summaryrefslogtreecommitdiff
path: root/deps/v8/src/x64/codegen-x64.cc
blob: e2296d9bd951678f268ca8fd1cb410d529acf031 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "bootstrapper.h"
#include "codegen-inl.h"
#include "compiler.h"
#include "debug.h"
#include "ic-inl.h"
#include "parser.h"
#include "register-allocator-inl.h"
#include "scopes.h"

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm_)

// -------------------------------------------------------------------------
// Platform-specific DeferredCode functions.

void DeferredCode::SaveRegisters() {
  for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
    int action = registers_[i];
    if (action == kPush) {
      __ push(RegisterAllocator::ToRegister(i));
    } else if (action != kIgnore && (action & kSyncedFlag) == 0) {
      __ movq(Operand(rbp, action), RegisterAllocator::ToRegister(i));
    }
  }
}


void DeferredCode::RestoreRegisters() {
  // Restore registers in reverse order due to the stack.
  for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
    int action = registers_[i];
    if (action == kPush) {
      __ pop(RegisterAllocator::ToRegister(i));
    } else if (action != kIgnore) {
      action &= ~kSyncedFlag;
      __ movq(RegisterAllocator::ToRegister(i), Operand(rbp, action));
    }
  }
}


// -------------------------------------------------------------------------
// CodeGenState implementation.

CodeGenState::CodeGenState(CodeGenerator* owner)
    : owner_(owner),
      destination_(NULL),
      previous_(NULL) {
  owner_->set_state(this);
}


CodeGenState::CodeGenState(CodeGenerator* owner,
                           ControlDestination* destination)
    : owner_(owner),
      destination_(destination),
      previous_(owner->state()) {
  owner_->set_state(this);
}


CodeGenState::~CodeGenState() {
  ASSERT(owner_->state() == this);
  owner_->set_state(previous_);
}


// -------------------------------------------------------------------------
// Deferred code objects
//
// These subclasses of DeferredCode add pieces of code to the end of generated
// code.  They are branched to from the generated code, and
// keep some slower code out of the main body of the generated code.
// Many of them call a code stub or a runtime function.

class DeferredInlineSmiAdd: public DeferredCode {
 public:
  DeferredInlineSmiAdd(Register dst,
                       Smi* value,
                       OverwriteMode overwrite_mode)
      : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
    set_comment("[ DeferredInlineSmiAdd");
  }

  virtual void Generate();

 private:
  Register dst_;
  Smi* value_;
  OverwriteMode overwrite_mode_;
};


// The result of value + src is in dst.  It either overflowed or was not
// smi tagged.  Undo the speculative addition and call the appropriate
// specialized stub for add.  The result is left in dst.
class DeferredInlineSmiAddReversed: public DeferredCode {
 public:
  DeferredInlineSmiAddReversed(Register dst,
                               Smi* value,
                               OverwriteMode overwrite_mode)
      : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
    set_comment("[ DeferredInlineSmiAddReversed");
  }

  virtual void Generate();

 private:
  Register dst_;
  Smi* value_;
  OverwriteMode overwrite_mode_;
};


class DeferredInlineSmiSub: public DeferredCode {
 public:
  DeferredInlineSmiSub(Register dst,
                       Smi* value,
                       OverwriteMode overwrite_mode)
      : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
    set_comment("[ DeferredInlineSmiSub");
  }

  virtual void Generate();

 private:
  Register dst_;
  Smi* value_;
  OverwriteMode overwrite_mode_;
};


// Call the appropriate binary operation stub to compute src op value
// and leave the result in dst.
class DeferredInlineSmiOperation: public DeferredCode {
 public:
  DeferredInlineSmiOperation(Token::Value op,
                             Register dst,
                             Register src,
                             Smi* value,
                             OverwriteMode overwrite_mode)
      : op_(op),
        dst_(dst),
        src_(src),
        value_(value),
        overwrite_mode_(overwrite_mode) {
    set_comment("[ DeferredInlineSmiOperation");
  }

  virtual void Generate();

 private:
  Token::Value op_;
  Register dst_;
  Register src_;
  Smi* value_;
  OverwriteMode overwrite_mode_;
};


class FloatingPointHelper : public AllStatic {
 public:
  // Code pattern for loading a floating point value. Input value must
  // be either a smi or a heap number object (fp value). Requirements:
  // operand on TOS+1. Returns operand as floating point number on FPU
  // stack.
  static void LoadFloatOperand(MacroAssembler* masm, Register scratch);

