq)
// to the test instruction. We use masm_-> directly here instead of the
// __ macro because the macro sometimes uses macro expansion to turn
// into something that can't return a value. This is encountered
// when doing generated code coverage tests.
int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
// Here we use masm_-> instead of the __ macro because this is the
// instruction that gets patched and coverage code gets in the way.
masm_->testl(rax, Immediate(-delta_to_patch_site));
// Restore value (returned from store IC).
if (!value_.is(rax)) __ movq(value_, rax);
}
void CodeGenerator::CallApplyLazy(Expression* applicand,
Expression* receiver,
VariableProxy* arguments,
int position) {
// An optimized implementation of expressions of the form
// x.apply(y, arguments).
// If the arguments object of the scope has not been allocated,
// and x.apply is Function.prototype.apply, this optimization
// just copies y and the arguments of the current function on the
// stack, as receiver and arguments, and calls x.
// In the implementation comments, we call x the applicand
// and y the receiver.
ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION);
ASSERT(arguments->IsArguments());
// Load applicand.apply onto the stack. This will usually
// give us a megamorphic load site. Not super, but it works.
Load(applicand);
frame()->Dup();
Handle<String> name = Factory::LookupAsciiSymbol("apply");
frame()->Push(name);
Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET);
__ nop();
frame()->Push(&answer);
// Load the receiver and the existing arguments object onto the
// expression stack. Avoid allocating the arguments object here.
Load(receiver);
LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
// Emit the source position information after having loaded the
// receiver and the arguments.
CodeForSourcePosition(position);
// Contents of frame at this point:
// Frame[0]: arguments object of the current function or the hole.
// Frame[1]: receiver
// Frame[2]: applicand.apply
// Frame[3]: applicand.
// Check if the arguments object has been lazily allocated
// already. If so, just use that instead of copying the arguments
// from the stack. This also deals with cases where a local variable
// named 'arguments' has been introduced.
frame_->Dup();
Result probe = frame_->Pop();
{ VirtualFrame::SpilledScope spilled_scope;
Label slow, done;
bool try_lazy = true;
if (probe.is_constant()) {
try_lazy = probe.handle()->IsTheHole();
} else {
__ CompareRoot(probe.reg(), Heap::kTheHoleValueRootIndex);
probe.Unuse();
__ j(not_equal, &slow);
}
if (try_lazy) {
Label build_args;
// Get rid of the arguments object probe.
frame_->Drop(); // Can be called on a spilled frame.
// Stack now has 3 elements on it.
// Contents of stack at this point:
// rsp[0]: receiver
// rsp[1]: applicand.apply
// rsp[2]: applicand.
// Check that the receiver really is a JavaScript object.
__ movq(rax, Operand(rsp, 0));
Condition is_smi = masm_->CheckSmi(rax);
__ j(is_smi, &build_args);
// We allow all JSObjects including JSFunctions. As long as
// JS_FUNCTION_TYPE is the last instance type and it is right
// after LAST_JS_OBJECT_TYPE, we do not have to check the upper
// bound.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &build_args);
// Check that applicand.apply is Function.prototype.apply.
__ movq(rax, Operand(rsp, kPointerSize));
is_smi = masm_->CheckSmi(rax);
__ j(is_smi, &build_args);
__ CmpObjectType(rax, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &build_args);
__ movq(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply));
__ Cmp(FieldOperand(rax, SharedFunctionInfo::kCodeOffset), apply_code);
__ j(not_equal, &build_args);
// Check that applicand is a function.
__ movq(rdi, Operand(rsp, 2 * kPointerSize));
is_smi = masm_->CheckSmi(rdi);
__ j(is_smi, &build_args);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &build_args);
// Copy the arguments to this function possibly from the
// adaptor frame below it.
Label invoke, adapted;
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adapted);
// No arguments adaptor frame. Copy fixed number of arguments.
__ Set(rax, scope()->num_parameters());
for (int i = 0; i < scope()->num_parameters(); i++) {
__ push(frame_->ParameterAt(i));
}
__ jmp(&invoke);
// Arguments adaptor frame present. Copy arguments from there, but
// avoid copying too many arguments to avoid stack overflows.
__ bind(&adapted);
static const uint32_t kArgumentsLimit = 1 * KB;
__ SmiToInteger32(rax,
Operand(rdx,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ movl(rcx, rax);
__ cmpl(rax, Immediate(kArgumentsLimit));
__ j(above, &build_args);
// Loop through the arguments pushing them onto the execution
// stack. We don't inform the virtual frame of the push, so we don't
// have to worry about getting rid of the elements from the virtual
// frame.
Label loop;
// rcx is a small non-negative integer, due to the test above.
__ testl(rcx, rcx);
__ j(zero, &invoke);
__ bind(&loop);
__ push(Operand(rdx, rcx, times_pointer_size, 1 * kPointerSize));
__ decl(rcx);
__ j(not_zero, &loop);
// Invoke the function.
__ bind(&invoke);
ParameterCount actual(rax);
__ InvokeFunction(rdi, actual, CALL_FUNCTION);
// Drop applicand.apply and applicand from the stack, and push
// the result of the function call, but leave the spilled frame
// unchanged, with 3 elements, so it is correct when we compile the
// slow-case code.
__ addq(rsp, Immediate(2 * kPointerSize));
__ push(rax);
// Stack now has 1 element:
// rsp[0]: result
__ jmp(&done);
// Slow-case: Allocate the arguments object since we know it isn't
// there, and fall-through to the slow-case where we call
// applicand.apply.
__ bind(&build_args);
// Stack now has 3 elements, because we have jumped from where:
// rsp[0]: receiver
// rsp[1]: applicand.apply
// rsp[2]: applicand.
// StoreArgumentsObject requires a correct frame, and may modify it.
Result arguments_object = StoreArgumentsObject(false);
frame_->SpillAll();
arguments_object.ToRegister();
frame_->EmitPush(arguments_object.reg());
arguments_object.Unuse();
// Stack and frame now have 4 elements.
__ bind(&slow);
}
// Generic computation of x.apply(y, args) with no special optimization.
// Flip applicand.apply and applicand on the stack, so
// applicand looks like the receiver of the applicand.apply call.
// Then process it as a normal function call.
__ movq(rax, Operand(rsp, 3 * kPointerSize));
__ movq(rbx, Operand(rsp, 2 * kPointerSize));
__ movq(Operand(rsp, 2 * kPointerSize), rax);
__ movq(Operand(rsp, 3 * kPointerSize), rbx);
CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS);
Result res = frame_->CallStub(&call_function, 3);
// The function and its two arguments have been dropped.
frame_->Drop(1); // Drop the receiver as well.
res.ToRegister();
frame_->EmitPush(res.reg());
// Stack now has 1 element:
// rsp[0]: result
if (try_lazy) __ bind(&done);
} // End of spilled scope.
// Restore the context register after a call.
frame_->RestoreContextRegister();
}
class DeferredStackCheck: public DeferredCode {
public:
DeferredStackCheck() {
set_comment("[ DeferredStackCheck");
}
virtual void Generate();
};
void DeferredStackCheck::Generate() {
StackCheckStub stub;
__ CallStub(&stub);
}
void CodeGenerator::CheckStack() {
DeferredStackCheck* deferred = new DeferredStackCheck;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
deferred->Branch(below);
deferred->BindExit();
}
void CodeGenerator::VisitAndSpill(Statement* statement) {
// TODO(X64): No architecture specific code. Move to shared location.
ASSERT(in_spilled_code());
set_in_spilled_code(false);
Visit(statement);
if (frame_ != NULL) {
frame_->SpillAll();
}
set_in_spilled_code(true);
}
void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
ASSERT(in_spilled_code());
set_in_spilled_code(false);
VisitStatements(statements);
if (frame_ != NULL) {
frame_->SpillAll();
}
set_in_spilled_code(true);
}
void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
ASSERT(!in_spilled_code());
for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
Visit(statements->at(i));
}
}
void CodeGenerator::VisitBlock(Block* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ Block");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
VisitStatements(node->statements());
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
node->break_target()->Unuse();
}
void CodeGenerator::VisitDeclaration(Declaration* node) {
Comment cmnt(masm_, "[ Declaration");
Variable* var = node->proxy()->var();
ASSERT(var != NULL); // must have been resolved
Slot* slot = var->slot();
// If it was not possible to allocate the variable at compile time,
// we need to "declare" it at runtime to make sure it actually
// exists in the local context.
if (slot != NULL && slot->type() == Slot::LOOKUP) {
// Variables with a "LOOKUP" slot were introduced as non-locals
// during variable resolution and must have mode DYNAMIC.
ASSERT(var->is_dynamic());
// For now, just do a runtime call. Sync the virtual frame eagerly
// so we can simply push the arguments into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
__ movq(kScratchRegister, var->name(), RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(kScratchRegister);
// Declaration nodes are always introduced in one of two modes.
ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
frame_->EmitPush(Smi::FromInt(attr));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (node->mode() == Variable::CONST) {
frame_->EmitPush(Heap::kTheHoleValueRootIndex);
} else if (node->fun() != NULL) {
Load(node->fun());
} else {
frame_->EmitPush(Smi::FromInt(0)); // no initial value!
}
Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
// Ignore the return value (declarations are statements).
return;
}
ASSERT(!var->is_global());
// If we have a function or a constant, we need to initialize the variable.
Expression* val = NULL;
if (node->mode() == Variable::CONST) {
val = new Literal(Factory::the_hole_value());
} else {
val = node->fun(); // NULL if we don't have a function
}
if (val != NULL) {
{
// Set the initial value.
Reference target(this, node->proxy());
Load(val);
target.SetValue(NOT_CONST_INIT);
// The reference is removed from the stack (preserving TOS) when
// it goes out of scope.
}
// Get rid of the assigned value (declarations are statements).
frame_->Drop();
}
}
void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ExpressionStatement");
CodeForStatementPosition(node);
Expression* expression = node->expression();
expression->MarkAsStatement();
Load(expression);
// Remove the lingering expression result from the top of stack.
frame_->Drop();
}
void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "// EmptyStatement");
CodeForStatementPosition(node);
// nothing to do
}
void CodeGenerator::VisitIfStatement(IfStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ IfStatement");
// Generate different code depending on which parts of the if statement
// are present or not.
bool has_then_stm = node->HasThenStatement();
bool has_else_stm = node->HasElseStatement();
CodeForStatementPosition(node);
JumpTarget exit;
if (has_then_stm && has_else_stm) {
JumpTarget then;
JumpTarget else_;
ControlDestination dest(&then, &else_, true);
LoadCondition(node->condition(), &dest, true);
if (dest.false_was_fall_through()) {
// The else target was bound, so we compile the else part first.
Visit(node->else_statement());
// We may have dangling jumps to the then part.
if (then.is_linked()) {
if (has_valid_frame()) exit.Jump();
then.Bind();
Visit(node->then_statement());
}
} else {
// The then target was bound, so we compile the then part first.
Visit(node->then_statement());
if (else_.is_linked()) {
if (has_valid_frame()) exit.Jump();
else_.Bind();
Visit(node->else_statement());
}
}
} else if (has_then_stm) {
ASSERT(!has_else_stm);
JumpTarget then;
ControlDestination dest(&then, &exit, true);
LoadCondition(node->condition(), &dest, true);
if (dest.false_was_fall_through()) {
// The exit label was bound. We may have dangling jumps to the
// then part.
if (then.is_linked()) {
exit.Unuse();
exit.Jump();
then.Bind();
Visit(node->then_statement());
}
} else {
// The then label was bound.
Visit(node->then_statement());
}
} else if (has_else_stm) {
ASSERT(!has_then_stm);
JumpTarget else_;
ControlDestination dest(&exit, &else_, false);
LoadCondition(node->condition(), &dest, true);
if (dest.true_was_fall_through()) {
// The exit label was bound. We may have dangling jumps to the
// else part.
if (else_.is_linked()) {
exit.Unuse();
exit.Jump();
else_.Bind();
Visit(node->else_statement());
}
} else {
// The else label was bound.
Visit(node->else_statement());
}
} else {
ASSERT(!has_then_stm && !has_else_stm);
// We only care about the condition's side effects (not its value
// or control flow effect). LoadCondition is called without
// forcing control flow.
ControlDestination dest(&exit, &exit, true);
LoadCondition(node->condition(), &dest, false);
if (!dest.is_used()) {
// We got a value on the frame rather than (or in addition to)
// control flow.
frame_->Drop();
}
}
if (exit.is_linked()) {
exit.Bind();
}
}
void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ContinueStatement");
CodeForStatementPosition(node);
node->target()->continue_target()->Jump();
}
void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ BreakStatement");
CodeForStatementPosition(node);
node->target()->break_target()->Jump();
}
void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ReturnStatement");
CodeForStatementPosition(node);
Load(node->expression());
Result return_value = frame_->Pop();
if (function_return_is_shadowed_) {
function_return_.Jump(&return_value);
} else {
frame_->PrepareForReturn();
if (function_return_.is_bound()) {
// If the function return label is already bound we reuse the
// code by jumping to the return site.
function_return_.Jump(&return_value);
} else {
function_return_.Bind(&return_value);
GenerateReturnSequence(&return_value);
}
}
}
void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ WithEnterStatement");
CodeForStatementPosition(node);
Load(node->expression());
Result context;
if (node->is_catch_block()) {
context = frame_->CallRuntime(Runtime::kPushCatchContext, 1);
} else {
context = frame_->CallRuntime(Runtime::kPushContext, 1);
}
// Update context local.
frame_->SaveContextRegister();
// Verify that the runtime call result and rsi agree.
if (FLAG_debug_code) {
__ cmpq(context.reg(), rsi);
__ Assert(equal, "Runtime::NewContext should end up in rsi");
}
}
void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ WithExitStatement");
CodeForStatementPosition(node);
// Pop context.
__ movq(rsi, ContextOperand(rsi, Context::PREVIOUS_INDEX));
// Update context local.
frame_->SaveContextRegister();
}
void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
// TODO(X64): This code is completely generic and should be moved somewhere
// where it can be shared between architectures.
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ SwitchStatement");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
// Compile the switch value.
Load(node->tag());
ZoneList<CaseClause*>* cases = node->cases();
int length = cases->length();
CaseClause* default_clause = NULL;
JumpTarget next_test;
// Compile the case label expressions and comparisons. Exit early
// if a comparison is unconditionally true. The target next_test is
// bound before the loop in order to indicate control flow to the
// first comparison.
next_test.Bind();
for (int i = 0; i < length && !next_test.is_unused(); i++) {
CaseClause* clause = cases->at(i);
// The default is not a test, but remember it for later.
if (clause->is_default()) {
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case comparison");
// We recycle the same target next_test for each test. Bind it if
// the previous test has not done so and then unuse it for the
// loop.
if (next_test.is_linked()) {
next_test.Bind();
}
next_test.Unuse();
// Duplicate the switch value.
frame_->Dup();
// Compile the label expression.
Load(clause->label());
// Compare and branch to the body if true or the next test if
// false. Prefer the next test as a fall through.
ControlDestination dest(clause->body_target(), &next_test, false);
Comparison(node, equal, true, &dest);
// If the comparison fell through to the true target, jump to the
// actual body.
if (dest.true_was_fall_through()) {
clause->body_target()->Unuse();
clause->body_target()->Jump();
}
}
// If there was control flow to a next test from the last one
// compiled, compile a jump to the default or break target.
if (!next_test.is_unused()) {
if (next_test.is_linked()) {
next_test.Bind();
}
// Drop the switch value.
frame_->Drop();
if (default_clause != NULL) {
default_clause->body_target()->Jump();
} else {
node->break_target()->Jump();
}
}
// The last instruction emitted was a jump, either to the default
// clause or the break target, or else to a case body from the loop
// that compiles the tests.
ASSERT(!has_valid_frame());
// Compile case bodies as needed.
for (int i = 0; i < length; i++) {
CaseClause* clause = cases->at(i);
// There are two ways to reach the body: from the corresponding
// test or as the fall through of the previous body.
if (clause->body_target()->is_linked() || has_valid_frame()) {
if (clause->body_target()->is_linked()) {
if (has_valid_frame()) {
// If we have both a jump to the test and a fall through, put
// a jump on the fall through path to avoid the dropping of
// the switch value on the test path. The exception is the
// default which has already had the switch value dropped.
if (clause->is_default()) {
clause->body_target()->Bind();
} else {
JumpTarget body;
body.Jump();
clause->body_target()->Bind();
frame_->Drop();
body.Bind();
}
} else {
// No fall through to worry about.
clause->body_target()->Bind();
if (!clause->is_default()) {
frame_->Drop();
}
}
} else {
// Otherwise, we have only fall through.
ASSERT(has_valid_frame());
}
// We are now prepared to compile the body.
Comment cmnt(masm_, "[ Case body");
VisitStatements(clause->statements());
}
clause->body_target()->Unuse();
}
// We may not have a valid frame here so bind the break target only
// if needed.
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
node->break_target()->Unuse();
}
void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ DoWhileStatement");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
JumpTarget body(JumpTarget::BIDIRECTIONAL);
IncrementLoopNesting();
ConditionAnalysis info = AnalyzeCondition(node->cond());
// Label the top of the loop for the backward jump if necessary.
switch (info) {
case ALWAYS_TRUE:
// Use the continue target.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
break;
case ALWAYS_FALSE:
// No need to label it.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
break;
case DONT_KNOW:
// Continue is the test, so use the backward body target.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
body.Bind();
break;
}
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
// Compile the test.
switch (info) {
case ALWAYS_TRUE:
// If control flow can fall off the end of the body, jump back
// to the top and bind the break target at the exit.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
break;
case ALWAYS_FALSE:
// We may have had continues or breaks in the body.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
break;
case DONT_KNOW:
// We have to compile the test expression if it can be reached by
// control flow falling out of the body or via continue.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (has_valid_frame()) {
Comment cmnt(masm_, "[ DoWhileCondition");
CodeForDoWhileConditionPosition(node);
ControlDestination dest(&body, node->break_target(), false);
LoadCondition(node->cond(), &dest, true);
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
break;
}
DecrementLoopNesting();
node->continue_target()->Unuse();
node->break_target()->Unuse();
}
void CodeGenerator::VisitWhileStatement(WhileStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ WhileStatement");
CodeForStatementPosition(node);
// If the condition is always false and has no side effects, we do not
// need to compile anything.
ConditionAnalysis info = AnalyzeCondition(node->cond());
if (info == ALWAYS_FALSE) return;
// Do not duplicate conditions that may have function literal
// subexpressions. This can cause us to compile the function literal
// twice.
bool test_at_bottom = !node->may_have_function_literal();
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
IncrementLoopNesting();
JumpTarget body;
if (test_at_bottom) {
body.set_direction(JumpTarget::BIDIRECTIONAL);
}
// Based on the condition analysis, compile the test as necessary.
switch (info) {
case ALWAYS_TRUE:
// We will not compile the test expression. Label the top of the
// loop with the continue target.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
break;
case DONT_KNOW: {
if (test_at_bottom) {
// Continue is the test at the bottom, no need to label the test
// at the top. The body is a backward target.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
} else {
// Label the test at the top as the continue target. The body
// is a forward-only target.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
}
// Compile the test with the body as the true target and preferred
// fall-through and with the break target as the false target.
ControlDestination dest(&body, node->break_target(), true);
LoadCondition(node->cond(), &dest, true);
if (dest.false_was_fall_through()) {
// If we got the break target as fall-through, the test may have
// been unconditionally false (if there are no jumps to the
// body).
if (!body.is_linked()) {
DecrementLoopNesting();
return;
}
// Otherwise, jump around the body on the fall through and then
// bind the body target.
node->break_target()->Unuse();
node->break_target()->Jump();
body.Bind();
}
break;
}
case ALWAYS_FALSE:
UNREACHABLE();
break;
}
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
// Based on the condition analysis, compile the backward jump as
// necessary.
switch (info) {
case ALWAYS_TRUE:
// The loop body has been labeled with the continue target.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
break;
case DONT_KNOW:
if (test_at_bottom) {
// If we have chosen to recompile the test at the bottom,
// then it is the continue target.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (has_valid_frame()) {
// The break target is the fall-through (body is a backward
// jump from here and thus an invalid fall-through).
ControlDestination dest(&body, node->break_target(), false);
LoadCondition(node->cond(), &dest, true);
}
} else {
// If we have chosen not to recompile the test at the
// bottom, jump back to the one at the top.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
}
break;
case ALWAYS_FALSE:
UNREACHABLE();
break;
}
// The break target may be already bound (by the condition), or there
// may not be a valid frame. Bind it only if needed.
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
DecrementLoopNesting();
}
void CodeGenerator::SetTypeForStackSlot(Slot* slot, TypeInfo info) {
ASSERT(slot->type() == Slot::LOCAL || slot->type() == Slot::PARAMETER);
if (slot->type() == Slot::LOCAL) {
frame_->SetTypeForLocalAt(slot->index(), info);
} else {
frame_->SetTypeForParamAt(slot->index(), info);
}
if (FLAG_debug_code && info.IsSmi()) {
if (slot->type() == Slot::LOCAL) {
frame_->PushLocalAt(slot->index());
} else {
frame_->PushParameterAt(slot->index());
}
Result var = frame_->Pop();
var.ToRegister();
__ AbortIfNotSmi(var.reg());
}
}
void CodeGenerator::GenerateFastSmiLoop(ForStatement* node) {
// A fast smi loop is a for loop with an initializer
// that is a simple assignment of a smi to a stack variable,
// a test that is a simple test of that variable against a smi constant,
// and a step that is a increment/decrement of the variable, and
// where the variable isn't modified in the loop body.
// This guarantees that the variable is always a smi.
Variable* loop_var = node->loop_variable();
Smi* initial_value = *Handle<Smi>::cast(node->init()
->StatementAsSimpleAssignment()->value()->AsLiteral()->handle());
Smi* limit_value = *Handle<Smi>::cast(
node->cond()->AsCompareOperation()->right()->AsLiteral()->handle());
Token::Value compare_op =
node->cond()->AsCompareOperation()->op();
bool increments =
node->next()->StatementAsCountOperation()->op() == Token::INC;
// Check that the condition isn't initially false.
bool initially_false = false;
int initial_int_value = initial_value->value();
int limit_int_value = limit_value->value();
switch (compare_op) {
case Token::LT:
initially_false = initial_int_value >= limit_int_value;
break;
case Token::LTE:
initially_false = initial_int_value > limit_int_value;
break;
case Token::GT:
initially_false = initial_int_value <= limit_int_value;
break;
case Token::GTE:
initially_false = initial_int_value < limit_int_value;
break;
default:
UNREACHABLE();
}
if (initially_false) return;
// Only check loop condition at the end.
Visit(node->init());
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
// Set type and stack height of BreakTargets.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
IncrementLoopNesting();
loop.Bind();
// Set number type of the loop variable to smi.
CheckStack(); // TODO(1222600): ignore if body contains calls.
SetTypeForStackSlot(loop_var->slot(), TypeInfo::Smi());
Visit(node->body());
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (has_valid_frame()) {
CodeForStatementPosition(node);
Slot* loop_var_slot = loop_var->slot();
if (loop_var_slot->type() == Slot::LOCAL) {
frame_->PushLocalAt(loop_var_slot->index());
} else {
ASSERT(loop_var_slot->type() == Slot::PARAMETER);
frame_->PushParameterAt(loop_var_slot->index());
}
Result loop_var_result = frame_->Pop();
if (!loop_var_result.is_register()) {
loop_var_result.ToRegister();
}
if (increments) {
__ SmiAddConstant(loop_var_result.reg(),
loop_var_result.reg(),
Smi::FromInt(1));
} else {
__ SmiSubConstant(loop_var_result.reg(),
loop_var_result.reg(),
Smi::FromInt(1));
}
{
__ SmiCompare(loop_var_result.reg(), limit_value);
Condition condition;
switch (compare_op) {
case Token::LT:
condition = less;
break;
case Token::LTE:
condition = less_equal;
break;
case Token::GT:
condition = greater;
break;
case Token::GTE:
condition = greater_equal;
break;
default:
condition = never;
UNREACHABLE();
}
loop.Branch(condition);
}
loop_var_result.Unuse();
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
DecrementLoopNesting();
}
void CodeGenerator::VisitForStatement(ForStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ForStatement");
CodeForStatementPosition(node);
if (node->is_fast_smi_loop()) {
GenerateFastSmiLoop(node);
return;
}
// Compile the init expression if present.
if (node->init() != NULL) {
Visit(node->init());
}
// If the condition is always false and has no side effects, we do not
// need to compile anything else.
ConditionAnalysis info = AnalyzeCondition(node->cond());
if (info == ALWAYS_FALSE) return;
// Do not duplicate conditions that may have function literal
// subexpressions. This can cause us to compile the function literal
// twice.
bool test_at_bottom = !node->may_have_function_literal();
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
IncrementLoopNesting();
// Target for backward edge if no test at the bottom, otherwise
// unused.
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
// Target for backward edge if there is a test at the bottom,
// otherwise used as target for test at the top.
JumpTarget body;
if (test_at_bottom) {
body.set_direction(JumpTarget::BIDIRECTIONAL);
}
// Based on the condition analysis, compile the test as necessary.
switch (info) {
case ALWAYS_TRUE:
// We will not compile the test expression. Label the top of the
// loop.
if (node->next() == NULL) {
// Use the continue target if there is no update expression.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
} else {
// Otherwise use the backward loop target.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
loop.Bind();
}
break;
case DONT_KNOW: {
if (test_at_bottom) {
// Continue is either the update expression or the test at the
// bottom, no need to label the test at the top.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
} else if (node->next() == NULL) {
// We are not recompiling the test at the bottom and there is no
// update expression.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
} else {
// We are not recompiling the test at the bottom and there is an
// update expression.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
loop.Bind();
}
// Compile the test with the body as the true target and preferred
// fall-through and with the break target as the false target.
ControlDestination dest(&body, node->break_target(), true);
LoadCondition(node->cond(), &dest, true);
if (dest.false_was_fall_through()) {
// If we got the break target as fall-through, the test may have
// been unconditionally false (if there are no jumps to the
// body).
if (!body.is_linked()) {
DecrementLoopNesting();
return;
}
// Otherwise, jump around the body on the fall through and then
// bind the body target.
node->break_target()->Unuse();
node->break_target()->Jump();
body.Bind();
}
break;
}
case ALWAYS_FALSE:
UNREACHABLE();
break;
}
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
// If there is an update expression, compile it if necessary.
if (node->next() != NULL) {
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
// Control can reach the update by falling out of the body or by a
// continue.
if (has_valid_frame()) {
// Record the source position of the statement as this code which
// is after the code for the body actually belongs to the loop
// statement and not the body.
CodeForStatementPosition(node);
Visit(node->next());
}
}
// Based on the condition analysis, compile the backward jump as
// necessary.
switch (info) {
case ALWAYS_TRUE:
if (has_valid_frame()) {
if (node->next() == NULL) {
node->continue_target()->Jump();
} else {
loop.Jump();
}
}
break;
case DONT_KNOW:
if (test_at_bottom) {
if (node->continue_target()->is_linked()) {
// We can have dangling jumps to the continue target if there
// was no update expression.
node->continue_target()->Bind();
}
// Control can reach the test at the bottom by falling out of
// the body, by a continue in the body, or from the update
// expression.
if (has_valid_frame()) {
// The break target is the fall-through (body is a backward
// jump from here).
ControlDestination dest(&body, node->break_target(), false);
LoadCondition(node->cond(), &dest, true);
}
} else {
// Otherwise, jump back to the test at the top.
if (has_valid_frame()) {
if (node->next() == NULL) {
node->continue_target()->Jump();
} else {
loop.Jump();
}
}
}
break;
case ALWAYS_FALSE:
UNREACHABLE();
break;
}
// The break target may be already bound (by the condition), or there
// may not be a valid frame. Bind it only if needed.
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
DecrementLoopNesting();
}
void CodeGenerator::VisitForInStatement(ForInStatement* node) {
ASSERT(!in_spilled_code());
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ ForInStatement");
CodeForStatementPosition(node);
JumpTarget primitive;
JumpTarget jsobject;
JumpTarget fixed_array;
JumpTarget entry(JumpTarget::BIDIRECTIONAL);
JumpTarget end_del_check;
JumpTarget exit;
// Get the object to enumerate over (converted to JSObject).
LoadAndSpill(node->enumerable());
// Both SpiderMonkey and kjs ignore null and undefined in contrast
// to the specification. 12.6.4 mandates a call to ToObject.
frame_->EmitPop(rax);
// rax: value to be iterated over
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
exit.Branch(equal);
__ CompareRoot(rax, Heap::kNullValueRootIndex);
exit.Branch(equal);
// Stack layout in body:
// [iteration counter (smi)] <- slot 0
// [length of array] <- slot 1
// [FixedArray] <- slot 2
// [Map or 0] <- slot 3
// [Object] <- slot 4
// Check if enumerable is already a JSObject
// rax: value to be iterated over
Condition is_smi = masm_->CheckSmi(rax);
primitive.Branch(is_smi);
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
jsobject.Branch(above_equal);
primitive.Bind();
frame_->EmitPush(rax);
frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1);
// function call returns the value in rax, which is where we want it below
jsobject.Bind();
// Get the set of properties (as a FixedArray or Map).
// rax: value to be iterated over
frame_->EmitPush(rax); // Push the object being iterated over.
// Check cache validity in generated code. This is a fast case for
// the JSObject::IsSimpleEnum cache validity checks. If we cannot
// guarantee cache validity, call the runtime system to check cache
// validity or get the property names in a fixed array.
JumpTarget call_runtime;
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
JumpTarget check_prototype;
JumpTarget use_cache;
__ movq(rcx, rax);
loop.Bind();
// Check that there are no elements.
__ movq(rdx, FieldOperand(rcx, JSObject::kElementsOffset));
__ CompareRoot(rdx, Heap::kEmptyFixedArrayRootIndex);
call_runtime.Branch(not_equal);
// Check that instance descriptors are not empty so that we can
// check for an enum cache. Leave the map in ebx for the subsequent
// prototype load.
__ movq(rbx, FieldOperand(rcx, HeapObject::kMapOffset));
__ movq(rdx, FieldOperand(rbx, Map::kInstanceDescriptorsOffset));
__ CompareRoot(rdx, Heap::kEmptyDescriptorArrayRootIndex);
call_runtime.Branch(equal);
// Check that there in an enum cache in the non-empty instance
// descriptors. This is the case if the next enumeration index
// field does not contain a smi.
__ movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumerationIndexOffset));
is_smi = masm_->CheckSmi(rdx);
call_runtime.Branch(is_smi);
// For all objects but the receiver, check that the cache is empty.
__ cmpq(rcx, rax);
check_prototype.Branch(equal);
__ movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumCacheBridgeCacheOffset));
__ CompareRoot(rdx, Heap::kEmptyFixedArrayRootIndex);
call_runtime.Branch(not_equal);
check_prototype.Bind();
// Load the prototype from the map and loop if non-null.
__ movq(rcx, FieldOperand(rbx, Map::kPrototypeOffset));
__ CompareRoot(rcx, Heap::kNullValueRootIndex);
loop.Branch(not_equal);
// The enum cache is valid. Load the map of the object being
// iterated over and use the cache for the iteration.
__ movq(rax, FieldOperand(rax, HeapObject::kMapOffset));
use_cache.Jump();
call_runtime.Bind();
// Call the runtime to get the property names for the object.
frame_->EmitPush(rax); // push the Object (slot 4) for the runtime call
frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
// If we got a Map, we can do a fast modification check.
// Otherwise, we got a FixedArray, and we have to do a slow check.
// rax: map or fixed array (result from call to
// Runtime::kGetPropertyNamesFast)
__ movq(rdx, rax);
__ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
__ CompareRoot(rcx, Heap::kMetaMapRootIndex);
fixed_array.Branch(not_equal);
use_cache.Bind();
// Get enum cache
// rax: map (either the result from a call to
// Runtime::kGetPropertyNamesFast or has been fetched directly from
// the object)
__ movq(rcx, rax);
__ movq(rcx, FieldOperand(rcx, Map::kInstanceDescriptorsOffset));
// Get the bridge array held in the enumeration index field.
__ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumerationIndexOffset));
// Get the cache from the bridge array.
__ movq(rdx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset));
frame_->EmitPush(rax); // <- slot 3
frame_->EmitPush(rdx); // <- slot 2
__ movq(rax, FieldOperand(rdx, FixedArray::kLengthOffset));
frame_->EmitPush(rax); // <- slot 1
frame_->EmitPush(Smi::FromInt(0)); // <- slot 0
entry.Jump();
fixed_array.Bind();
// rax: fixed array (result from call to Runtime::kGetPropertyNamesFast)
frame_->EmitPush(Smi::FromInt(0)); // <- slot 3
frame_->EmitPush(rax); // <- slot 2
// Push the length of the array and the initial index onto the stack.
__ movq(rax, FieldOperand(rax, FixedArray::kLengthOffset));
frame_->EmitPush(rax); // <- slot 1
frame_->EmitPush(Smi::FromInt(0)); // <- slot 0
// Condition.
entry.Bind();
// Grab the current frame's height for the break and continue
// targets only after all the state is pushed on the frame.
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
__ movq(rax, frame_->ElementAt(0)); // load the current count
__ SmiCompare(frame_->ElementAt(1), rax); // compare to the array length
node->break_target()->Branch(below_equal);
// Get the i'th entry of the array.
__ movq(rdx, frame_->ElementAt(2));
SmiIndex index = masm_->SmiToIndex(rbx, rax, kPointerSizeLog2);
__ movq(rbx,
FieldOperand(rdx, index.reg, index.scale, FixedArray::kHeaderSize));
// Get the expected map from the stack or a zero map in the
// permanent slow case rax: current iteration count rbx: i'th entry
// of the enum cache
__ movq(rdx, frame_->ElementAt(3));
// Check if the expected map still matches that of the enumerable.
// If not, we have to filter the key.
// rax: current iteration count
// rbx: i'th entry of the enum cache
// rdx: expected map value
__ movq(rcx, frame_->ElementAt(4));
__ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
__ cmpq(rcx, rdx);
end_del_check.Branch(equal);
// Convert the entry to a string (or null if it isn't a property anymore).
frame_->EmitPush(frame_->ElementAt(4)); // push enumerable
frame_->EmitPush(rbx); // push entry
frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2);
__ movq(rbx, rax);
// If the property has been removed while iterating, we just skip it.
__ CompareRoot(rbx, Heap::kNullValueRootIndex);
node->continue_target()->Branch(equal);
end_del_check.Bind();
// Store the entry in the 'each' expression and take another spin in the
// loop. rdx: i'th entry of the enum cache (or string there of)
frame_->EmitPush(rbx);
{ Reference each(this, node->each());
// Loading a reference may leave the frame in an unspilled state.
frame_->SpillAll();
if (!each.is_illegal()) {
if (each.size() > 0) {
frame_->EmitPush(frame_->ElementAt(each.size()));
each.SetValue(NOT_CONST_INIT);
frame_->Drop(2); // Drop the original and the copy of the element.
} else {
// If the reference has size zero then we can use the value below
// the reference as if it were above the reference, instead of pushing
// a new copy of it above the reference.
each.SetValue(NOT_CONST_INIT);
frame_->Drop(); // Drop the original of the element.
}
}
}
// Unloading a reference may leave the frame in an unspilled state.
frame_->SpillAll();
// Body.
CheckStack(); // TODO(1222600): ignore if body contains calls.
VisitAndSpill(node->body());
// Next. Reestablish a spilled frame in case we are coming here via
// a continue in the body.
node->continue_target()->Bind();
frame_->SpillAll();
frame_->EmitPop(rax);
__ SmiAddConstant(rax, rax, Smi::FromInt(1));
frame_->EmitPush(rax);
entry.Jump();
// Cleanup. No need to spill because VirtualFrame::Drop is safe for
// any frame.
node->break_target()->Bind();
frame_->Drop(5);
// Exit.
exit.Bind();
node->continue_target()->Unuse();
node->break_target()->Unuse();
}
void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
ASSERT(!in_spilled_code());
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ TryCatchStatement");
CodeForStatementPosition(node);
JumpTarget try_block;
JumpTarget exit;
try_block.Call();
// --- Catch block ---
frame_->EmitPush(rax);
// Store the caught exception in the catch variable.
Variable* catch_var = node->catch_var()->var();
ASSERT(catch_var != NULL && catch_var->slot() != NULL);
StoreToSlot(catch_var->slot(), NOT_CONST_INIT);
// Remove the exception from the stack.
frame_->Drop();
VisitStatementsAndSpill(node->catch_block()->statements());
if (has_valid_frame()) {
exit.Jump();
}
// --- Try block ---
try_block.Bind();
frame_->PushTryHandler(TRY_CATCH_HANDLER);
int handler_height = frame_->height();
// Shadow the jump targets for all escapes from the try block, including
// returns. During shadowing, the original target is hidden as the
// ShadowTarget and operations on the original actually affect the
// shadowing target.
//
// We should probably try to unify the escaping targets and the return
// target.
int nof_escapes = node->escaping_targets()->length();
List<ShadowTarget*> shadows(1 + nof_escapes);
// Add the shadow target for the function return.
static const int kReturnShadowIndex = 0;
shadows.Add(new ShadowTarget(&function_return_));
bool function_return_was_shadowed = function_return_is_shadowed_;
function_return_is_shadowed_ = true;
ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
// Add the remaining shadow targets.
for (int i = 0; i < nof_escapes; i++) {
shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
}
// Generate code for the statements in the try block.
VisitStatementsAndSpill(node->try_block()->statements());
// Stop the introduced shadowing and count the number of required unlinks.
// After shadowing stops, the original targets are unshadowed and the
// ShadowTargets represent the formerly shadowing targets.
bool has_unlinks = false;
for (int i = 0; i < shadows.length(); i++) {
shadows[i]->StopShadowing();
has_unlinks = has_unlinks || shadows[i]->is_linked();
}
function_return_is_shadowed_ = function_return_was_shadowed;
// Get an external reference to the handler address.
ExternalReference handler_address(Top::k_handler_address);
// Make sure that there's nothing left on the stack above the
// handler structure.
if (FLAG_debug_code) {
__ movq(kScratchRegister, handler_address);
__ cmpq(rsp, Operand(kScratchRegister, 0));
__ Assert(equal, "stack pointer should point to top handler");
}
// If we can fall off the end of the try block, unlink from try chain.
if (has_valid_frame()) {
// The next handler address is on top of the frame. Unlink from
// the handler list and drop the rest of this handler from the
// frame.
ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (has_unlinks) {
exit.Jump();
}
}
// Generate unlink code for the (formerly) shadowing targets that
// have been jumped to. Deallocate each shadow target.
Result return_value;
for (int i = 0; i < shadows.length(); i++) {
if (shadows[i]->is_linked()) {
// Unlink from try chain; be careful not to destroy the TOS if
// there is one.
if (i == kReturnShadowIndex) {
shadows[i]->Bind(&return_value);
return_value.ToRegister(rax);
} else {
shadows[i]->Bind();
}
// Because we can be jumping here (to spilled code) from
// unspilled code, we need to reestablish a spilled frame at
// this block.
frame_->SpillAll();
// Reload sp from the top handler, because some statements that we
// break from (eg, for...in) may have left stuff on the stack.
__ movq(kScratchRegister, handler_address);
__ movq(rsp, Operand(kScratchRegister, 0));
frame_->Forget(frame_->height() - handler_height);
ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (i == kReturnShadowIndex) {
if (!function_return_is_shadowed_) frame_->PrepareForReturn();
shadows[i]->other_target()->Jump(&return_value);
} else {
shadows[i]->other_target()->Jump();
}
}
}
exit.Bind();
}
void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
ASSERT(!in_spilled_code());
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ TryFinallyStatement");
CodeForStatementPosition(node);
// State: Used to keep track of reason for entering the finally
// block. Should probably be extended to hold information for
// break/continue from within the try block.
enum { FALLING, THROWING, JUMPING };
JumpTarget try_block;
JumpTarget finally_block;
try_block.Call();
frame_->EmitPush(rax);
// In case of thrown exceptions, this is where we continue.
__ Move(rcx, Smi::FromInt(THROWING));
finally_block.Jump();
// --- Try block ---
try_block.Bind();
frame_->PushTryHandler(TRY_FINALLY_HANDLER);
int handler_height = frame_->height();
// Shadow the jump targets for all escapes from the try block, including
// returns. During shadowing, the original target is hidden as the
// ShadowTarget and operations on the original actually affect the
// shadowing target.
//
// We should probably try to unify the escaping targets and the return
// target.
int nof_escapes = node->escaping_targets()->length();
List<ShadowTarget*> shadows(1 + nof_escapes);
// Add the shadow target for the function return.
static const int kReturnShadowIndex = 0;
shadows.Add(new ShadowTarget(&function_return_));
bool function_return_was_shadowed = function_return_is_shadowed_;
function_return_is_shadowed_ = true;
ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
// Add the remaining shadow targets.
for (int i = 0; i < nof_escapes; i++) {
shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
}
// Generate code for the statements in the try block.
VisitStatementsAndSpill(node->try_block()->statements());
// Stop the introduced shadowing and count the number of required unlinks.
// After shadowing stops, the original targets are unshadowed and the
// ShadowTargets represent the formerly shadowing targets.
int nof_unlinks = 0;
for (int i = 0; i < shadows.length(); i++) {
shadows[i]->StopShadowing();
if (shadows[i]->is_linked()) nof_unlinks++;
}
function_return_is_shadowed_ = function_return_was_shadowed;
// Get an external reference to the handler address.
ExternalReference handler_address(Top::k_handler_address);
// If we can fall off the end of the try block, unlink from the try
// chain and set the state on the frame to FALLING.
if (has_valid_frame()) {
// The next handler address is on top of the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
// Fake a top of stack value (unneeded when FALLING) and set the
// state in ecx, then jump around the unlink blocks if any.
frame_->EmitPush(Heap::kUndefinedValueRootIndex);
__ Move(rcx, Smi::FromInt(FALLING));
if (nof_unlinks > 0) {
finally_block.Jump();
}
}
// Generate code to unlink and set the state for the (formerly)
// shadowing targets that have been jumped to.
for (int i = 0; i < shadows.length(); i++) {
if (shadows[i]->is_linked()) {
// If we have come from the shadowed return, the return value is
// on the virtual frame. We must preserve it until it is
// pushed.
if (i == kReturnShadowIndex) {
Result return_value;
shadows[i]->Bind(&return_value);
return_value.ToRegister(rax);
} else {
shadows[i]->Bind();
}
// Because we can be jumping here (to spilled code) from
// unspilled code, we need to reestablish a spilled frame at
// this block.
frame_->SpillAll();
// Reload sp from the top handler, because some statements that
// we break from (eg, for...in) may have left stuff on the
// stack.
__ movq(kScratchRegister, handler_address);
__ movq(rsp, Operand(kScratchRegister, 0));
frame_->Forget(frame_->height() - handler_height);
// Unlink this handler and drop it from the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (i == kReturnShadowIndex) {
// If this target shadowed the function return, materialize
// the return value on the stack.
frame_->EmitPush(rax);
} else {
// Fake TOS for targets that shadowed breaks and continues.
frame_->EmitPush(Heap::kUndefinedValueRootIndex);
}
__ Move(rcx, Smi::FromInt(JUMPING + i));
if (--nof_unlinks > 0) {
// If this is not the last unlink block, jump around the next.
finally_block.Jump();
}
}
}
// --- Finally block ---
finally_block.Bind();
// Push the state on the stack.
frame_->EmitPush(rcx);
// We keep two elements on the stack - the (possibly faked) result
// and the state - while evaluating the finally block.
//
// Generate code for the statements in the finally block.
VisitStatementsAndSpill(node->finally_block()->statements());
if (has_valid_frame()) {
// Restore state and return value or faked TOS.
frame_->EmitPop(rcx);
frame_->EmitPop(rax);
}
// Generate code to jump to the right destination for all used
// formerly shadowing targets. Deallocate each shadow target.
for (int i = 0; i < shadows.length(); i++) {
if (has_valid_frame() && shadows[i]->is_bound()) {
BreakTarget* original = shadows[i]->other_target();
__ SmiCompare(rcx, Smi::FromInt(JUMPING + i));
if (i == kReturnShadowIndex) {
// The return value is (already) in rax.
Result return_value = allocator_->Allocate(rax);
ASSERT(return_value.is_valid());
if (function_return_is_shadowed_) {
original->Branch(equal, &return_value);
} else {
// Branch around the preparation for return which may emit
// code.
JumpTarget skip;
skip.Branch(not_equal);
frame_->PrepareForReturn();
original->Jump(&return_value);
skip.Bind();
}
} else {
original->Branch(equal);
}
}
}
if (has_valid_frame()) {
// Check if we need to rethrow the exception.
JumpTarget exit;
__ SmiCompare(rcx, Smi::FromInt(THROWING));
exit.Branch(not_equal);
// Rethrow exception.
frame_->EmitPush(rax); // undo pop from above
frame_->CallRuntime(Runtime::kReThrow, 1);
// Done.
exit.Bind();
}
}
void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ DebuggerStatement");
CodeForStatementPosition(node);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Spill everything, even constants, to the frame.
frame_->SpillAll();
frame_->DebugBreak();
// Ignore the return value.
#endif
}
void CodeGenerator::InstantiateFunction(
Handle<SharedFunctionInfo> function_info) {
// The inevitable call will sync frame elements to memory anyway, so
// we do it eagerly to allow us to push the arguments directly into
// place.
frame_->SyncRange(0, frame_->element_count() - 1);
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning.
if (scope()->is_function_scope() && function_info->num_literals() == 0) {
FastNewClosureStub stub;
frame_->Push(function_info);
Result answer = frame_->CallStub(&stub, 1);
frame_->Push(&answer);
} else {
// Call the runtime to instantiate the function based on the
// shared function info.
frame_->EmitPush(rsi);
frame_->EmitPush(function_info);
Result result = frame_->CallRuntime(Runtime::kNewClosure, 2);
frame_->Push(&result);
}
}
void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
Comment cmnt(masm_, "[ FunctionLiteral");
// Build the function info and instantiate it.
Handle<SharedFunctionInfo> function_info =
Compiler::BuildFunctionInfo(node, script(), this);
// Check for stack-overflow exception.
if (HasStackOverflow()) return;
InstantiateFunction(function_info);
}
void CodeGenerator::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* node) {
Comment cmnt(masm_, "[ SharedFunctionInfoLiteral");
InstantiateFunction(node->shared_function_info());
}
void CodeGenerator::VisitConditional(Conditional* node) {
Comment cmnt(masm_, "[ Conditional");
JumpTarget then;
JumpTarget else_;
JumpTarget exit;
ControlDestination dest(&then, &else_, true);
LoadCondition(node->condition(), &dest, true);
if (dest.false_was_fall_through()) {
// The else target was bound, so we compile the else part first.
Load(node->else_expression());
if (then.is_linked()) {
exit.Jump();
then.Bind();
Load(node->then_expression());
}
} else {
// The then target was bound, so we compile the then part first.
Load(node->then_expression());
if (else_.is_linked()) {
exit.Jump();
else_.Bind();
Load(node->else_expression());
}
}
exit.Bind();
}
void CodeGenerator::VisitSlot(Slot* node) {
Comment cmnt(masm_, "[ Slot");
LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF);
}
void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
Comment cmnt(masm_, "[ VariableProxy");
Variable* var = node->var();
Expression* expr = var->rewrite();
if (expr != NULL) {
Visit(expr);
} else {
ASSERT(var->is_global());
Reference ref(this, node);
ref.GetValue();
}
}
void CodeGenerator::VisitLiteral(Literal* node) {
Comment cmnt(masm_, "[ Literal");
frame_->Push(node->handle());
}
// Materialize the regexp literal 'node' in the literals array
// 'literals' of the function. Leave the regexp boilerplate in
// 'boilerplate'.
class DeferredRegExpLiteral: public DeferredCode {
public:
DeferredRegExpLiteral(Register boilerplate,
Register literals,
RegExpLiteral* node)
: boilerplate_(boilerplate), literals_(literals), node_(node) {
set_comment("[ DeferredRegExpLiteral");
}
void Generate();
private:
Register boilerplate_;
Register literals_;
RegExpLiteral* node_;
};
void DeferredRegExpLiteral::Generate() {
// Since the entry is undefined we call the runtime system to
// compute the literal.
// Literal array (0).
__ push(literals_);
// Literal index (1).
__ Push(Smi::FromInt(node_->literal_index()));
// RegExp pattern (2).
__ Push(node_->pattern());
// RegExp flags (3).
__ Push(node_->flags());
__ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax);
}
void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
Comment cmnt(masm_, "[ RegExp Literal");
// Retrieve the literals array and check the allocated entry. Begin
// with a writable copy of the function of this activation in a
// register.
frame_->PushFunction();
Result literals = frame_->Pop();
literals.ToRegister();
frame_->Spill(literals.reg());
// Load the literals array of the function.
__ movq(literals.reg(),
FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
// Load the literal at the ast saved index.
Result boilerplate = allocator_->Allocate();
ASSERT(boilerplate.is_valid());
int literal_offset =
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
__ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
// Check whether we need to materialize the RegExp object. If so,
// jump to the deferred code passing the literals array.
DeferredRegExpLiteral* deferred =
new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node);
__ CompareRoot(boilerplate.reg(), Heap::kUndefinedValueRootIndex);
deferred->Branch(equal);
deferred->BindExit();
literals.Unuse();
// Push the boilerplate object.
frame_->Push(&boilerplate);
}
void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
Comment cmnt(masm_, "[ ObjectLiteral");
// Load a writable copy of the function of this activation in a
// register.
frame_->PushFunction();
Result literals = frame_->Pop();
literals.ToRegister();
frame_->Spill(literals.reg());
// Load the literals array of the function.
__ movq(literals.reg(),
FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
// Literal array.
frame_->Push(&literals);
// Literal index.
frame_->Push(Smi::FromInt(node->literal_index()));
// Constant properties.
frame_->Push(node->constant_properties());
// Should the object literal have fast elements?
frame_->Push(Smi::FromInt(node->fast_elements() ? 1 : 0));
Result clone;
if (node->depth() > 1) {
clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4);
} else {
clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
}
frame_->Push(&clone);
for (int i = 0; i < node->properties()->length(); i++) {
ObjectLiteral::Property* property = node->properties()->at(i);
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
break;
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
// else fall through.
case ObjectLiteral::Property::COMPUTED: {
Handle<Object> key(property->key()->handle());
if (key->IsSymbol()) {
// Duplicate the object as the IC receiver.
frame_->Dup();
Load(property->value());
frame_->Push(key);
Result ignored = frame_->CallStoreIC();
break;
}
// Fall through
}
case ObjectLiteral::Property::PROTOTYPE: {
// Duplicate the object as an argument to the runtime call.
frame_->Dup();
Load(property->key());
Load(property->value());
Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 3);
// Ignore the result.
break;
}
case ObjectLiteral::Property::SETTER: {
// Duplicate the object as an argument to the runtime call.
frame_->Dup();
Load(property->key());
frame_->Push(Smi::FromInt(1));
Load(property->value());
Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
// Ignore the result.
break;
}
case ObjectLiteral::Property::GETTER: {
// Duplicate the object as an argument to the runtime call.
frame_->Dup();
Load(property->key());
frame_->Push(Smi::FromInt(0));
Load(property->value());
Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
// Ignore the result.
break;
}
default: UNREACHABLE();
}
}
}
void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
Comment cmnt(masm_, "[ ArrayLiteral");
// Load a writable copy of the function of this activation in a
// register.
frame_->PushFunction();
Result literals = frame_->Pop();
literals.ToRegister();
frame_->Spill(literals.reg());
// Load the literals array of the function.
__ movq(literals.reg(),
FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
frame_->Push(&literals);
frame_->Push(Smi::FromInt(node->literal_index()));
frame_->Push(node->constant_elements());
int length = node->values()->length();
Result clone;
if (node->depth() > 1) {
clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3);
} else if (length > FastCloneShallowArrayStub::kMaximumLength) {
clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
} else {
FastCloneShallowArrayStub stub(length);
clone = frame_->CallStub(&stub, 3);
}
frame_->Push(&clone);
// Generate code to set the elements in the array that are not
// literals.
for (int i = 0; i < length; i++) {
Expression* value = node->values()->at(i);
// If value is a literal the property value is already set in the
// boilerplate object.
if (value->AsLiteral() != NULL) continue;
// If value is a materialized literal the property value is already set
// in the boilerplate object if it is simple.
if (CompileTimeValue::IsCompileTimeValue(value)) continue;
// The property must be set by generated code.
Load(value);
// Get the property value off the stack.
Result prop_value = frame_->Pop();
prop_value.ToRegister();
// Fetch the array literal while leaving a copy on the stack and
// use it to get the elements array.
frame_->Dup();
Result elements = frame_->Pop();
elements.ToRegister();
frame_->Spill(elements.reg());
// Get the elements FixedArray.
__ movq(elements.reg(),
FieldOperand(elements.reg(), JSObject::kElementsOffset));
// Write to the indexed properties array.
int offset = i * kPointerSize + FixedArray::kHeaderSize;
__ movq(FieldOperand(elements.reg(), offset), prop_value.reg());
// Update the write barrier for the array address.
frame_->Spill(prop_value.reg()); // Overwritten by the write barrier.
Result scratch = allocator_->Allocate();
ASSERT(scratch.is_valid());
__ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg());
}
}
void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
ASSERT(!in_spilled_code());
// Call runtime routine to allocate the catch extension object and
// assign the exception value to the catch variable.
Comment cmnt(masm_, "[ CatchExtensionObject");
Load(node->key());
Load(node->value());
Result result =
frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
frame_->Push(&result);
}
void CodeGenerator::VisitAssignment(Assignment* node) {
Comment cmnt(masm_, "[ Assignment");
{ Reference target(this, node->target(), node->is_compound());
if (target.is_illegal()) {
// Fool the virtual frame into thinking that we left the assignment's
// value on the frame.
frame_->Push(Smi::FromInt(0));
return;
}
Variable* var = node->target()->AsVariableProxy()->AsVariable();
if (node->starts_initialization_block()) {
ASSERT(target.type() == Reference::NAMED ||
target.type() == Reference::KEYED);
// Change to slow case in the beginning of an initialization
// block to avoid the quadratic behavior of repeatedly adding
// fast properties.
// The receiver is the argument to the runtime call. It is the
// first value pushed when the reference was loaded to the
// frame.
frame_->PushElementAt(target.size() - 1);
Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
}
if (node->ends_initialization_block()) {
// Add an extra copy of the receiver to the frame, so that it can be
// converted back to fast case after the assignment.
ASSERT(target.type() == Reference::NAMED ||
target.type() == Reference::KEYED);
if (target.type() == Reference::NAMED) {
frame_->Dup();
// Dup target receiver on stack.
} else {
ASSERT(target.type() == Reference::KEYED);
Result temp = frame_->Pop();
frame_->Dup();
frame_->Push(&temp);
}
}
if (node->op() == Token::ASSIGN ||
node->op() == Token::INIT_VAR ||
node->op() == Token::INIT_CONST) {
Load(node->value());
} else { // Assignment is a compound assignment.
Literal* literal = node->value()->AsLiteral();
bool overwrite_value =
(node->value()->AsBinaryOperation() != NULL &&
node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
Variable* right_var = node->value()->AsVariableProxy()->AsVariable();
// There are two cases where the target is not read in the right hand
// side, that are easy to test for: the right hand side is a literal,
// or the right hand side is a different variable. TakeValue invalidates
// the target, with an implicit promise that it will be written to again
// before it is read.
if (literal != NULL || (right_var != NULL && right_var != var)) {
target.TakeValue();
} else {
target.GetValue();
}
Load(node->value());
BinaryOperation expr(node, node->binary_op(), node->target(),
node->value());
GenericBinaryOperation(&expr,
overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
}
if (var != NULL &&
var->mode() == Variable::CONST &&
node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
// Assignment ignored - leave the value on the stack.
UnloadReference(&target);
} else {
CodeForSourcePosition(node->position());
if (node->op() == Token::INIT_CONST) {
// Dynamic constant initializations must use the function context
// and initialize the actual constant declared. Dynamic variable
// initializations are simply assignments and use SetValue.
target.SetValue(CONST_INIT);
} else {
target.SetValue(NOT_CONST_INIT);
}
if (node->ends_initialization_block()) {
ASSERT(target.type() == Reference::UNLOADED);
// End of initialization block. Revert to fast case. The
// argument to the runtime call is the extra copy of the receiver,
// which is below the value of the assignment.
// Swap the receiver and the value of the assignment expression.
Result lhs = frame_->Pop();
Result receiver = frame_->Pop();
frame_->Push(&lhs);
frame_->Push(&receiver);
Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
}
}
}
}
void CodeGenerator::VisitThrow(Throw* node) {
Comment cmnt(masm_, "[ Throw");
Load(node->exception());
Result result = frame_->CallRuntime(Runtime::kThrow, 1);
frame_->Push(&result);
}
void CodeGenerator::VisitProperty(Property* node) {
Comment cmnt(masm_, "[ Property");
Reference property(this, node);
property.GetValue();
}
void CodeGenerator::VisitCall(Call* node) {
Comment cmnt(masm_, "[ Call");
ZoneList<Expression*>* args = node->arguments();
// Check if the function is a variable or a property.
Expression* function = node->expression();
Variable* var = function->AsVariableProxy()->AsVariable();
Property* property = function->AsProperty();
// ------------------------------------------------------------------------
// Fast-case: Use inline caching.
// ---
// According to ECMA-262, section 11.2.3, page 44, the function to call
// must be resolved after the arguments have been evaluated. The IC code
// automatically handles this by loading the arguments before the function
// is resolved in cache misses (this also holds for megamorphic calls).
// ------------------------------------------------------------------------
if (var != NULL && var->is_possibly_eval()) {
// ----------------------------------
// JavaScript example: 'eval(arg)' // eval is not known to be shadowed
// ----------------------------------
// In a call to eval, we first call %ResolvePossiblyDirectEval to
// resolve the function we need to call and the receiver of the
// call. Then we call the resolved function using the given
// arguments.
// Prepare the stack for the call to the resolved function.
Load(function);
// Allocate a frame slot for the receiver.
frame_->Push(Factory::undefined_value());
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
frame_->SpillTop();
}
// Result to hold the result of the function resolution and the
// final result of the eval call.
Result result;
// If we know that eval can only be shadowed by eval-introduced
// variables we attempt to load the global eval function directly
// in generated code. If we succeed, there is no need to perform a
// context lookup in the runtime system.
JumpTarget done;
if (var->slot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) {
ASSERT(var->slot()->type() == Slot::LOOKUP);
JumpTarget slow;
// Prepare the stack for the call to
// ResolvePossiblyDirectEvalNoLookup by pushing the loaded
// function, the first argument to the eval call and the
// receiver.
Result fun = LoadFromGlobalSlotCheckExtensions(var->slot(),
NOT_INSIDE_TYPEOF,
&slow);
frame_->Push(&fun);
if (arg_count > 0) {
frame_->PushElementAt(arg_count);
} else {
frame_->Push(Factory::undefined_value());
}
frame_->PushParameterAt(-1);
// Resolve the call.
result =
frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 3);
done.Jump(&result);
slow.Bind();
}
// Prepare the stack for the call to ResolvePossiblyDirectEval by
// pushing the loaded function, the first argument to the eval
// call and the receiver.
frame_->PushElementAt(arg_count + 1);
if (arg_count > 0) {
frame_->PushElementAt(arg_count);
} else {
frame_->Push(Factory::undefined_value());
}
frame_->PushParameterAt(-1);
// Resolve the call.
result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 3);
// If we generated fast-case code bind the jump-target where fast
// and slow case merge.
if (done.is_linked()) done.Bind(&result);
// The runtime call returns a pair of values in rax (function) and
// rdx (receiver). Touch up the stack with the right values.
Result receiver = allocator_->Allocate(rdx);
frame_->SetElementAt(arg_count + 1, &result);
frame_->SetElementAt(arg_count, &receiver);
receiver.Unuse();
// Call the function.
CodeForSourcePosition(node->position());
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
result = frame_->CallStub(&call_function, arg_count + 1);
// Restore the context and overwrite the function on the stack with
// the result.
frame_->RestoreContextRegister();
frame_->SetElementAt(0, &result);
} else if (var != NULL && !var->is_this() && var->is_global()) {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is global
// ----------------------------------
// Pass the global object as the receiver and let the IC stub
// patch the stack to use the global proxy as 'this' in the
// invoked function.
LoadGlobal();
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
frame_->SpillTop();
}
// Push the name of the function on the frame.
frame_->Push(var->name());
// Call the IC initialization code.
CodeForSourcePosition(node->position());
Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT,
arg_count,
loop_nesting());
frame_->RestoreContextRegister();
// Replace the function on the stack with the result.
frame_->Push(&result);
} else if (var != NULL && var->slot() != NULL &&
var->slot()->type() == Slot::LOOKUP) {
// ----------------------------------
// JavaScript examples:
//
// with (obj) foo(1, 2, 3) // foo may be in obj.
//
// function f() {};
// function g() {
// eval(...);
// f(); // f could be in extension object.
// }
// ----------------------------------
JumpTarget slow, done;
Result function;
// Generate fast case for loading functions from slots that
// correspond to local/global variables or arguments unless they
// are shadowed by eval-introduced bindings.
EmitDynamicLoadFromSlotFastCase(var->slot(),
NOT_INSIDE_TYPEOF,
&function,
&slow,
&done);
slow.Bind();
// Load the function from the context. Sync the frame so we can
// push the arguments directly into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
frame_->EmitPush(var->name());
frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
// The runtime call returns a pair of values in rax and rdx. The
// looked-up function is in rax and the receiver is in rdx. These
// register references are not ref counted here. We spill them
// eagerly since they are arguments to an inevitable call (and are
// not sharable by the arguments).
ASSERT(!allocator()->is_used(rax));
frame_->EmitPush(rax);
// Load the receiver.
ASSERT(!allocator()->is_used(rdx));
frame_->EmitPush(rdx);
// If fast case code has been generated, emit code to push the
// function and receiver and have the slow path jump around this
// code.
if (done.is_linked()) {
JumpTarget call;
call.Jump();
done.Bind(&function);
frame_->Push(&function);
LoadGlobalReceiver();
call.Bind();
}
// Call the function.
CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
} else if (property != NULL) {
// Check if the key is a literal string.
Literal* literal = property->key()->AsLiteral();
if (literal != NULL && literal->handle()->IsSymbol()) {
// ------------------------------------------------------------------
// JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
// ------------------------------------------------------------------
Handle<String> name = Handle<String>::cast(literal->handle());
if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION &&
name->IsEqualTo(CStrVector("apply")) &&
args->length() == 2 &&
args->at(1)->AsVariableProxy() != NULL &&
args->at(1)->AsVariableProxy()->IsArguments()) {
// Use the optimized Function.prototype.apply that avoids
// allocating lazily allocated arguments objects.
CallApplyLazy(property->obj(),
args->at(0),
args->at(1)->AsVariableProxy(),
node->position());
} else {
// Push the receiver onto the frame.
Load(property->obj());
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
frame_->SpillTop();
}
// Push the name of the function onto the frame.
frame_->Push(name);
// Call the IC initialization code.
CodeForSourcePosition(node->position());
Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET,
arg_count,
loop_nesting());
frame_->RestoreContextRegister();
frame_->Push(&result);
}
} else {
// -------------------------------------------
// JavaScript example: 'array[index](1, 2, 3)'
// -------------------------------------------
// Load the function to call from the property through a reference.
if (property->is_synthetic()) {
Reference ref(this, property, false);
ref.GetValue();
// Use global object as receiver.
LoadGlobalReceiver();
// Call the function.
CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position());
} else {
// Push the receiver onto the frame.
Load(property->obj());
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
frame_->SpillTop();
}
// Load the name of the function.
Load(property->key());
// Call the IC initialization code.
CodeForSourcePosition(node->position());
Result result = frame_->CallKeyedCallIC(RelocInfo::CODE_TARGET,
arg_count,
loop_nesting());
frame_->RestoreContextRegister();
frame_->Push(&result);
}
}
} else {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is not global
// ----------------------------------
// Load the function.
Load(function);
// Pass the global proxy as the receiver.
LoadGlobalReceiver();
// Call the function.
CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
}
}
void CodeGenerator::VisitCallNew(CallNew* node) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments. This is different from ordinary calls, where the
// actual function to call is resolved after the arguments have been
// evaluated.
// Compute function to call and use the global object as the
// receiver. There is no need to use the global proxy here because
// it will always be replaced with a newly allocated object.
Load(node->expression());
LoadGlobal();
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = node->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
CodeForSourcePosition(node->position());
Result result = frame_->CallConstructor(arg_count);
// Replace the function on the stack with the result.
frame_->SetElementAt(0, &result);
}
void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
if (CheckForInlineRuntimeCall(node)) {
return;
}
ZoneList<Expression*>* args = node->arguments();
Comment cmnt(masm_, "[ CallRuntime");
Runtime::Function* function = node->function();
if (function == NULL) {
// Push the builtins object found in the current global object.
Result temp = allocator()->Allocate();
ASSERT(temp.is_valid());
__ movq(temp.reg(), GlobalObject());
__ movq(temp.reg(),
FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
frame_->Push(&temp);
}
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
if (function == NULL) {
// Call the JS runtime function.
frame_->Push(node->name());
Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET,
arg_count,
loop_nesting_);
frame_->RestoreContextRegister();
frame_->Push(&answer);
} else {
// Call the C runtime function.
Result answer = frame_->CallRuntime(function, arg_count);
frame_->Push(&answer);
}
}
void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
Comment cmnt(masm_, "[ UnaryOperation");
Token::Value op = node->op();
if (op == Token::NOT) {
// Swap the true and false targets but keep the same actual label
// as the fall through.
destination()->Invert();
LoadCondition(node->expression(), destination(), true);
// Swap the labels back.
destination()->Invert();
} else if (op == Token::DELETE) {
Property* property = node->expression()->AsProperty();
if (property != NULL) {
Load(property->obj());
Load(property->key());
Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2);
frame_->Push(&answer);
return;
}
Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
if (variable != NULL) {
Slot* slot = variable->slot();
if (variable->is_global()) {
LoadGlobal();
frame_->Push(variable->name());
Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
CALL_FUNCTION, 2);
frame_->Push(&answer);
return;
} else if (slot != NULL && slot->type() == Slot::LOOKUP) {
// Call the runtime to look up the context holding the named
// variable. Sync the virtual frame eagerly so we can push the
// arguments directly into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
frame_->EmitPush(variable->name());
Result context = frame_->CallRuntime(Runtime::kLookupContext, 2);
ASSERT(context.is_register());
frame_->EmitPush(context.reg());
context.Unuse();
frame_->EmitPush(variable->name());
Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
CALL_FUNCTION, 2);
frame_->Push(&answer);
return;
}
// Default: Result of deleting non-global, not dynamically
// introduced variables is false.
frame_->Push(Factory::false_value());
} else {
// Default: Result of deleting expressions is true.
Load(node->expression()); // may have side-effects
frame_->SetElementAt(0, Factory::true_value());
}
} else if (op == Token::TYPEOF) {
// Special case for loading the typeof expression; see comment on
// LoadTypeofExpression().
LoadTypeofExpression(node->expression());
Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
frame_->Push(&answer);
} else if (op == Token::VOID) {
Expression* expression = node->expression();
if (expression && expression->AsLiteral() && (
expression->AsLiteral()->IsTrue() ||
expression->AsLiteral()->IsFalse() ||
expression->AsLiteral()->handle()->IsNumber() ||
expression->AsLiteral()->handle()->IsString() ||
expression->AsLiteral()->handle()->IsJSRegExp() ||
expression->AsLiteral()->IsNull())) {
// Omit evaluating the value of the primitive literal.
// It will be discarded anyway, and can have no side effect.
frame_->Push(Factory::undefined_value());
} else {
Load(node->expression());
frame_->SetElementAt(0, Factory::undefined_value());
}
} else {
bool can_overwrite =
(node->expression()->AsBinaryOperation() != NULL &&
node->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
UnaryOverwriteMode overwrite =
can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
bool no_negative_zero = node->expression()->no_negative_zero();
Load(node->expression());
switch (op) {
case Token::NOT:
case Token::DELETE:
case Token::TYPEOF:
UNREACHABLE(); // handled above
break;
case Token::SUB: {
GenericUnaryOpStub stub(
Token::SUB,
overwrite,
no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero);
Result operand = frame_->Pop();
Result answer = frame_->CallStub(&stub, &operand);
answer.set_type_info(TypeInfo::Number());
frame_->Push(&answer);
break;
}
case Token::BIT_NOT: {
// Smi check.
JumpTarget smi_label;
JumpTarget continue_label;
Result operand = frame_->Pop();
operand.ToRegister();
Condition is_smi = masm_->CheckSmi(operand.reg());
smi_label.Branch(is_smi, &operand);
GenericUnaryOpStub stub(Token::BIT_NOT, overwrite);
Result answer = frame_->CallStub(&stub, &operand);
continue_label.Jump(&answer);
smi_label.Bind(&answer);
answer.ToRegister();
frame_->Spill(answer.reg());
__ SmiNot(answer.reg(), answer.reg());
continue_label.Bind(&answer);
answer.set_type_info(TypeInfo::Smi());
frame_->Push(&answer);
break;
}
case Token::ADD: {
// Smi check.
JumpTarget continue_label;
Result operand = frame_->Pop();
TypeInfo operand_info = operand.type_info();
operand.ToRegister();
Condition is_smi = masm_->CheckSmi(operand.reg());
continue_label.Branch(is_smi, &operand);
frame_->Push(&operand);
Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
CALL_FUNCTION, 1);
continue_label.Bind(&answer);
if (operand_info.IsSmi()) {
answer.set_type_info(TypeInfo::Smi());
} else if (operand_info.IsInteger32()) {
answer.set_type_info(TypeInfo::Integer32());
} else {
answer.set_type_info(TypeInfo::Number());
}
frame_->Push(&answer);
break;
}
default:
UNREACHABLE();
}
}
}
// The value in dst was optimistically incremented or decremented.
// The result overflowed or was not smi tagged. Call into the runtime
// to convert the argument to a number, and call the specialized add
// or subtract stub. The result is left in dst.
class DeferredPrefixCountOperation: public DeferredCode {
public:
DeferredPrefixCountOperation(Register dst,
bool is_increment,
TypeInfo input_type)
: dst_(dst), is_increment_(is_increment), input_type_(input_type) {
set_comment("[ DeferredCountOperation");
}
virtual void Generate();
private:
Register dst_;
bool is_increment_;
TypeInfo input_type_;
};
void DeferredPrefixCountOperation::Generate() {
Register left;
if (input_type_.IsNumber()) {
left = dst_;
} else {
__ push(dst_);
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
left = rax;
}
GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
NO_OVERWRITE,
NO_GENERIC_BINARY_FLAGS,
TypeInfo::Number());
stub.GenerateCall(masm_, left, Smi::FromInt(1));
if (!dst_.is(rax)) __ movq(dst_, rax);
}
// The value in dst was optimistically incremented or decremented.
// The result overflowed or was not smi tagged. Call into the runtime
// to convert the argument to a number. Update the original value in
// old. Call the specialized add or subtract stub. The result is
// left in dst.
class DeferredPostfixCountOperation: public DeferredCode {
public:
DeferredPostfixCountOperation(Register dst,
Register old,
bool is_increment,
TypeInfo input_type)
: dst_(dst),
old_(old),
is_increment_(is_increment),
input_type_(input_type) {
set_comment("[ DeferredCountOperation");
}
virtual void Generate();
private:
Register dst_;
Register old_;
bool is_increment_;
TypeInfo input_type_;
};
void DeferredPostfixCountOperation::Generate() {
Register left;
if (input_type_.IsNumber()) {
__ push(dst_); // Save the input to use as the old value.
left = dst_;
} else {
__ push(dst_);
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
__ push(rax); // Save the result of ToNumber to use as the old value.
left = rax;
}
GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
NO_OVERWRITE,
NO_GENERIC_BINARY_FLAGS,
TypeInfo::Number());
stub.GenerateCall(masm_, left, Smi::FromInt(1));
if (!dst_.is(rax)) __ movq(dst_, rax);
__ pop(old_);
}
void CodeGenerator::VisitCountOperation(CountOperation* node) {
Comment cmnt(masm_, "[ CountOperation");
bool is_postfix = node->is_postfix();
bool is_increment = node->op() == Token::INC;
Variable* var = node->expression()->AsVariableProxy()->AsVariable();
bool is_const = (var != NULL && var->mode() == Variable::CONST);
// Postfix operations need a stack slot under the reference to hold
// the old value while the new value is being stored. This is so that
// in the case that storing the new value requires a call, the old
// value will be in the frame to be spilled.
if (is_postfix) frame_->Push(Smi::FromInt(0));
// A constant reference is not saved to, so the reference is not a
// compound assignment reference.
{ Reference target(this, node->expression(), !is_const);
if (target.is_illegal()) {
// Spoof the virtual frame to have the expected height (one higher
// than on entry).
if (!is_postfix) frame_->Push(Smi::FromInt(0));
return;
}
target.TakeValue();
Result new_value = frame_->Pop();
new_value.ToRegister();
Result old_value; // Only allocated in the postfix case.
if (is_postfix) {
// Allocate a temporary to preserve the old value.
old_value = allocator_->Allocate();
ASSERT(old_value.is_valid());
__ movq(old_value.reg(), new_value.reg());
// The return value for postfix operations is ToNumber(input).
// Keep more precise type info if the input is some kind of
// number already. If the input is not a number we have to wait
// for the deferred code to convert it.
if (new_value.type_info().IsNumber()) {
old_value.set_type_info(new_value.type_info());
}
}
// Ensure the new value is writable.
frame_->Spill(new_value.reg());
DeferredCode* deferred = NULL;
if (is_postfix) {
deferred = new DeferredPostfixCountOperation(new_value.reg(),
old_value.reg(),
is_increment,
new_value.type_info());
} else {
deferred = new DeferredPrefixCountOperation(new_value.reg(),
is_increment,
new_value.type_info());
}
if (new_value.is_smi()) {
if (FLAG_debug_code) { __ AbortIfNotSmi(new_value.reg()); }
} else {
__ JumpIfNotSmi(new_value.reg(), deferred->entry_label());
}
if (is_increment) {
__ SmiAddConstant(new_value.reg(),
new_value.reg(),
Smi::FromInt(1),
deferred->entry_label());
} else {
__ SmiSubConstant(new_value.reg(),
new_value.reg(),
Smi::FromInt(1),
deferred->entry_label());
}
deferred->BindExit();
// Postfix count operations return their input converted to
// number. The case when the input is already a number is covered
// above in the allocation code for old_value.
if (is_postfix && !new_value.type_info().IsNumber()) {
old_value.set_type_info(TypeInfo::Number());
}
new_value.set_type_info(TypeInfo::Number());
// Postfix: store the old value in the allocated slot under the
// reference.
if (is_postfix) frame_->SetElementAt(target.size(), &old_value);
frame_->Push(&new_value);
// Non-constant: update the reference.
if (!is_const) target.SetValue(NOT_CONST_INIT);
}
// Postfix: drop the new value and use the old.
if (is_postfix) frame_->Drop();
}
void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) {
// According to ECMA-262 section 11.11, page 58, the binary logical
// operators must yield the result of one of the two expressions
// before any ToBoolean() conversions. This means that the value
// produced by a && or || operator is not necessarily a boolean.
// NOTE: If the left hand side produces a materialized value (not
// control flow), we force the right hand side to do the same. This
// is necessary because we assume that if we get control flow on the
// last path out of an expression we got it on all paths.
if (node->op() == Token::AND) {
JumpTarget is_true;
ControlDestination dest(&is_true, destination()->false_target(), true);
LoadCondition(node->left(), &dest, false);
if (dest.false_was_fall_through()) {
// The current false target was used as the fall-through. If
// there are no dangling jumps to is_true then the left
// subexpression was unconditionally false. Otherwise we have
// paths where we do have to evaluate the right subexpression.
if (is_true.is_linked()) {
// We need to compile the right subexpression. If the jump to
// the current false target was a forward jump then we have a
// valid frame, we have just bound the false target, and we
// have to jump around the code for the right subexpression.
if (has_valid_frame()) {
destination()->false_target()->Unuse();
destination()->false_target()->Jump();
}
is_true.Bind();
// The left subexpression compiled to control flow, so the
// right one is free to do so as well.
LoadCondition(node->right(), destination(), false);
} else {
// We have actually just jumped to or bound the current false
// target but the current control destination is not marked as
// used.
destination()->Use(false);
}
} else if (dest.is_used()) {
// The left subexpression compiled to control flow (and is_true
// was just bound), so the right is free to do so as well.