  // Code pattern for loading a floating point value. Input value must
  // be either a smi or a heap number object (fp value). Requirements:
  // operand in src register. Returns operand as floating point number
  // in XMM register
  static void LoadFloatOperand(MacroAssembler* masm,
                               Register src,
                               XMMRegister dst);

  // Code pattern for loading floating point values. Input values must
  // be either smi or heap number objects (fp values). Requirements:
  // operand_1 on TOS+1 , operand_2 on TOS+2; Returns operands as
  // floating point numbers in XMM registers.
  static void LoadFloatOperands(MacroAssembler* masm,
                                XMMRegister dst1,
                                XMMRegister dst2);

  // Code pattern for loading floating point values onto the fp stack.
  // Input values must be either smi or heap number objects (fp values).
  // Requirements:
  // Register version: operands in registers lhs and rhs.
  // Stack version: operands on TOS+1 and TOS+2.
  // Returns operands as floating point numbers on fp stack.
  static void LoadFloatOperands(MacroAssembler* masm);
  static void LoadFloatOperands(MacroAssembler* masm,
                                Register lhs,
                                Register rhs);

  // Code pattern for loading a floating point value and converting it
  // to a 32 bit integer. Input value must be either a smi or a heap number
  // object.
  // Returns operands as 32-bit sign extended integers in a general purpose
  // registers.
  static void LoadInt32Operand(MacroAssembler* masm,
                               const Operand& src,
                               Register dst);

  // Test if operands are smi or number objects (fp). Requirements:
  // operand_1 in rax, operand_2 in rdx; falls through on float or smi
  // operands, jumps to the non_float label otherwise.
  static void CheckNumberOperands(MacroAssembler* masm,
                                  Label* non_float);
};


// -----------------------------------------------------------------------------
// CodeGenerator implementation.

CodeGenerator::CodeGenerator(int buffer_size,
                             Handle<Script> script,
                             bool is_eval)
    : is_eval_(is_eval),
      script_(script),
      deferred_(8),
      masm_(new MacroAssembler(NULL, buffer_size)),
      scope_(NULL),
      frame_(NULL),
      allocator_(NULL),
      state_(NULL),
      loop_nesting_(0),
      function_return_is_shadowed_(false),
      in_spilled_code_(false) {
}


void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
  // Call the runtime to declare the globals.  The inevitable call
  // will sync frame elements to memory anyway, so we do it eagerly to
  // allow us to push the arguments directly into place.
  frame_->SyncRange(0, frame_->element_count() - 1);

  __ movq(kScratchRegister, pairs, RelocInfo::EMBEDDED_OBJECT);
  frame_->EmitPush(rsi);  // The context is the first argument.
  frame_->EmitPush(kScratchRegister);
  frame_->EmitPush(Smi::FromInt(is_eval() ? 1 : 0));
  Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
  // Return value is ignored.
}


void CodeGenerator::GenCode(FunctionLiteral* function) {
  // Record the position for debugging purposes.
  CodeForFunctionPosition(function);
  ZoneList<Statement*>* body = function->body();

  // Initialize state.
  ASSERT(scope_ == NULL);
  scope_ = function->scope();
  ASSERT(allocator_ == NULL);
  RegisterAllocator register_allocator(this);
  allocator_ = &register_allocator;
  ASSERT(frame_ == NULL);
  frame_ = new VirtualFrame();
  set_in_spilled_code(false);

  // Adjust for function-level loop nesting.
  loop_nesting_ += function->loop_nesting();

  JumpTarget::set_compiling_deferred_code(false);

#ifdef DEBUG
  if (strlen(FLAG_stop_at) > 0 &&
      function->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
    frame_->SpillAll();
    __ int3();
  }
#endif

  // New scope to get automatic timing calculation.
  {  // NOLINT
    HistogramTimerScope codegen_timer(&Counters::code_generation);
    CodeGenState state(this);

    // Entry:
    // Stack: receiver, arguments, return address.
    // rbp: caller's frame pointer
    // rsp: stack pointer
    // rdi: called JS function
    // rsi: callee's context
    allocator_->Initialize();
    frame_->Enter();

    // Allocate space for locals and initialize them.
    frame_->AllocateStackSlots();
    // Initialize the function return target after the locals are set
    // up, because it needs the expected frame height from the frame.
    function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
    function_return_is_shadowed_ = false;

    // Allocate the local context if needed.
    if (scope_->num_heap_slots() > 0) {
      Comment cmnt(masm_, "[ allocate local context");
      // Allocate local context.
      // Get outer context and create a new context based on it.
      frame_->PushFunction();
      Result context = frame_->CallRuntime(Runtime::kNewContext, 1);

      // Update context local.
      frame_->SaveContextRegister();

      // Verify that the runtime call result and rsi agree.
      if (FLAG_debug_code) {
        __ cmpq(context.reg(), rsi);
        __ Assert(equal, "Runtime::NewContext should end up in rsi");
      }
    }

    // TODO(1241774): Improve this code:
    // 1) only needed if we have a context
    // 2) no need to recompute context ptr every single time
    // 3) don't copy parameter operand code from SlotOperand!
    {
      Comment cmnt2(masm_, "[ copy context parameters into .context");

      // Note that iteration order is relevant here! If we have the same
      // parameter twice (e.g., function (x, y, x)), and that parameter
      // needs to be copied into the context, it must be the last argument
      // passed to the parameter that needs to be copied. This is a rare
      // case so we don't check for it, instead we rely on the copying
      // order: such a parameter is copied repeatedly into the same
      // context location and thus the last value is what is seen inside
      // the function.
      for (int i = 0; i < scope_->num_parameters(); i++) {
        Variable* par = scope_->parameter(i);
        Slot* slot = par->slot();
        if (slot != NULL && slot->type() == Slot::CONTEXT) {
          // The use of SlotOperand below is safe in unspilled code
          // because the slot is guaranteed to be a context slot.
          //
          // There are no parameters in the global scope.
          ASSERT(!scope_->is_global_scope());
          frame_->PushParameterAt(i);
          Result value = frame_->Pop();
          value.ToRegister();

          // SlotOperand loads context.reg() with the context object
          // stored to, used below in RecordWrite.
          Result context = allocator_->Allocate();
          ASSERT(context.is_valid());
          __ movq(SlotOperand(slot, context.reg()), value.reg());
          int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
          Result scratch = allocator_->Allocate();
          ASSERT(scratch.is_valid());
          frame_->Spill(context.reg());
          frame_->Spill(value.reg());
          __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg());
        }
      }
    }

    // Store the arguments object.  This must happen after context
    // initialization because the arguments object may be stored in
    // the context.
    if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) {
      StoreArgumentsObject(true);
    }

    // Generate code to 'execute' declarations and initialize functions
    // (source elements). In case of an illegal redeclaration we need to
    // handle that instead of processing the declarations.
    if (scope_->HasIllegalRedeclaration()) {
      Comment cmnt(masm_, "[ illegal redeclarations");
      scope_->VisitIllegalRedeclaration(this);
    } else {
      Comment cmnt(masm_, "[ declarations");
      ProcessDeclarations(scope_->declarations());
      // Bail out if a stack-overflow exception occurred when processing
      // declarations.
      if (HasStackOverflow()) return;
    }

    if (FLAG_trace) {
      frame_->CallRuntime(Runtime::kTraceEnter, 0);
      // Ignore the return value.
    }
    CheckStack();

    // Compile the body of the function in a vanilla state. Don't
    // bother compiling all the code if the scope has an illegal
    // redeclaration.
    if (!scope_->HasIllegalRedeclaration()) {
      Comment cmnt(masm_, "[ function body");
#ifdef DEBUG
      bool is_builtin = Bootstrapper::IsActive();
      bool should_trace =
          is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
      if (should_trace) {
        frame_->CallRuntime(Runtime::kDebugTrace, 0);
        // Ignore the return value.
      }
#endif
      VisitStatements(body);