LoadCondition(node->right(), destination(), false);
} else {
// We have a materialized value on the frame, so we exit with
// one on all paths. There are possibly also jumps to is_true
// from nested subexpressions.
JumpTarget pop_and_continue;
JumpTarget exit;
// Avoid popping the result if it converts to 'false' using the
// standard ToBoolean() conversion as described in ECMA-262,
// section 9.2, page 30.
//
// Duplicate the TOS value. The duplicate will be popped by
// ToBoolean.
frame_->Dup();
ControlDestination dest(&pop_and_continue, &exit, true);
ToBoolean(&dest);
// Pop the result of evaluating the first part.
frame_->Drop();
// Compile right side expression.
is_true.Bind();
Load(node->right());
// Exit (always with a materialized value).
exit.Bind();
}
} else {
ASSERT(node->op() == Token::OR);
JumpTarget is_false;
ControlDestination dest(destination()->true_target(), &is_false, false);
LoadCondition(node->left(), &dest, false);
if (dest.true_was_fall_through()) {
// The current true target was used as the fall-through. If
// there are no dangling jumps to is_false then the left
// subexpression was unconditionally true. Otherwise we have
// paths where we do have to evaluate the right subexpression.
if (is_false.is_linked()) {
// We need to compile the right subexpression. If the jump to
// the current true target was a forward jump then we have a
// valid frame, we have just bound the true target, and we
// have to jump around the code for the right subexpression.
if (has_valid_frame()) {
destination()->true_target()->Unuse();
destination()->true_target()->Jump();
}
is_false.Bind();
// The left subexpression compiled to control flow, so the
// right one is free to do so as well.
LoadCondition(node->right(), destination(), false);
} else {
// We have just jumped to or bound the current true target but
// the current control destination is not marked as used.
destination()->Use(true);
}
} else if (dest.is_used()) {
// The left subexpression compiled to control flow (and is_false
// was just bound), so the right is free to do so as well.
LoadCondition(node->right(), destination(), false);
} else {
// We have a materialized value on the frame, so we exit with
// one on all paths. There are possibly also jumps to is_false
// from nested subexpressions.
JumpTarget pop_and_continue;
JumpTarget exit;
// Avoid popping the result if it converts to 'true' using the
// standard ToBoolean() conversion as described in ECMA-262,
// section 9.2, page 30.
//
// Duplicate the TOS value. The duplicate will be popped by
// ToBoolean.
frame_->Dup();
ControlDestination dest(&exit, &pop_and_continue, false);
ToBoolean(&dest);
// Pop the result of evaluating the first part.
frame_->Drop();
// Compile right side expression.
is_false.Bind();
Load(node->right());
// Exit (always with a materialized value).
exit.Bind();
}
}
}
void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
Comment cmnt(masm_, "[ BinaryOperation");
if (node->op() == Token::AND || node->op() == Token::OR) {
GenerateLogicalBooleanOperation(node);
} else {
// NOTE: The code below assumes that the slow cases (calls to runtime)
// never return a constant/immutable object.
OverwriteMode overwrite_mode = NO_OVERWRITE;
if (node->left()->AsBinaryOperation() != NULL &&
node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) {
overwrite_mode = OVERWRITE_LEFT;
} else if (node->right()->AsBinaryOperation() != NULL &&
node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) {
overwrite_mode = OVERWRITE_RIGHT;
}
if (node->left()->IsTrivial()) {
Load(node->right());
Result right = frame_->Pop();
frame_->Push(node->left());
frame_->Push(&right);
} else {
Load(node->left());
Load(node->right());
}
GenericBinaryOperation(node, overwrite_mode);
}
}
void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
Comment cmnt(masm_, "[ CompareOperation");
// Get the expressions from the node.
Expression* left = node->left();
Expression* right = node->right();
Token::Value op = node->op();
// To make typeof testing for natives implemented in JavaScript really
// efficient, we generate special code for expressions of the form:
// 'typeof <expression> == <string>'.
UnaryOperation* operation = left->AsUnaryOperation();
if ((op == Token::EQ || op == Token::EQ_STRICT) &&
(operation != NULL && operation->op() == Token::TYPEOF) &&
(right->AsLiteral() != NULL &&
right->AsLiteral()->handle()->IsString())) {
Handle<String> check(Handle<String>::cast(right->AsLiteral()->handle()));
// Load the operand and move it to a register.
LoadTypeofExpression(operation->expression());
Result answer = frame_->Pop();
answer.ToRegister();
if (check->Equals(Heap::number_symbol())) {
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->true_target()->Branch(is_smi);
frame_->Spill(answer.reg());
__ movq(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
__ CompareRoot(answer.reg(), Heap::kHeapNumberMapRootIndex);
answer.Unuse();
destination()->Split(equal);
} else if (check->Equals(Heap::string_symbol())) {
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->false_target()->Branch(is_smi);
// It can be an undetectable string object.
__ movq(kScratchRegister,
FieldOperand(answer.reg(), HeapObject::kMapOffset));
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
destination()->false_target()->Branch(not_zero);
__ CmpInstanceType(kScratchRegister, FIRST_NONSTRING_TYPE);
answer.Unuse();
destination()->Split(below); // Unsigned byte comparison needed.
} else if (check->Equals(Heap::boolean_symbol())) {
__ CompareRoot(answer.reg(), Heap::kTrueValueRootIndex);
destination()->true_target()->Branch(equal);
__ CompareRoot(answer.reg(), Heap::kFalseValueRootIndex);
answer.Unuse();
destination()->Split(equal);
} else if (check->Equals(Heap::undefined_symbol())) {
__ CompareRoot(answer.reg(), Heap::kUndefinedValueRootIndex);
destination()->true_target()->Branch(equal);
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->false_target()->Branch(is_smi);
// It can be an undetectable object.
__ movq(kScratchRegister,
FieldOperand(answer.reg(), HeapObject::kMapOffset));
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
answer.Unuse();
destination()->Split(not_zero);
} else if (check->Equals(Heap::function_symbol())) {
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->false_target()->Branch(is_smi);
frame_->Spill(answer.reg());
__ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
destination()->true_target()->Branch(equal);
// Regular expressions are callable so typeof == 'function'.
__ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE);
answer.Unuse();
destination()->Split(equal);
} else if (check->Equals(Heap::object_symbol())) {
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->false_target()->Branch(is_smi);
__ CompareRoot(answer.reg(), Heap::kNullValueRootIndex);
destination()->true_target()->Branch(equal);
// Regular expressions are typeof == 'function', not 'object'.
__ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, kScratchRegister);
destination()->false_target()->Branch(equal);
// It can be an undetectable object.
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
destination()->false_target()->Branch(not_zero);
__ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE);
destination()->false_target()->Branch(below);
__ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
answer.Unuse();
destination()->Split(below_equal);
} else {
// Uncommon case: typeof testing against a string literal that is
// never returned from the typeof operator.
answer.Unuse();
destination()->Goto(false);
}
return;
}
Condition cc = no_condition;
bool strict = false;
switch (op) {
case Token::EQ_STRICT:
strict = true;
// Fall through
case Token::EQ:
cc = equal;
break;
case Token::LT:
cc = less;
break;
case Token::GT:
cc = greater;
break;
case Token::LTE:
cc = less_equal;
break;
case Token::GTE:
cc = greater_equal;
break;
case Token::IN: {
Load(left);
Load(right);
Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
frame_->Push(&answer); // push the result
return;
}
case Token::INSTANCEOF: {
Load(left);
Load(right);
InstanceofStub stub;
Result answer = frame_->CallStub(&stub, 2);
answer.ToRegister();
__ testq(answer.reg(), answer.reg());
answer.Unuse();
destination()->Split(zero);
return;
}
default:
UNREACHABLE();
}
if (left->IsTrivial()) {
Load(right);
Result right_result = frame_->Pop();
frame_->Push(left);
frame_->Push(&right_result);
} else {
Load(left);
Load(right);
}
Comparison(node, cc, strict, destination());
}
void CodeGenerator::VisitThisFunction(ThisFunction* node) {
frame_->PushFunction();
}
void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
// ArgumentsAccessStub expects the key in rdx and the formal
// parameter count in rax.
Load(args->at(0));
Result key = frame_->Pop();
// Explicitly create a constant result.
Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters())));
// Call the shared stub to get to arguments[key].
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
Result result = frame_->CallStub(&stub, &key, &count);
frame_->Push(&result);
}
void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition is_smi = masm_->CheckSmi(value.reg());
destination()->false_target()->Branch(is_smi);
// It is a heap object - get map.
// Check if the object is a JS array or not.
__ CmpObjectType(value.reg(), JS_ARRAY_TYPE, kScratchRegister);
value.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition is_smi = masm_->CheckSmi(value.reg());
destination()->false_target()->Branch(is_smi);
// It is a heap object - get map.
// Check if the object is a regexp.
__ CmpObjectType(value.reg(), JS_REGEXP_TYPE, kScratchRegister);
value.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) {
// This generates a fast version of:
// (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp')
ASSERT(args->length() == 1);
Load(args->at(0));
Result obj = frame_->Pop();
obj.ToRegister();
Condition is_smi = masm_->CheckSmi(obj.reg());
destination()->false_target()->Branch(is_smi);
__ Move(kScratchRegister, Factory::null_value());
__ cmpq(obj.reg(), kScratchRegister);
destination()->true_target()->Branch(equal);
__ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset));
// Undetectable objects behave like undefined when tested with typeof.
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
destination()->false_target()->Branch(not_zero);
__ movzxbq(kScratchRegister,
FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
__ cmpq(kScratchRegister, Immediate(FIRST_JS_OBJECT_TYPE));
destination()->false_target()->Branch(below);
__ cmpq(kScratchRegister, Immediate(LAST_JS_OBJECT_TYPE));
obj.Unuse();
destination()->Split(below_equal);
}
void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) {
// This generates a fast version of:
// (%_ClassOf(arg) === 'Function')
ASSERT(args->length() == 1);
Load(args->at(0));
Result obj = frame_->Pop();
obj.ToRegister();
Condition is_smi = masm_->CheckSmi(obj.reg());
destination()->false_target()->Branch(is_smi);
__ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
obj.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result obj = frame_->Pop();
obj.ToRegister();
Condition is_smi = masm_->CheckSmi(obj.reg());
destination()->false_target()->Branch(is_smi);
__ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset));
__ movzxbl(kScratchRegister,
FieldOperand(kScratchRegister, Map::kBitFieldOffset));
__ testl(kScratchRegister, Immediate(1 << Map::kIsUndetectable));
obj.Unuse();
destination()->Split(not_zero);
}
void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
// Get the frame pointer for the calling frame.
Result fp = allocator()->Allocate();
__ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(not_equal, &check_frame_marker);
__ movq(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset),
Smi::FromInt(StackFrame::CONSTRUCT));
fp.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
Result fp = allocator_->Allocate();
Result result = allocator_->Allocate();
ASSERT(fp.is_valid() && result.is_valid());
Label exit;
// Get the number of formal parameters.
__ Move(result.reg(), Smi::FromInt(scope()->num_parameters()));
// Check if the calling frame is an arguments adaptor frame.
__ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(not_equal, &exit);
// Arguments adaptor case: Read the arguments length from the
// adaptor frame.
__ movq(result.reg(),
Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset));
__ bind(&exit);
result.set_type_info(TypeInfo::Smi());
if (FLAG_debug_code) {
__ AbortIfNotSmi(result.reg());
}
frame_->Push(&result);
}
class DeferredStringCharCodeAt : public DeferredCode {
public:
DeferredStringCharCodeAt(Register object,
Register index,
Register scratch,
Register result)
: result_(result),
char_code_at_generator_(object,
index,
scratch,
result,
&need_conversion_,
&need_conversion_,
&index_out_of_range_,
STRING_INDEX_IS_NUMBER) {}
StringCharCodeAtGenerator* fast_case_generator() {
return &char_code_at_generator_;
}
virtual void Generate() {
VirtualFrameRuntimeCallHelper call_helper(frame_state());
char_code_at_generator_.GenerateSlow(masm(), call_helper);
__ bind(&need_conversion_);
// Move the undefined value into the result register, which will
// trigger conversion.
__ LoadRoot(result_, Heap::kUndefinedValueRootIndex);
__ jmp(exit_label());
__ bind(&index_out_of_range_);
// When the index is out of range, the spec requires us to return
// NaN.
__ LoadRoot(result_, Heap::kNanValueRootIndex);
__ jmp(exit_label());
}
private:
Register result_;
Label need_conversion_;
Label index_out_of_range_;
StringCharCodeAtGenerator char_code_at_generator_;
};
// This generates code that performs a String.prototype.charCodeAt() call
// or returns a smi in order to trigger conversion.
void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) {
Comment(masm_, "[ GenerateStringCharCodeAt");
ASSERT(args->length() == 2);
Load(args->at(0));
Load(args->at(1));
Result index = frame_->Pop();
Result object = frame_->Pop();
object.ToRegister();
index.ToRegister();
// We might mutate the object register.
frame_->Spill(object.reg());
// We need two extra registers.
Result result = allocator()->Allocate();
ASSERT(result.is_valid());
Result scratch = allocator()->Allocate();
ASSERT(scratch.is_valid());
DeferredStringCharCodeAt* deferred =
new DeferredStringCharCodeAt(object.reg(),
index.reg(),
scratch.reg(),
result.reg());
deferred->fast_case_generator()->GenerateFast(masm_);
deferred->BindExit();
frame_->Push(&result);
}
class DeferredStringCharFromCode : public DeferredCode {
public:
DeferredStringCharFromCode(Register code,
Register result)
: char_from_code_generator_(code, result) {}
StringCharFromCodeGenerator* fast_case_generator() {
return &char_from_code_generator_;
}
virtual void Generate() {
VirtualFrameRuntimeCallHelper call_helper(frame_state());
char_from_code_generator_.GenerateSlow(masm(), call_helper);
}
private:
StringCharFromCodeGenerator char_from_code_generator_;
};
// Generates code for creating a one-char string from a char code.
void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) {
Comment(masm_, "[ GenerateStringCharFromCode");
ASSERT(args->length() == 1);
Load(args->at(0));
Result code = frame_->Pop();
code.ToRegister();
ASSERT(code.is_valid());
Result result = allocator()->Allocate();
ASSERT(result.is_valid());
DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode(
code.reg(), result.reg());
deferred->fast_case_generator()->GenerateFast(masm_);
deferred->BindExit();
frame_->Push(&result);
}
class DeferredStringCharAt : public DeferredCode {
public:
DeferredStringCharAt(Register object,
Register index,
Register scratch1,
Register scratch2,
Register result)
: result_(result),
char_at_generator_(object,
index,
scratch1,
scratch2,
result,
&need_conversion_,
&need_conversion_,
&index_out_of_range_,
STRING_INDEX_IS_NUMBER) {}
StringCharAtGenerator* fast_case_generator() {
return &char_at_generator_;
}
virtual void Generate() {
VirtualFrameRuntimeCallHelper call_helper(frame_state());
char_at_generator_.GenerateSlow(masm(), call_helper);
__ bind(&need_conversion_);
// Move smi zero into the result register, which will trigger
// conversion.
__ Move(result_, Smi::FromInt(0));
__ jmp(exit_label());
__ bind(&index_out_of_range_);
// When the index is out of range, the spec requires us to return
// the empty string.
__ LoadRoot(result_, Heap::kEmptyStringRootIndex);
__ jmp(exit_label());
}
private:
Register result_;
Label need_conversion_;
Label index_out_of_range_;
StringCharAtGenerator char_at_generator_;
};
// This generates code that performs a String.prototype.charAt() call
// or returns a smi in order to trigger conversion.
void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) {
Comment(masm_, "[ GenerateStringCharAt");
ASSERT(args->length() == 2);
Load(args->at(0));
Load(args->at(1));
Result index = frame_->Pop();
Result object = frame_->Pop();
object.ToRegister();
index.ToRegister();
// We might mutate the object register.
frame_->Spill(object.reg());
// We need three extra registers.
Result result = allocator()->Allocate();
ASSERT(result.is_valid());
Result scratch1 = allocator()->Allocate();
ASSERT(scratch1.is_valid());
Result scratch2 = allocator()->Allocate();
ASSERT(scratch2.is_valid());
DeferredStringCharAt* deferred =
new DeferredStringCharAt(object.reg(),
index.reg(),
scratch1.reg(),
scratch2.reg(),
result.reg());
deferred->fast_case_generator()->GenerateFast(masm_);
deferred->BindExit();
frame_->Push(&result);
}
void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition positive_smi = masm_->CheckPositiveSmi(value.reg());
value.Unuse();
destination()->Split(positive_smi);
}
// Generates the Math.pow method. Only handles special cases and
// branches to the runtime system for everything else. Please note
// that this function assumes that the callsite has executed ToNumber
// on both arguments.
void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
Load(args->at(0));
Load(args->at(1));
Label allocate_return;
// Load the two operands while leaving the values on the frame.
frame()->Dup();
Result exponent = frame()->Pop();
exponent.ToRegister();
frame()->Spill(exponent.reg());
frame()->PushElementAt(1);
Result base = frame()->Pop();
base.ToRegister();
frame()->Spill(base.reg());
Result answer = allocator()->Allocate();
ASSERT(answer.is_valid());
ASSERT(!exponent.reg().is(base.reg()));
JumpTarget call_runtime;
// Save 1 in xmm3 - we need this several times later on.
__ movl(answer.reg(), Immediate(1));
__ cvtlsi2sd(xmm3, answer.reg());
Label exponent_nonsmi;
Label base_nonsmi;
// If the exponent is a heap number go to that specific case.
__ JumpIfNotSmi(exponent.reg(), &exponent_nonsmi);
__ JumpIfNotSmi(base.reg(), &base_nonsmi);
// Optimized version when y is an integer.
Label powi;
__ SmiToInteger32(base.reg(), base.reg());
__ cvtlsi2sd(xmm0, base.reg());
__ jmp(&powi);
// exponent is smi and base is a heapnumber.
__ bind(&base_nonsmi);
__ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
call_runtime.Branch(not_equal);
__ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
// Optimized version of pow if y is an integer.
__ bind(&powi);
__ SmiToInteger32(exponent.reg(), exponent.reg());
// Save exponent in base as we need to check if exponent is negative later.
// We know that base and exponent are in different registers.
__ movl(base.reg(), exponent.reg());
// Get absolute value of exponent.
Label no_neg;
__ cmpl(exponent.reg(), Immediate(0));
__ j(greater_equal, &no_neg);
__ negl(exponent.reg());
__ bind(&no_neg);
// Load xmm1 with 1.
__ movsd(xmm1, xmm3);
Label while_true;
Label no_multiply;
__ bind(&while_true);
__ shrl(exponent.reg(), Immediate(1));
__ j(not_carry, &no_multiply);
__ mulsd(xmm1, xmm0);
__ bind(&no_multiply);
__ testl(exponent.reg(), exponent.reg());
__ mulsd(xmm0, xmm0);
__ j(not_zero, &while_true);
// x has the original value of y - if y is negative return 1/result.
__ testl(base.reg(), base.reg());
__ j(positive, &allocate_return);
// Special case if xmm1 has reached infinity.
__ movl(answer.reg(), Immediate(0x7FB00000));
__ movd(xmm0, answer.reg());
__ cvtss2sd(xmm0, xmm0);
__ ucomisd(xmm0, xmm1);
call_runtime.Branch(equal);
__ divsd(xmm3, xmm1);
__ movsd(xmm1, xmm3);
__ jmp(&allocate_return);
// exponent (or both) is a heapnumber - no matter what we should now work
// on doubles.
__ bind(&exponent_nonsmi);
__ CompareRoot(FieldOperand(exponent.reg(), HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
call_runtime.Branch(not_equal);
__ movsd(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset));
// Test if exponent is nan.
__ ucomisd(xmm1, xmm1);
call_runtime.Branch(parity_even);
Label base_not_smi;
Label handle_special_cases;
__ JumpIfNotSmi(base.reg(), &base_not_smi);
__ SmiToInteger32(base.reg(), base.reg());
__ cvtlsi2sd(xmm0, base.reg());
__ jmp(&handle_special_cases);
__ bind(&base_not_smi);
__ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
call_runtime.Branch(not_equal);
__ movl(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset));
__ andl(answer.reg(), Immediate(HeapNumber::kExponentMask));
__ cmpl(answer.reg(), Immediate(HeapNumber::kExponentMask));
// base is NaN or +/-Infinity
call_runtime.Branch(greater_equal);
__ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
// base is in xmm0 and exponent is in xmm1.
__ bind(&handle_special_cases);
Label not_minus_half;
// Test for -0.5.
// Load xmm2 with -0.5.
__ movl(answer.reg(), Immediate(0xBF000000));
__ movd(xmm2, answer.reg());
__ cvtss2sd(xmm2, xmm2);
// xmm2 now has -0.5.
__ ucomisd(xmm2, xmm1);
__ j(not_equal, ¬_minus_half);
// Calculates reciprocal of square root.
// Note that 1/sqrt(x) = sqrt(1/x))
__ divsd(xmm3, xmm0);
__ movsd(xmm1, xmm3);
__ sqrtsd(xmm1, xmm1);
__ jmp(&allocate_return);
// Test for 0.5.
__ bind(¬_minus_half);
// Load xmm2 with 0.5.
// Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
__ addsd(xmm2, xmm3);
// xmm2 now has 0.5.
__ ucomisd(xmm2, xmm1);
call_runtime.Branch(not_equal);
// Calculates square root.
__ movsd(xmm1, xmm0);
__ sqrtsd(xmm1, xmm1);
JumpTarget done;
Label failure, success;
__ bind(&allocate_return);
// Make a copy of the frame to enable us to handle allocation
// failure after the JumpTarget jump.
VirtualFrame* clone = new VirtualFrame(frame());
__ AllocateHeapNumber(answer.reg(), exponent.reg(), &failure);
__ movsd(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1);
// Remove the two original values from the frame - we only need those
// in the case where we branch to runtime.
frame()->Drop(2);
exponent.Unuse();
base.Unuse();
done.Jump(&answer);
// Use the copy of the original frame as our current frame.
RegisterFile empty_regs;
SetFrame(clone, &empty_regs);
// If we experience an allocation failure we branch to runtime.
__ bind(&failure);
call_runtime.Bind();
answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2);
done.Bind(&answer);
frame()->Push(&answer);
}
// Generates the Math.sqrt method. Please note - this function assumes that
// the callsite has executed ToNumber on the argument.
void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
// Leave original value on the frame if we need to call runtime.
frame()->Dup();
Result result = frame()->Pop();
result.ToRegister();
frame()->Spill(result.reg());
Label runtime;
Label non_smi;
Label load_done;
JumpTarget end;
__ JumpIfNotSmi(result.reg(), &non_smi);
__ SmiToInteger32(result.reg(), result.reg());
__ cvtlsi2sd(xmm0, result.reg());
__ jmp(&load_done);
__ bind(&non_smi);
__ CompareRoot(FieldOperand(result.reg(), HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &runtime);
__ movsd(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset));
__ bind(&load_done);
__ sqrtsd(xmm0, xmm0);
// A copy of the virtual frame to allow us to go to runtime after the
// JumpTarget jump.
Result scratch = allocator()->Allocate();
VirtualFrame* clone = new VirtualFrame(frame());
__ AllocateHeapNumber(result.reg(), scratch.reg(), &runtime);
__ movsd(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0);
frame()->Drop(1);
scratch.Unuse();
end.Jump(&result);
// We only branch to runtime if we have an allocation error.
// Use the copy of the original frame as our current frame.
RegisterFile empty_regs;
SetFrame(clone, &empty_regs);
__ bind(&runtime);
result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
end.Bind(&result);
frame()->Push(&result);
}
void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition is_smi = masm_->CheckSmi(value.reg());
value.Unuse();
destination()->Split(is_smi);
}
void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
// Conditionally generate a log call.
// Args:
// 0 (literal string): The type of logging (corresponds to the flags).
// This is used to determine whether or not to generate the log call.
// 1 (string): Format string. Access the string at argument index 2
// with '%2s' (see Logger::LogRuntime for all the formats).
// 2 (array): Arguments to the format string.
ASSERT_EQ(args->length(), 3);
#ifdef ENABLE_LOGGING_AND_PROFILING
if (ShouldGenerateLog(args->at(0))) {
Load(args->at(1));
Load(args->at(2));
frame_->CallRuntime(Runtime::kLog, 2);
}
#endif
// Finally, we're expected to leave a value on the top of the stack.
frame_->Push(Factory::undefined_value());
}
void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
// Load the two objects into registers and perform the comparison.
Load(args->at(0));
Load(args->at(1));
Result right = frame_->Pop();
Result left = frame_->Pop();
right.ToRegister();
left.ToRegister();
__ cmpq(right.reg(), left.reg());
right.Unuse();
left.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
// RBP value is aligned, so it should be tagged as a smi (without necesarily
// being padded as a smi, so it should not be treated as a smi.).
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
Result rbp_as_smi = allocator_->Allocate();
ASSERT(rbp_as_smi.is_valid());
__ movq(rbp_as_smi.reg(), rbp);
frame_->Push(&rbp_as_smi);
}
void CodeGenerator::GenerateRandomHeapNumber(
ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
frame_->SpillAll();
Label slow_allocate_heapnumber;
Label heapnumber_allocated;
__ AllocateHeapNumber(rbx, rcx, &slow_allocate_heapnumber);
__ jmp(&heapnumber_allocated);
__ bind(&slow_allocate_heapnumber);
// To allocate a heap number, and ensure that it is not a smi, we
// call the runtime function FUnaryMinus on 0, returning the double
// -0.0. A new, distinct heap number is returned each time.
__ Push(Smi::FromInt(0));
__ CallRuntime(Runtime::kNumberUnaryMinus, 1);
__ movq(rbx, rax);
__ bind(&heapnumber_allocated);
// Return a random uint32 number in rax.
// The fresh HeapNumber is in rbx, which is callee-save on both x64 ABIs.
__ PrepareCallCFunction(0);
__ CallCFunction(ExternalReference::random_uint32_function(), 0);
// Convert 32 random bits in rax to 0.(32 random bits) in a double
// by computing:
// ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
__ movl(rcx, Immediate(0x49800000)); // 1.0 x 2^20 as single.
__ movd(xmm1, rcx);
__ movd(xmm0, rax);
__ cvtss2sd(xmm1, xmm1);
__ xorpd(xmm0, xmm1);
__ subsd(xmm0, xmm1);
__ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rbx);
Result result = allocator_->Allocate(rax);
frame_->Push(&result);
}
void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 4);
// Load the arguments on the stack and call the runtime system.
Load(args->at(0));
Load(args->at(1));
Load(args->at(2));
Load(args->at(3));
RegExpExecStub stub;
Result result = frame_->CallStub(&stub, 4);
frame_->Push(&result);
}
void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) {
// No stub. This code only occurs a few times in regexp.js.
const int kMaxInlineLength = 100;
ASSERT_EQ(3, args->length());
Load(args->at(0)); // Size of array, smi.
Load(args->at(1)); // "index" property value.
Load(args->at(2)); // "input" property value.
{
VirtualFrame::SpilledScope spilled_scope;
Label slowcase;
Label done;
__ movq(r8, Operand(rsp, kPointerSize * 2));
__ JumpIfNotSmi(r8, &slowcase);
__ SmiToInteger32(rbx, r8);
__ cmpl(rbx, Immediate(kMaxInlineLength));
__ j(above, &slowcase);
// Smi-tagging is equivalent to multiplying by 2.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
// Allocate RegExpResult followed by FixedArray with size in ebx.
// JSArray: [Map][empty properties][Elements][Length-smi][index][input]
// Elements: [Map][Length][..elements..]
__ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize,
times_pointer_size,
rbx, // In: Number of elements.
rax, // Out: Start of allocation (tagged).
rcx, // Out: End of allocation.
rdx, // Scratch register
&slowcase,
TAG_OBJECT);
// rax: Start of allocated area, object-tagged.
// rbx: Number of array elements as int32.
// r8: Number of array elements as smi.
// Set JSArray map to global.regexp_result_map().
__ movq(rdx, ContextOperand(rsi, Context::GLOBAL_INDEX));
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalContextOffset));
__ movq(rdx, ContextOperand(rdx, Context::REGEXP_RESULT_MAP_INDEX));
__ movq(FieldOperand(rax, HeapObject::kMapOffset), rdx);
// Set empty properties FixedArray.
__ Move(FieldOperand(rax, JSObject::kPropertiesOffset),
Factory::empty_fixed_array());
// Set elements to point to FixedArray allocated right after the JSArray.
__ lea(rcx, Operand(rax, JSRegExpResult::kSize));
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rcx);
// Set input, index and length fields from arguments.
__ pop(FieldOperand(rax, JSRegExpResult::kInputOffset));
__ pop(FieldOperand(rax, JSRegExpResult::kIndexOffset));
__ lea(rsp, Operand(rsp, kPointerSize));
__ movq(FieldOperand(rax, JSArray::kLengthOffset), r8);
// Fill out the elements FixedArray.
// rax: JSArray.
// rcx: FixedArray.
// rbx: Number of elements in array as int32.
// Set map.
__ Move(FieldOperand(rcx, HeapObject::kMapOffset),
Factory::fixed_array_map());
// Set length.
__ Integer32ToSmi(rdx, rbx);
__ movq(FieldOperand(rcx, FixedArray::kLengthOffset), rdx);
// Fill contents of fixed-array with the-hole.
__ Move(rdx, Factory::the_hole_value());
__ lea(rcx, FieldOperand(rcx, FixedArray::kHeaderSize));
// Fill fixed array elements with hole.
// rax: JSArray.
// rbx: Number of elements in array that remains to be filled, as int32.
// rcx: Start of elements in FixedArray.
// rdx: the hole.
Label loop;
__ testl(rbx, rbx);
__ bind(&loop);
__ j(less_equal, &done); // Jump if ecx is negative or zero.
__ subl(rbx, Immediate(1));
__ movq(Operand(rcx, rbx, times_pointer_size, 0), rdx);
__ jmp(&loop);
__ bind(&slowcase);
__ CallRuntime(Runtime::kRegExpConstructResult, 3);
__ bind(&done);
}
frame_->Forget(3);
frame_->Push(rax);
}
class DeferredSearchCache: public DeferredCode {
public:
DeferredSearchCache(Register dst,
Register cache,
Register key,
Register scratch)
: dst_(dst), cache_(cache), key_(key), scratch_(scratch) {
set_comment("[ DeferredSearchCache");
}
virtual void Generate();
private:
Register dst_; // on invocation index of finger (as int32), on exit
// holds value being looked up.
Register cache_; // instance of JSFunctionResultCache.
Register key_; // key being looked up.
Register scratch_;
};
// Return a position of the element at |index| + |additional_offset|
// in FixedArray pointer to which is held in |array|. |index| is int32.
static Operand ArrayElement(Register array,
Register index,
int additional_offset = 0) {
int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
return FieldOperand(array, index, times_pointer_size, offset);
}
void DeferredSearchCache::Generate() {
Label first_loop, search_further, second_loop, cache_miss;
Immediate kEntriesIndexImm = Immediate(JSFunctionResultCache::kEntriesIndex);
Immediate kEntrySizeImm = Immediate(JSFunctionResultCache::kEntrySize);
// Check the cache from finger to start of the cache.
__ bind(&first_loop);
__ subl(dst_, kEntrySizeImm);
__ cmpl(dst_, kEntriesIndexImm);
__ j(less, &search_further);
__ cmpq(ArrayElement(cache_, dst_), key_);
__ j(not_equal, &first_loop);
__ Integer32ToSmiField(
FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_);
__ movq(dst_, ArrayElement(cache_, dst_, 1));
__ jmp(exit_label());
__ bind(&search_further);
// Check the cache from end of cache up to finger.
__ SmiToInteger32(dst_,
FieldOperand(cache_,
JSFunctionResultCache::kCacheSizeOffset));
__ SmiToInteger32(scratch_,
FieldOperand(cache_, JSFunctionResultCache::kFingerOffset));
__ bind(&second_loop);
__ subl(dst_, kEntrySizeImm);
__ cmpl(dst_, scratch_);
__ j(less_equal, &cache_miss);
__ cmpq(ArrayElement(cache_, dst_), key_);
__ j(not_equal, &second_loop);
__ Integer32ToSmiField(
FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_);
__ movq(dst_, ArrayElement(cache_, dst_, 1));
__ jmp(exit_label());
__ bind(&cache_miss);
__ push(cache_); // store a reference to cache
__ push(key_); // store a key
__ push(Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ push(key_);
// On x64 function must be in rdi.
__ movq(rdi, FieldOperand(cache_, JSFunctionResultCache::kFactoryOffset));
ParameterCount expected(1);
__ InvokeFunction(rdi, expected, CALL_FUNCTION);
// Find a place to put new cached value into.
Label add_new_entry, update_cache;
__ movq(rcx, Operand(rsp, kPointerSize)); // restore the cache
// Possible optimization: cache size is constant for the given cache
// so technically we could use a constant here. However, if we have
// cache miss this optimization would hardly matter much.
// Check if we could add new entry to cache.
__ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
__ SmiToInteger32(r9,
FieldOperand(rcx, JSFunctionResultCache::kCacheSizeOffset));
__ cmpl(rbx, r9);
__ j(greater, &add_new_entry);
// Check if we could evict entry after finger.
__ SmiToInteger32(rdx,
FieldOperand(rcx, JSFunctionResultCache::kFingerOffset));
__ addl(rdx, kEntrySizeImm);
Label forward;
__ cmpl(rbx, rdx);
__ j(greater, &forward);
// Need to wrap over the cache.
__ movl(rdx, kEntriesIndexImm);
__ bind(&forward);
__ movl(r9, rdx);
__ jmp(&update_cache);
__ bind(&add_new_entry);
// r9 holds cache size as int32.
__ leal(rbx, Operand(r9, JSFunctionResultCache::kEntrySize));
__ Integer32ToSmiField(
FieldOperand(rcx, JSFunctionResultCache::kCacheSizeOffset), rbx);
// Update the cache itself.
// r9 holds the index as int32.
__ bind(&update_cache);
__ pop(rbx); // restore the key
__ Integer32ToSmiField(
FieldOperand(rcx, JSFunctionResultCache::kFingerOffset), r9);
// Store key.
__ movq(ArrayElement(rcx, r9), rbx);
__ RecordWrite(rcx, 0, rbx, r9);
// Store value.
__ pop(rcx); // restore the cache.
__ SmiToInteger32(rdx,
FieldOperand(rcx, JSFunctionResultCache::kFingerOffset));
__ incl(rdx);
// Backup rax, because the RecordWrite macro clobbers its arguments.
__ movq(rbx, rax);
__ movq(ArrayElement(rcx, rdx), rax);
__ RecordWrite(rcx, 0, rbx, rdx);
if (!dst_.is(rax)) {
__ movq(dst_, rax);
}
}
void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
ASSERT_NE(NULL, args->at(0)->AsLiteral());
int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
Handle<FixedArray> jsfunction_result_caches(
Top::global_context()->jsfunction_result_caches());
if (jsfunction_result_caches->length() <= cache_id) {
__ Abort("Attempt to use undefined cache.");
frame_->Push(Factory::undefined_value());
return;
}
Load(args->at(1));
Result key = frame_->Pop();
key.ToRegister();
Result cache = allocator()->Allocate();
ASSERT(cache.is_valid());
__ movq(cache.reg(), ContextOperand(rsi, Context::GLOBAL_INDEX));
__ movq(cache.reg(),
FieldOperand(cache.reg(), GlobalObject::kGlobalContextOffset));
__ movq(cache.reg(),
ContextOperand(cache.reg(), Context::JSFUNCTION_RESULT_CACHES_INDEX));
__ movq(cache.reg(),
FieldOperand(cache.reg(), FixedArray::OffsetOfElementAt(cache_id)));
Result tmp = allocator()->Allocate();
ASSERT(tmp.is_valid());
Result scratch = allocator()->Allocate();
ASSERT(scratch.is_valid());
DeferredSearchCache* deferred = new DeferredSearchCache(tmp.reg(),
cache.reg(),
key.reg(),
scratch.reg());
const int kFingerOffset =
FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex);
// tmp.reg() now holds finger offset as a smi.
__ SmiToInteger32(tmp.reg(), FieldOperand(cache.reg(), kFingerOffset));
__ cmpq(key.reg(), FieldOperand(cache.reg(),
tmp.reg(), times_pointer_size,
FixedArray::kHeaderSize));
deferred->Branch(not_equal);
__ movq(tmp.reg(), FieldOperand(cache.reg(),
tmp.reg(), times_pointer_size,
FixedArray::kHeaderSize + kPointerSize));
deferred->BindExit();
frame_->Push(&tmp);
}
void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
// Load the argument on the stack and jump to the runtime.
Load(args->at(0));
NumberToStringStub stub;
Result result = frame_->CallStub(&stub, 1);
frame_->Push(&result);
}
class DeferredSwapElements: public DeferredCode {
public:
DeferredSwapElements(Register object, Register index1, Register index2)
: object_(object), index1_(index1), index2_(index2) {
set_comment("[ DeferredSwapElements");
}
virtual void Generate();
private:
Register object_, index1_, index2_;
};
void DeferredSwapElements::Generate() {
__ push(object_);
__ push(index1_);
__ push(index2_);
__ CallRuntime(Runtime::kSwapElements, 3);
}
void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) {
Comment cmnt(masm_, "[ GenerateSwapElements");
ASSERT_EQ(3, args->length());
Load(args->at(0));
Load(args->at(1));
Load(args->at(2));
Result index2 = frame_->Pop();
index2.ToRegister();
Result index1 = frame_->Pop();
index1.ToRegister();
Result object = frame_->Pop();
object.ToRegister();
Result tmp1 = allocator()->Allocate();
tmp1.ToRegister();
Result tmp2 = allocator()->Allocate();
tmp2.ToRegister();
frame_->Spill(object.reg());
frame_->Spill(index1.reg());
frame_->Spill(index2.reg());
DeferredSwapElements* deferred = new DeferredSwapElements(object.reg(),
index1.reg(),
index2.reg());
// Fetch the map and check if array is in fast case.
// Check that object doesn't require security checks and
// has no indexed interceptor.
__ CmpObjectType(object.reg(), FIRST_JS_OBJECT_TYPE, tmp1.reg());
deferred->Branch(below);
__ testb(FieldOperand(tmp1.reg(), Map::kBitFieldOffset),
Immediate(KeyedLoadIC::kSlowCaseBitFieldMask));
deferred->Branch(not_zero);
// Check the object's elements are in fast case.