      // Handle the return from the function.
      if (has_valid_frame()) {
        // If there is a valid frame, control flow can fall off the end of
        // the body.  In that case there is an implicit return statement.
        ASSERT(!function_return_is_shadowed_);
        CodeForReturnPosition(function);
        frame_->PrepareForReturn();
        Result undefined(Factory::undefined_value());
        if (function_return_.is_bound()) {
          function_return_.Jump(&undefined);
        } else {
          function_return_.Bind(&undefined);
          GenerateReturnSequence(&undefined);
        }
      } else if (function_return_.is_linked()) {
        // If the return target has dangling jumps to it, then we have not
        // yet generated the return sequence.  This can happen when (a)
        // control does not flow off the end of the body so we did not
        // compile an artificial return statement just above, and (b) there
        // are return statements in the body but (c) they are all shadowed.
        Result return_value;
        function_return_.Bind(&return_value);
        GenerateReturnSequence(&return_value);
      }
    }
  }

  // Adjust for function-level loop nesting.
  loop_nesting_ -= function->loop_nesting();

  // Code generation state must be reset.
  ASSERT(state_ == NULL);
  ASSERT(loop_nesting() == 0);
  ASSERT(!function_return_is_shadowed_);
  function_return_.Unuse();
  DeleteFrame();

  // Process any deferred code using the register allocator.
  if (!HasStackOverflow()) {
    HistogramTimerScope deferred_timer(&Counters::deferred_code_generation);
    JumpTarget::set_compiling_deferred_code(true);
    ProcessDeferred();
    JumpTarget::set_compiling_deferred_code(false);
  }

  // There is no need to delete the register allocator, it is a
  // stack-allocated local.
  allocator_ = NULL;
  scope_ = NULL;
}

void CodeGenerator::GenerateReturnSequence(Result* return_value) {
  // The return value is a live (but not currently reference counted)
  // reference to rax.  This is safe because the current frame does not
  // contain a reference to rax (it is prepared for the return by spilling
  // all registers).
  if (FLAG_trace) {
    frame_->Push(return_value);
    *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
  }
  return_value->ToRegister(rax);

  // Add a label for checking the size of the code used for returning.
#ifdef DEBUG
  Label check_exit_codesize;
  masm_->bind(&check_exit_codesize);
#endif

  // Leave the frame and return popping the arguments and the
  // receiver.
  frame_->Exit();
  masm_->ret((scope_->num_parameters() + 1) * kPointerSize);
#ifdef ENABLE_DEBUGGER_SUPPORT
  // Add padding that will be overwritten by a debugger breakpoint.
  // frame_->Exit() generates "movq rsp, rbp; pop rbp; ret k"
  // with length 7 (3 + 1 + 3).
  const int kPadding = Debug::kX64JSReturnSequenceLength - 7;
  for (int i = 0; i < kPadding; ++i) {
    masm_->int3();
  }
  // Check that the size of the code used for returning matches what is
  // expected by the debugger.
  ASSERT_EQ(Debug::kX64JSReturnSequenceLength,
            masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
#endif
  DeleteFrame();
}


#ifdef DEBUG
bool CodeGenerator::HasValidEntryRegisters() {
  return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0))
      && (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0))
      && (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0))
      && (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0))
      && (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0))
      && (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0))
      && (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0))
      && (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0))
      && (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0))
      && (allocator()->count(r15) == (frame()->is_used(r15) ? 1 : 0))
      && (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0));
}
#endif


class DeferredReferenceGetKeyedValue: public DeferredCode {
 public:
  explicit DeferredReferenceGetKeyedValue(Register dst,
                                          Register receiver,
                                          Register key,
                                          bool is_global)
      : dst_(dst), receiver_(receiver), key_(key), is_global_(is_global) {
    set_comment("[ DeferredReferenceGetKeyedValue");
  }

  virtual void Generate();

  Label* patch_site() { return &patch_site_; }

 private:
  Label patch_site_;
  Register dst_;
  Register receiver_;
  Register key_;
  bool is_global_;
};


void DeferredReferenceGetKeyedValue::Generate() {
  __ push(receiver_);  // First IC argument.
  __ push(key_);       // Second IC argument.