__ movq(tmp1.reg(), FieldOperand(object.reg(), JSObject::kElementsOffset));
__ CompareRoot(FieldOperand(tmp1.reg(), HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
deferred->Branch(not_equal);
// Check that both indices are smis.
Condition both_smi = __ CheckBothSmi(index1.reg(), index2.reg());
deferred->Branch(NegateCondition(both_smi));
// Bring addresses into index1 and index2.
__ SmiToInteger32(index1.reg(), index1.reg());
__ lea(index1.reg(), FieldOperand(tmp1.reg(),
index1.reg(),
times_pointer_size,
FixedArray::kHeaderSize));
__ SmiToInteger32(index2.reg(), index2.reg());
__ lea(index2.reg(), FieldOperand(tmp1.reg(),
index2.reg(),
times_pointer_size,
FixedArray::kHeaderSize));
// Swap elements.
__ movq(object.reg(), Operand(index1.reg(), 0));
__ movq(tmp2.reg(), Operand(index2.reg(), 0));
__ movq(Operand(index2.reg(), 0), object.reg());
__ movq(Operand(index1.reg(), 0), tmp2.reg());
Label done;
__ InNewSpace(tmp1.reg(), tmp2.reg(), equal, &done);
// Possible optimization: do a check that both values are Smis
// (or them and test against Smi mask.)
__ movq(tmp2.reg(), tmp1.reg());
RecordWriteStub recordWrite1(tmp2.reg(), index1.reg(), object.reg());
__ CallStub(&recordWrite1);
RecordWriteStub recordWrite2(tmp1.reg(), index2.reg(), object.reg());
__ CallStub(&recordWrite2);
__ bind(&done);
deferred->BindExit();
frame_->Push(Factory::undefined_value());
}
void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) {
Comment cmnt(masm_, "[ GenerateCallFunction");
ASSERT(args->length() >= 2);
int n_args = args->length() - 2; // for receiver and function.
Load(args->at(0)); // receiver
for (int i = 0; i < n_args; i++) {
Load(args->at(i + 1));
}
Load(args->at(n_args + 1)); // function
Result result = frame_->CallJSFunction(n_args);
frame_->Push(&result);
}
void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
Load(args->at(0));
TranscendentalCacheStub stub(TranscendentalCache::SIN);
Result result = frame_->CallStub(&stub, 1);
frame_->Push(&result);
}
void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
Load(args->at(0));
TranscendentalCacheStub stub(TranscendentalCache::COS);
Result result = frame_->CallStub(&stub, 1);
frame_->Push(&result);
}
void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
Load(args->at(0));
Load(args->at(1));
StringAddStub stub(NO_STRING_ADD_FLAGS);
Result answer = frame_->CallStub(&stub, 2);
frame_->Push(&answer);
}
void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) {
ASSERT_EQ(3, args->length());
Load(args->at(0));
Load(args->at(1));
Load(args->at(2));
SubStringStub stub;
Result answer = frame_->CallStub(&stub, 3);
frame_->Push(&answer);
}
void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
Load(args->at(0));
Load(args->at(1));
StringCompareStub stub;
Result answer = frame_->CallStub(&stub, 2);
frame_->Push(&answer);
}
void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
JumpTarget leave, null, function, non_function_constructor;
Load(args->at(0)); // Load the object.
Result obj = frame_->Pop();
obj.ToRegister();
frame_->Spill(obj.reg());
// If the object is a smi, we return null.
Condition is_smi = masm_->CheckSmi(obj.reg());
null.Branch(is_smi);
// Check that the object is a JS object but take special care of JS
// functions to make sure they have 'Function' as their class.
__ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg());
null.Branch(below);
// As long as JS_FUNCTION_TYPE is the last instance type and it is
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for
// LAST_JS_OBJECT_TYPE.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
function.Branch(equal);
// Check if the constructor in the map is a function.
__ movq(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset));
__ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
non_function_constructor.Branch(not_equal);
// The obj register now contains the constructor function. Grab the
// instance class name from there.
__ movq(obj.reg(),
FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset));
__ movq(obj.reg(),
FieldOperand(obj.reg(),
SharedFunctionInfo::kInstanceClassNameOffset));
frame_->Push(&obj);
leave.Jump();
// Functions have class 'Function'.
function.Bind();
frame_->Push(Factory::function_class_symbol());
leave.Jump();
// Objects with a non-function constructor have class 'Object'.
non_function_constructor.Bind();
frame_->Push(Factory::Object_symbol());
leave.Jump();
// Non-JS objects have class null.
null.Bind();
frame_->Push(Factory::null_value());
// All done.
leave.Bind();
}
void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
JumpTarget leave;
Load(args->at(0)); // Load the object.
Load(args->at(1)); // Load the value.
Result value = frame_->Pop();
Result object = frame_->Pop();
value.ToRegister();
object.ToRegister();
// if (object->IsSmi()) return value.
Condition is_smi = masm_->CheckSmi(object.reg());
leave.Branch(is_smi, &value);
// It is a heap object - get its map.
Result scratch = allocator_->Allocate();
ASSERT(scratch.is_valid());
// if (!object->IsJSValue()) return value.
__ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
leave.Branch(not_equal, &value);
// Store the value.
__ movq(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
// Update the write barrier. Save the value as it will be
// overwritten by the write barrier code and is needed afterward.
Result duplicate_value = allocator_->Allocate();
ASSERT(duplicate_value.is_valid());
__ movq(duplicate_value.reg(), value.reg());
// The object register is also overwritten by the write barrier and
// possibly aliased in the frame.
frame_->Spill(object.reg());
__ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
scratch.reg());
object.Unuse();
scratch.Unuse();
duplicate_value.Unuse();
// Leave.
leave.Bind(&value);
frame_->Push(&value);
}
void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
JumpTarget leave;
Load(args->at(0)); // Load the object.
frame_->Dup();
Result object = frame_->Pop();
object.ToRegister();
ASSERT(object.is_valid());
// if (object->IsSmi()) return object.
Condition is_smi = masm_->CheckSmi(object.reg());
leave.Branch(is_smi);
// It is a heap object - get map.
Result temp = allocator()->Allocate();
ASSERT(temp.is_valid());
// if (!object->IsJSValue()) return object.
__ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
leave.Branch(not_equal);
__ movq(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
object.Unuse();
frame_->SetElementAt(0, &temp);
leave.Bind();
}
// -----------------------------------------------------------------------------
// CodeGenerator implementation of Expressions
void CodeGenerator::LoadAndSpill(Expression* expression) {
// TODO(x64): No architecture specific code. Move to shared location.
ASSERT(in_spilled_code());
set_in_spilled_code(false);
Load(expression);
frame_->SpillAll();
set_in_spilled_code(true);
}
void CodeGenerator::Load(Expression* expr) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
ASSERT(!in_spilled_code());
JumpTarget true_target;
JumpTarget false_target;
ControlDestination dest(&true_target, &false_target, true);
LoadCondition(expr, &dest, false);
if (dest.false_was_fall_through()) {
// The false target was just bound.
JumpTarget loaded;
frame_->Push(Factory::false_value());
// There may be dangling jumps to the true target.
if (true_target.is_linked()) {
loaded.Jump();
true_target.Bind();
frame_->Push(Factory::true_value());
loaded.Bind();
}
} else if (dest.is_used()) {
// There is true, and possibly false, control flow (with true as
// the fall through).
JumpTarget loaded;
frame_->Push(Factory::true_value());
if (false_target.is_linked()) {
loaded.Jump();
false_target.Bind();
frame_->Push(Factory::false_value());
loaded.Bind();
}
} else {
// We have a valid value on top of the frame, but we still may
// have dangling jumps to the true and false targets from nested
// subexpressions (eg, the left subexpressions of the
// short-circuited boolean operators).
ASSERT(has_valid_frame());
if (true_target.is_linked() || false_target.is_linked()) {
JumpTarget loaded;
loaded.Jump(); // Don't lose the current TOS.
if (true_target.is_linked()) {
true_target.Bind();
frame_->Push(Factory::true_value());
if (false_target.is_linked()) {
loaded.Jump();
}
}
if (false_target.is_linked()) {
false_target.Bind();
frame_->Push(Factory::false_value());
}
loaded.Bind();
}
}
ASSERT(has_valid_frame());
ASSERT(frame_->height() == original_height + 1);
}
// Emit code to load the value of an expression to the top of the
// frame. If the expression is boolean-valued it may be compiled (or
// partially compiled) into control flow to the control destination.
// If force_control is true, control flow is forced.
void CodeGenerator::LoadCondition(Expression* x,
ControlDestination* dest,
bool force_control) {
ASSERT(!in_spilled_code());
int original_height = frame_->height();
{ CodeGenState new_state(this, dest);
Visit(x);
// If we hit a stack overflow, we may not have actually visited
// the expression. In that case, we ensure that we have a
// valid-looking frame state because we will continue to generate
// code as we unwind the C++ stack.
//
// It's possible to have both a stack overflow and a valid frame
// state (eg, a subexpression overflowed, visiting it returned
// with a dummied frame state, and visiting this expression
// returned with a normal-looking state).
if (HasStackOverflow() &&
!dest->is_used() &&
frame_->height() == original_height) {
dest->Goto(true);
}
}
if (force_control && !dest->is_used()) {
// Convert the TOS value into flow to the control destination.
// TODO(X64): Make control flow to control destinations work.
ToBoolean(dest);
}
ASSERT(!(force_control && !dest->is_used()));
ASSERT(dest->is_used() || frame_->height() == original_height + 1);
}
// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
// convert it to a boolean in the condition code register or jump to
// 'false_target'/'true_target' as appropriate.
void CodeGenerator::ToBoolean(ControlDestination* dest) {
Comment cmnt(masm_, "[ ToBoolean");
// The value to convert should be popped from the frame.
Result value = frame_->Pop();
value.ToRegister();
if (value.is_number()) {
// Fast case if TypeInfo indicates only numbers.
if (FLAG_debug_code) {
__ AbortIfNotNumber(value.reg());
}
// Smi => false iff zero.
__ SmiCompare(value.reg(), Smi::FromInt(0));
if (value.is_smi()) {
value.Unuse();
dest->Split(not_zero);
} else {
dest->false_target()->Branch(equal);
Condition is_smi = masm_->CheckSmi(value.reg());
dest->true_target()->Branch(is_smi);
__ xorpd(xmm0, xmm0);
__ ucomisd(xmm0, FieldOperand(value.reg(), HeapNumber::kValueOffset));
value.Unuse();
dest->Split(not_zero);
}
} else {
// Fast case checks.
// 'false' => false.
__ CompareRoot(value.reg(), Heap::kFalseValueRootIndex);
dest->false_target()->Branch(equal);
// 'true' => true.
__ CompareRoot(value.reg(), Heap::kTrueValueRootIndex);
dest->true_target()->Branch(equal);
// 'undefined' => false.
__ CompareRoot(value.reg(), Heap::kUndefinedValueRootIndex);
dest->false_target()->Branch(equal);
// Smi => false iff zero.
__ SmiCompare(value.reg(), Smi::FromInt(0));
dest->false_target()->Branch(equal);
Condition is_smi = masm_->CheckSmi(value.reg());
dest->true_target()->Branch(is_smi);
// Call the stub for all other cases.
frame_->Push(&value); // Undo the Pop() from above.
ToBooleanStub stub;
Result temp = frame_->CallStub(&stub, 1);
// Convert the result to a condition code.
__ testq(temp.reg(), temp.reg());
temp.Unuse();
dest->Split(not_equal);
}
}
void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) {
UNIMPLEMENTED();
// TODO(X64): Implement security policy for loads of smis.
}
bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
return false;
}
//------------------------------------------------------------------------------
// CodeGenerator implementation of variables, lookups, and stores.
Reference::Reference(CodeGenerator* cgen,
Expression* expression,
bool persist_after_get)
: cgen_(cgen),
expression_(expression),
type_(ILLEGAL),
persist_after_get_(persist_after_get) {
cgen->LoadReference(this);
}
Reference::~Reference() {
ASSERT(is_unloaded() || is_illegal());
}
void CodeGenerator::LoadReference(Reference* ref) {
// References are loaded from both spilled and unspilled code. Set the
// state to unspilled to allow that (and explicitly spill after
// construction at the construction sites).
bool was_in_spilled_code = in_spilled_code_;
in_spilled_code_ = false;
Comment cmnt(masm_, "[ LoadReference");
Expression* e = ref->expression();
Property* property = e->AsProperty();
Variable* var = e->AsVariableProxy()->AsVariable();
if (property != NULL) {
// The expression is either a property or a variable proxy that rewrites
// to a property.
Load(property->obj());
if (property->key()->IsPropertyName()) {
ref->set_type(Reference::NAMED);
} else {
Load(property->key());
ref->set_type(Reference::KEYED);
}
} else if (var != NULL) {
// The expression is a variable proxy that does not rewrite to a
// property. Global variables are treated as named property references.
if (var->is_global()) {
// If rax is free, the register allocator prefers it. Thus the code
// generator will load the global object into rax, which is where
// LoadIC wants it. Most uses of Reference call LoadIC directly
// after the reference is created.
frame_->Spill(rax);
LoadGlobal();
ref->set_type(Reference::NAMED);
} else {
ASSERT(var->slot() != NULL);
ref->set_type(Reference::SLOT);
}
} else {
// Anything else is a runtime error.
Load(e);
frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
}
in_spilled_code_ = was_in_spilled_code;
}
void CodeGenerator::UnloadReference(Reference* ref) {
// Pop a reference from the stack while preserving TOS.
Comment cmnt(masm_, "[ UnloadReference");
frame_->Nip(ref->size());
ref->set_unloaded();
}
Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
// Currently, this assertion will fail if we try to assign to
// a constant variable that is constant because it is read-only
// (such as the variable referring to a named function expression).
// We need to implement assignments to read-only variables.
// Ideally, we should do this during AST generation (by converting
// such assignments into expression statements); however, in general
// we may not be able to make the decision until past AST generation,
// that is when the entire program is known.
ASSERT(slot != NULL);
int index = slot->index();
switch (slot->type()) {
case Slot::PARAMETER:
return frame_->ParameterAt(index);
case Slot::LOCAL:
return frame_->LocalAt(index);
case Slot::CONTEXT: {
// Follow the context chain if necessary.
ASSERT(!tmp.is(rsi)); // do not overwrite context register
Register context = rsi;
int chain_length = scope()->ContextChainLength(slot->var()->scope());
for (int i = 0; i < chain_length; i++) {
// Load the closure.
// (All contexts, even 'with' contexts, have a closure,
// and it is the same for all contexts inside a function.
// There is no need to go to the function context first.)
__ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
// Load the function context (which is the incoming, outer context).
__ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
context = tmp;
}
// We may have a 'with' context now. Get the function context.
// (In fact this mov may never be the needed, since the scope analysis
// may not permit a direct context access in this case and thus we are
// always at a function context. However it is safe to dereference be-
// cause the function context of a function context is itself. Before
// deleting this mov we should try to create a counter-example first,
// though...)
__ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
return ContextOperand(tmp, index);
}
default:
UNREACHABLE();
return Operand(rsp, 0);
}
}
Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
Result tmp,
JumpTarget* slow) {
ASSERT(slot->type() == Slot::CONTEXT);
ASSERT(tmp.is_register());
Register context = rsi;
for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
if (s->num_heap_slots() > 0) {
if (s->calls_eval()) {
// Check that extension is NULL.
__ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
Immediate(0));
slow->Branch(not_equal, not_taken);
}
__ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
__ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
context = tmp.reg();
}
}
// Check that last extension is NULL.
__ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
slow->Branch(not_equal, not_taken);
__ movq(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX));
return ContextOperand(tmp.reg(), slot->index());
}
void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
if (slot->type() == Slot::LOOKUP) {
ASSERT(slot->var()->is_dynamic());
JumpTarget slow;
JumpTarget done;
Result value;
// Generate fast case for loading from slots that correspond to
// local/global variables or arguments unless they are shadowed by
// eval-introduced bindings.
EmitDynamicLoadFromSlotFastCase(slot,
typeof_state,
&value,
&slow,
&done);
slow.Bind();
// A runtime call is inevitable. We eagerly sync frame elements
// to memory so that we can push the arguments directly into place
// on top of the frame.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
__ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(kScratchRegister);
if (typeof_state == INSIDE_TYPEOF) {
value =
frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
} else {
value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
}
done.Bind(&value);
frame_->Push(&value);
} else if (slot->var()->mode() == Variable::CONST) {
// Const slots may contain 'the hole' value (the constant hasn't been
// initialized yet) which needs to be converted into the 'undefined'
// value.
//
// We currently spill the virtual frame because constants use the
// potentially unsafe direct-frame access of SlotOperand.
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Load const");
JumpTarget exit;
__ movq(rcx, SlotOperand(slot, rcx));
__ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
exit.Branch(not_equal);
__ LoadRoot(rcx, Heap::kUndefinedValueRootIndex);
exit.Bind();
frame_->EmitPush(rcx);
} else if (slot->type() == Slot::PARAMETER) {
frame_->PushParameterAt(slot->index());
} else if (slot->type() == Slot::LOCAL) {
frame_->PushLocalAt(slot->index());
} else {
// The other remaining slot types (LOOKUP and GLOBAL) cannot reach
// here.
//
// The use of SlotOperand below is safe for an unspilled frame
// because it will always be a context slot.
ASSERT(slot->type() == Slot::CONTEXT);
Result temp = allocator_->Allocate();
ASSERT(temp.is_valid());
__ movq(temp.reg(), SlotOperand(slot, temp.reg()));
frame_->Push(&temp);
}
}
void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
TypeofState state) {
LoadFromSlot(slot, state);
// Bail out quickly if we're not using lazy arguments allocation.
if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;
// ... or if the slot isn't a non-parameter arguments slot.
if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;
// Pop the loaded value from the stack.
Result value = frame_->Pop();
// If the loaded value is a constant, we know if the arguments
// object has been lazily loaded yet.
if (value.is_constant()) {
if (value.handle()->IsTheHole()) {
Result arguments = StoreArgumentsObject(false);
frame_->Push(&arguments);
} else {
frame_->Push(&value);
}
return;
}
// The loaded value is in a register. If it is the sentinel that
// indicates that we haven't loaded the arguments object yet, we
// need to do it now.
JumpTarget exit;
__ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
frame_->Push(&value);
exit.Branch(not_equal);
Result arguments = StoreArgumentsObject(false);
frame_->SetElementAt(0, &arguments);
exit.Bind();
}
void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
if (slot->type() == Slot::LOOKUP) {
ASSERT(slot->var()->is_dynamic());
// For now, just do a runtime call. Since the call is inevitable,
// we eagerly sync the virtual frame so we can directly push the
// arguments into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
frame_->EmitPush(slot->var()->name());
Result value;
if (init_state == CONST_INIT) {
// Same as the case for a normal store, but ignores attribute
// (e.g. READ_ONLY) of context slot so that we can initialize const
// properties (introduced via eval("const foo = (some expr);")). Also,
// uses the current function context instead of the top context.
//
// Note that we must declare the foo upon entry of eval(), via a
// context slot declaration, but we cannot initialize it at the same
// time, because the const declaration may be at the end of the eval
// code (sigh...) and the const variable may have been used before
// (where its value is 'undefined'). Thus, we can only do the
// initialization when we actually encounter the expression and when
// the expression operands are defined and valid, and thus we need the
// split into 2 operations: declaration of the context slot followed
// by initialization.
value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
} else {
value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3);
}
// Storing a variable must keep the (new) value on the expression
// stack. This is necessary for compiling chained assignment
// expressions.
frame_->Push(&value);
} else {
ASSERT(!slot->var()->is_dynamic());
JumpTarget exit;
if (init_state == CONST_INIT) {
ASSERT(slot->var()->mode() == Variable::CONST);
// Only the first const initialization must be executed (the slot
// still contains 'the hole' value). When the assignment is executed,
// the code is identical to a normal store (see below).
//
// We spill the frame in the code below because the direct-frame
// access of SlotOperand is potentially unsafe with an unspilled
// frame.
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Init const");
__ movq(rcx, SlotOperand(slot, rcx));
__ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
exit.Branch(not_equal);
}
// We must execute the store. Storing a variable must keep the (new)
// value on the stack. This is necessary for compiling assignment
// expressions.
//
// Note: We will reach here even with slot->var()->mode() ==
// Variable::CONST because of const declarations which will initialize
// consts to 'the hole' value and by doing so, end up calling this code.
if (slot->type() == Slot::PARAMETER) {
frame_->StoreToParameterAt(slot->index());
} else if (slot->type() == Slot::LOCAL) {
frame_->StoreToLocalAt(slot->index());
} else {
// The other slot types (LOOKUP and GLOBAL) cannot reach here.
//
// The use of SlotOperand below is safe for an unspilled frame
// because the slot is a context slot.
ASSERT(slot->type() == Slot::CONTEXT);
frame_->Dup();
Result value = frame_->Pop();
value.ToRegister();
Result start = allocator_->Allocate();
ASSERT(start.is_valid());
__ movq(SlotOperand(slot, start.reg()), value.reg());
// RecordWrite may destroy the value registers.
//
// TODO(204): Avoid actually spilling when the value is not
// needed (probably the common case).
frame_->Spill(value.reg());
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
Result temp = allocator_->Allocate();
ASSERT(temp.is_valid());
__ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
// The results start, value, and temp are unused by going out of
// scope.
}
exit.Bind();
}
}
Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
Slot* slot,
TypeofState typeof_state,
JumpTarget* slow) {
// Check that no extension objects have been created by calls to
// eval from the current scope to the global scope.
Register context = rsi;
Result tmp = allocator_->Allocate();
ASSERT(tmp.is_valid()); // All non-reserved registers were available.
Scope* s = scope();
while (s != NULL) {
if (s->num_heap_slots() > 0) {
if (s->calls_eval()) {
// Check that extension is NULL.
__ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
Immediate(0));
slow->Branch(not_equal, not_taken);
}
// Load next context in chain.
__ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
__ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
context = tmp.reg();
}
// If no outer scope calls eval, we do not need to check more
// context extensions. If we have reached an eval scope, we check
// all extensions from this point.
if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
s = s->outer_scope();
}
if (s->is_eval_scope()) {
// Loop up the context chain. There is no frame effect so it is
// safe to use raw labels here.
Label next, fast;
if (!context.is(tmp.reg())) {
__ movq(tmp.reg(), context);
}
// Load map for comparison into register, outside loop.
__ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex);
__ bind(&next);
// Terminate at global context.
__ cmpq(kScratchRegister, FieldOperand(tmp.reg(), HeapObject::kMapOffset));
__ j(equal, &fast);
// Check that extension is NULL.
__ cmpq(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
slow->Branch(not_equal);
// Load next context in chain.
__ movq(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
__ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
__ jmp(&next);
__ bind(&fast);
}
tmp.Unuse();
// All extension objects were empty and it is safe to use a global
// load IC call.
LoadGlobal();
frame_->Push(slot->var()->name());
RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
? RelocInfo::CODE_TARGET
: RelocInfo::CODE_TARGET_CONTEXT;
Result answer = frame_->CallLoadIC(mode);
// A test rax instruction following the call signals that the inobject
// property case was inlined. Ensure that there is not a test rax
// instruction here.
masm_->nop();
return answer;
}
void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot,
TypeofState typeof_state,
Result* result,
JumpTarget* slow,
JumpTarget* done) {
// Generate fast-case code for variables that might be shadowed by
// eval-introduced variables. Eval is used a lot without
// introducing variables. In those cases, we do not want to
// perform a runtime call for all variables in the scope
// containing the eval.
if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
*result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow);
done->Jump(result);
} else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite();
if (potential_slot != NULL) {
// Generate fast case for locals that rewrite to slots.
// Allocate a fresh register to use as a temp in
// ContextSlotOperandCheckExtensions and to hold the result
// value.
*result = allocator_->Allocate();
ASSERT(result->is_valid());
__ movq(result->reg(),
ContextSlotOperandCheckExtensions(potential_slot,
*result,
slow));
if (potential_slot->var()->mode() == Variable::CONST) {
__ CompareRoot(result->reg(), Heap::kTheHoleValueRootIndex);
done->Branch(not_equal, result);
__ LoadRoot(result->reg(), Heap::kUndefinedValueRootIndex);
}
done->Jump(result);
} else if (rewrite != NULL) {
// Generate fast case for argument loads.
Property* property = rewrite->AsProperty();
if (property != NULL) {
VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
Literal* key_literal = property->key()->AsLiteral();
if (obj_proxy != NULL &&
key_literal != NULL &&
obj_proxy->IsArguments() &&
key_literal->handle()->IsSmi()) {
// Load arguments object if there are no eval-introduced
// variables. Then load the argument from the arguments
// object using keyed load.
Result arguments = allocator()->Allocate();
ASSERT(arguments.is_valid());
__ movq(arguments.reg(),
ContextSlotOperandCheckExtensions(obj_proxy->var()->slot(),
arguments,
slow));
frame_->Push(&arguments);
frame_->Push(key_literal->handle());
*result = EmitKeyedLoad();
done->Jump(result);
}
}
}
}
}
void CodeGenerator::LoadGlobal() {
if (in_spilled_code()) {
frame_->EmitPush(GlobalObject());
} else {
Result temp = allocator_->Allocate();
__ movq(temp.reg(), GlobalObject());
frame_->Push(&temp);
}
}
void CodeGenerator::LoadGlobalReceiver() {
Result temp = allocator_->Allocate();
Register reg = temp.reg();
__ movq(reg, GlobalObject());
__ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
frame_->Push(&temp);
}
ArgumentsAllocationMode CodeGenerator::ArgumentsMode() {
if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
ASSERT(scope()->arguments_shadow() != NULL);
// We don't want to do lazy arguments allocation for functions that
// have heap-allocated contexts, because it interfers with the
// uninitialized const tracking in the context objects.
return (scope()->num_heap_slots() > 0)
? EAGER_ARGUMENTS_ALLOCATION
: LAZY_ARGUMENTS_ALLOCATION;
}
Result CodeGenerator::StoreArgumentsObject(bool initial) {
ArgumentsAllocationMode mode = ArgumentsMode();
ASSERT(mode != NO_ARGUMENTS_ALLOCATION);
Comment cmnt(masm_, "[ store arguments object");
if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
// When using lazy arguments allocation, we store the hole value
// as a sentinel indicating that the arguments object hasn't been
// allocated yet.
frame_->Push(Factory::the_hole_value());
} else {
ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
frame_->PushFunction();
frame_->PushReceiverSlotAddress();
frame_->Push(Smi::FromInt(scope()->num_parameters()));
Result result = frame_->CallStub(&stub, 3);
frame_->Push(&result);
}
Variable* arguments = scope()->arguments()->var();
Variable* shadow = scope()->arguments_shadow()->var();
ASSERT(arguments != NULL && arguments->slot() != NULL);
ASSERT(shadow != NULL && shadow->slot() != NULL);
JumpTarget done;
bool skip_arguments = false;
if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
// We have to skip storing into the arguments slot if it has
// already been written to. This can happen if the a function
// has a local variable named 'arguments'.
LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
Result probe = frame_->Pop();
if (probe.is_constant()) {
// We have to skip updating the arguments object if it has been
// assigned a proper value.
skip_arguments = !probe.handle()->IsTheHole();
} else {
__ CompareRoot(probe.reg(), Heap::kTheHoleValueRootIndex);
probe.Unuse();
done.Branch(not_equal);
}
}
if (!skip_arguments) {
StoreToSlot(arguments->slot(), NOT_CONST_INIT);
if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
}
StoreToSlot(shadow->slot(), NOT_CONST_INIT);
return frame_->Pop();
}
void CodeGenerator::LoadTypeofExpression(Expression* expr) {
// Special handling of identifiers as subexpressions of typeof.
Variable* variable = expr->AsVariableProxy()->AsVariable();
if (variable != NULL && !variable->is_this() && variable->is_global()) {
// For a global variable we build the property reference
// <global>.<variable> and perform a (regular non-contextual) property
// load to make sure we do not get reference errors.
Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
Literal key(variable->name());
Property property(&global, &key, RelocInfo::kNoPosition);
Reference ref(this, &property);
ref.GetValue();
} else if (variable != NULL && variable->slot() != NULL) {
// For a variable that rewrites to a slot, we signal it is the immediate
// subexpression of a typeof.
LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF);
} else {
// Anything else can be handled normally.
Load(expr);
}
}
static bool CouldBeNaN(const Result& result) {
if (result.type_info().IsSmi()) return false;
if (result.type_info().IsInteger32()) return false;
if (!result.is_constant()) return true;
if (!result.handle()->IsHeapNumber()) return false;
return isnan(HeapNumber::cast(*result.handle())->value());
}
// Convert from signed to unsigned comparison to match the way EFLAGS are set
// by FPU and XMM compare instructions.
static Condition DoubleCondition(Condition cc) {
switch (cc) {
case less: return below;
case equal: return equal;
case less_equal: return below_equal;
case greater: return above;
case greater_equal: return above_equal;
default: UNREACHABLE();
}
UNREACHABLE();
return equal;
}
void CodeGenerator::Comparison(AstNode* node,
Condition cc,
bool strict,
ControlDestination* dest) {
// Strict only makes sense for equality comparisons.
ASSERT(!strict || cc == equal);
Result left_side;
Result right_side;
// Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
if (cc == greater || cc == less_equal) {
cc = ReverseCondition(cc);
left_side = frame_->Pop();
right_side = frame_->Pop();
} else {
right_side = frame_->Pop();
left_side = frame_->Pop();
}
ASSERT(cc == less || cc == equal || cc == greater_equal);
// If either side is a constant smi, optimize the comparison.
bool left_side_constant_smi = false;
bool left_side_constant_null = false;
bool left_side_constant_1_char_string = false;
if (left_side.is_constant()) {
left_side_constant_smi = left_side.handle()->IsSmi();
left_side_constant_null = left_side.handle()->IsNull();
left_side_constant_1_char_string =
(left_side.handle()->IsString() &&
String::cast(*left_side.handle())->length() == 1 &&
String::cast(*left_side.handle())->IsAsciiRepresentation());
}
bool right_side_constant_smi = false;
bool right_side_constant_null = false;
bool right_side_constant_1_char_string = false;
if (right_side.is_constant()) {
right_side_constant_smi = right_side.handle()->IsSmi();
right_side_constant_null = right_side.handle()->IsNull();
right_side_constant_1_char_string =
(right_side.handle()->IsString() &&
String::cast(*right_side.handle())->length() == 1 &&
String::cast(*right_side.handle())->IsAsciiRepresentation());
}
if (left_side_constant_smi || right_side_constant_smi) {
if (left_side_constant_smi && right_side_constant_smi) {
// Trivial case, comparing two constants.
int left_value = Smi::cast(*left_side.handle())->value();
int right_value = Smi::cast(*right_side.handle())->value();
switch (cc) {
case less:
dest->Goto(left_value < right_value);
break;
case equal:
dest->Goto(left_value == right_value);
break;
case greater_equal:
dest->Goto(left_value >= right_value);
break;
default:
UNREACHABLE();
}
} else {
// Only one side is a constant Smi.
// If left side is a constant Smi, reverse the operands.
// Since one side is a constant Smi, conversion order does not matter.
if (left_side_constant_smi) {
Result temp = left_side;
left_side = right_side;
right_side = temp;
cc = ReverseCondition(cc);
// This may re-introduce greater or less_equal as the value of cc.
// CompareStub and the inline code both support all values of cc.
}
// Implement comparison against a constant Smi, inlining the case
// where both sides are Smis.
left_side.ToRegister();
Register left_reg = left_side.reg();
Handle<Object> right_val = right_side.handle();
// Here we split control flow to the stub call and inlined cases
// before finally splitting it to the control destination. We use
// a jump target and branching to duplicate the virtual frame at
// the first split. We manually handle the off-frame references
// by reconstituting them on the non-fall-through path.
JumpTarget is_smi;
if (left_side.is_smi()) {
if (FLAG_debug_code) {
__ AbortIfNotSmi(left_side.reg());
}
} else {
Condition left_is_smi = masm_->CheckSmi(left_side.reg());
is_smi.Branch(left_is_smi);
bool is_loop_condition = (node->AsExpression() != NULL) &&
node->AsExpression()->is_loop_condition();
if (!is_loop_condition && right_val->IsSmi()) {
// Right side is a constant smi and left side has been checked
// not to be a smi.
JumpTarget not_number;
__ Cmp(FieldOperand(left_reg, HeapObject::kMapOffset),
Factory::heap_number_map());
not_number.Branch(not_equal, &left_side);
__ movsd(xmm1,
FieldOperand(left_reg, HeapNumber::kValueOffset));
int value = Smi::cast(*right_val)->value();
if (value == 0) {
__ xorpd(xmm0, xmm0);
} else {
Result temp = allocator()->Allocate();
__ movl(temp.reg(), Immediate(value));
__ cvtlsi2sd(xmm0, temp.reg());
temp.Unuse();
}
__ ucomisd(xmm1, xmm0);
// Jump to builtin for NaN.
not_number.Branch(parity_even, &left_side);
left_side.Unuse();
dest->true_target()->Branch(DoubleCondition(cc));
dest->false_target()->Jump();
not_number.Bind(&left_side);
}
// Setup and call the compare stub.
CompareStub stub(cc, strict, kCantBothBeNaN);
Result result = frame_->CallStub(&stub, &left_side, &right_side);
result.ToRegister();
__ testq(result.reg(), result.reg());
result.Unuse();
dest->true_target()->Branch(cc);
dest->false_target()->Jump();
is_smi.Bind();
}
left_side = Result(left_reg);
right_side = Result(right_val);
// Test smi equality and comparison by signed int comparison.
// Both sides are smis, so we can use an Immediate.
__ SmiCompare(left_side.reg(), Smi::cast(*right_side.handle()));
left_side.Unuse();
right_side.Unuse();
dest->Split(cc);
}
} else if (cc == equal &&
(left_side_constant_null || right_side_constant_null)) {
// To make null checks efficient, we check if either the left side or
// the right side is the constant 'null'.
// If so, we optimize the code by inlining a null check instead of
// calling the (very) general runtime routine for checking equality.
Result operand = left_side_constant_null ? right_side : left_side;
right_side.Unuse();
left_side.Unuse();
operand.ToRegister();
__ CompareRoot(operand.reg(), Heap::kNullValueRootIndex);
if (strict) {
operand.Unuse();
dest->Split(equal);
} else {
// The 'null' value is only equal to 'undefined' if using non-strict
// comparisons.
dest->true_target()->Branch(equal);
__ CompareRoot(operand.reg(), Heap::kUndefinedValueRootIndex);
dest->true_target()->Branch(equal);
Condition is_smi = masm_->CheckSmi(operand.reg());
dest->false_target()->Branch(is_smi);
// It can be an undetectable object.
// Use a scratch register in preference to spilling operand.reg().
Result temp = allocator()->Allocate();
ASSERT(temp.is_valid());
__ movq(temp.reg(),
FieldOperand(operand.reg(), HeapObject::kMapOffset));
__ testb(FieldOperand(temp.reg(), Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
temp.Unuse();
operand.Unuse();
dest->Split(not_zero);
}
} else if (left_side_constant_1_char_string ||
right_side_constant_1_char_string) {
if (left_side_constant_1_char_string && right_side_constant_1_char_string) {
// Trivial case, comparing two constants.
int left_value = String::cast(*left_side.handle())->Get(0);
int right_value = String::cast(*right_side.handle())->Get(0);
switch (cc) {
case less:
dest->Goto(left_value < right_value);
break;
case equal:
dest->Goto(left_value == right_value);
break;
case greater_equal:
dest->Goto(left_value >= right_value);
break;
default:
UNREACHABLE();
}
} else {
// Only one side is a constant 1 character string.
// If left side is a constant 1-character string, reverse the operands.
// Since one side is a constant string, conversion order does not matter.
if (left_side_constant_1_char_string) {
Result temp = left_side;
left_side = right_side;
right_side = temp;
cc = ReverseCondition(cc);
// This may reintroduce greater or less_equal as the value of cc.
// CompareStub and the inline code both support all values of cc.
}
// Implement comparison against a constant string, inlining the case
// where both sides are strings.
left_side.ToRegister();
// Here we split control flow to the stub call and inlined cases
// before finally splitting it to the control destination. We use
// a jump target and branching to duplicate the virtual frame at
// the first split. We manually handle the off-frame references
// by reconstituting them on the non-fall-through path.
JumpTarget is_not_string, is_string;
Register left_reg = left_side.reg();
Handle<Object> right_val = right_side.handle();
ASSERT(StringShape(String::cast(*right_val)).IsSymbol());
Condition is_smi = masm()->CheckSmi(left_reg);
is_not_string.Branch(is_smi, &left_side);
Result temp = allocator_->Allocate();
ASSERT(temp.is_valid());
__ movq(temp.reg(),
FieldOperand(left_reg, HeapObject::kMapOffset));
__ movzxbl(temp.reg(),
FieldOperand(temp.reg(), Map::kInstanceTypeOffset));
// If we are testing for equality then make use of the symbol shortcut.
// Check if the left hand side has the same type as the right hand
// side (which is always a symbol).
if (cc == equal) {
Label not_a_symbol;
ASSERT(kSymbolTag != 0);
// Ensure that no non-strings have the symbol bit set.
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
__ testb(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit.
__ j(zero, ¬_a_symbol);
// They are symbols, so do identity compare.
__ Cmp(left_reg, right_side.handle());
dest->true_target()->Branch(equal);
dest->false_target()->Branch(not_equal);
__ bind(¬_a_symbol);
}
// Call the compare stub if the left side is not a flat ascii string.
__ andb(temp.reg(),
Immediate(kIsNotStringMask |
kStringRepresentationMask |
kStringEncodingMask));
__ cmpb(temp.reg(),
Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
temp.Unuse();
is_string.Branch(equal, &left_side);
// Setup and call the compare stub.
is_not_string.Bind(&left_side);
CompareStub stub(cc, strict, kCantBothBeNaN);
Result result = frame_->CallStub(&stub, &left_side, &right_side);
result.ToRegister();
__ testq(result.reg(), result.reg());
result.Unuse();
dest->true_target()->Branch(cc);
dest->false_target()->Jump();
is_string.Bind(&left_side);
// left_side is a sequential ASCII string.