  // Calculate the delta from the IC call instruction to the map check
  // movq instruction in the inlined version.  This delta is stored in
  // a test(rax, delta) instruction after the call so that we can find
  // it in the IC initialization code and patch the movq instruction.
  // This means that we cannot allow test instructions after calls to
  // KeyedLoadIC stubs in other places.
  Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
  RelocInfo::Mode mode = is_global_
                         ? RelocInfo::CODE_TARGET_CONTEXT
                         : RelocInfo::CODE_TARGET;
  __ Call(ic, mode);
  // The delta from the start of the map-compare instruction to the
  // test instruction.  We use masm_-> directly here instead of the __
  // macro because the macro sometimes uses macro expansion to turn
  // into something that can't return a value.  This is encountered
  // when doing generated code coverage tests.
  int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
  // Here we use masm_-> instead of the __ macro because this is the
  // instruction that gets patched and coverage code gets in the way.
  // TODO(X64): Consider whether it's worth switching the test to a
  // 7-byte NOP with non-zero immediate (0f 1f 80 xxxxxxxx) which won't
  // be generated normally.
  masm_->testl(rax, Immediate(-delta_to_patch_site));
  __ IncrementCounter(&Counters::keyed_load_inline_miss, 1);

  if (!dst_.is(rax)) __ movq(dst_, rax);
  __ pop(key_);
  __ pop(receiver_);
}


class DeferredReferenceSetKeyedValue: public DeferredCode {
 public:
  DeferredReferenceSetKeyedValue(Register value,
                                 Register key,
                                 Register receiver)
      : value_(value), key_(key), receiver_(receiver) {
    set_comment("[ DeferredReferenceSetKeyedValue");
  }

  virtual void Generate();

  Label* patch_site() { return &patch_site_; }

 private:
  Register value_;
  Register key_;
  Register receiver_;
  Label patch_site_;
};


void DeferredReferenceSetKeyedValue::Generate() {
  __ IncrementCounter(&Counters::keyed_store_inline_miss, 1);
  // Push receiver and key arguments on the stack.
  __ push(receiver_);
  __ push(key_);
  // Move value argument to eax as expected by the IC stub.
  if (!value_.is(rax)) __ movq(rax, value_);
  // Call the IC stub.
  Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
  __ Call(ic, RelocInfo::CODE_TARGET);
  // The delta from the start of the map-compare instructions (initial movq)
  // to the test instruction.  We use masm_-> directly here instead of the
  // __ macro because the macro sometimes uses macro expansion to turn
  // into something that can't return a value.  This is encountered
  // when doing generated code coverage tests.
  int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
  // Here we use masm_-> instead of the __ macro because this is the
  // instruction that gets patched and coverage code gets in the way.
  masm_->testl(rax, Immediate(-delta_to_patch_site));
  // Restore value (returned from store IC), key and receiver
  // registers.
  if (!value_.is(rax)) __ movq(value_, rax);
  __ pop(key_);
  __ pop(receiver_);
}


void CodeGenerator::CallApplyLazy(Property* apply,
                                  Expression* receiver,
                                  VariableProxy* arguments,
                                  int position) {
  ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION);
  ASSERT(arguments->IsArguments());

  JumpTarget slow, done;

  // Load the apply function onto the stack. This will usually
  // give us a megamorphic load site. Not super, but it works.
  Reference ref(this, apply);
  ref.GetValue();
  ASSERT(ref.type() == Reference::NAMED);

  // Load the receiver and the existing arguments object onto the
  // expression stack. Avoid allocating the arguments object here.
  Load(receiver);
  LoadFromSlot(scope_->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);

  // Emit the source position information after having loaded the
  // receiver and the arguments.
  CodeForSourcePosition(position);