ASSERT(left_side.reg().is(left_reg));
right_side = Result(right_val);
Result temp2 = allocator_->Allocate();
ASSERT(temp2.is_valid());
// Test string equality and comparison.
if (cc == equal) {
Label comparison_done;
__ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset),
Smi::FromInt(1));
__ j(not_equal, &comparison_done);
uint8_t char_value =
static_cast<uint8_t>(String::cast(*right_val)->Get(0));
__ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize),
Immediate(char_value));
__ bind(&comparison_done);
} else {
__ movq(temp2.reg(),
FieldOperand(left_side.reg(), String::kLengthOffset));
__ SmiSubConstant(temp2.reg(), temp2.reg(), Smi::FromInt(1));
Label comparison;
// If the length is 0 then the subtraction gave -1 which compares less
// than any character.
__ j(negative, &comparison);
// Otherwise load the first character.
__ movzxbl(temp2.reg(),
FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize));
__ bind(&comparison);
// Compare the first character of the string with the
// constant 1-character string.
uint8_t char_value =
static_cast<uint8_t>(String::cast(*right_side.handle())->Get(0));
__ cmpb(temp2.reg(), Immediate(char_value));
Label characters_were_different;
__ j(not_equal, &characters_were_different);
// If the first character is the same then the long string sorts after
// the short one.
__ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset),
Smi::FromInt(1));
__ bind(&characters_were_different);
}
temp2.Unuse();
left_side.Unuse();
right_side.Unuse();
dest->Split(cc);
}
} else {
// Neither side is a constant Smi, constant 1-char string, or constant null.
// If either side is a non-smi constant, skip the smi check.
bool known_non_smi =
(left_side.is_constant() && !left_side.handle()->IsSmi()) ||
(right_side.is_constant() && !right_side.handle()->IsSmi()) ||
left_side.type_info().IsDouble() ||
right_side.type_info().IsDouble();
NaNInformation nan_info =
(CouldBeNaN(left_side) && CouldBeNaN(right_side)) ?
kBothCouldBeNaN :
kCantBothBeNaN;
// Inline number comparison handling any combination of smi's and heap
// numbers if:
// code is in a loop
// the compare operation is different from equal
// compare is not a for-loop comparison
// The reason for excluding equal is that it will most likely be done
// with smi's (not heap numbers) and the code to comparing smi's is inlined
// separately. The same reason applies for for-loop comparison which will
// also most likely be smi comparisons.
bool is_loop_condition = (node->AsExpression() != NULL)
&& node->AsExpression()->is_loop_condition();
bool inline_number_compare =
loop_nesting() > 0 && cc != equal && !is_loop_condition;
left_side.ToRegister();
right_side.ToRegister();
if (known_non_smi) {
// Inlined equality check:
// If at least one of the objects is not NaN, then if the objects
// are identical, they are equal.
if (nan_info == kCantBothBeNaN && cc == equal) {
__ cmpq(left_side.reg(), right_side.reg());
dest->true_target()->Branch(equal);
}
// Inlined number comparison:
if (inline_number_compare) {
GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
}
CompareStub stub(cc, strict, nan_info, !inline_number_compare);
Result answer = frame_->CallStub(&stub, &left_side, &right_side);
__ testq(answer.reg(), answer.reg()); // Sets both zero and sign flag.
answer.Unuse();
dest->Split(cc);
} else {
// Here we split control flow to the stub call and inlined cases
// before finally splitting it to the control destination. We use
// a jump target and branching to duplicate the virtual frame at
// the first split. We manually handle the off-frame references
// by reconstituting them on the non-fall-through path.
JumpTarget is_smi;
Register left_reg = left_side.reg();
Register right_reg = right_side.reg();
Condition both_smi = masm_->CheckBothSmi(left_reg, right_reg);
is_smi.Branch(both_smi);
// Inline the equality check if both operands can't be a NaN. If both
// objects are the same they are equal.
if (nan_info == kCantBothBeNaN && cc == equal) {
__ cmpq(left_side.reg(), right_side.reg());
dest->true_target()->Branch(equal);
}
// Inlined number comparison:
if (inline_number_compare) {
GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
}
CompareStub stub(cc, strict, nan_info, !inline_number_compare);
Result answer = frame_->CallStub(&stub, &left_side, &right_side);
__ testq(answer.reg(), answer.reg()); // Sets both zero and sign flags.
answer.Unuse();
dest->true_target()->Branch(cc);
dest->false_target()->Jump();
is_smi.Bind();
left_side = Result(left_reg);
right_side = Result(right_reg);
__ SmiCompare(left_side.reg(), right_side.reg());
right_side.Unuse();
left_side.Unuse();
dest->Split(cc);
}
}
}
// Load a comparison operand into into a XMM register. Jump to not_numbers jump
// target passing the left and right result if the operand is not a number.
static void LoadComparisonOperand(MacroAssembler* masm_,
Result* operand,
XMMRegister xmm_reg,
Result* left_side,
Result* right_side,
JumpTarget* not_numbers) {
Label done;
if (operand->type_info().IsDouble()) {
// Operand is known to be a heap number, just load it.
__ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
} else if (operand->type_info().IsSmi()) {
// Operand is known to be a smi. Convert it to double and keep the original
// smi.
__ SmiToInteger32(kScratchRegister, operand->reg());
__ cvtlsi2sd(xmm_reg, kScratchRegister);
} else {
// Operand type not known, check for smi or heap number.
Label smi;
__ JumpIfSmi(operand->reg(), &smi);
if (!operand->type_info().IsNumber()) {
__ LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex);
__ cmpq(FieldOperand(operand->reg(), HeapObject::kMapOffset),
kScratchRegister);
not_numbers->Branch(not_equal, left_side, right_side, taken);
}
__ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&smi);
// Comvert smi to float and keep the original smi.
__ SmiToInteger32(kScratchRegister, operand->reg());
__ cvtlsi2sd(xmm_reg, kScratchRegister);
__ jmp(&done);
}
__ bind(&done);
}
void CodeGenerator::GenerateInlineNumberComparison(Result* left_side,
Result* right_side,
Condition cc,
ControlDestination* dest) {
ASSERT(left_side->is_register());
ASSERT(right_side->is_register());
JumpTarget not_numbers;
// Load left and right operand into registers xmm0 and xmm1 and compare.
LoadComparisonOperand(masm_, left_side, xmm0, left_side, right_side,
¬_numbers);
LoadComparisonOperand(masm_, right_side, xmm1, left_side, right_side,
¬_numbers);
__ ucomisd(xmm0, xmm1);
// Bail out if a NaN is involved.
not_numbers.Branch(parity_even, left_side, right_side);
// Split to destination targets based on comparison.
left_side->Unuse();
right_side->Unuse();
dest->true_target()->Branch(DoubleCondition(cc));
dest->false_target()->Jump();
not_numbers.Bind(left_side, right_side);
}
class DeferredInlineBinaryOperation: public DeferredCode {
public:
DeferredInlineBinaryOperation(Token::Value op,
Register dst,
Register left,
Register right,
OverwriteMode mode)
: op_(op), dst_(dst), left_(left), right_(right), mode_(mode) {
set_comment("[ DeferredInlineBinaryOperation");
}
virtual void Generate();
private:
Token::Value op_;
Register dst_;
Register left_;
Register right_;
OverwriteMode mode_;
};
void DeferredInlineBinaryOperation::Generate() {
Label done;
if ((op_ == Token::ADD)
|| (op_ == Token::SUB)
|| (op_ == Token::MUL)
|| (op_ == Token::DIV)) {
Label call_runtime;
Label left_smi, right_smi, load_right, do_op;
__ JumpIfSmi(left_, &left_smi);
__ CompareRoot(FieldOperand(left_, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &call_runtime);
__ movsd(xmm0, FieldOperand(left_, HeapNumber::kValueOffset));
if (mode_ == OVERWRITE_LEFT) {
__ movq(dst_, left_);
}
__ jmp(&load_right);
__ bind(&left_smi);
__ SmiToInteger32(left_, left_);
__ cvtlsi2sd(xmm0, left_);
__ Integer32ToSmi(left_, left_);
if (mode_ == OVERWRITE_LEFT) {
Label alloc_failure;
__ AllocateHeapNumber(dst_, no_reg, &call_runtime);
}
__ bind(&load_right);
__ JumpIfSmi(right_, &right_smi);
__ CompareRoot(FieldOperand(right_, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &call_runtime);
__ movsd(xmm1, FieldOperand(right_, HeapNumber::kValueOffset));
if (mode_ == OVERWRITE_RIGHT) {
__ movq(dst_, right_);
} else if (mode_ == NO_OVERWRITE) {
Label alloc_failure;
__ AllocateHeapNumber(dst_, no_reg, &call_runtime);
}
__ jmp(&do_op);
__ bind(&right_smi);
__ SmiToInteger32(right_, right_);
__ cvtlsi2sd(xmm1, right_);
__ Integer32ToSmi(right_, right_);
if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) {
Label alloc_failure;
__ AllocateHeapNumber(dst_, no_reg, &call_runtime);
}
__ bind(&do_op);
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
__ movsd(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0);
__ jmp(&done);
__ bind(&call_runtime);
}
GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB);
stub.GenerateCall(masm_, left_, right_);
if (!dst_.is(rax)) __ movq(dst_, rax);
__ bind(&done);
}
static TypeInfo CalculateTypeInfo(TypeInfo operands_type,
Token::Value op,
const Result& right,
const Result& left) {
// Set TypeInfo of result according to the operation performed.
// We rely on the fact that smis have a 32 bit payload on x64.
STATIC_ASSERT(kSmiValueSize == 32);
switch (op) {
case Token::COMMA:
return right.type_info();
case Token::OR:
case Token::AND:
// Result type can be either of the two input types.
return operands_type;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
// Result is always a smi.
return TypeInfo::Smi();
case Token::SAR:
case Token::SHL:
// Result is always a smi.
return TypeInfo::Smi();
case Token::SHR:
// Result of x >>> y is always a smi if masked y >= 1, otherwise a number.
return (right.is_constant() && right.handle()->IsSmi()
&& (Smi::cast(*right.handle())->value() & 0x1F) >= 1)
? TypeInfo::Smi()
: TypeInfo::Number();
case Token::ADD:
if (operands_type.IsNumber()) {
return TypeInfo::Number();
} else if (left.type_info().IsString() || right.type_info().IsString()) {
return TypeInfo::String();
} else {
return TypeInfo::Unknown();
}
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
// Result is always a number.
return TypeInfo::Number();
default:
UNREACHABLE();
}
UNREACHABLE();
return TypeInfo::Unknown();
}
void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr,
OverwriteMode overwrite_mode) {
Comment cmnt(masm_, "[ BinaryOperation");
Token::Value op = expr->op();
Comment cmnt_token(masm_, Token::String(op));
if (op == Token::COMMA) {
// Simply discard left value.
frame_->Nip(1);
return;
}
Result right = frame_->Pop();
Result left = frame_->Pop();
if (op == Token::ADD) {
const bool left_is_string = left.type_info().IsString();
const bool right_is_string = right.type_info().IsString();
// Make sure constant strings have string type info.
ASSERT(!(left.is_constant() && left.handle()->IsString()) ||
left_is_string);
ASSERT(!(right.is_constant() && right.handle()->IsString()) ||
right_is_string);
if (left_is_string || right_is_string) {
frame_->Push(&left);
frame_->Push(&right);
Result answer;
if (left_is_string) {
if (right_is_string) {
StringAddStub stub(NO_STRING_CHECK_IN_STUB);
answer = frame_->CallStub(&stub, 2);
} else {
answer =
frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2);
}
} else if (right_is_string) {
answer =
frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2);
}
answer.set_type_info(TypeInfo::String());
frame_->Push(&answer);
return;
}
// Neither operand is known to be a string.
}
bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi();
bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi();
bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi();
bool right_is_non_smi_constant =
right.is_constant() && !right.handle()->IsSmi();
if (left_is_smi_constant && right_is_smi_constant) {
// Compute the constant result at compile time, and leave it on the frame.
int left_int = Smi::cast(*left.handle())->value();
int right_int = Smi::cast(*right.handle())->value();
if (FoldConstantSmis(op, left_int, right_int)) return;
}
// Get number type of left and right sub-expressions.
TypeInfo operands_type =
TypeInfo::Combine(left.type_info(), right.type_info());
TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left);
Result answer;
if (left_is_non_smi_constant || right_is_non_smi_constant) {
// Go straight to the slow case, with no smi code.
GenericBinaryOpStub stub(op,
overwrite_mode,
NO_SMI_CODE_IN_STUB,
operands_type);
answer = stub.GenerateCall(masm_, frame_, &left, &right);
} else if (right_is_smi_constant) {
answer = ConstantSmiBinaryOperation(expr, &left, right.handle(),
false, overwrite_mode);
} else if (left_is_smi_constant) {
answer = ConstantSmiBinaryOperation(expr, &right, left.handle(),
true, overwrite_mode);
} else {
// Set the flags based on the operation, type and loop nesting level.
// Bit operations always assume they likely operate on Smis. Still only
// generate the inline Smi check code if this operation is part of a loop.
// For all other operations only inline the Smi check code for likely smis
// if the operation is part of a loop.
if (loop_nesting() > 0 &&
(Token::IsBitOp(op) ||
operands_type.IsInteger32() ||
expr->type()->IsLikelySmi())) {
answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode);
} else {
GenericBinaryOpStub stub(op,
overwrite_mode,
NO_GENERIC_BINARY_FLAGS,
operands_type);
answer = stub.GenerateCall(masm_, frame_, &left, &right);
}
}
answer.set_type_info(result_type);
frame_->Push(&answer);
}
// Emit a LoadIC call to get the value from receiver and leave it in
// dst. The receiver register is restored after the call.
class DeferredReferenceGetNamedValue: public DeferredCode {
public:
DeferredReferenceGetNamedValue(Register dst,
Register receiver,
Handle<String> name)
: dst_(dst), receiver_(receiver), name_(name) {
set_comment("[ DeferredReferenceGetNamedValue");
}
virtual void Generate();
Label* patch_site() { return &patch_site_; }
private:
Label patch_site_;
Register dst_;
Register receiver_;
Handle<String> name_;
};
void DeferredReferenceGetNamedValue::Generate() {
if (!receiver_.is(rax)) {
__ movq(rax, receiver_);
}
__ Move(rcx, name_);
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// The call must be followed by a test rax instruction to indicate
// that the inobject property case was inlined.
//
// Store the delta to the map check instruction here in the test
// instruction. Use masm_-> instead of the __ macro since the
// latter can't return a value.
int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
// Here we use masm_-> instead of the __ macro because this is the
// instruction that gets patched and coverage code gets in the way.
masm_->testl(rax, Immediate(-delta_to_patch_site));
__ IncrementCounter(&Counters::named_load_inline_miss, 1);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
void DeferredInlineSmiAdd::Generate() {
GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
igostub.GenerateCall(masm_, dst_, value_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
void DeferredInlineSmiAddReversed::Generate() {
GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
igostub.GenerateCall(masm_, value_, dst_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
void DeferredInlineSmiSub::Generate() {
GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB);
igostub.GenerateCall(masm_, dst_, value_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
void DeferredInlineSmiOperation::Generate() {
// For mod we don't generate all the Smi code inline.
GenericBinaryOpStub stub(
op_,
overwrite_mode_,
(op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB);
stub.GenerateCall(masm_, src_, value_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
void DeferredInlineSmiOperationReversed::Generate() {
GenericBinaryOpStub stub(
op_,
overwrite_mode_,
NO_SMI_CODE_IN_STUB);
stub.GenerateCall(masm_, value_, src_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
Result* operand,
Handle<Object> value,
bool reversed,
OverwriteMode overwrite_mode) {
// Generate inline code for a binary operation when one of the
// operands is a constant smi. Consumes the argument "operand".
if (IsUnsafeSmi(value)) {
Result unsafe_operand(value);
if (reversed) {
return LikelySmiBinaryOperation(expr, &unsafe_operand, operand,
overwrite_mode);
} else {
return LikelySmiBinaryOperation(expr, operand, &unsafe_operand,
overwrite_mode);
}
}
// Get the literal value.
Smi* smi_value = Smi::cast(*value);
int int_value = smi_value->value();
Token::Value op = expr->op();
Result answer;
switch (op) {
case Token::ADD: {
operand->ToRegister();
frame_->Spill(operand->reg());
DeferredCode* deferred = NULL;
if (reversed) {
deferred = new DeferredInlineSmiAddReversed(operand->reg(),
smi_value,
overwrite_mode);
} else {
deferred = new DeferredInlineSmiAdd(operand->reg(),
smi_value,
overwrite_mode);
}
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
__ SmiAddConstant(operand->reg(),
operand->reg(),
smi_value,
deferred->entry_label());
deferred->BindExit();
answer = *operand;
break;
}
case Token::SUB: {
if (reversed) {
Result constant_operand(value);
answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
overwrite_mode);
} else {
operand->ToRegister();
frame_->Spill(operand->reg());
DeferredCode* deferred = new DeferredInlineSmiSub(operand->reg(),
smi_value,
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
// A smi currently fits in a 32-bit Immediate.
__ SmiSubConstant(operand->reg(),
operand->reg(),
smi_value,
deferred->entry_label());
deferred->BindExit();
answer = *operand;
}
break;
}
case Token::SAR:
if (reversed) {
Result constant_operand(value);
answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
overwrite_mode);
} else {
// Only the least significant 5 bits of the shift value are used.
// In the slow case, this masking is done inside the runtime call.
int shift_value = int_value & 0x1f;
operand->ToRegister();
frame_->Spill(operand->reg());
DeferredInlineSmiOperation* deferred =
new DeferredInlineSmiOperation(op,
operand->reg(),
operand->reg(),
smi_value,
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
__ SmiShiftArithmeticRightConstant(operand->reg(),
operand->reg(),
shift_value);
deferred->BindExit();
answer = *operand;
}
break;
case Token::SHR:
if (reversed) {
Result constant_operand(value);
answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
overwrite_mode);
} else {
// Only the least significant 5 bits of the shift value are used.
// In the slow case, this masking is done inside the runtime call.
int shift_value = int_value & 0x1f;
operand->ToRegister();
answer = allocator()->Allocate();
ASSERT(answer.is_valid());
DeferredInlineSmiOperation* deferred =
new DeferredInlineSmiOperation(op,
answer.reg(),
operand->reg(),
smi_value,
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
__ SmiShiftLogicalRightConstant(answer.reg(),
operand->reg(),
shift_value,
deferred->entry_label());
deferred->BindExit();
operand->Unuse();
}
break;
case Token::SHL:
if (reversed) {
operand->ToRegister();
// We need rcx to be available to hold operand, and to be spilled.
// SmiShiftLeft implicitly modifies rcx.
if (operand->reg().is(rcx)) {
frame_->Spill(operand->reg());
answer = allocator()->Allocate();
} else {
Result rcx_reg = allocator()->Allocate(rcx);
// answer must not be rcx.
answer = allocator()->Allocate();
// rcx_reg goes out of scope.
}
DeferredInlineSmiOperationReversed* deferred =
new DeferredInlineSmiOperationReversed(op,
answer.reg(),
smi_value,
operand->reg(),
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
__ Move(answer.reg(), smi_value);
__ SmiShiftLeft(answer.reg(), answer.reg(), operand->reg());
operand->Unuse();
deferred->BindExit();
} else {
// Only the least significant 5 bits of the shift value are used.
// In the slow case, this masking is done inside the runtime call.
int shift_value = int_value & 0x1f;
operand->ToRegister();
if (shift_value == 0) {
// Spill operand so it can be overwritten in the slow case.
frame_->Spill(operand->reg());
DeferredInlineSmiOperation* deferred =
new DeferredInlineSmiOperation(op,
operand->reg(),
operand->reg(),
smi_value,
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
deferred->BindExit();
answer = *operand;
} else {
// Use a fresh temporary for nonzero shift values.
answer = allocator()->Allocate();
ASSERT(answer.is_valid());
DeferredInlineSmiOperation* deferred =
new DeferredInlineSmiOperation(op,
answer.reg(),
operand->reg(),
smi_value,
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
__ SmiShiftLeftConstant(answer.reg(),
operand->reg(),
shift_value);
deferred->BindExit();
operand->Unuse();
}
}
break;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND: {
operand->ToRegister();
frame_->Spill(operand->reg());
if (reversed) {
// Bit operations with a constant smi are commutative.
// We can swap left and right operands with no problem.
// Swap left and right overwrite modes. 0->0, 1->2, 2->1.
overwrite_mode = static_cast<OverwriteMode>((2 * overwrite_mode) % 3);
}
DeferredCode* deferred = new DeferredInlineSmiOperation(op,
operand->reg(),
operand->reg(),
smi_value,
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
if (op == Token::BIT_AND) {
__ SmiAndConstant(operand->reg(), operand->reg(), smi_value);
} else if (op == Token::BIT_XOR) {
if (int_value != 0) {
__ SmiXorConstant(operand->reg(), operand->reg(), smi_value);
}
} else {
ASSERT(op == Token::BIT_OR);
if (int_value != 0) {
__ SmiOrConstant(operand->reg(), operand->reg(), smi_value);
}
}
deferred->BindExit();
answer = *operand;
break;
}
// Generate inline code for mod of powers of 2 and negative powers of 2.
case Token::MOD:
if (!reversed &&
int_value != 0 &&
(IsPowerOf2(int_value) || IsPowerOf2(-int_value))) {
operand->ToRegister();
frame_->Spill(operand->reg());
DeferredCode* deferred =
new DeferredInlineSmiOperation(op,
operand->reg(),
operand->reg(),
smi_value,
overwrite_mode);
// Check for negative or non-Smi left hand side.
__ JumpIfNotPositiveSmi(operand->reg(), deferred->entry_label());
if (int_value < 0) int_value = -int_value;
if (int_value == 1) {
__ Move(operand->reg(), Smi::FromInt(0));
} else {
__ SmiAndConstant(operand->reg(),
operand->reg(),
Smi::FromInt(int_value - 1));
}
deferred->BindExit();
answer = *operand;
break; // This break only applies if we generated code for MOD.
}
// Fall through if we did not find a power of 2 on the right hand side!
// The next case must be the default.
default: {
Result constant_operand(value);
if (reversed) {
answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
overwrite_mode);
} else {
answer = LikelySmiBinaryOperation(expr, operand, &constant_operand,
overwrite_mode);
}
break;
}
}
ASSERT(answer.is_valid());
return answer;
}
void CodeGenerator::JumpIfNotSmiUsingTypeInfo(Register reg,
TypeInfo type,
DeferredCode* deferred) {
if (!type.IsSmi()) {
__ JumpIfNotSmi(reg, deferred->entry_label());
}
if (FLAG_debug_code) {
__ AbortIfNotSmi(reg);
}
}
void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
Register right,
TypeInfo left_info,
TypeInfo right_info,
DeferredCode* deferred) {
if (!left_info.IsSmi() && !right_info.IsSmi()) {
__ JumpIfNotBothSmi(left, right, deferred->entry_label());
} else if (!left_info.IsSmi()) {
__ JumpIfNotSmi(left, deferred->entry_label());
} else if (!right_info.IsSmi()) {
__ JumpIfNotSmi(right, deferred->entry_label());
}
if (FLAG_debug_code) {
__ AbortIfNotSmi(left);
__ AbortIfNotSmi(right);
}
}
// Implements a binary operation using a deferred code object and some
// inline code to operate on smis quickly.
Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
Result* left,
Result* right,
OverwriteMode overwrite_mode) {
// Copy the type info because left and right may be overwritten.
TypeInfo left_type_info = left->type_info();
TypeInfo right_type_info = right->type_info();
Token::Value op = expr->op();
Result answer;
// Special handling of div and mod because they use fixed registers.
if (op == Token::DIV || op == Token::MOD) {
// We need rax as the quotient register, rdx as the remainder
// register, neither left nor right in rax or rdx, and left copied
// to rax.
Result quotient;
Result remainder;
bool left_is_in_rax = false;
// Step 1: get rax for quotient.
if ((left->is_register() && left->reg().is(rax)) ||
(right->is_register() && right->reg().is(rax))) {
// One or both is in rax. Use a fresh non-rdx register for
// them.
Result fresh = allocator_->Allocate();
ASSERT(fresh.is_valid());
if (fresh.reg().is(rdx)) {
remainder = fresh;
fresh = allocator_->Allocate();
ASSERT(fresh.is_valid());
}
if (left->is_register() && left->reg().is(rax)) {
quotient = *left;
*left = fresh;
left_is_in_rax = true;
}
if (right->is_register() && right->reg().is(rax)) {
quotient = *right;
*right = fresh;
}
__ movq(fresh.reg(), rax);
} else {
// Neither left nor right is in rax.
quotient = allocator_->Allocate(rax);
}
ASSERT(quotient.is_register() && quotient.reg().is(rax));
ASSERT(!(left->is_register() && left->reg().is(rax)));
ASSERT(!(right->is_register() && right->reg().is(rax)));
// Step 2: get rdx for remainder if necessary.
if (!remainder.is_valid()) {
if ((left->is_register() && left->reg().is(rdx)) ||
(right->is_register() && right->reg().is(rdx))) {
Result fresh = allocator_->Allocate();
ASSERT(fresh.is_valid());
if (left->is_register() && left->reg().is(rdx)) {
remainder = *left;
*left = fresh;
}
if (right->is_register() && right->reg().is(rdx)) {
remainder = *right;
*right = fresh;
}
__ movq(fresh.reg(), rdx);
} else {
// Neither left nor right is in rdx.
remainder = allocator_->Allocate(rdx);
}
}
ASSERT(remainder.is_register() && remainder.reg().is(rdx));
ASSERT(!(left->is_register() && left->reg().is(rdx)));
ASSERT(!(right->is_register() && right->reg().is(rdx)));
left->ToRegister();
right->ToRegister();
frame_->Spill(rax);
frame_->Spill(rdx);
// Check that left and right are smi tagged.
DeferredInlineBinaryOperation* deferred =
new DeferredInlineBinaryOperation(op,
(op == Token::DIV) ? rax : rdx,
left->reg(),
right->reg(),
overwrite_mode);
JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(),
left_type_info, right_type_info, deferred);
if (op == Token::DIV) {
__ SmiDiv(rax, left->reg(), right->reg(), deferred->entry_label());
deferred->BindExit();
left->Unuse();
right->Unuse();
answer = quotient;
} else {
ASSERT(op == Token::MOD);
__ SmiMod(rdx, left->reg(), right->reg(), deferred->entry_label());
deferred->BindExit();
left->Unuse();
right->Unuse();
answer = remainder;
}
ASSERT(answer.is_valid());
return answer;
}
// Special handling of shift operations because they use fixed
// registers.
if (op == Token::SHL || op == Token::SHR || op == Token::SAR) {
// Move left out of rcx if necessary.
if (left->is_register() && left->reg().is(rcx)) {
*left = allocator_->Allocate();
ASSERT(left->is_valid());
__ movq(left->reg(), rcx);
}
right->ToRegister(rcx);
left->ToRegister();
ASSERT(left->is_register() && !left->reg().is(rcx));
ASSERT(right->is_register() && right->reg().is(rcx));
// We will modify right, it must be spilled.
frame_->Spill(rcx);
// Use a fresh answer register to avoid spilling the left operand.
answer = allocator_->Allocate();
ASSERT(answer.is_valid());
// Check that both operands are smis using the answer register as a
// temporary.
DeferredInlineBinaryOperation* deferred =
new DeferredInlineBinaryOperation(op,
answer.reg(),
left->reg(),
rcx,
overwrite_mode);
Label do_op;
if (right_type_info.IsSmi()) {
if (FLAG_debug_code) {
__ AbortIfNotSmi(right->reg());
}
__ movq(answer.reg(), left->reg());
// If left is not known to be a smi, check if it is.
// If left is not known to be a number, and it isn't a smi, check if
// it is a HeapNumber.
if (!left_type_info.IsSmi()) {
__ JumpIfSmi(answer.reg(), &do_op);
if (!left_type_info.IsNumber()) {
// Branch if not a heapnumber.
__ Cmp(FieldOperand(answer.reg(), HeapObject::kMapOffset),
Factory::heap_number_map());
deferred->Branch(not_equal);
}
// Load integer value into answer register using truncation.
__ cvttsd2si(answer.reg(),
FieldOperand(answer.reg(), HeapNumber::kValueOffset));
// Branch if we might have overflowed.
// (False negative for Smi::kMinValue)
__ cmpq(answer.reg(), Immediate(0x80000000));
deferred->Branch(equal);
// TODO(lrn): Inline shifts on int32 here instead of first smi-tagging.
__ Integer32ToSmi(answer.reg(), answer.reg());
} else {
// Fast case - both are actually smis.
if (FLAG_debug_code) {
__ AbortIfNotSmi(left->reg());
}
}
} else {
JumpIfNotBothSmiUsingTypeInfo(left->reg(), rcx,
left_type_info, right_type_info, deferred);
}
__ bind(&do_op);
// Perform the operation.
switch (op) {
case Token::SAR:
__ SmiShiftArithmeticRight(answer.reg(), left->reg(), rcx);
break;
case Token::SHR: {
__ SmiShiftLogicalRight(answer.reg(),
left->reg(),
rcx,
deferred->entry_label());
break;
}
case Token::SHL: {
__ SmiShiftLeft(answer.reg(),
left->reg(),
rcx);
break;
}
default:
UNREACHABLE();
}
deferred->BindExit();
left->Unuse();
right->Unuse();
ASSERT(answer.is_valid());
return answer;
}
// Handle the other binary operations.
left->ToRegister();
right->ToRegister();
// A newly allocated register answer is used to hold the answer. The
// registers containing left and right are not modified so they don't
// need to be spilled in the fast case.
answer = allocator_->Allocate();
ASSERT(answer.is_valid());
// Perform the smi tag check.
DeferredInlineBinaryOperation* deferred =
new DeferredInlineBinaryOperation(op,
answer.reg(),
left->reg(),
right->reg(),
overwrite_mode);
JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(),
left_type_info, right_type_info, deferred);
switch (op) {
case Token::ADD:
__ SmiAdd(answer.reg(),
left->reg(),
right->reg(),
deferred->entry_label());
break;
case Token::SUB:
__ SmiSub(answer.reg(),
left->reg(),
right->reg(),
deferred->entry_label());
break;
case Token::MUL: {
__ SmiMul(answer.reg(),
left->reg(),
right->reg(),
deferred->entry_label());
break;
}
case Token::BIT_OR:
__ SmiOr(answer.reg(), left->reg(), right->reg());
break;
case Token::BIT_AND:
__ SmiAnd(answer.reg(), left->reg(), right->reg());
break;
case Token::BIT_XOR:
__ SmiXor(answer.reg(), left->reg(), right->reg());
break;
default:
UNREACHABLE();
break;
}
deferred->BindExit();
left->Unuse();
right->Unuse();
ASSERT(answer.is_valid());
return answer;
}
Result CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) {
#ifdef DEBUG
int original_height = frame()->height();
#endif
Result result;
// Do not inline the inobject property case for loads from the global
// object. Also do not inline for unoptimized code. This saves time
// in the code generator. Unoptimized code is toplevel code or code
// that is not in a loop.
if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) {
Comment cmnt(masm(), "[ Load from named Property");
frame()->Push(name);
RelocInfo::Mode mode = is_contextual
? RelocInfo::CODE_TARGET_CONTEXT
: RelocInfo::CODE_TARGET;
result = frame()->CallLoadIC(mode);
// A test rax instruction following the call signals that the
// inobject property case was inlined. Ensure that there is not
// a test rax instruction here.
__ nop();
} else {
// Inline the inobject property case.
Comment cmnt(masm(), "[ Inlined named property load");
Result receiver = frame()->Pop();
receiver.ToRegister();
result = allocator()->Allocate();
ASSERT(result.is_valid());
// Cannot use r12 for receiver, because that changes
// the distance between a call and a fixup location,
// due to a special encoding of r12 as r/m in a ModR/M byte.
if (receiver.reg().is(r12)) {
frame()->Spill(receiver.reg()); // It will be overwritten with result.
// Swap receiver and value.
__ movq(result.reg(), receiver.reg());
Result temp = receiver;
receiver = result;
result = temp;
}
DeferredReferenceGetNamedValue* deferred =
new DeferredReferenceGetNamedValue(result.reg(), receiver.reg(), name);
// Check that the receiver is a heap object.
__ JumpIfSmi(receiver.reg(), deferred->entry_label());
__ bind(deferred->patch_site());
// This is the map check instruction that will be patched (so we can't
// use the double underscore macro that may insert instructions).
// Initially use an invalid map to force a failure.
masm()->Move(kScratchRegister, Factory::null_value());
masm()->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
kScratchRegister);
// This branch is always a forwards branch so it's always a fixed
// size which allows the assert below to succeed and patching to work.
// Don't use deferred->Branch(...), since that might add coverage code.
masm()->j(not_equal, deferred->entry_label());
// The delta from the patch label to the load offset must be
// statically known.
ASSERT(masm()->SizeOfCodeGeneratedSince(deferred->patch_site()) ==
LoadIC::kOffsetToLoadInstruction);
// The initial (invalid) offset has to be large enough to force
// a 32-bit instruction encoding to allow patching with an
// arbitrary offset. Use kMaxInt (minus kHeapObjectTag).
int offset = kMaxInt;
masm()->movq(result.reg(), FieldOperand(receiver.reg(), offset));
__ IncrementCounter(&Counters::named_load_inline, 1);
deferred->BindExit();
}
ASSERT(frame()->height() == original_height - 1);
return result;
}
Result CodeGenerator::EmitKeyedLoad() {
#ifdef DEBUG
int original_height = frame()->height();
#endif
Result result;
// Inline array load code if inside of a loop. We do not know
// the receiver map yet, so we initially generate the code with
// a check against an invalid map. In the inline cache code, we
// patch the map check if appropriate.
if (loop_nesting() > 0) {
Comment cmnt(masm_, "[ Inlined load from keyed Property");
// Use a fresh temporary to load the elements without destroying
// the receiver which is needed for the deferred slow case.
// Allocate the temporary early so that we use rax if it is free.
Result elements = allocator()->Allocate();
ASSERT(elements.is_valid());
Result key = frame_->Pop();
Result receiver = frame_->Pop();
key.ToRegister();
receiver.ToRegister();
// If key and receiver are shared registers on the frame, their values will
// be automatically saved and restored when going to deferred code.
// The result is returned in elements, which is not shared.
DeferredReferenceGetKeyedValue* deferred =
new DeferredReferenceGetKeyedValue(elements.reg(),
receiver.reg(),
key.reg());
__ JumpIfSmi(receiver.reg(), deferred->entry_label());
// Check that the receiver has the expected map.
// Initially, use an invalid map. The map is patched in the IC
// initialization code.
__ bind(deferred->patch_site());
// Use masm-> here instead of the double underscore macro since extra
// coverage code can interfere with the patching. Do not use a load
// from the root array to load null_value, since the load must be patched
// with the expected receiver map, which is not in the root array.
masm_->movq(kScratchRegister, Factory::null_value(),
RelocInfo::EMBEDDED_OBJECT);
masm_->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
kScratchRegister);
deferred->Branch(not_equal);
// Check that the key is a non-negative smi.
__ JumpIfNotPositiveSmi(key.reg(), deferred->entry_label());
// Get the elements array from the receiver and check that it
// is not a dictionary.
__ movq(elements.reg(),
FieldOperand(receiver.reg(), JSObject::kElementsOffset));
if (FLAG_debug_code) {
__ Cmp(FieldOperand(elements.reg(), HeapObject::kMapOffset),
Factory::fixed_array_map());
__ Assert(equal, "JSObject with fast elements map has slow elements");
}
// Check that key is within bounds.
__ SmiCompare(key.reg(),
FieldOperand(elements.reg(), FixedArray::kLengthOffset));
deferred->Branch(above_equal);
// Load and check that the result is not the hole. We could
// reuse the index or elements register for the value.
//
// TODO(206): Consider whether it makes sense to try some
// heuristic about which register to reuse. For example, if
// one is rax, the we can reuse that one because the value
// coming from the deferred code will be in rax.
SmiIndex index =
masm_->SmiToIndex(kScratchRegister, key.reg(), kPointerSizeLog2);
__ movq(elements.reg(),
FieldOperand(elements.reg(),
index.reg,
index.scale,
FixedArray::kHeaderSize));
result = elements;
__ CompareRoot(result.reg(), Heap::kTheHoleValueRootIndex);
deferred->Branch(equal);
__ IncrementCounter(&Counters::keyed_load_inline, 1);
deferred->BindExit();
} else {
Comment cmnt(masm_, "[ Load from keyed Property");
result = frame_->CallKeyedLoadIC(RelocInfo::CODE_TARGET);
// Make sure that we do not have a test instruction after the
// call. A test instruction after the call is used to
// indicate that we have generated an inline version of the
// keyed load. The explicit nop instruction is here because
// the push that follows might be peep-hole optimized away.
__ nop();
}
ASSERT(frame()->height() == original_height - 2);
return result;
}
#undef __
#define __ ACCESS_MASM(masm)
Handle<String> Reference::GetName() {
ASSERT(type_ == NAMED);
Property* property = expression_->AsProperty();
if (property == NULL) {
// Global variable reference treated as a named property reference.
VariableProxy* proxy = expression_->AsVariableProxy();
ASSERT(proxy->AsVariable() != NULL);
ASSERT(proxy->AsVariable()->is_global());
return proxy->name();
} else {
Literal* raw_name = property->key()->AsLiteral();
ASSERT(raw_name != NULL);
return Handle<String>(String::cast(*raw_name->handle()));
}
}
void Reference::GetValue() {
ASSERT(!cgen_->in_spilled_code());
ASSERT(cgen_->HasValidEntryRegisters());
ASSERT(!is_illegal());
MacroAssembler* masm = cgen_->masm();
// Record the source position for the property load.
Property* property = expression_->AsProperty();
if (property != NULL) {
cgen_->CodeForSourcePosition(property->position());
}
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Load from Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
break;
}
case NAMED: {
Variable* var = expression_->AsVariableProxy()->AsVariable();
bool is_global = var != NULL;
ASSERT(!is_global || var->is_global());
if (persist_after_get_) {
cgen_->frame()->Dup();
}
Result result = cgen_->EmitNamedLoad(GetName(), is_global);
cgen_->frame()->Push(&result);
break;
}
case KEYED: {
// A load of a bare identifier (load from global) cannot be keyed.
ASSERT(expression_->AsVariableProxy()->AsVariable() == NULL);
if (persist_after_get_) {
cgen_->frame()->PushElementAt(1);
cgen_->frame()->PushElementAt(1);
}
Result value = cgen_->EmitKeyedLoad();
cgen_->frame()->Push(&value);
break;
}
default:
UNREACHABLE();
}
if (!persist_after_get_) {
set_unloaded();
}
}
void Reference::TakeValue() {
// TODO(X64): This function is completely architecture independent. Move
// it somewhere shared.
// For non-constant frame-allocated slots, we invalidate the value in the
// slot. For all others, we fall back on GetValue.
ASSERT(!cgen_->in_spilled_code());
ASSERT(!is_illegal());
if (type_ != SLOT) {
GetValue();
return;
}
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
if (slot->type() == Slot::LOOKUP ||
slot->type() == Slot::CONTEXT ||
slot->var()->mode() == Variable::CONST ||
slot->is_arguments()) {
GetValue();
return;
}
// Only non-constant, frame-allocated parameters and locals can reach
// here. Be careful not to use the optimizations for arguments
// object access since it may not have been initialized yet.
ASSERT(!slot->is_arguments());
if (slot->type() == Slot::PARAMETER) {
cgen_->frame()->TakeParameterAt(slot->index());
} else {
ASSERT(slot->type() == Slot::LOCAL);
cgen_->frame()->TakeLocalAt(slot->index());
}
ASSERT(persist_after_get_);
// Do not unload the reference, because it is used in SetValue.
}
void Reference::SetValue(InitState init_state) {
ASSERT(cgen_->HasValidEntryRegisters());
ASSERT(!is_illegal());
MacroAssembler* masm = cgen_->masm();
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Store to Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
cgen_->StoreToSlot(slot, init_state);
cgen_->UnloadReference(this);
break;
}
case NAMED: {
Comment cmnt(masm, "[ Store to named Property");
cgen_->frame()->Push(GetName());
Result answer = cgen_->frame()->CallStoreIC();
cgen_->frame()->Push(&answer);
set_unloaded();
break;
}
case KEYED: {
Comment cmnt(masm, "[ Store to keyed Property");
// Generate inlined version of the keyed store if the code is in
// a loop and the key is likely to be a smi.
Property* property = expression()->AsProperty();
ASSERT(property != NULL);
StaticType* key_smi_analysis = property->key()->type();
if (cgen_->loop_nesting() > 0 && key_smi_analysis->IsLikelySmi()) {
Comment cmnt(masm, "[ Inlined store to keyed Property");
// Get the receiver, key and value into registers.
Result value = cgen_->frame()->Pop();
Result key = cgen_->frame()->Pop();
Result receiver = cgen_->frame()->Pop();
Result tmp = cgen_->allocator_->Allocate();
ASSERT(tmp.is_valid());
Result tmp2 = cgen_->allocator_->Allocate();
ASSERT(tmp2.is_valid());
// Determine whether the value is a constant before putting it
// in a register.
bool value_is_constant = value.is_constant();
// Make sure that value, key and receiver are in registers.
value.ToRegister();
key.ToRegister();
receiver.ToRegister();
DeferredReferenceSetKeyedValue* deferred =
new DeferredReferenceSetKeyedValue(value.reg(),
key.reg(),
receiver.reg());
// Check that the receiver is not a smi.
__ JumpIfSmi(receiver.reg(), deferred->entry_label());
// Check that the key is a smi.
if (!key.is_smi()) {
__ JumpIfNotSmi(key.reg(), deferred->entry_label());
} else if (FLAG_debug_code) {
__ AbortIfNotSmi(key.reg());
}
// Check that the receiver is a JSArray.
__ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, kScratchRegister);
deferred->Branch(not_equal);
// Check that the key is within bounds. Both the key and the
// length of the JSArray are smis. Use unsigned comparison to handle
// negative keys.
__ SmiCompare(FieldOperand(receiver.reg(), JSArray::kLengthOffset),
key.reg());
deferred->Branch(below_equal);
// Get the elements array from the receiver and check that it
// is a flat array (not a dictionary).
__ movq(tmp.reg(),
FieldOperand(receiver.reg(), JSObject::kElementsOffset));
// Check whether it is possible to omit the write barrier. If the
// elements array is in new space or the value written is a smi we can
// safely update the elements array without write barrier.
Label in_new_space;
__ InNewSpace(tmp.reg(), tmp2.reg(), equal, &in_new_space);
if (!value_is_constant) {
__ JumpIfNotSmi(value.reg(), deferred->entry_label());
}
__ bind(&in_new_space);
// Bind the deferred code patch site to be able to locate the
// fixed array map comparison. When debugging, we patch this
// comparison to always fail so that we will hit the IC call
// in the deferred code which will allow the debugger to
// break for fast case stores.
__ bind(deferred->patch_site());
// Avoid using __ to ensure the distance from patch_site
// to the map address is always the same.
masm->movq(kScratchRegister, Factory::fixed_array_map(),
RelocInfo::EMBEDDED_OBJECT);
__ cmpq(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
kScratchRegister);
deferred->Branch(not_equal);
// Store the value.
SmiIndex index =
masm->SmiToIndex(kScratchRegister, key.reg(), kPointerSizeLog2);
__ movq(FieldOperand(tmp.reg(),
index.reg,
index.scale,
FixedArray::kHeaderSize),
value.reg());
__ IncrementCounter(&Counters::keyed_store_inline, 1);
deferred->BindExit();
cgen_->frame()->Push(&value);
} else {
Result answer = cgen_->frame()->CallKeyedStoreIC();
// Make sure that we do not have a test instruction after the
// call. A test instruction after the call is used to
// indicate that we have generated an inline version of the
// keyed store.
masm->nop();
cgen_->frame()->Push(&answer);
}
set_unloaded();
break;
}
default:
UNREACHABLE();
}
}
void FastNewClosureStub::Generate(MacroAssembler* masm) {
// Create a new closure from the given function info in new
// space. Set the context to the current context in rsi.
Label gc;
__ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT);
// Get the function info from the stack.
__ movq(rdx, Operand(rsp, 1 * kPointerSize));
// Compute the function map in the current global context and set that
// as the map of the allocated object.
__ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset));
__ movq(rcx, Operand(rcx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX)));
__ movq(FieldOperand(rax, JSObject::kMapOffset), rcx);
// Initialize the rest of the function. We don't have to update the
// write barrier because the allocated object is in new space.
__ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
__ LoadRoot(rcx, Heap::kTheHoleValueRootIndex);
__ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx);
__ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx);
__ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx);
__ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi);
__ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx);
// Return and remove the on-stack parameter.
__ ret(1 * kPointerSize);
// Create a new closure through the slower runtime call.
__ bind(&gc);
__ pop(rcx); // Temporarily remove return address.
__ pop(rdx);
__ push(rsi);
__ push(rdx);
__ push(rcx); // Restore return address.
__ TailCallRuntime(Runtime::kNewClosure, 2, 1);
}
void FastNewContextStub::Generate(MacroAssembler* masm) {
// Try to allocate the context in new space.
Label gc;
int length = slots_ + Context::MIN_CONTEXT_SLOTS;
__ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
rax, rbx, rcx, &gc, TAG_OBJECT);
// Get the function from the stack.
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
// Setup the object header.
__ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex);
__ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister);
__ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length));
// Setup the fixed slots.
__ xor_(rbx, rbx); // Set to NULL.
__ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx);
__ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax);
__ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx);
__ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx);
// Copy the global object from the surrounding context.
__ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx);
// Initialize the rest of the slots to undefined.
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
__ movq(Operand(rax, Context::SlotOffset(i)), rbx);
}
// Return and remove the on-stack parameter.
__ movq(rsi, rax);
__ ret(1 * kPointerSize);
// Need to collect. Call into runtime system.
__ bind(&gc);
__ TailCallRuntime(Runtime::kNewContext, 1, 1);
}
void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
// Stack layout on entry:
//
// [rsp + kPointerSize]: constant elements.
// [rsp + (2 * kPointerSize)]: literal index.
// [rsp + (3 * kPointerSize)]: literals array.
// All sizes here are multiples of kPointerSize.
int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
int size = JSArray::kSize + elements_size;
// Load boilerplate object into rcx and check if we need to create a
// boilerplate.
Label slow_case;
__ movq(rcx, Operand(rsp, 3 * kPointerSize));
__ movq(rax, Operand(rsp, 2 * kPointerSize));
SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
__ movq(rcx,
FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize));
__ CompareRoot(rcx, Heap::kUndefinedValueRootIndex);
__ j(equal, &slow_case);
// Allocate both the JS array and the elements array in one big
// allocation. This avoids multiple limit checks.
__ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT);
// Copy the JS array part.
for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
__ movq(rbx, FieldOperand(rcx, i));
__ movq(FieldOperand(rax, i), rbx);
}
}
if (length_ > 0) {
// Get hold of the elements array of the boilerplate and setup the
// elements pointer in the resulting object.
__ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
__ lea(rdx, Operand(rax, JSArray::kSize));
__ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx);
// Copy the elements array.
for (int i = 0; i < elements_size; i += kPointerSize) {
__ movq(rbx, FieldOperand(rcx, i));
__ movq(FieldOperand(rdx, i), rbx);
}
}
// Return and remove the on-stack parameters.
__ ret(3 * kPointerSize);
__ bind(&slow_case);
__ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
}
void ToBooleanStub::Generate(MacroAssembler* masm) {
Label false_result, true_result, not_string;
__ movq(rax, Operand(rsp, 1 * kPointerSize));
// 'null' => false.
__ CompareRoot(rax, Heap::kNullValueRootIndex);
__ j(equal, &false_result);
// Get the map and type of the heap object.
// We don't use CmpObjectType because we manipulate the type field.
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
__ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset));
// Undetectable => false.
__ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset));
__ and_(rbx, Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, &false_result);
// JavaScript object => true.
__ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE));
__ j(above_equal, &true_result);
// String value => false iff empty.
__ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE));
__ j(above_equal, ¬_string);
__ movq(rdx, FieldOperand(rax, String::kLengthOffset));
__ SmiTest(rdx);
__ j(zero, &false_result);
__ jmp(&true_result);
__ bind(¬_string);
__ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &true_result);
// HeapNumber => false iff +0, -0, or NaN.
// These three cases set the zero flag when compared to zero using ucomisd.
__ xorpd(xmm0, xmm0);
__ ucomisd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset));
__ j(zero, &false_result);
// Fall through to |true_result|.
// Return 1/0 for true/false in rax.
__ bind(&true_result);
__ movq(rax, Immediate(1));
__ ret(1 * kPointerSize);
__ bind(&false_result);
__ xor_(rax, rax);
__ ret(1 * kPointerSize);
}
bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
Object* answer_object = Heap::undefined_value();
switch (op) {
case Token::ADD:
// Use intptr_t to detect overflow of 32-bit int.
if (Smi::IsValid(static_cast<intptr_t>(left) + right)) {
answer_object = Smi::FromInt(left + right);
}
break;
case Token::SUB:
// Use intptr_t to detect overflow of 32-bit int.
if (Smi::IsValid(static_cast<intptr_t>(left) - right)) {
answer_object = Smi::FromInt(left - right);
}
break;
case Token::MUL: {
double answer = static_cast<double>(left) * right;
if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
// If the product is zero and the non-zero factor is negative,
// the spec requires us to return floating point negative zero.
if (answer != 0 || (left + right) >= 0) {
answer_object = Smi::FromInt(static_cast<int>(answer));
}
}
}
break;
case Token::DIV:
case Token::MOD:
break;
case Token::BIT_OR:
answer_object = Smi::FromInt(left | right);
break;
case Token::BIT_AND:
answer_object = Smi::FromInt(left & right);
break;
case Token::BIT_XOR:
answer_object = Smi::FromInt(left ^ right);
break;
case Token::SHL: {
int shift_amount = right & 0x1F;
if (Smi::IsValid(left << shift_amount)) {
answer_object = Smi::FromInt(left << shift_amount);
}
break;
}
case Token::SHR: {
int shift_amount = right & 0x1F;
unsigned int unsigned_left = left;
unsigned_left >>= shift_amount;
if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
answer_object = Smi::FromInt(unsigned_left);
}
break;
}
case Token::SAR: {
int shift_amount = right & 0x1F;
unsigned int unsigned_left = left;
if (left < 0) {
// Perform arithmetic shift of a negative number by
// complementing number, logical shifting, complementing again.
unsigned_left = ~unsigned_left;
unsigned_left >>= shift_amount;
unsigned_left = ~unsigned_left;
} else {
unsigned_left >>= shift_amount;
}
ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left)));
answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left));
break;
}
default:
UNREACHABLE();
break;
}
if (answer_object == Heap::undefined_value()) {
return false;
}
frame_->Push(Handle<Object>(answer_object));
return true;
}
// End of CodeGenerator implementation.
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
// Input on stack:
// rsp[8]: argument (should be number).
// rsp[0]: return address.
Label runtime_call;
Label runtime_call_clear_stack;
Label input_not_smi;
Label loaded;
// Test that rax is a number.
__ movq(rax, Operand(rsp, kPointerSize));
__ JumpIfNotSmi(rax, &input_not_smi);
// Input is a smi. Untag and load it onto the FPU stack.
// Then load the bits of the double into rbx.
__ SmiToInteger32(rax, rax);
__ subq(rsp, Immediate(kPointerSize));
__ cvtlsi2sd(xmm1, rax);
__ movsd(Operand(rsp, 0), xmm1);
__ movq(rbx, xmm1);
__ movq(rdx, xmm1);
__ fld_d(Operand(rsp, 0));
__ addq(rsp, Immediate(kPointerSize));
__ jmp(&loaded);
__ bind(&input_not_smi);
// Check if input is a HeapNumber.
__ Move(rbx, Factory::heap_number_map());
__ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ j(not_equal, &runtime_call);
// Input is a HeapNumber. Push it on the FPU stack and load its
// bits into rbx.
__ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rdx, rbx);
__ bind(&loaded);
// ST[0] == double value
// rbx = bits of double value.
// rdx = also bits of double value.
// Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic):
// h = h0 = bits ^ (bits >> 32);
// h ^= h >> 16;
// h ^= h >> 8;
// h = h & (cacheSize - 1);
// or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1)
__ sar(rdx, Immediate(32));
__ xorl(rdx, rbx);
__ movl(rcx, rdx);
__ movl(rax, rdx);
__ movl(rdi, rdx);
__ sarl(rdx, Immediate(8));
__ sarl(rcx, Immediate(16));
__ sarl(rax, Immediate(24));
__ xorl(rcx, rdx);
__ xorl(rax, rdi);
__ xorl(rcx, rax);
ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize));
__ andl(rcx, Immediate(TranscendentalCache::kCacheSize - 1));
// ST[0] == double value.
// rbx = bits of double value.
// rcx = TranscendentalCache::hash(double value).
__ movq(rax, ExternalReference::transcendental_cache_array_address());
// rax points to cache array.
__ movq(rax, Operand(rax, type_ * sizeof(TranscendentalCache::caches_[0])));
// rax points to the cache for the type type_.
// If NULL, the cache hasn't been initialized yet, so go through runtime.
__ testq(rax, rax);
__ j(zero, &runtime_call_clear_stack);
#ifdef DEBUG
// Check that the layout of cache elements match expectations.
{ // NOLINT - doesn't like a single brace on a line.
TranscendentalCache::Element test_elem[2];
char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
// Two uint_32's and a pointer per element.
CHECK_EQ(16, static_cast<int>(elem2_start - elem_start));
CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start));
CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start));
CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start));
}
#endif
// Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16].
__ addl(rcx, rcx);
__ lea(rcx, Operand(rax, rcx, times_8, 0));
// Check if cache matches: Double value is stored in uint32_t[2] array.
Label cache_miss;
__ cmpq(rbx, Operand(rcx, 0));
__ j(not_equal, &cache_miss);
// Cache hit!
__ movq(rax, Operand(rcx, 2 * kIntSize));
__ fstp(0); // Clear FPU stack.
__ ret(kPointerSize);
__ bind(&cache_miss);
// Update cache with new value.
Label nan_result;
GenerateOperation(masm, &nan_result);
__ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack);
__ movq(Operand(rcx, 0), rbx);
__ movq(Operand(rcx, 2 * kIntSize), rax);
__ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ ret(kPointerSize);
__ bind(&runtime_call_clear_stack);
__ fstp(0);
__ bind(&runtime_call);
__ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);
__ bind(&nan_result);
__ fstp(0); // Remove argument from FPU stack.
__ LoadRoot(rax, Heap::kNanValueRootIndex);
__ movq(Operand(rcx, 0), rbx);
__ movq(Operand(rcx, 2 * kIntSize), rax);
__ ret(kPointerSize);
}
Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
switch (type_) {
// Add more cases when necessary.
case TranscendentalCache::SIN: return Runtime::kMath_sin;
case TranscendentalCache::COS: return Runtime::kMath_cos;
default:
UNIMPLEMENTED();
return Runtime::kAbort;
}
}
void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm,
Label* on_nan_result) {
// Registers:
// rbx: Bits of input double. Must be preserved.
// rcx: Pointer to cache entry. Must be preserved.
// st(0): Input double
Label done;
ASSERT(type_ == TranscendentalCache::SIN ||
type_ == TranscendentalCache::COS);
// More transcendental types can be added later.
// Both fsin and fcos require arguments in the range +/-2^63 and
// return NaN for infinities and NaN. They can share all code except
// the actual fsin/fcos operation.
Label in_range;
// If argument is outside the range -2^63..2^63, fsin/cos doesn't
// work. We must reduce it to the appropriate range.
__ movq(rdi, rbx);
// Move exponent and sign bits to low bits.
__ shr(rdi, Immediate(HeapNumber::kMantissaBits));
// Remove sign bit.
__ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1));
int supported_exponent_limit = (63 + HeapNumber::kExponentBias);
__ cmpl(rdi, Immediate(supported_exponent_limit));
__ j(below, &in_range);
// Check for infinity and NaN. Both return NaN for sin.
__ cmpl(rdi, Immediate(0x7ff));
__ j(equal, on_nan_result);
// Use fpmod to restrict argument to the range +/-2*PI.
__ fldpi();
__ fadd(0);
__ fld(1);
// FPU Stack: input, 2*pi, input.
{
Label no_exceptions;
__ fwait();
__ fnstsw_ax();
// Clear if Illegal Operand or Zero Division exceptions are set.
__ testl(rax, Immediate(5)); // #IO and #ZD flags of FPU status word.
__ j(zero, &no_exceptions);
__ fnclex();
__ bind(&no_exceptions);
}
// Compute st(0) % st(1)
{
Label partial_remainder_loop;
__ bind(&partial_remainder_loop);
__ fprem1();
__ fwait();
__ fnstsw_ax();
__ testl(rax, Immediate(0x400)); // Check C2 bit of FPU status word.
// If C2 is set, computation only has partial result. Loop to
// continue computation.
__ j(not_zero, &partial_remainder_loop);
}
// FPU Stack: input, 2*pi, input % 2*pi
__ fstp(2);
// FPU Stack: input % 2*pi, 2*pi,
__ fstp(0);
// FPU Stack: input % 2*pi
__ bind(&in_range);
switch (type_) {
case TranscendentalCache::SIN:
__ fsin();
break;
case TranscendentalCache::COS:
__ fcos();
break;
default:
UNREACHABLE();
}
__ bind(&done);
}
// Get the integer part of a heap number.
// Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx.
void IntegerConvert(MacroAssembler* masm,
Register result,
Register source) {
// Result may be rcx. If result and source are the same register, source will
// be overwritten.
ASSERT(!result.is(rdi) && !result.is(rbx));
// TODO(lrn): When type info reaches here, if value is a 32-bit integer, use
// cvttsd2si (32-bit version) directly.
Register double_exponent = rbx;
Register double_value = rdi;
Label done, exponent_63_plus;
// Get double and extract exponent.
__ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset));
// Clear result preemptively, in case we need to return zero.
__ xorl(result, result);
__ movq(xmm0, double_value); // Save copy in xmm0 in case we need it there.
// Double to remove sign bit, shift exponent down to least significant bits.
// and subtract bias to get the unshifted, unbiased exponent.
__ lea(double_exponent, Operand(double_value, double_value, times_1, 0));
__ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits));
__ subl(double_exponent, Immediate(HeapNumber::kExponentBias));
// Check whether the exponent is too big for a 63 bit unsigned integer.
__ cmpl(double_exponent, Immediate(63));
__ j(above_equal, &exponent_63_plus);
// Handle exponent range 0..62.
__ cvttsd2siq(result, xmm0);
__ jmp(&done);
__ bind(&exponent_63_plus);
// Exponent negative or 63+.
__ cmpl(double_exponent, Immediate(83));
// If exponent negative or above 83, number contains no significant bits in
// the range 0..2^31, so result is zero, and rcx already holds zero.
__ j(above, &done);
// Exponent in rage 63..83.
// Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely
// the least significant exponent-52 bits.
// Negate low bits of mantissa if value is negative.
__ addq(double_value, double_value); // Move sign bit to carry.
__ sbbl(result, result); // And convert carry to -1 in result register.
// if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0.
__ addl(double_value, result);
// Do xor in opposite directions depending on where we want the result
// (depending on whether result is rcx or not).
if (result.is(rcx)) {
__ xorl(double_value, result);
// Left shift mantissa by (exponent - mantissabits - 1) to save the
// bits that have positional values below 2^32 (the extra -1 comes from the
// doubling done above to move the sign bit into the carry flag).
__ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
__ shll_cl(double_value);
__ movl(result, double_value);
} else {
// As the then-branch, but move double-value to result before shifting.
__ xorl(result, double_value);
__ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
__ shll_cl(result);
}
__ bind(&done);
}
void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
Label slow, done;
if (op_ == Token::SUB) {
// Check whether the value is a smi.
Label try_float;
__ JumpIfNotSmi(rax, &try_float);
if (negative_zero_ == kIgnoreNegativeZero) {
__ SmiCompare(rax, Smi::FromInt(0));
__ j(equal, &done);
}
// Enter runtime system if the value of the smi is zero
// to make sure that we switch between 0 and -0.
// Also enter it if the value of the smi is Smi::kMinValue.
__ SmiNeg(rax, rax, &done);
// Either zero or Smi::kMinValue, neither of which become a smi when
// negated.
if (negative_zero_ == kStrictNegativeZero) {
__ SmiCompare(rax, Smi::FromInt(0));
__ j(not_equal, &slow);
__ Move(rax, Factory::minus_zero_value());
__ jmp(&done);
} else {
__ jmp(&slow);
}
// Try floating point case.
__ bind(&try_float);
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
__ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &slow);
// Operand is a float, negate its value by flipping sign bit.
__ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(kScratchRegister, Immediate(0x01));
__ shl(kScratchRegister, Immediate(63));
__ xor_(rdx, kScratchRegister); // Flip sign.
// rdx is value to store.
if (overwrite_ == UNARY_OVERWRITE) {
__ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx);
} else {
__ AllocateHeapNumber(rcx, rbx, &slow);
// rcx: allocated 'empty' number
__ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx);
__ movq(rax, rcx);
}
} else if (op_ == Token::BIT_NOT) {
// Check if the operand is a heap number.
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
__ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &slow);
// Convert the heap number in rax to an untagged integer in rcx.
IntegerConvert(masm, rax, rax);
// Do the bitwise operation and smi tag the result.
__ notl(rax);
__ Integer32ToSmi(rax, rax);
}
// Return from the stub.
__ bind(&done);
__ StubReturn(1);
// Handle the slow case by jumping to the JavaScript builtin.
__ bind(&slow);
__ pop(rcx); // pop return address
__ push(rax);
__ push(rcx); // push return address
switch (op_) {
case Token::SUB:
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
break;
case Token::BIT_NOT:
__ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#else // V8_INTERPRETED_REGEXP
if (!FLAG_regexp_entry_native) {
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
return;
}
// Stack frame on entry.
// esp[0]: return address
// esp[8]: last_match_info (expected JSArray)
// esp[16]: previous index
// esp[24]: subject string
// esp[32]: JSRegExp object
static const int kLastMatchInfoOffset = 1 * kPointerSize;
static const int kPreviousIndexOffset = 2 * kPointerSize;
static const int kSubjectOffset = 3 * kPointerSize;
static const int kJSRegExpOffset = 4 * kPointerSize;
Label runtime;
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address();
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size();
__ movq(kScratchRegister, address_of_regexp_stack_memory_size);
__ movq(kScratchRegister, Operand(kScratchRegister, 0));
__ testq(kScratchRegister, kScratchRegister);
__ j(zero, &runtime);
// Check that the first argument is a JSRegExp object.
__ movq(rax, Operand(rsp, kJSRegExpOffset));
__ JumpIfSmi(rax, &runtime);
__ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
__ j(not_equal, &runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
Condition is_smi = masm->CheckSmi(rcx);
__ Check(NegateCondition(is_smi),
"Unexpected type for RegExp data, FixedArray expected");
__ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister);
__ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
}
// rcx: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ SmiToInteger32(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset));
__ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
__ j(not_equal, &runtime);
// rcx: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
__ SmiToInteger32(rdx,
FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
__ leal(rdx, Operand(rdx, rdx, times_1, 2));
// Check that the static offsets vector buffer is large enough.
__ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize));
__ j(above, &runtime);
// rcx: RegExp data (FixedArray)
// rdx: Number of capture registers
// Check that the second argument is a string.
__ movq(rax, Operand(rsp, kSubjectOffset));
__ JumpIfSmi(rax, &runtime);
Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
__ j(NegateCondition(is_string), &runtime);
// rax: Subject string.
// rcx: RegExp data (FixedArray).
// rdx: Number of capture registers.
// Check that the third argument is a positive smi less than the string
// length. A negative value will be greater (unsigned comparison).
__ movq(rbx, Operand(rsp, kPreviousIndexOffset));
__ JumpIfNotSmi(rbx, &runtime);
__ SmiCompare(rbx, FieldOperand(rax, String::kLengthOffset));
__ j(above_equal, &runtime);
// rcx: RegExp data (FixedArray)
// rdx: Number of capture registers
// Check that the fourth object is a JSArray object.
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
__ JumpIfSmi(rax, &runtime);
__ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister);
__ j(not_equal, &runtime);
// Check that the JSArray is in fast case.
__ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
__ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset));
__ Cmp(rax, Factory::fixed_array_map());
__ j(not_equal, &runtime);
// Check that the last match info has space for the capture registers and the
// additional information. Ensure no overflow in add.
ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
__ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
__ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead));
__ cmpl(rdx, rax);
__ j(greater, &runtime);
// rcx: RegExp data (FixedArray)
// Check the representation and encoding of the subject string.
Label seq_ascii_string, seq_two_byte_string, check_code;
__ movq(rax, Operand(rsp, kSubjectOffset));
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
// First check for flat two byte string.
__ andb(rbx, Immediate(
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask));
ASSERT_EQ(0, kStringTag | kSeqStringTag | kTwoByteStringTag);
__ j(zero, &seq_two_byte_string);
// Any other flat string must be a flat ascii string.
__ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask));
__ j(zero, &seq_ascii_string);
// Check for flat cons string.
// A flat cons string is a cons string where the second part is the empty
// string. In that case the subject string is just the first part of the cons
// string. Also in this case the first part of the cons string is known to be
// a sequential string or an external string.
ASSERT(kExternalStringTag !=0);
ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
__ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag));
__ j(not_zero, &runtime);
// String is a cons string.
__ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset));
__ Cmp(rdx, Factory::empty_string());
__ j(not_equal, &runtime);
__ movq(rax, FieldOperand(rax, ConsString::kFirstOffset));
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
// String is a cons string with empty second part.
// eax: first part of cons string.
// ebx: map of first part of cons string.
// Is first part a flat two byte string?
__ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
Immediate(kStringRepresentationMask | kStringEncodingMask));
ASSERT_EQ(0, kSeqStringTag | kTwoByteStringTag);
__ j(zero, &seq_two_byte_string);
// Any other flat string must be ascii.
__ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
Immediate(kStringRepresentationMask));
__ j(not_zero, &runtime);
__ bind(&seq_ascii_string);
// rax: subject string (sequential ascii)
// rcx: RegExp data (FixedArray)
__ movq(r11, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset));
__ Set(rdi, 1); // Type is ascii.
__ jmp(&check_code);
__ bind(&seq_two_byte_string);
// rax: subject string (flat two-byte)
// rcx: RegExp data (FixedArray)
__ movq(r11, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset));
__ Set(rdi, 0); // Type is two byte.
__ bind(&check_code);
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// the hole.
__ CmpObjectType(r11, CODE_TYPE, kScratchRegister);
__ j(not_equal, &runtime);
// rax: subject string
// rdi: encoding of subject string (1 if ascii, 0 if two_byte);
// r11: code
// Load used arguments before starting to push arguments for call to native
// RegExp code to avoid handling changing stack height.
__ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset));
// rax: subject string
// rbx: previous index
// rdi: encoding of subject string (1 if ascii 0 if two_byte);
// r11: code
// All checks done. Now push arguments for native regexp code.
__ IncrementCounter(&Counters::regexp_entry_native, 1);
// rsi is caller save on Windows and used to pass parameter on Linux.
__ push(rsi);
static const int kRegExpExecuteArguments = 7;
__ PrepareCallCFunction(kRegExpExecuteArguments);
int argument_slots_on_stack =
masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
// Argument 7: Indicate that this is a direct call from JavaScript.
__ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize),
Immediate(1));
// Argument 6: Start (high end) of backtracking stack memory area.
__ movq(kScratchRegister, address_of_regexp_stack_memory_address);
__ movq(r9, Operand(kScratchRegister, 0));
__ movq(kScratchRegister, address_of_regexp_stack_memory_size);
__ addq(r9, Operand(kScratchRegister, 0));
// Argument 6 passed in r9 on Linux and on the stack on Windows.
#ifdef _WIN64
__ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9);
#endif
// Argument 5: static offsets vector buffer.
__ movq(r8, ExternalReference::address_of_static_offsets_vector());
// Argument 5 passed in r8 on Linux and on the stack on Windows.
#ifdef _WIN64
__ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8);
#endif
// First four arguments are passed in registers on both Linux and Windows.
#ifdef _WIN64
Register arg4 = r9;
Register arg3 = r8;
Register arg2 = rdx;
Register arg1 = rcx;
#else
Register arg4 = rcx;
Register arg3 = rdx;
Register arg2 = rsi;
Register arg1 = rdi;
#endif
// Keep track on aliasing between argX defined above and the registers used.
// rax: subject string
// rbx: previous index
// rdi: encoding of subject string (1 if ascii 0 if two_byte);
// r11: code
// Argument 4: End of string data
// Argument 3: Start of string data
Label setup_two_byte, setup_rest;
__ testb(rdi, rdi);
__ j(zero, &setup_two_byte);
__ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
__ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize));
__ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize));
__ jmp(&setup_rest);
__ bind(&setup_two_byte);
__ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
__ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize));
__ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize));
__ bind(&setup_rest);
// Argument 2: Previous index.
__ movq(arg2, rbx);
// Argument 1: Subject string.
__ movq(arg1, rax);
// Locate the code entry and call it.
__ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ CallCFunction(r11, kRegExpExecuteArguments);
// rsi is caller save, as it is used to pass parameter.
__ pop(rsi);
// Check the result.
Label success;
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS));
__ j(equal, &success);
Label failure;
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
__ j(equal, &failure);
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
// If not exception it can only be retry. Handle that in the runtime system.
__ j(not_equal, &runtime);
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
ExternalReference pending_exception_address(Top::k_pending_exception_address);
__ movq(kScratchRegister, pending_exception_address);
__ Cmp(kScratchRegister, Factory::the_hole_value());
__ j(equal, &runtime);
__ bind(&failure);
// For failure and exception return null.
__ Move(rax, Factory::null_value());
__ ret(4 * kPointerSize);
// Load RegExp data.
__ bind(&success);
__ movq(rax, Operand(rsp, kJSRegExpOffset));
__ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
__ SmiToInteger32(rax,
FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
__ leal(rdx, Operand(rax, rax, times_1, 2));
// rdx: Number of capture registers
// Load last_match_info which is still known to be a fast case JSArray.
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
__ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
// rbx: last_match_info backing store (FixedArray)
// rdx: number of capture registers
// Store the capture count.
__ Integer32ToSmi(kScratchRegister, rdx);
__ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
kScratchRegister);
// Store last subject and last input.
__ movq(rax, Operand(rsp, kSubjectOffset));
__ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
__ movq(rcx, rbx);
__ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi);
__ movq(rax, Operand(rsp, kSubjectOffset));
__ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
__ movq(rcx, rbx);
__ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi);
// Get the static offsets vector filled by the native regexp code.
__ movq(rcx, ExternalReference::address_of_static_offsets_vector());
// rbx: last_match_info backing store (FixedArray)
// rcx: offsets vector
// rdx: number of capture registers
Label next_capture, done;
// Capture register counter starts from number of capture registers and
// counts down until wraping after zero.
__ bind(&next_capture);
__ subq(rdx, Immediate(1));
__ j(negative, &done);
// Read the value from the static offsets vector buffer and make it a smi.
__ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
__ Integer32ToSmi(rdi, rdi, &runtime);
// Store the smi value in the last match info.
__ movq(FieldOperand(rbx,
rdx,
times_pointer_size,
RegExpImpl::kFirstCaptureOffset),
rdi);
__ jmp(&next_capture);
__ bind(&done);
// Return last match info.
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
__ ret(4 * kPointerSize);
// Do the runtime call to execute the regexp.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#endif // V8_INTERPRETED_REGEXP
}
void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm,
Register hash,
Register mask) {
__ and_(hash, mask);
// Each entry in string cache consists of two pointer sized fields,
// but times_twice_pointer_size (multiplication by 16) scale factor
// is not supported by addrmode on x64 platform.
// So we have to premultiply entry index before lookup.
__ shl(hash, Immediate(kPointerSizeLog2 + 1));
}
void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
Register scratch1,
Register scratch2,
bool object_is_smi,
Label* not_found) {
// Use of registers. Register result is used as a temporary.
Register number_string_cache = result;
Register mask = scratch1;
Register scratch = scratch2;
// Load the number string cache.
__ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
// Make the hash mask from the length of the number string cache. It
// contains two elements (number and string) for each cache entry.
__ SmiToInteger32(
mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
__ shrl(mask, Immediate(1));
__ subq(mask, Immediate(1)); // Make mask.
// Calculate the entry in the number string cache. The hash value in the
// number string cache for smis is just the smi value, and the hash for
// doubles is the xor of the upper and lower words. See
// Heap::GetNumberStringCache.
Label is_smi;
Label load_result_from_cache;
if (!object_is_smi) {
__ JumpIfSmi(object, &is_smi);
__ CheckMap(object, Factory::heap_number_map(), not_found, true);
ASSERT_EQ(8, kDoubleSize);
__ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
__ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset));
GenerateConvertHashCodeToIndex(masm, scratch, mask);
Register index = scratch;
Register probe = mask;
__ movq(probe,
FieldOperand(number_string_cache,
index,
times_1,
FixedArray::kHeaderSize));
__ JumpIfSmi(probe, not_found);
ASSERT(CpuFeatures::IsSupported(SSE2));
CpuFeatures::Scope fscope(SSE2);
__ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
__ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
__ ucomisd(xmm0, xmm1);
__ j(parity_even, not_found); // Bail out if NaN is involved.
__ j(not_equal, not_found); // The cache did not contain this value.
__ jmp(&load_result_from_cache);
}
__ bind(&is_smi);
__ SmiToInteger32(scratch, object);
GenerateConvertHashCodeToIndex(masm, scratch, mask);
Register index = scratch;
// Check if the entry is the smi we are looking for.
__ cmpq(object,
FieldOperand(number_string_cache,
index,
times_1,
FixedArray::kHeaderSize));
__ j(not_equal, not_found);
// Get the result from the cache.
__ bind(&load_result_from_cache);
__ movq(result,
FieldOperand(number_string_cache,
index,
times_1,
FixedArray::kHeaderSize + kPointerSize));
__ IncrementCounter(&Counters::number_to_string_native, 1);
}
void NumberToStringStub::Generate(MacroAssembler* masm) {
Label runtime;
__ movq(rbx, Operand(rsp, kPointerSize));
// Generate code to lookup number in the number string cache.
GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime);
__ ret(1 * kPointerSize);
__ bind(&runtime);
// Handle number to string in the runtime system if not found in the cache.
__ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
}
void RecordWriteStub::Generate(MacroAssembler* masm) {
masm->RecordWriteHelper(object_, addr_, scratch_);
masm->ret(0);
}
static int NegativeComparisonResult(Condition cc) {
ASSERT(cc != equal);
ASSERT((cc == less) || (cc == less_equal)
|| (cc == greater) || (cc == greater_equal));
return (cc == greater || cc == greater_equal) ? LESS : GREATER;
}
void CompareStub::Generate(MacroAssembler* masm) {
Label check_unequal_objects, done;
// The compare stub returns a positive, negative, or zero 64-bit integer
// value in rax, corresponding to result of comparing the two inputs.
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
// Two identical objects are equal unless they are both NaN or undefined.
{
Label not_identical;
__ cmpq(rax, rdx);
__ j(not_equal, ¬_identical);
if (cc_ != equal) {
// Check for undefined. undefined OP undefined is false even though
// undefined == undefined.
Label check_for_nan;
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &check_for_nan);
__ Set(rax, NegativeComparisonResult(cc_));
__ ret(0);
__ bind(&check_for_nan);
}
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
// so we do the second best thing - test it ourselves.
// Note: if cc_ != equal, never_nan_nan_ is not used.
// We cannot set rax to EQUAL until just before return because
// rax must be unchanged on jump to not_identical.
if (never_nan_nan_ && (cc_ == equal)) {
__ Set(rax, EQUAL);
__ ret(0);
} else {
Label heap_number;
// If it's not a heap number, then return equal for (in)equality operator.
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
Factory::heap_number_map());
__ j(equal, &heap_number);
if (cc_ != equal) {
// Call runtime on identical JSObjects. Otherwise return equal.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(above_equal, ¬_identical);
}
__ Set(rax, EQUAL);
__ ret(0);
__ bind(&heap_number);
// It is a heap number, so return equal if it's not NaN.
// For NaN, return 1 for every condition except greater and
// greater-equal. Return -1 for them, so the comparison yields
// false for all conditions except not-equal.
__ Set(rax, EQUAL);
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
__ ucomisd(xmm0, xmm0);
__ setcc(parity_even, rax);
// rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
if (cc_ == greater_equal || cc_ == greater) {
__ neg(rax);
}
__ ret(0);
}
__ bind(¬_identical);
}
if (cc_ == equal) { // Both strict and non-strict.
Label slow; // Fallthrough label.
// If we're doing a strict equality comparison, we don't have to do
// type conversion, so we generate code to do fast comparison for objects
// and oddballs. Non-smi numbers and strings still go through the usual
// slow-case code.
if (strict_) {
// If either is a Smi (we know that not both are), then they can only
// be equal if the other is a HeapNumber. If so, use the slow case.