  // Check if the arguments object has been lazily allocated
  // already. If so, just use that instead of copying the arguments
  // from the stack. This also deals with cases where a local variable
  // named 'arguments' has been introduced.
  frame_->Dup();
  Result probe = frame_->Pop();
  bool try_lazy = true;
  if (probe.is_constant()) {
    try_lazy = probe.handle()->IsTheHole();
  } else {
    __ Cmp(probe.reg(), Factory::the_hole_value());
    probe.Unuse();
    slow.Branch(not_equal);
  }

  if (try_lazy) {
    JumpTarget build_args;

    // Get rid of the arguments object probe.
    frame_->Drop();

    // Before messing with the execution stack, we sync all
    // elements. This is bound to happen anyway because we're
    // about to call a function.
    frame_->SyncRange(0, frame_->element_count() - 1);

    // Check that the receiver really is a JavaScript object.
    {
      frame_->PushElementAt(0);
      Result receiver = frame_->Pop();
      receiver.ToRegister();
      Condition is_smi = masm_->CheckSmi(receiver.reg());
      build_args.Branch(is_smi);
      // We allow all JSObjects including JSFunctions.  As long as
      // JS_FUNCTION_TYPE is the last instance type and it is right
      // after LAST_JS_OBJECT_TYPE, we do not have to check the upper
      // bound.
      ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
      ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
      __ CmpObjectType(receiver.reg(), FIRST_JS_OBJECT_TYPE, kScratchRegister);
      build_args.Branch(below);
    }

    // Verify that we're invoking Function.prototype.apply.
    {
      frame_->PushElementAt(1);
      Result apply = frame_->Pop();
      apply.ToRegister();
      Condition is_smi = masm_->CheckSmi(apply.reg());
      build_args.Branch(is_smi);
      Result tmp = allocator_->Allocate();
      __ CmpObjectType(apply.reg(), JS_FUNCTION_TYPE, tmp.reg());
      build_args.Branch(not_equal);
      __ movq(tmp.reg(),
              FieldOperand(apply.reg(), JSFunction::kSharedFunctionInfoOffset));
      Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply));
      __ Cmp(FieldOperand(tmp.reg(), SharedFunctionInfo::kCodeOffset),
             apply_code);
      build_args.Branch(not_equal);
    }

    // Get the function receiver from the stack. Check that it
    // really is a function.
    __ movq(rdi, Operand(rsp, 2 * kPointerSize));
    Condition is_smi = masm_->CheckSmi(rdi);
    build_args.Branch(is_smi);
    __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
    build_args.Branch(not_equal);

    // Copy the arguments to this function possibly from the
    // adaptor frame below it.
    Label invoke, adapted;
    __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
    __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
                  Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
    __ j(equal, &adapted);

    // No arguments adaptor frame. Copy fixed number of arguments.
    __ movq(rax, Immediate(scope_->num_parameters()));
    for (int i = 0; i < scope_->num_parameters(); i++) {
      __ push(frame_->ParameterAt(i));
    }
    __ jmp(&invoke);

    // Arguments adaptor frame present. Copy arguments from there, but
    // avoid copying too many arguments to avoid stack overflows.
    __ bind(&adapted);
    static const uint32_t kArgumentsLimit = 1 * KB;
    __ movq(rax, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
    __ SmiToInteger32(rax, rax);
    __ movq(rcx, rax);
    __ cmpq(rax, Immediate(kArgumentsLimit));
    build_args.Branch(above);

    // Loop through the arguments pushing them onto the execution
    // stack. We don't inform the virtual frame of the push, so we don't
    // have to worry about getting rid of the elements from the virtual
    // frame.
    Label loop;
    __ testl(rcx, rcx);
    __ j(zero, &invoke);
    __ bind(&loop);
    __ push(Operand(rdx, rcx, times_pointer_size, 1 * kPointerSize));
    __ decl(rcx);
    __ j(not_zero, &loop);

    // Invoke the function. The virtual frame knows about the receiver
    // so make sure to forget that explicitly.
    __ bind(&invoke);
    ParameterCount actual(rax);
    __ InvokeFunction(rdi, actual, CALL_FUNCTION);
    frame_->Forget(1);
    Result result = allocator()->Allocate(rax);
    frame_->SetElementAt(0, &result);
    done.Jump();