{
Label not_smis;
__ SelectNonSmi(rbx, rax, rdx, ¬_smis);
// Check if the non-smi operand is a heap number.
__ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
Factory::heap_number_map());
// If heap number, handle it in the slow case.
__ j(equal, &slow);
// Return non-equal. ebx (the lower half of rbx) is not zero.
__ movq(rax, rbx);
__ ret(0);
__ bind(¬_smis);
}
// If either operand is a JSObject or an oddball value, then they are not
// equal since their pointers are different
// There is no test for undetectability in strict equality.
// If the first object is a JS object, we have done pointer comparison.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
Label first_non_object;
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &first_non_object);
// Return non-zero (eax (not rax) is not zero)
Label return_not_equal;
ASSERT(kHeapObjectTag != 0);
__ bind(&return_not_equal);
__ ret(0);
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(rcx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
__ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
__ j(above_equal, &return_not_equal);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(rcx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
// Fall through to the general case.
}
__ bind(&slow);
}
// Push arguments below the return address to prepare jump to builtin.
__ pop(rcx);
__ push(rax);
__ push(rdx);
__ push(rcx);
// Generate the number comparison code.
if (include_number_compare_) {
Label non_number_comparison;
Label unordered;
FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
__ xorl(rax, rax);
__ xorl(rcx, rcx);
__ ucomisd(xmm0, xmm1);
// Don't base result on EFLAGS when a NaN is involved.
__ j(parity_even, &unordered);
// Return a result of -1, 0, or 1, based on EFLAGS.
__ setcc(above, rax);
__ setcc(below, rcx);
__ subq(rax, rcx);
__ ret(2 * kPointerSize); // rax, rdx were pushed
// If one of the numbers was NaN, then the result is always false.
// The cc is never not-equal.
__ bind(&unordered);
ASSERT(cc_ != not_equal);
if (cc_ == less || cc_ == less_equal) {
__ Set(rax, 1);
} else {
__ Set(rax, -1);
}
__ ret(2 * kPointerSize); // rax, rdx were pushed
// The number comparison code did not provide a valid result.
__ bind(&non_number_comparison);
}
// Fast negative check for symbol-to-symbol equality.
Label check_for_strings;
if (cc_ == equal) {
BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister);
BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister);
// We've already checked for object identity, so if both operands
// are symbols they aren't equal. Register eax (not rax) already holds a
// non-zero value, which indicates not equal, so just return.
__ ret(2 * kPointerSize);
}
__ bind(&check_for_strings);
__ JumpIfNotBothSequentialAsciiStrings(
rdx, rax, rcx, rbx, &check_unequal_objects);
// Inline comparison of ascii strings.
StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
rdx,
rax,
rcx,
rbx,
rdi,
r8);
#ifdef DEBUG
__ Abort("Unexpected fall-through from string comparison");
#endif
__ bind(&check_unequal_objects);
if (cc_ == equal && !strict_) {
// Not strict equality. Objects are unequal if
// they are both JSObjects and not undetectable,
// and their pointers are different.
Label not_both_objects, return_unequal;
// At most one is a smi, so we can test for smi by adding the two.
// A smi plus a heap object has the low bit set, a heap object plus
// a heap object has the low bit clear.
ASSERT_EQ(0, kSmiTag);
//ASSERT_EQ(V8_UINT64_C(1), kSmiTagMask);
__ lea(rcx, Operand(rax, rdx, times_1, 0));
__ testb(rcx, Immediate(kSmiTagMask));
__ j(not_zero, ¬_both_objects);
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx);
__ j(below, ¬_both_objects);
__ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, ¬_both_objects);
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(zero, &return_unequal);
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(zero, &return_unequal);
// The objects are both undetectable, so they both compare as the value
// undefined, and are equal.
__ Set(rax, EQUAL);
__ bind(&return_unequal);
// Return non-equal by returning the non-zero object pointer in eax,
// or return equal if we fell through to here.
__ ret(2 * kPointerSize); // rax, rdx were pushed
__ bind(¬_both_objects);
}
// must swap argument order
__ pop(rcx);
__ pop(rdx);
__ pop(rax);
__ push(rdx);
__ push(rax);
// Figure out which native to call and setup the arguments.
Builtins::JavaScript builtin;
if (cc_ == equal) {
builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
} else {
builtin = Builtins::COMPARE;
__ Push(Smi::FromInt(NegativeComparisonResult(cc_)));
}
// Restore return address on the stack.
__ push(rcx);
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ InvokeBuiltin(builtin, JUMP_FUNCTION);
}
void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
Label* label,
Register object,
Register scratch) {
__ JumpIfSmi(object, label);
__ movq(scratch, FieldOperand(object, HeapObject::kMapOffset));
__ movzxbq(scratch,
FieldOperand(scratch, Map::kInstanceTypeOffset));
// Ensure that no non-strings have the symbol bit set.
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
ASSERT(kSymbolTag != 0);
__ testb(scratch, Immediate(kIsSymbolMask));
__ j(zero, label);
}
// Call the function just below TOS on the stack with the given
// arguments. The receiver is the TOS.
void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
CallFunctionFlags flags,
int position) {
// Push the arguments ("left-to-right") on the stack.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
frame_->SpillTop();
}
// Record the position for debugging purposes.
CodeForSourcePosition(position);
// Use the shared code stub to call the function.
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub call_function(arg_count, in_loop, flags);
Result answer = frame_->CallStub(&call_function, arg_count + 1);
// Restore context and replace function on the stack with the
// result of the stub invocation.
frame_->RestoreContextRegister();
frame_->SetElementAt(0, &answer);
}
void InstanceofStub::Generate(MacroAssembler* masm) {
// Implements "value instanceof function" operator.
// Expected input state:
// rsp[0] : return address
// rsp[1] : function pointer
// rsp[2] : value
// Returns a bitwise zero to indicate that the value
// is and instance of the function and anything else to
// indicate that the value is not an instance.
// Get the object - go slow case if it's a smi.
Label slow;
__ movq(rax, Operand(rsp, 2 * kPointerSize));
__ JumpIfSmi(rax, &slow);
// Check that the left hand is a JS object. Leave its map in rax.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax);
__ j(below, &slow);
__ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE);
__ j(above, &slow);
// Get the prototype of the function.
__ movq(rdx, Operand(rsp, 1 * kPointerSize));
// rdx is function, rax is map.
// Look up the function and the map in the instanceof cache.
Label miss;
__ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
__ j(not_equal, &miss);
__ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
__ j(not_equal, &miss);
__ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
__ ret(2 * kPointerSize);
__ bind(&miss);
__ TryGetFunctionPrototype(rdx, rbx, &slow);
// Check that the function prototype is a JS object.
__ JumpIfSmi(rbx, &slow);
__ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister);
__ j(below, &slow);
__ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
__ j(above, &slow);
// Register mapping:
// rax is object map.
// rdx is function.
// rbx is function prototype.
__ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
__ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);
__ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));
// Loop through the prototype chain looking for the function prototype.
Label loop, is_instance, is_not_instance;
__ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
__ bind(&loop);
__ cmpq(rcx, rbx);
__ j(equal, &is_instance);
__ cmpq(rcx, kScratchRegister);
// The code at is_not_instance assumes that kScratchRegister contains a
// non-zero GCable value (the null object in this case).
__ j(equal, &is_not_instance);
__ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
__ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
__ jmp(&loop);
__ bind(&is_instance);
__ xorl(rax, rax);
// Store bitwise zero in the cache. This is a Smi in GC terms.
ASSERT_EQ(0, kSmiTag);
__ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
__ ret(2 * kPointerSize);
__ bind(&is_not_instance);
// We have to store a non-zero value in the cache.
__ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
__ ret(2 * kPointerSize);
// Slow-case: Go through the JavaScript implementation.
__ bind(&slow);
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
}
void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
// rsp[0] : return address
// rsp[8] : number of parameters
// rsp[16] : receiver displacement
// rsp[24] : function
// The displacement is used for skipping the return address and the
// frame pointer on the stack. It is the offset of the last
// parameter (if any) relative to the frame pointer.
static const int kDisplacement = 2 * kPointerSize;
// Check if the calling frame is an arguments adaptor frame.
Label adaptor_frame, try_allocate, runtime;
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adaptor_frame);
// Get the length from the frame.
__ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize));
__ jmp(&try_allocate);
// Patch the arguments.length and the parameters pointer.
__ bind(&adaptor_frame);
__ SmiToInteger32(rcx,
Operand(rdx,
ArgumentsAdaptorFrameConstants::kLengthOffset));
// Space on stack must already hold a smi.
__ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx);
// Do not clobber the length index for the indexing operation since
// it is used compute the size for allocation later.
__ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement));
__ movq(Operand(rsp, 2 * kPointerSize), rdx);
// Try the new space allocation. Start out with computing the size of
// the arguments object and the elements array.
Label add_arguments_object;
__ bind(&try_allocate);
__ testl(rcx, rcx);
__ j(zero, &add_arguments_object);
__ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
__ bind(&add_arguments_object);
__ addl(rcx, Immediate(Heap::kArgumentsObjectSize));
// Do the allocation of both objects in one go.
__ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
// Get the arguments boilerplate from the current (global) context.
int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
__ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
__ movq(rdi, Operand(rdi, offset));
// Copy the JS object part.
STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
__ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize));
__ movq(rdx, FieldOperand(rdi, 1 * kPointerSize));
__ movq(rbx, FieldOperand(rdi, 2 * kPointerSize));
__ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister);
__ movq(FieldOperand(rax, 1 * kPointerSize), rdx);
__ movq(FieldOperand(rax, 2 * kPointerSize), rbx);
// Setup the callee in-object property.
ASSERT(Heap::arguments_callee_index == 0);
__ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize));
__ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister);
// Get the length (smi tagged) and set that as an in-object property too.
ASSERT(Heap::arguments_length_index == 1);
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
__ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx);
// If there are no actual arguments, we're done.
Label done;
__ SmiTest(rcx);
__ j(zero, &done);
// Get the parameters pointer from the stack and untag the length.
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
// Setup the elements pointer in the allocated arguments object and
// initialize the header in the elements fixed array.
__ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize));
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
__ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
__ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
__ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
__ SmiToInteger32(rcx, rcx); // Untag length for the loop below.
// Copy the fixed array slots.
Label loop;
__ bind(&loop);
__ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver.
__ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister);
__ addq(rdi, Immediate(kPointerSize));
__ subq(rdx, Immediate(kPointerSize));
__ decl(rcx);
__ j(not_zero, &loop);
// Return and remove the on-stack parameters.
__ bind(&done);
__ ret(3 * kPointerSize);
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
// The key is in rdx and the parameter count is in rax.
// The displacement is used for skipping the frame pointer on the
// stack. It is the offset of the last parameter (if any) relative
// to the frame pointer.
static const int kDisplacement = 1 * kPointerSize;
// Check that the key is a smi.
Label slow;
__ JumpIfNotSmi(rdx, &slow);
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adaptor);
// Check index against formal parameters count limit passed in
// through register rax. Use unsigned comparison to get negative
// check for free.
__ cmpq(rdx, rax);
__ j(above_equal, &slow);
// Read the argument from the stack and return it.
SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
__ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
__ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
__ Ret();
// Arguments adaptor case: Check index against actual arguments
// limit found in the arguments adaptor frame. Use unsigned
// comparison to get negative check for free.
__ bind(&adaptor);
__ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ cmpq(rdx, rcx);
__ j(above_equal, &slow);
// Read the argument from the stack and return it.
index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
__ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
__ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
__ Ret();
// Slow-case: Handle non-smi or out-of-bounds access to arguments
// by calling the runtime system.
__ bind(&slow);
__ pop(rbx); // Return address.
__ push(rdx);
__ push(rbx);
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
// Check that stack should contain next handler, frame pointer, state and
// return address in that order.
ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize,
StackHandlerConstants::kStateOffset);
ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize,
StackHandlerConstants::kPCOffset);
ExternalReference handler_address(Top::k_handler_address);
__ movq(kScratchRegister, handler_address);
__ movq(rsp, Operand(kScratchRegister, 0));
// get next in chain
__ pop(rcx);
__ movq(Operand(kScratchRegister, 0), rcx);
__ pop(rbp); // pop frame pointer
__ pop(rdx); // remove state
// Before returning we restore the context from the frame pointer if not NULL.
// The frame pointer is NULL in the exception handler of a JS entry frame.
__ xor_(rsi, rsi); // tentatively set context pointer to NULL
Label skip;
__ cmpq(rbp, Immediate(0));
__ j(equal, &skip);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ bind(&skip);
__ ret(0);
}
void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_termination_exception,
Label* throw_out_of_memory_exception,
bool do_gc,
bool always_allocate_scope,
int /* alignment_skew */) {
// rax: result parameter for PerformGC, if any.
// rbx: pointer to C function (C callee-saved).
// rbp: frame pointer (restored after C call).
// rsp: stack pointer (restored after C call).
// r14: number of arguments including receiver (C callee-saved).
// r12: pointer to the first argument (C callee-saved).
// This pointer is reused in LeaveExitFrame(), so it is stored in a
// callee-saved register.
// Simple results returned in rax (both AMD64 and Win64 calling conventions).
// Complex results must be written to address passed as first argument.
// AMD64 calling convention: a struct of two pointers in rax+rdx
// Check stack alignment.
if (FLAG_debug_code) {
__ CheckStackAlignment();
}
if (do_gc) {
// Pass failure code returned from last attempt as first argument to
// PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
// stack is known to be aligned. This function takes one argument which is
// passed in register.
#ifdef _WIN64
__ movq(rcx, rax);
#else // _WIN64
__ movq(rdi, rax);
#endif
__ movq(kScratchRegister,
FUNCTION_ADDR(Runtime::PerformGC),
RelocInfo::RUNTIME_ENTRY);
__ call(kScratchRegister);
}
ExternalReference scope_depth =
ExternalReference::heap_always_allocate_scope_depth();
if (always_allocate_scope) {
__ movq(kScratchRegister, scope_depth);
__ incl(Operand(kScratchRegister, 0));
}
// Call C function.
#ifdef _WIN64
// Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9
// Store Arguments object on stack, below the 4 WIN64 ABI parameter slots.
__ movq(Operand(rsp, 4 * kPointerSize), r14); // argc.
__ movq(Operand(rsp, 5 * kPointerSize), r12); // argv.
if (result_size_ < 2) {
// Pass a pointer to the Arguments object as the first argument.
// Return result in single register (rax).
__ lea(rcx, Operand(rsp, 4 * kPointerSize));
} else {
ASSERT_EQ(2, result_size_);
// Pass a pointer to the result location as the first argument.
__ lea(rcx, Operand(rsp, 6 * kPointerSize));
// Pass a pointer to the Arguments object as the second argument.
__ lea(rdx, Operand(rsp, 4 * kPointerSize));
}
#else // _WIN64
// GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
__ movq(rdi, r14); // argc.
__ movq(rsi, r12); // argv.
#endif
__ call(rbx);
// Result is in rax - do not destroy this register!
if (always_allocate_scope) {
__ movq(kScratchRegister, scope_depth);
__ decl(Operand(kScratchRegister, 0));
}
// Check for failure result.
Label failure_returned;
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
#ifdef _WIN64
// If return value is on the stack, pop it to registers.
if (result_size_ > 1) {
ASSERT_EQ(2, result_size_);
// Read result values stored on stack. Result is stored
// above the four argument mirror slots and the two
// Arguments object slots.
__ movq(rax, Operand(rsp, 6 * kPointerSize));
__ movq(rdx, Operand(rsp, 7 * kPointerSize));
}
#endif
__ lea(rcx, Operand(rax, 1));
// Lower 2 bits of rcx are 0 iff rax has failure tag.
__ testl(rcx, Immediate(kFailureTagMask));
__ j(zero, &failure_returned);
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(mode_, result_size_);
__ ret(0);
// Handling of failure.
__ bind(&failure_returned);
Label retry;
// If the returned exception is RETRY_AFTER_GC continue at retry label
ASSERT(Failure::RETRY_AFTER_GC == 0);
__ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
__ j(zero, &retry);
// Special handling of out of memory exceptions.
__ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE);
__ cmpq(rax, kScratchRegister);
__ j(equal, throw_out_of_memory_exception);
// Retrieve the pending exception and clear the variable.
ExternalReference pending_exception_address(Top::k_pending_exception_address);
__ movq(kScratchRegister, pending_exception_address);
__ movq(rax, Operand(kScratchRegister, 0));
__ movq(rdx, ExternalReference::the_hole_value_location());
__ movq(rdx, Operand(rdx, 0));
__ movq(Operand(kScratchRegister, 0), rdx);
// Special handling of termination exceptions which are uncatchable
// by javascript code.
__ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
__ j(equal, throw_termination_exception);
// Handle normal exception.
__ jmp(throw_normal_exception);
// Retry.
__ bind(&retry);
}
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
UncatchableExceptionType type) {
// Fetch top stack handler.
ExternalReference handler_address(Top::k_handler_address);
__ movq(kScratchRegister, handler_address);
__ movq(rsp, Operand(kScratchRegister, 0));
// Unwind the handlers until the ENTRY handler is found.
Label loop, done;
__ bind(&loop);
// Load the type of the current stack handler.
const int kStateOffset = StackHandlerConstants::kStateOffset;
__ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY));
__ j(equal, &done);
// Fetch the next handler in the list.
const int kNextOffset = StackHandlerConstants::kNextOffset;
__ movq(rsp, Operand(rsp, kNextOffset));
__ jmp(&loop);
__ bind(&done);
// Set the top handler address to next handler past the current ENTRY handler.
__ movq(kScratchRegister, handler_address);
__ pop(Operand(kScratchRegister, 0));
if (type == OUT_OF_MEMORY) {
// Set external caught exception to false.
ExternalReference external_caught(Top::k_external_caught_exception_address);
__ movq(rax, Immediate(false));
__ store_rax(external_caught);
// Set pending exception and rax to out of memory exception.
ExternalReference pending_exception(Top::k_pending_exception_address);
__ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
__ store_rax(pending_exception);
}
// Clear the context pointer.
__ xor_(rsi, rsi);
// Restore registers from handler.
ASSERT_EQ(StackHandlerConstants::kNextOffset + kPointerSize,
StackHandlerConstants::kFPOffset);
__ pop(rbp); // FP
ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize,
StackHandlerConstants::kStateOffset);
__ pop(rdx); // State
ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize,
StackHandlerConstants::kPCOffset);
__ ret(0);
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
Label slow;
// If the receiver might be a value (string, number or boolean) check for this
// and box it if it is.
if (ReceiverMightBeValue()) {
// Get the receiver from the stack.
// +1 ~ return address
Label receiver_is_value, receiver_is_js_object;
__ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize));
// Check if receiver is a smi (which is a number value).
__ JumpIfSmi(rax, &receiver_is_value);
// Check if the receiver is a valid JS object.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi);
__ j(above_equal, &receiver_is_js_object);
// Call the runtime to box the value.
__ bind(&receiver_is_value);
__ EnterInternalFrame();
__ push(rax);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ LeaveInternalFrame();
__ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax);
__ bind(&receiver_is_js_object);
}
// Get the function to call from the stack.
// +2 ~ receiver, return address
__ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize));
// Check that the function really is a JavaScript function.
__ JumpIfSmi(rdi, &slow);
// Goto slow case if we do not have a function.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &slow);
// Fast-case: Just invoke the function.
ParameterCount actual(argc_);
__ InvokeFunction(rdi, actual, JUMP_FUNCTION);
// Slow-case: Non-function called.
__ bind(&slow);
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
// of the original receiver from the call site).
__ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi);
__ Set(rax, argc_);
__ Set(rbx, 0);
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
__ Jump(adaptor, RelocInfo::CODE_TARGET);
}
void CEntryStub::Generate(MacroAssembler* masm) {
// rax: number of arguments including receiver
// rbx: pointer to C function (C callee-saved)
// rbp: frame pointer of calling JS frame (restored after C call)
// rsp: stack pointer (restored after C call)
// rsi: current context (restored)
// NOTE: Invocations of builtins may return failure objects
// instead of a proper result. The builtin entry handles
// this by performing a garbage collection and retrying the
// builtin once.
// Enter the exit frame that transitions from JavaScript to C++.
__ EnterExitFrame(mode_, result_size_);
// rax: Holds the context at this point, but should not be used.
// On entry to code generated by GenerateCore, it must hold
// a failure result if the collect_garbage argument to GenerateCore
// is true. This failure result can be the result of code
// generated by a previous call to GenerateCore. The value
// of rax is then passed to Runtime::PerformGC.
// rbx: pointer to builtin function (C callee-saved).
// rbp: frame pointer of exit frame (restored after C call).
// rsp: stack pointer (restored after C call).
// r14: number of arguments including receiver (C callee-saved).
// r12: argv pointer (C callee-saved).
Label throw_normal_exception;
Label throw_termination_exception;
Label throw_out_of_memory_exception;
// Call into the runtime system.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
false,
false);
// Do space-specific GC and retry runtime call.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
false);
// Do full GC and retry runtime call one final time.
Failure* failure = Failure::InternalError();
__ movq(rax, failure, RelocInfo::NONE);
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
true);
__ bind(&throw_out_of_memory_exception);
GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
__ bind(&throw_termination_exception);
GenerateThrowUncatchable(masm, TERMINATION);
__ bind(&throw_normal_exception);
GenerateThrowTOS(masm);
}
void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
UNREACHABLE();
}
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
Label invoke, exit;
#ifdef ENABLE_LOGGING_AND_PROFILING
Label not_outermost_js, not_outermost_js_2;
#endif
// Setup frame.
__ push(rbp);
__ movq(rbp, rsp);
// Push the stack frame type marker twice.
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
// Scratch register is neither callee-save, nor an argument register on any
// platform. It's free to use at this point.
// Cannot use smi-register for loading yet.
__ movq(kScratchRegister,
reinterpret_cast<uint64_t>(Smi::FromInt(marker)),
RelocInfo::NONE);
__ push(kScratchRegister); // context slot
__ push(kScratchRegister); // function slot
// Save callee-saved registers (X64/Win64 calling conventions).
__ push(r12);
__ push(r13);
__ push(r14);
__ push(r15);
#ifdef _WIN64
__ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
__ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
#endif
__ push(rbx);
// TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are
// callee save as well.
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
__ load_rax(c_entry_fp);
__ push(rax);
// Set up the roots and smi constant registers.
// Needs to be done before any further smi loads.
ExternalReference roots_address = ExternalReference::roots_address();
__ movq(kRootRegister, roots_address);
__ InitializeSmiConstantRegister();
#ifdef ENABLE_LOGGING_AND_PROFILING
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp(Top::k_js_entry_sp_address);
__ load_rax(js_entry_sp);
__ testq(rax, rax);
__ j(not_zero, ¬_outermost_js);
__ movq(rax, rbp);
__ store_rax(js_entry_sp);
__ bind(¬_outermost_js);
#endif
// Call a faked try-block that does the invoke.
__ call(&invoke);
// Caught exception: Store result (exception) in the pending
// exception field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception(Top::k_pending_exception_address);
__ store_rax(pending_exception);
__ movq(rax, Failure::Exception(), RelocInfo::NONE);
__ jmp(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
// Clear any pending exceptions.
__ load_rax(ExternalReference::the_hole_value_location());
__ store_rax(pending_exception);
// Fake a receiver (NULL).
__ push(Immediate(0)); // receiver
// Invoke the function by calling through JS entry trampoline
// builtin and pop the faked function when we return. We load the address
// from an external reference instead of inlining the call target address
// directly in the code, because the builtin stubs may not have been
// generated yet at the time this code is generated.
if (is_construct) {
ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
__ load_rax(construct_entry);
} else {
ExternalReference entry(Builtins::JSEntryTrampoline);
__ load_rax(entry);
}
__ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
__ call(kScratchRegister);
// Unlink this frame from the handler chain.
__ movq(kScratchRegister, ExternalReference(Top::k_handler_address));
__ pop(Operand(kScratchRegister, 0));
// Pop next_sp.
__ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
#ifdef ENABLE_LOGGING_AND_PROFILING
// If current EBP value is the same as js_entry_sp value, it means that
// the current function is the outermost.
__ movq(kScratchRegister, js_entry_sp);
__ cmpq(rbp, Operand(kScratchRegister, 0));
__ j(not_equal, ¬_outermost_js_2);
__ movq(Operand(kScratchRegister, 0), Immediate(0));
__ bind(¬_outermost_js_2);
#endif
// Restore the top frame descriptor from the stack.
__ bind(&exit);
__ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address));
__ pop(Operand(kScratchRegister, 0));
// Restore callee-saved registers (X64 conventions).
__ pop(rbx);
#ifdef _WIN64
// Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
__ pop(rsi);
__ pop(rdi);
#endif
__ pop(r15);
__ pop(r14);
__ pop(r13);
__ pop(r12);
__ addq(rsp, Immediate(2 * kPointerSize)); // remove markers
// Restore frame pointer and return.
__ pop(rbp);
__ ret(0);
}
// -----------------------------------------------------------------------------
// Implementation of stubs.
// Stub classes have public member named masm, not masm_.
void StackCheckStub::Generate(MacroAssembler* masm) {
// Because builtins always remove the receiver from the stack, we
// have to fake one to avoid underflowing the stack. The receiver
// must be inserted below the return address on the stack so we
// temporarily store that in a register.
__ pop(rax);
__ Push(Smi::FromInt(0));
__ push(rax);
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kStackGuard, 1, 1);
}
void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) {
__ SmiToInteger32(kScratchRegister, rdx);
__ cvtlsi2sd(xmm0, kScratchRegister);
__ SmiToInteger32(kScratchRegister, rax);
__ cvtlsi2sd(xmm1, kScratchRegister);
}
void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) {
Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done;
// Load operand in rdx into xmm0.
__ JumpIfSmi(rdx, &load_smi_rdx);
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
// Load operand in rax into xmm1.
__ JumpIfSmi(rax, &load_smi_rax);
__ bind(&load_nonsmi_rax);
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&load_smi_rdx);
__ SmiToInteger32(kScratchRegister, rdx);
__ cvtlsi2sd(xmm0, kScratchRegister);
__ JumpIfNotSmi(rax, &load_nonsmi_rax);
__ bind(&load_smi_rax);
__ SmiToInteger32(kScratchRegister, rax);
__ cvtlsi2sd(xmm1, kScratchRegister);
__ bind(&done);
}
void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
Label* not_numbers) {
Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
// Load operand in rdx into xmm0, or branch to not_numbers.
__ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
__ JumpIfSmi(rdx, &load_smi_rdx);
__ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
__ j(not_equal, not_numbers); // Argument in rdx is not a number.
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
// Load operand in rax into xmm1, or branch to not_numbers.
__ JumpIfSmi(rax, &load_smi_rax);
__ bind(&load_nonsmi_rax);
__ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx);
__ j(not_equal, not_numbers);
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&load_smi_rdx);
__ SmiToInteger32(kScratchRegister, rdx);
__ cvtlsi2sd(xmm0, kScratchRegister);
__ JumpIfNotSmi(rax, &load_nonsmi_rax);
__ bind(&load_smi_rax);
__ SmiToInteger32(kScratchRegister, rax);
__ cvtlsi2sd(xmm1, kScratchRegister);
__ bind(&done);
}
// Input: rdx, rax are the left and right objects of a bit op.
// Output: rax, rcx are left and right integers for a bit op.
void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
Label* conversion_failure,
Register heap_number_map) {
// Check float operands.
Label arg1_is_object, check_undefined_arg1;
Label arg2_is_object, check_undefined_arg2;
Label load_arg2, done;
__ JumpIfNotSmi(rdx, &arg1_is_object);
__ SmiToInteger32(rdx, rdx);
__ jmp(&load_arg2);
// If the argument is undefined it converts to zero (ECMA-262, section 9.5).
__ bind(&check_undefined_arg1);
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
__ j(not_equal, conversion_failure);
__ movl(rdx, Immediate(0));
__ jmp(&load_arg2);
__ bind(&arg1_is_object);
__ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map);
__ j(not_equal, &check_undefined_arg1);
// Get the untagged integer version of the edx heap number in rcx.
IntegerConvert(masm, rdx, rdx);
// Here rdx has the untagged integer, rax has a Smi or a heap number.
__ bind(&load_arg2);
// Test if arg2 is a Smi.
__ JumpIfNotSmi(rax, &arg2_is_object);
__ SmiToInteger32(rax, rax);
__ movl(rcx, rax);
__ jmp(&done);
// If the argument is undefined it converts to zero (ECMA-262, section 9.5).
__ bind(&check_undefined_arg2);
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, conversion_failure);
__ movl(rcx, Immediate(0));
__ jmp(&done);
__ bind(&arg2_is_object);
__ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map);
__ j(not_equal, &check_undefined_arg2);
// Get the untagged integer version of the eax heap number in ecx.
IntegerConvert(masm, rcx, rax);
__ bind(&done);
__ movl(rax, rdx);
}
// Input: rdx, rax are the left and right objects of a bit op.
// Output: rax, rcx are left and right integers for a bit op.
void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) {
// Check float operands.
Label done;
Label rax_is_smi;
Label rax_is_object;
Label rdx_is_object;
__ JumpIfNotSmi(rdx, &rdx_is_object);
__ SmiToInteger32(rdx, rdx);
__ JumpIfSmi(rax, &rax_is_smi);
__ bind(&rax_is_object);
IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx.
__ jmp(&done);
__ bind(&rdx_is_object);
IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx.
__ JumpIfNotSmi(rax, &rax_is_object);
__ bind(&rax_is_smi);
__ SmiToInteger32(rcx, rax);
__ bind(&done);
__ movl(rax, rdx);
}
const char* GenericBinaryOpStub::GetName() {
if (name_ != NULL) return name_;
const int len = 100;
name_ = Bootstrapper::AllocateAutoDeletedArray(len);
if (name_ == NULL) return "OOM";
const char* op_name = Token::Name(op_);
const char* overwrite_name;
switch (mode_) {
case NO_OVERWRITE: overwrite_name = "Alloc"; break;
case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
default: overwrite_name = "UnknownOverwrite"; break;
}
OS::SNPrintF(Vector<char>(name_, len),
"GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s",
op_name,
overwrite_name,
(flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "",
args_in_registers_ ? "RegArgs" : "StackArgs",
args_reversed_ ? "_R" : "",
static_operands_type_.ToString(),
BinaryOpIC::GetName(runtime_operands_type_));
return name_;
}
void GenericBinaryOpStub::GenerateCall(
MacroAssembler* masm,
Register left,
Register right) {
if (!ArgsInRegistersSupported()) {
// Pass arguments on the stack.
__ push(left);
__ push(right);
} else {
// The calling convention with registers is left in rdx and right in rax.
Register left_arg = rdx;
Register right_arg = rax;
if (!(left.is(left_arg) && right.is(right_arg))) {
if (left.is(right_arg) && right.is(left_arg)) {
if (IsOperationCommutative()) {
SetArgsReversed();
} else {
__ xchg(left, right);
}
} else if (left.is(left_arg)) {
__ movq(right_arg, right);
} else if (right.is(right_arg)) {
__ movq(left_arg, left);
} else if (left.is(right_arg)) {
if (IsOperationCommutative()) {
__ movq(left_arg, right);
SetArgsReversed();
} else {
// Order of moves important to avoid destroying left argument.
__ movq(left_arg, left);
__ movq(right_arg, right);
}
} else if (right.is(left_arg)) {
if (IsOperationCommutative()) {
__ movq(right_arg, left);
SetArgsReversed();
} else {
// Order of moves important to avoid destroying right argument.
__ movq(right_arg, right);
__ movq(left_arg, left);
}
} else {
// Order of moves is not important.
__ movq(left_arg, left);
__ movq(right_arg, right);
}
}
// Update flags to indicate that arguments are in registers.
SetArgsInRegisters();
__ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
}
// Call the stub.
__ CallStub(this);
}
void GenericBinaryOpStub::GenerateCall(
MacroAssembler* masm,
Register left,
Smi* right) {
if (!ArgsInRegistersSupported()) {
// Pass arguments on the stack.
__ push(left);
__ Push(right);
} else {
// The calling convention with registers is left in rdx and right in rax.
Register left_arg = rdx;
Register right_arg = rax;
if (left.is(left_arg)) {
__ Move(right_arg, right);
} else if (left.is(right_arg) && IsOperationCommutative()) {
__ Move(left_arg, right);
SetArgsReversed();
} else {
// For non-commutative operations, left and right_arg might be
// the same register. Therefore, the order of the moves is
// important here in order to not overwrite left before moving
// it to left_arg.
__ movq(left_arg, left);
__ Move(right_arg, right);
}
// Update flags to indicate that arguments are in registers.
SetArgsInRegisters();
__ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
}
// Call the stub.
__ CallStub(this);
}
void GenericBinaryOpStub::GenerateCall(
MacroAssembler* masm,
Smi* left,
Register right) {
if (!ArgsInRegistersSupported()) {
// Pass arguments on the stack.
__ Push(left);
__ push(right);
} else {
// The calling convention with registers is left in rdx and right in rax.
Register left_arg = rdx;
Register right_arg = rax;
if (right.is(right_arg)) {
__ Move(left_arg, left);
} else if (right.is(left_arg) && IsOperationCommutative()) {
__ Move(right_arg, left);
SetArgsReversed();
} else {
// For non-commutative operations, right and left_arg might be
// the same register. Therefore, the order of the moves is
// important here in order to not overwrite right before moving
// it to right_arg.
__ movq(right_arg, right);
__ Move(left_arg, left);
}
// Update flags to indicate that arguments are in registers.
SetArgsInRegisters();
__ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
}
// Call the stub.
__ CallStub(this);
}
Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm,
VirtualFrame* frame,
Result* left,
Result* right) {
if (ArgsInRegistersSupported()) {
SetArgsInRegisters();
return frame->CallStub(this, left, right);
} else {
frame->Push(left);
frame->Push(right);
return frame->CallStub(this, 2);
}
}
void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
// 1. Move arguments into rdx, rax except for DIV and MOD, which need the
// dividend in rax and rdx free for the division. Use rax, rbx for those.
Comment load_comment(masm, "-- Load arguments");
Register left = rdx;
Register right = rax;
if (op_ == Token::DIV || op_ == Token::MOD) {
left = rax;
right = rbx;
if (HasArgsInRegisters()) {
__ movq(rbx, rax);
__ movq(rax, rdx);
}
}
if (!HasArgsInRegisters()) {
__ movq(right, Operand(rsp, 1 * kPointerSize));
__ movq(left, Operand(rsp, 2 * kPointerSize));
}
Label not_smis;
// 2. Smi check both operands.
if (static_operands_type_.IsSmi()) {
// Skip smi check if we know that both arguments are smis.
if (FLAG_debug_code) {
__ AbortIfNotSmi(left);
__ AbortIfNotSmi(right);
}
if (op_ == Token::BIT_OR) {
// Handle OR here, since we do extra smi-checking in the or code below.
__ SmiOr(right, right, left);
GenerateReturn(masm);
return;
}
} else {
if (op_ != Token::BIT_OR) {
// Skip the check for OR as it is better combined with the
// actual operation.
Comment smi_check_comment(masm, "-- Smi check arguments");
__ JumpIfNotBothSmi(left, right, ¬_smis);
}
}
// 3. Operands are both smis (except for OR), perform the operation leaving
// the result in rax and check the result if necessary.
Comment perform_smi(masm, "-- Perform smi operation");
Label use_fp_on_smis;
switch (op_) {
case Token::ADD: {
ASSERT(right.is(rax));
__ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative.
break;
}
case Token::SUB: {
__ SmiSub(left, left, right, &use_fp_on_smis);
__ movq(rax, left);
break;
}
case Token::MUL:
ASSERT(right.is(rax));
__ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative.
break;
case Token::DIV:
ASSERT(left.is(rax));
__ SmiDiv(left, left, right, &use_fp_on_smis);
break;
case Token::MOD:
ASSERT(left.is(rax));
__ SmiMod(left, left, right, slow);
break;
case Token::BIT_OR:
ASSERT(right.is(rax));
__ movq(rcx, right); // Save the right operand.
__ SmiOr(right, right, left); // BIT_OR is commutative.
__ testb(right, Immediate(kSmiTagMask));
__ j(not_zero, ¬_smis);
break;
case Token::BIT_AND:
ASSERT(right.is(rax));
__ SmiAnd(right, right, left); // BIT_AND is commutative.
break;
case Token::BIT_XOR:
ASSERT(right.is(rax));
__ SmiXor(right, right, left); // BIT_XOR is commutative.
break;
case Token::SHL:
case Token::SHR:
case Token::SAR:
switch (op_) {
case Token::SAR:
__ SmiShiftArithmeticRight(left, left, right);
break;
case Token::SHR:
__ SmiShiftLogicalRight(left, left, right, slow);
break;
case Token::SHL:
__ SmiShiftLeft(left, left, right);
break;
default:
UNREACHABLE();
}
__ movq(rax, left);
break;
default:
UNREACHABLE();
break;
}
// 4. Emit return of result in rax.
GenerateReturn(masm);
// 5. For some operations emit inline code to perform floating point
// operations on known smis (e.g., if the result of the operation
// overflowed the smi range).
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV: {
ASSERT(use_fp_on_smis.is_linked());
__ bind(&use_fp_on_smis);
if (op_ == Token::DIV) {
__ movq(rdx, rax);
__ movq(rax, rbx);
}
// left is rdx, right is rax.
__ AllocateHeapNumber(rbx, rcx, slow);
FloatingPointHelper::LoadSSE2SmiOperands(masm);
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
__ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rbx);
GenerateReturn(masm);
}
default:
break;
}
// 6. Non-smi operands, fall out to the non-smi code with the operands in
// rdx and rax.
Comment done_comment(masm, "-- Enter non-smi code");
__ bind(¬_smis);
switch (op_) {
case Token::DIV:
case Token::MOD:
// Operands are in rax, rbx at this point.
__ movq(rdx, rax);
__ movq(rax, rbx);
break;
case Token::BIT_OR:
// Right operand is saved in rcx and rax was destroyed by the smi
// operation.
__ movq(rax, rcx);
break;
default:
break;
}
}
void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
Label call_runtime;
if (ShouldGenerateSmiCode()) {
GenerateSmiCode(masm, &call_runtime);
} else if (op_ != Token::MOD) {
if (!HasArgsInRegisters()) {
GenerateLoadArguments(masm);
}
}
// Floating point case.
if (ShouldGenerateFPCode()) {
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV: {
if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
HasSmiCodeInStub()) {
// Execution reaches this point when the first non-smi argument occurs
// (and only if smi code is generated). This is the right moment to
// patch to HEAP_NUMBERS state. The transition is attempted only for
// the four basic operations. The stub stays in the DEFAULT state
// forever for all other operations (also if smi code is skipped).
GenerateTypeTransition(masm);
break;
}
Label not_floats;
// rax: y
// rdx: x
if (static_operands_type_.IsNumber()) {
if (FLAG_debug_code) {
// Assert at runtime that inputs are only numbers.
__ AbortIfNotNumber(rdx);
__ AbortIfNotNumber(rax);
}
FloatingPointHelper::LoadSSE2NumberOperands(masm);
} else {
FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime);
}
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
// Allocate a heap number, if needed.
Label skip_allocation;
OverwriteMode mode = mode_;
if (HasArgsReversed()) {
if (mode == OVERWRITE_RIGHT) {
mode = OVERWRITE_LEFT;
} else if (mode == OVERWRITE_LEFT) {
mode = OVERWRITE_RIGHT;
}
}
switch (mode) {
case OVERWRITE_LEFT:
__ JumpIfNotSmi(rdx, &skip_allocation);
__ AllocateHeapNumber(rbx, rcx, &call_runtime);
__ movq(rdx, rbx);
__ bind(&skip_allocation);
__ movq(rax, rdx);
break;
case OVERWRITE_RIGHT:
// If the argument in rax is already an object, we skip the
// allocation of a heap number.
__ JumpIfNotSmi(rax, &skip_allocation);
// Fall through!
case NO_OVERWRITE:
// Allocate a heap number for the result. Keep rax and rdx intact
// for the possible runtime call.
__ AllocateHeapNumber(rbx, rcx, &call_runtime);
__ movq(rax, rbx);
__ bind(&skip_allocation);
break;
default: UNREACHABLE();
}
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
GenerateReturn(masm);
__ bind(¬_floats);
if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
!HasSmiCodeInStub()) {
// Execution reaches this point when the first non-number argument
// occurs (and only if smi code is skipped from the stub, otherwise
// the patching has already been done earlier in this case branch).
// A perfect moment to try patching to STRINGS for ADD operation.
if (op_ == Token::ADD) {
GenerateTypeTransition(masm);
}
}
break;
}
case Token::MOD: {
// For MOD we go directly to runtime in the non-smi case.
break;
}
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHL:
case Token::SHR: {
Label skip_allocation, non_smi_shr_result;
Register heap_number_map = r9;
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
if (static_operands_type_.IsNumber()) {
if (FLAG_debug_code) {
// Assert at runtime that inputs are only numbers.
__ AbortIfNotNumber(rdx);
__ AbortIfNotNumber(rax);
}
FloatingPointHelper::LoadNumbersAsIntegers(masm);
} else {
FloatingPointHelper::LoadAsIntegers(masm,
&call_runtime,
heap_number_map);
}
switch (op_) {
case Token::BIT_OR: __ orl(rax, rcx); break;
case Token::BIT_AND: __ andl(rax, rcx); break;
case Token::BIT_XOR: __ xorl(rax, rcx); break;
case Token::SAR: __ sarl_cl(rax); break;
case Token::SHL: __ shll_cl(rax); break;
case Token::SHR: {
__ shrl_cl(rax);
// Check if result is negative. This can only happen for a shift
// by zero.
__ testl(rax, rax);
__ j(negative, &non_smi_shr_result);
break;
}
default: UNREACHABLE();
}
STATIC_ASSERT(kSmiValueSize == 32);
// Tag smi result and return.
__ Integer32ToSmi(rax, rax);
GenerateReturn(masm);
// All bit-ops except SHR return a signed int32 that can be
// returned immediately as a smi.
// We might need to allocate a HeapNumber if we shift a negative
// number right by zero (i.e., convert to UInt32).
if (op_ == Token::SHR) {
ASSERT(non_smi_shr_result.is_linked());
__ bind(&non_smi_shr_result);
// Allocate a heap number if needed.
__ movl(rbx, rax); // rbx holds result value (uint32 value as int64).
switch (mode_) {
case OVERWRITE_LEFT:
case OVERWRITE_RIGHT:
// If the operand was an object, we skip the
// allocation of a heap number.
__ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ?
1 * kPointerSize : 2 * kPointerSize));
__ JumpIfNotSmi(rax, &skip_allocation);
// Fall through!
case NO_OVERWRITE:
// Allocate heap number in new space.
// Not using AllocateHeapNumber macro in order to reuse
// already loaded heap_number_map.
__ AllocateInNewSpace(HeapNumber::kSize,
rax,
rcx,
no_reg,
&call_runtime,
TAG_OBJECT);
// Set the map.
if (FLAG_debug_code) {
__ AbortIfNotRootValue(heap_number_map,
Heap::kHeapNumberMapRootIndex,
"HeapNumberMap register clobbered.");
}
__ movq(FieldOperand(rax, HeapObject::kMapOffset),
heap_number_map);
__ bind(&skip_allocation);
break;
default: UNREACHABLE();
}
// Store the result in the HeapNumber and return.
__ cvtqsi2sd(xmm0, rbx);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
GenerateReturn(masm);
}
break;
}
default: UNREACHABLE(); break;
}
}
// If all else fails, use the runtime system to get the correct
// result. If arguments was passed in registers now place them on the
// stack in the correct order below the return address.
__ bind(&call_runtime);
if (HasArgsInRegisters()) {
GenerateRegisterArgsPush(masm);
}
switch (op_) {
case Token::ADD: {
// Registers containing left and right operands respectively.
Register lhs, rhs;
if (HasArgsReversed()) {
lhs = rax;
rhs = rdx;
} else {
lhs = rdx;
rhs = rax;
}
// Test for string arguments before calling runtime.
Label not_strings, both_strings, not_string1, string1, string1_smi2;
// If this stub has already generated FP-specific code then the arguments
// are already in rdx and rax.
if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) {
GenerateLoadArguments(masm);
}
Condition is_smi;
is_smi = masm->CheckSmi(lhs);
__ j(is_smi, ¬_string1);
__ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8);
__ j(above_equal, ¬_string1);
// First argument is a a string, test second.
is_smi = masm->CheckSmi(rhs);
__ j(is_smi, &string1_smi2);
__ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9);
__ j(above_equal, &string1);
// First and second argument are strings.
StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
__ TailCallStub(&string_add_stub);
__ bind(&string1_smi2);
// First argument is a string, second is a smi. Try to lookup the number
// string for the smi in the number string cache.
NumberToStringStub::GenerateLookupNumberStringCache(
masm, rhs, rbx, rcx, r8, true, &string1);
// Replace second argument on stack and tailcall string add stub to make
// the result.
__ movq(Operand(rsp, 1 * kPointerSize), rbx);
__ TailCallStub(&string_add_stub);
// Only first argument is a string.
__ bind(&string1);
__ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION);
// First argument was not a string, test second.
__ bind(¬_string1);
is_smi = masm->CheckSmi(rhs);
__ j(is_smi, ¬_strings);
__ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs);
__ j(above_equal, ¬_strings);
// Only second argument is a string.
__ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION);
__ bind(¬_strings);
// Neither argument is a string.
__ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
break;
}
case Token::SUB:
__ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
break;
case Token::MUL:
__ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
break;
case Token::DIV:
__ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
break;
case Token::MOD:
__ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
break;
case Token::BIT_OR:
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
break;
case Token::BIT_AND:
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
break;
case Token::BIT_XOR:
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
break;
case Token::SAR:
__ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
break;
case Token::SHL:
__ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
break;
case Token::SHR:
__ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) {
ASSERT(!HasArgsInRegisters());
__ movq(rax, Operand(rsp, 1 * kPointerSize));
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
}
void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) {
// If arguments are not passed in registers remove them from the stack before
// returning.
if (!HasArgsInRegisters()) {
__ ret(2 * kPointerSize); // Remove both operands
} else {
__ ret(0);
}
}
void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
ASSERT(HasArgsInRegisters());
__ pop(rcx);
if (HasArgsReversed()) {
__ push(rax);
__ push(rdx);
} else {
__ push(rdx);
__ push(rax);
}
__ push(rcx);
}
void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Label get_result;
// Ensure the operands are on the stack.
if (HasArgsInRegisters()) {
GenerateRegisterArgsPush(masm);
}
// Left and right arguments are already on stack.
__ pop(rcx); // Save the return address.
// Push this stub's key.
__ Push(Smi::FromInt(MinorKey()));
// Although the operation and the type info are encoded into the key,
// the encoding is opaque, so push them too.
__ Push(Smi::FromInt(op_));
__ Push(Smi::FromInt(runtime_operands_type_));
__ push(rcx); // The return address.
// Perform patching to an appropriate fast case and return the result.
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
5,
1);
}
Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
GenericBinaryOpStub stub(key, type_info);
return stub.GetCode();
}
int CompareStub::MinorKey() {
// Encode the three parameters in a unique 16 bit value. To avoid duplicate
// stubs the never NaN NaN condition is only taken into account if the
// condition is equals.
ASSERT(static_cast<unsigned>(cc_) < (1 << 13));
return ConditionField::encode(static_cast<unsigned>(cc_))
| StrictField::encode(strict_)
| NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
| IncludeNumberCompareField::encode(include_number_compare_);
}
// Unfortunately you have to run without snapshots to see most of these
// names in the profile since most compare stubs end up in the snapshot.
const char* CompareStub::GetName() {
if (name_ != NULL) return name_;
const int kMaxNameLength = 100;
name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
if (name_ == NULL) return "OOM";
const char* cc_name;
switch (cc_) {
case less: cc_name = "LT"; break;
case greater: cc_name = "GT"; break;
case less_equal: cc_name = "LE"; break;
case greater_equal: cc_name = "GE"; break;
case equal: cc_name = "EQ"; break;
case not_equal: cc_name = "NE"; break;
default: cc_name = "UnknownCondition"; break;
}
const char* strict_name = "";
if (strict_ && (cc_ == equal || cc_ == not_equal)) {
strict_name = "_STRICT";
}
const char* never_nan_nan_name = "";
if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) {
never_nan_nan_name = "_NO_NAN";
}
const char* include_number_compare_name = "";
if (!include_number_compare_) {
include_number_compare_name = "_NO_NUMBER";
}
OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
"CompareStub_%s%s%s%s",
cc_name,
strict_name,
never_nan_nan_name,
include_number_compare_name);
return name_;
}
// -------------------------------------------------------------------------
// StringCharCodeAtGenerator
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
Label flat_string;
Label ascii_string;
Label got_char_code;
// If the receiver is a smi trigger the non-string case.
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ testb(result_, Immediate(kIsNotStringMask));
__ j(not_zero, receiver_not_string_);
// If the index is non-smi trigger the non-smi case.
__ JumpIfNotSmi(index_, &index_not_smi_);
// Put smi-tagged index into scratch register.
__ movq(scratch_, index_);
__ bind(&got_smi_index_);
// Check for index out of range.
__ SmiCompare(scratch_, FieldOperand(object_, String::kLengthOffset));
__ j(above_equal, index_out_of_range_);
// We need special handling for non-flat strings.
ASSERT(kSeqStringTag == 0);
__ testb(result_, Immediate(kStringRepresentationMask));
__ j(zero, &flat_string);
// Handle non-flat strings.
__ testb(result_, Immediate(kIsConsStringMask));
__ j(zero, &call_runtime_);
// ConsString.
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we would rather go to the runtime system now to flatten
// the string.
__ CompareRoot(FieldOperand(object_, ConsString::kSecondOffset),
Heap::kEmptyStringRootIndex);
__ j(not_equal, &call_runtime_);
// Get the first of the two strings and load its instance type.
__ movq(object_, FieldOperand(object_, ConsString::kFirstOffset));
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
// If the first cons component is also non-flat, then go to runtime.
ASSERT(kSeqStringTag == 0);
__ testb(result_, Immediate(kStringRepresentationMask));
__ j(not_zero, &call_runtime_);
// Check for 1-byte or 2-byte string.
__ bind(&flat_string);
ASSERT(kAsciiStringTag != 0);
__ testb(result_, Immediate(kStringEncodingMask));
__ j(not_zero, &ascii_string);
// 2-byte string.
// Load the 2-byte character code into the result register.
__ SmiToInteger32(scratch_, scratch_);
__ movzxwl(result_, FieldOperand(object_,
scratch_, times_2,
SeqTwoByteString::kHeaderSize));
__ jmp(&got_char_code);
// ASCII string.
// Load the byte into the result register.
__ bind(&ascii_string);
__ SmiToInteger32(scratch_, scratch_);
__ movzxbl(result_, FieldOperand(object_,
scratch_, times_1,
SeqAsciiString::kHeaderSize));
__ bind(&got_char_code);
__ Integer32ToSmi(result_, result_);
__ bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
__ Abort("Unexpected fallthrough to CharCodeAt slow case");
// Index is not a smi.
__ bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true);
call_helper.BeforeCall(masm);
__ push(object_);
__ push(index_);
__ push(index_); // Consumed by runtime conversion function.
if (index_flags_ == STRING_INDEX_IS_NUMBER) {
__ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
} else {
ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
// NumberToSmi discards numbers that are not exact integers.
__ CallRuntime(Runtime::kNumberToSmi, 1);
}
if (!scratch_.is(rax)) {
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ movq(scratch_, rax);
}
__ pop(index_);
__ pop(object_);
// Reload the instance type.
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
__ JumpIfNotSmi(scratch_, index_out_of_range_);
// Otherwise, return to the fast path.
__ jmp(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ push(object_);
__ push(index_);
__ CallRuntime(Runtime::kStringCharCodeAt, 2);
if (!result_.is(rax)) {
__ movq(result_, rax);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort("Unexpected fallthrough from CharCodeAt slow case");
}
// -------------------------------------------------------------------------
// StringCharFromCodeGenerator
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
// Fast case of Heap::LookupSingleCharacterStringFromCode.
__ JumpIfNotSmi(code_, &slow_case_);
__ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode));
__ j(above, &slow_case_);
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
__ movq(result_, FieldOperand(result_, index.reg, index.scale,
FixedArray::kHeaderSize));
__ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
__ j(equal, &slow_case_);
__ bind(&exit_);
}
void StringCharFromCodeGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
__ Abort("Unexpected fallthrough to CharFromCode slow case");
__ bind(&slow_case_);
call_helper.BeforeCall(masm);
__ push(code_);
__ CallRuntime(Runtime::kCharFromCode, 1);
if (!result_.is(rax)) {
__ movq(result_, rax);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort("Unexpected fallthrough from CharFromCode slow case");
}
// -------------------------------------------------------------------------
// StringCharAtGenerator
void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
char_code_at_generator_.GenerateFast(masm);
char_from_code_generator_.GenerateFast(masm);
}
void StringCharAtGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
char_code_at_generator_.GenerateSlow(masm, call_helper);
char_from_code_generator_.GenerateSlow(masm, call_helper);
}
void StringAddStub::Generate(MacroAssembler* masm) {
Label string_add_runtime;
// Load the two arguments.
__ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument.
__ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument.
// Make sure that both arguments are strings if not known in advance.
if (string_check_) {
Condition is_smi;
is_smi = masm->CheckSmi(rax);
__ j(is_smi, &string_add_runtime);
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8);
__ j(above_equal, &string_add_runtime);
// First argument is a a string, test second.
is_smi = masm->CheckSmi(rdx);
__ j(is_smi, &string_add_runtime);
__ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9);
__ j(above_equal, &string_add_runtime);
}
// Both arguments are strings.
// rax: first string
// rdx: second string
// Check if either of the strings are empty. In that case return the other.
Label second_not_zero_length, both_not_zero_length;
__ movq(rcx, FieldOperand(rdx, String::kLengthOffset));
__ SmiTest(rcx);
__ j(not_zero, &second_not_zero_length);
// Second string is empty, result is first string which is already in rax.
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
__ bind(&second_not_zero_length);
__ movq(rbx, FieldOperand(rax, String::kLengthOffset));
__ SmiTest(rbx);
__ j(not_zero, &both_not_zero_length);
// First string is empty, result is second string which is in rdx.
__ movq(rax, rdx);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
// Both strings are non-empty.
// rax: first string
// rbx: length of first string
// rcx: length of second string
// rdx: second string
// r8: map of first string if string check was performed above
// r9: map of second string if string check was performed above
Label string_add_flat_result, longer_than_two;
__ bind(&both_not_zero_length);
// If arguments where known to be strings, maps are not loaded to r8 and r9
// by the code above.
if (!string_check_) {
__ movq(r8, FieldOperand(rax, HeapObject::kMapOffset));
__ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset));
}
// Get the instance types of the two strings as they will be needed soon.
__ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset));
__ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset));
// Look at the length of the result of adding the two strings.
ASSERT(String::kMaxLength <= Smi::kMaxValue / 2);
__ SmiAdd(rbx, rbx, rcx, NULL);
// Use the runtime system when adding two one character strings, as it
// contains optimizations for this specific case using the symbol table.
__ SmiCompare(rbx, Smi::FromInt(2));
__ j(not_equal, &longer_than_two);
// Check that both strings are non-external ascii strings.
__ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx,
&string_add_runtime);
// Get the two characters forming the sub string.
__ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize));
__ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize));
// Try to lookup two character string in symbol table. If it is not found
// just allocate a new one.
Label make_two_character_string, make_flat_ascii_string;
StringHelper::GenerateTwoCharacterSymbolTableProbe(
masm, rbx, rcx, r14, r11, rdi, r12, &make_two_character_string);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
__ bind(&make_two_character_string);
__ Set(rbx, 2);
__ jmp(&make_flat_ascii_string);
__ bind(&longer_than_two);
// Check if resulting string will be flat.
__ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength));
__ j(below, &string_add_flat_result);
// Handle exceptionally long strings in the runtime system.
ASSERT((String::kMaxLength & 0x80000000) == 0);
__ SmiCompare(rbx, Smi::FromInt(String::kMaxLength));
__ j(above, &string_add_runtime);
// If result is not supposed to be flat, allocate a cons string object. If
// both strings are ascii the result is an ascii cons string.
// rax: first string
// rbx: length of resulting flat string
// rdx: second string
// r8: instance type of first string
// r9: instance type of second string
Label non_ascii, allocated, ascii_data;
__ movl(rcx, r8);
__ and_(rcx, r9);
ASSERT(kStringEncodingMask == kAsciiStringTag);
__ testl(rcx, Immediate(kAsciiStringTag));
__ j(zero, &non_ascii);
__ bind(&ascii_data);
// Allocate an acsii cons string.
__ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime);
__ bind(&allocated);
// Fill the fields of the cons string.
__ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx);
__ movq(FieldOperand(rcx, ConsString::kHashFieldOffset),
Immediate(String::kEmptyHashField));
__ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax);
__ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx);
__ movq(rax, rcx);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
__ bind(&non_ascii);
// At least one of the strings is two-byte. Check whether it happens
// to contain only ascii characters.
// rcx: first instance type AND second instance type.
// r8: first instance type.
// r9: second instance type.
__ testb(rcx, Immediate(kAsciiDataHintMask));
__ j(not_zero, &ascii_data);
__ xor_(r8, r9);
ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
__ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
__ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
__ j(equal, &ascii_data);
// Allocate a two byte cons string.
__ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime);
__ jmp(&allocated);
// Handle creating a flat result. First check that both strings are not
// external strings.
// rax: first string
// rbx: length of resulting flat string as smi
// rdx: second string
// r8: instance type of first string
// r9: instance type of first string
__ bind(&string_add_flat_result);
__ SmiToInteger32(rbx, rbx);
__ movl(rcx, r8);
__ and_(rcx, Immediate(kStringRepresentationMask));
__ cmpl(rcx, Immediate(kExternalStringTag));
__ j(equal, &string_add_runtime);
__ movl(rcx, r9);
__ and_(rcx, Immediate(kStringRepresentationMask));
__ cmpl(rcx, Immediate(kExternalStringTag));
__ j(equal, &string_add_runtime);
// Now check if both strings are ascii strings.
// rax: first string
// rbx: length of resulting flat string
// rdx: second string
// r8: instance type of first string
// r9: instance type of second string
Label non_ascii_string_add_flat_result;
ASSERT(kStringEncodingMask == kAsciiStringTag);
__ testl(r8, Immediate(kAsciiStringTag));
__ j(zero, &non_ascii_string_add_flat_result);
__ testl(r9, Immediate(kAsciiStringTag));
__ j(zero, &string_add_runtime);
__ bind(&make_flat_ascii_string);
// Both strings are ascii strings. As they are short they are both flat.
__ AllocateAsciiString(rcx, rbx, rdi, r14, r11, &string_add_runtime);
// rcx: result string
__ movq(rbx, rcx);
// Locate first character of result.
__ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// Locate first character of first argument
__ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
__ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// rax: first char of first argument
// rbx: result string
// rcx: first character of result
// rdx: second string
// rdi: length of first argument
StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, true);
// Locate first character of second argument.
__ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset));
__ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// rbx: result string
// rcx: next character of result
// rdx: first char of second argument
// rdi: length of second argument
StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, true);
__ movq(rax, rbx);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
// Handle creating a flat two byte result.
// rax: first string - known to be two byte
// rbx: length of resulting flat string
// rdx: second string
// r8: instance type of first string
// r9: instance type of first string
__ bind(&non_ascii_string_add_flat_result);
__ and_(r9, Immediate(kAsciiStringTag));
__ j(not_zero, &string_add_runtime);
// Both strings are two byte strings. As they are short they are both
// flat.
__ AllocateTwoByteString(rcx, rbx, rdi, r14, r11, &string_add_runtime);
// rcx: result string
__ movq(rbx, rcx);
// Locate first character of result.
__ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// Locate first character of first argument.
__ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
__ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// rax: first char of first argument
// rbx: result string
// rcx: first character of result
// rdx: second argument
// rdi: length of first argument
StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, false);
// Locate first character of second argument.
__ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset));
__ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// rbx: result string
// rcx: next character of result
// rdx: first char of second argument
// rdi: length of second argument
StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, false);
__ movq(rax, rbx);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
// Just jump to runtime to add the two strings.
__ bind(&string_add_runtime);
__ TailCallRuntime(Runtime::kStringAdd, 2, 1);
}
void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
bool ascii) {
Label loop;
__ bind(&loop);
// This loop just copies one character at a time, as it is only used for very
// short strings.
if (ascii) {
__ movb(kScratchRegister, Operand(src, 0));
__ movb(Operand(dest, 0), kScratchRegister);
__ incq(src);
__ incq(dest);
} else {
__ movzxwl(kScratchRegister, Operand(src, 0));
__ movw(Operand(dest, 0), kScratchRegister);
__ addq(src, Immediate(2));
__ addq(dest, Immediate(2));
}
__ decl(count);
__ j(not_zero, &loop);
}
void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
Register dest,
Register src,
Register count,
bool ascii) {
// Copy characters using rep movs of doublewords. Align destination on 4 byte
// boundary before starting rep movs. Copy remaining characters after running
// rep movs.
// Count is positive int32, dest and src are character pointers.
ASSERT(dest.is(rdi)); // rep movs destination
ASSERT(src.is(rsi)); // rep movs source
ASSERT(count.is(rcx)); // rep movs count
// Nothing to do for zero characters.
Label done;
__ testl(count, count);
__ j(zero, &done);
// Make count the number of bytes to copy.
if (!ascii) {
ASSERT_EQ(2, sizeof(uc16)); // NOLINT
__ addl(count, count);
}
// Don't enter the rep movs if there are less than 4 bytes to copy.
Label last_bytes;
__ testl(count, Immediate(~7));
__ j(zero, &last_bytes);
// Copy from edi to esi using rep movs instruction.
__ movl(kScratchRegister, count);
__ shr(count, Immediate(3)); // Number of doublewords to copy.
__ repmovsq();
// Find number of bytes left.
__ movl(count, kScratchRegister);
__ and_(count, Immediate(7));
// Check if there are more bytes to copy.
__ bind(&last_bytes);
__ testl(count, count);
__ j(zero, &done);
// Copy remaining characters.
Label loop;
__ bind(&loop);
__ movb(kScratchRegister, Operand(src, 0));
__ movb(Operand(dest, 0), kScratchRegister);
__ incq(src);
__ incq(dest);
__ decl(count);
__ j(not_zero, &loop);
__ bind(&done);
}
void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Label* not_found) {
// Register scratch3 is the general scratch register in this function.
Register scratch = scratch3;
// Make sure that both characters are not digits as such strings has a
// different hash algorithm. Don't try to look for these in the symbol table.
Label not_array_index;
__ leal(scratch, Operand(c1, -'0'));
__ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
__ j(above, ¬_array_index);
__ leal(scratch, Operand(c2, -'0'));
__ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
__ j(below_equal, not_found);
__ bind(¬_array_index);
// Calculate the two character string hash.
Register hash = scratch1;
GenerateHashInit(masm, hash, c1, scratch);
GenerateHashAddCharacter(masm, hash, c2, scratch);
GenerateHashGetHash(masm, hash, scratch);
// Collect the two characters in a register.
Register chars = c1;
__ shl(c2, Immediate(kBitsPerByte));
__ orl(chars, c2);
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
// hash: hash of two character string.
// Load the symbol table.
Register symbol_table = c2;
__ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
// Calculate capacity mask from the symbol table capacity.
Register mask = scratch2;
__ SmiToInteger32(mask,
FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
__ decl(mask);
Register undefined = scratch4;
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
// Registers
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
// hash: hash of two character string (32-bit int)
// symbol_table: symbol table
// mask: capacity mask (32-bit int)
// undefined: undefined value
// scratch: -
// Perform a number of probes in the symbol table.
static const int kProbes = 4;
Label found_in_symbol_table;
Label next_probe[kProbes];
for (int i = 0; i < kProbes; i++) {
// Calculate entry in symbol table.
__ movl(scratch, hash);
if (i > 0) {
__ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i)));
}
__ andl(scratch, mask);
// Load the entry from the symble table.
Register candidate = scratch; // Scratch register contains candidate.
ASSERT_EQ(1, SymbolTable::kEntrySize);
__ movq(candidate,
FieldOperand(symbol_table,
scratch,
times_pointer_size,
SymbolTable::kElementsStartOffset));
// If entry is undefined no string with this hash can be found.
__ cmpq(candidate, undefined);
__ j(equal, not_found);
// If length is not 2 the string is not a candidate.
__ SmiCompare(FieldOperand(candidate, String::kLengthOffset),
Smi::FromInt(2));
__ j(not_equal, &next_probe[i]);
// We use kScratchRegister as a temporary register in assumption that
// JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly
Register temp = kScratchRegister;
// Check that the candidate is a non-external ascii string.
__ movq(temp, FieldOperand(candidate, HeapObject::kMapOffset));
__ movzxbl(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(
temp, temp, &next_probe[i]);
// Check if the two characters match.
__ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
__ andl(temp, Immediate(0x0000ffff));
__ cmpl(chars, temp);
__ j(equal, &found_in_symbol_table);
__ bind(&next_probe[i]);
}
// No matching 2 character string found by probing.
__ jmp(not_found);
// Scratch register contains result when we fall through to here.
Register result = scratch;
__ bind(&found_in_symbol_table);
if (!result.is(rax)) {
__ movq(rax, result);
}
}
void StringHelper::GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character,
Register scratch) {
// hash = character + (character << 10);
__ movl(hash, character);
__ shll(hash, Immediate(10));
__ addl(hash, character);
// hash ^= hash >> 6;
__ movl(scratch, hash);
__ sarl(scratch, Immediate(6));
__ xorl(hash, scratch);
}
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character,
Register scratch) {
// hash += character;
__ addl(hash, character);
// hash += hash << 10;
__ movl(scratch, hash);
__ shll(scratch, Immediate(10));
__ addl(hash, scratch);
// hash ^= hash >> 6;
__ movl(scratch, hash);
__ sarl(scratch, Immediate(6));
__ xorl(hash, scratch);
}
void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
Register hash,
Register scratch) {
// hash += hash << 3;
__ leal(hash, Operand(hash, hash, times_8, 0));
// hash ^= hash >> 11;
__ movl(scratch, hash);
__ sarl(scratch, Immediate(11));
__ xorl(hash, scratch);
// hash += hash << 15;
__ movl(scratch, hash);
__ shll(scratch, Immediate(15));
__ addl(hash, scratch);
// if (hash == 0) hash = 27;
Label hash_not_zero;
__ j(not_zero, &hash_not_zero);
__ movl(hash, Immediate(27));
__ bind(&hash_not_zero);
}
void SubStringStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// rsp[0]: return address
// rsp[8]: to
// rsp[16]: from
// rsp[24]: string
const int kToOffset = 1 * kPointerSize;
const int kFromOffset = kToOffset + kPointerSize;
const int kStringOffset = kFromOffset + kPointerSize;
const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset;
// Make sure first argument is a string.
__ movq(rax, Operand(rsp, kStringOffset));
ASSERT_EQ(0, kSmiTag);
__ testl(rax, Immediate(kSmiTagMask));
__ j(zero, &runtime);
Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
__ j(NegateCondition(is_string), &runtime);
// rax: string
// rbx: instance type
// Calculate length of sub string using the smi values.
Label result_longer_than_two;
__ movq(rcx, Operand(rsp, kToOffset));
__ movq(rdx, Operand(rsp, kFromOffset));
__ JumpIfNotBothPositiveSmi(rcx, rdx, &runtime);
__ SmiSub(rcx, rcx, rdx, NULL); // Overflow doesn't happen.
__ cmpq(FieldOperand(rax, String::kLengthOffset), rcx);
Label return_rax;
__ j(equal, &return_rax);
// Special handling of sub-strings of length 1 and 2. One character strings
// are handled in the runtime system (looked up in the single character
// cache). Two character strings are looked for in the symbol cache.
__ SmiToInteger32(rcx, rcx);
__ cmpl(rcx, Immediate(2));
__ j(greater, &result_longer_than_two);
__ j(less, &runtime);
// Sub string of length 2 requested.
// rax: string
// rbx: instance type
// rcx: sub string length (value is 2)
// rdx: from index (smi)
__ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime);
// Get the two characters forming the sub string.
__ SmiToInteger32(rdx, rdx); // From index is no longer smi.
__ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize));
__ movzxbq(rcx,
FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1));
// Try to lookup two character string in symbol table.
Label make_two_character_string;
StringHelper::GenerateTwoCharacterSymbolTableProbe(
masm, rbx, rcx, rax, rdx, rdi, r14, &make_two_character_string);
__ ret(3 * kPointerSize);
__ bind(&make_two_character_string);
// Setup registers for allocating the two character string.
__ movq(rax, Operand(rsp, kStringOffset));
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
__ Set(rcx, 2);
__ bind(&result_longer_than_two);
// rax: string
// rbx: instance type
// rcx: result string length
// Check for flat ascii string
Label non_ascii_flat;
__ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &non_ascii_flat);
// Allocate the result.
__ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime);
// rax: result string
// rcx: result string length
__ movq(rdx, rsi); // esi used by following code.
// Locate first character of result.
__ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize));
// Load string argument and locate character of sub string start.
__ movq(rsi, Operand(rsp, kStringOffset));
__ movq(rbx, Operand(rsp, kFromOffset));
{
SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1);
__ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
SeqAsciiString::kHeaderSize - kHeapObjectTag));
}
// rax: result string
// rcx: result length
// rdx: original value of rsi
// rdi: first character of result
// rsi: character of sub string start
StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true);
__ movq(rsi, rdx); // Restore rsi.
__ IncrementCounter(&Counters::sub_string_native, 1);
__ ret(kArgumentsSize);
__ bind(&non_ascii_flat);
// rax: string
// rbx: instance type & kStringRepresentationMask | kStringEncodingMask
// rcx: result string length
// Check for sequential two byte string
__ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag));
__ j(not_equal, &runtime);
// Allocate the result.
__ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime);
// rax: result string
// rcx: result string length
__ movq(rdx, rsi); // esi used by following code.
// Locate first character of result.
__ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
// Load string argument and locate character of sub string start.
__ movq(rsi, Operand(rsp, kStringOffset));
__ movq(rbx, Operand(rsp, kFromOffset));
{
SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2);
__ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
SeqAsciiString::kHeaderSize - kHeapObjectTag));
}
// rax: result string
// rcx: result length
// rdx: original value of rsi
// rdi: first character of result
// rsi: character of sub string start
StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false);
__ movq(rsi, rdx); // Restore esi.
__ bind(&return_rax);
__ IncrementCounter(&Counters::sub_string_native, 1);
__ ret(kArgumentsSize);
// Just jump to runtime to create the sub string.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kSubString, 3, 1);
}
void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4) {
// Ensure that you can always subtract a string length from a non-negative
// number (e.g. another length).
ASSERT(String::kMaxLength < 0x7fffffff);
// Find minimum length and length difference.
__ movq(scratch1, FieldOperand(left, String::kLengthOffset));
__ movq(scratch4, scratch1);
__ SmiSub(scratch4,
scratch4,
FieldOperand(right, String::kLengthOffset),
NULL);
// Register scratch4 now holds left.length - right.length.
const Register length_difference = scratch4;
Label left_shorter;
__ j(less, &left_shorter);
// The right string isn't longer that the left one.
// Get the right string's length by subtracting the (non-negative) difference
// from the left string's length.
__ SmiSub(scratch1, scratch1, length_difference, NULL);
__ bind(&left_shorter);
// Register scratch1 now holds Min(left.length, right.length).
const Register min_length = scratch1;
Label compare_lengths;
// If min-length is zero, go directly to comparing lengths.
__ SmiTest(min_length);
__ j(zero, &compare_lengths);
__ SmiToInteger32(min_length, min_length);
// Registers scratch2 and scratch3 are free.
Label result_not_equal;
Label loop;
{
// Check characters 0 .. min_length - 1 in a loop.
// Use scratch3 as loop index, min_length as limit and scratch2
// for computation.
const Register index = scratch3;
__ movl(index, Immediate(0)); // Index into strings.
__ bind(&loop);
// Compare characters.
// TODO(lrn): Could we load more than one character at a time?
__ movb(scratch2, FieldOperand(left,
index,
times_1,
SeqAsciiString::kHeaderSize));
// Increment index and use -1 modifier on next load to give
// the previous load extra time to complete.
__ addl(index, Immediate(1));
__ cmpb(scratch2, FieldOperand(right,
index,
times_1,
SeqAsciiString::kHeaderSize - 1));
__ j(not_equal, &result_not_equal);
__ cmpl(index, min_length);
__ j(not_equal, &loop);
}
// Completed loop without finding different characters.
// Compare lengths (precomputed).
__ bind(&compare_lengths);
__ SmiTest(length_difference);
__ j(not_zero, &result_not_equal);
// Result is EQUAL.
__ Move(rax, Smi::FromInt(EQUAL));
__ ret(2 * kPointerSize);
Label result_greater;
__ bind(&result_not_equal);
// Unequal comparison of left to right, either character or length.
__ j(greater, &result_greater);
// Result is LESS.
__ Move(rax, Smi::FromInt(LESS));
__ ret(2 * kPointerSize);
// Result is GREATER.
__ bind(&result_greater);
__ Move(rax, Smi::FromInt(GREATER));
__ ret(2 * kPointerSize);
}
void StringCompareStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// rsp[0]: return address
// rsp[8]: right string
// rsp[16]: left string
__ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left
__ movq(rax, Operand(rsp, 1 * kPointerSize)); // right
// Check for identity.
Label not_same;
__ cmpq(rdx, rax);
__ j(not_equal, ¬_same);
__ Move(rax, Smi::FromInt(EQUAL));
__ IncrementCounter(&Counters::string_compare_native, 1);
__ ret(2 * kPointerSize);
__ bind(¬_same);
// Check that both are sequential ASCII strings.
__ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime);
// Inline comparison of ascii strings.
__ IncrementCounter(&Counters::string_compare_native, 1);
GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8);
// Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}
#undef __
#define __ masm.
#ifdef _WIN64
typedef double (*ModuloFunction)(double, double);
// Define custom fmod implementation.
ModuloFunction CreateModuloFunction() {
size_t actual_size;
byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size,
true));
CHECK(buffer);
Assembler masm(buffer, static_cast<int>(actual_size));
// Generated code is put into a fixed, unmovable, buffer, and not into
// the V8 heap. We can't, and don't, refer to any relocatable addresses
// (e.g. the JavaScript nan-object).
// Windows 64 ABI passes double arguments in xmm0, xmm1 and
// returns result in xmm0.
// Argument backing space is allocated on the stack above
// the return address.
// Compute x mod y.
// Load y and x (use argument backing store as temporary storage).
__ movsd(Operand(rsp, kPointerSize * 2), xmm1);
__ movsd(Operand(rsp, kPointerSize), xmm0);
__ fld_d(Operand(rsp, kPointerSize * 2));
__ fld_d(Operand(rsp, kPointerSize));
// Clear exception flags before operation.
{
Label no_exceptions;
__ fwait();
__ fnstsw_ax();
// Clear if Illegal Operand or Zero Division exceptions are set.
__ testb(rax, Immediate(5));
__ j(zero, &no_exceptions);
__ fnclex();
__ bind(&no_exceptions);
}
// Compute st(0) % st(1)
{
Label partial_remainder_loop;
__ bind(&partial_remainder_loop);
__ fprem();
__ fwait();
__ fnstsw_ax();
__ testl(rax, Immediate(0x400 /* C2 */));
// If C2 is set, computation only has partial result. Loop to
// continue computation.
__ j(not_zero, &partial_remainder_loop);
}
Label valid_result;
Label return_result;
// If Invalid Operand or Zero Division exceptions are set,
// return NaN.
__ testb(rax, Immediate(5));
__ j(zero, &valid_result);
__ fstp(0); // Drop result in st(0).
int64_t kNaNValue = V8_INT64_C(0x7ff8000000000000);
__ movq(rcx, kNaNValue, RelocInfo::NONE);
__ movq(Operand(rsp, kPointerSize), rcx);
__ movsd(xmm0, Operand(rsp, kPointerSize));
__ jmp(&return_result);
// If result is valid, return that.
__ bind(&valid_result);
__ fstp_d(Operand(rsp, kPointerSize));
__ movsd(xmm0, Operand(rsp, kPointerSize));
// Clean up FPU stack and exceptions and return xmm0
__ bind(&return_result);
__ fstp(0); // Unload y.
Label clear_exceptions;
__ testb(rax, Immediate(0x3f /* Any Exception*/));
__ j(not_zero, &clear_exceptions);
__ ret(0);
__ bind(&clear_exceptions);
__ fnclex();
__ ret(0);
CodeDesc desc;
masm.GetCode(&desc);
// Call the function from C++.
return FUNCTION_CAST<ModuloFunction>(buffer);
}
#endif
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64
|