    // Slow-case: Allocate the arguments object since we know it isn't
    // there, and fall-through to the slow-case where we call
    // Function.prototype.apply.
    build_args.Bind();
    Result arguments_object = StoreArgumentsObject(false);
    frame_->Push(&arguments_object);
    slow.Bind();
  }

  // Flip the apply function and the function to call on the stack, so
  // the function looks like the receiver of the apply call. This way,
  // the generic Function.prototype.apply implementation can deal with
  // the call like it usually does.
  Result a2 = frame_->Pop();
  Result a1 = frame_->Pop();
  Result ap = frame_->Pop();
  Result fn = frame_->Pop();
  frame_->Push(&ap);
  frame_->Push(&fn);
  frame_->Push(&a1);
  frame_->Push(&a2);
  CallFunctionStub call_function(2, NOT_IN_LOOP);
  Result res = frame_->CallStub(&call_function, 3);
  frame_->Push(&res);

  // All done. Restore context register after call.
  if (try_lazy) done.Bind();
  frame_->RestoreContextRegister();
}


class DeferredStackCheck: public DeferredCode {
 public:
  DeferredStackCheck() {
    set_comment("[ DeferredStackCheck");
  }

  virtual void Generate();
};


void DeferredStackCheck::Generate() {
  StackCheckStub stub;
  __ CallStub(&stub);
}


void CodeGenerator::CheckStack() {
  DeferredStackCheck* deferred = new DeferredStackCheck;
  __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
  deferred->Branch(below);
  deferred->BindExit();
}


void CodeGenerator::VisitAndSpill(Statement* statement) {
  // TODO(X64): No architecture specific code. Move to shared location.
  ASSERT(in_spilled_code());
  set_in_spilled_code(false);
  Visit(statement);
  if (frame_ != NULL) {
    frame_->SpillAll();
  }
  set_in_spilled_code(true);
}


void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
  ASSERT(in_spilled_code());
  set_in_spilled_code(false);
  VisitStatements(statements);
  if (frame_ != NULL) {
    frame_->SpillAll();
  }
  set_in_spilled_code(true);
}


void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
  ASSERT(!in_spilled_code());
  for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
    Visit(statements->at(i));
  }
}


void CodeGenerator::VisitBlock(Block* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ Block");
  CodeForStatementPosition(node);
  node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
  VisitStatements(node->statements());
  if (node->break_target()->is_linked()) {
    node->break_target()->Bind();
  }
  node->break_target()->Unuse();
}


void CodeGenerator::VisitDeclaration(Declaration* node) {
  Comment cmnt(masm_, "[ Declaration");
  Variable* var = node->proxy()->var();
  ASSERT(var != NULL);  // must have been resolved
  Slot* slot = var->slot();

  // If it was not possible to allocate the variable at compile time,
  // we need to "declare" it at runtime to make sure it actually
  // exists in the local context.
  if (slot != NULL && slot->type() == Slot::LOOKUP) {
    // Variables with a "LOOKUP" slot were introduced as non-locals
    // during variable resolution and must have mode DYNAMIC.
    ASSERT(var->is_dynamic());
    // For now, just do a runtime call.  Sync the virtual frame eagerly
    // so we can simply push the arguments into place.
    frame_->SyncRange(0, frame_->element_count() - 1);
    frame_->EmitPush(rsi);
    __ movq(kScratchRegister, var->name(), RelocInfo::EMBEDDED_OBJECT);
    frame_->EmitPush(kScratchRegister);
    // Declaration nodes are always introduced in one of two modes.
    ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
    PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
    frame_->EmitPush(Smi::FromInt(attr));
    // Push initial value, if any.
    // Note: For variables we must not push an initial value (such as
    // 'undefined') because we may have a (legal) redeclaration and we
    // must not destroy the current value.
    if (node->mode() == Variable::CONST) {
      frame_->EmitPush(Heap::kTheHoleValueRootIndex);
    } else if (node->fun() != NULL) {
      Load(node->fun());
    } else {
      frame_->EmitPush(Smi::FromInt(0));  // no initial value!
    }
    Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
    // Ignore the return value (declarations are statements).
    return;
  }

  ASSERT(!var->is_global());

  // If we have a function or a constant, we need to initialize the variable.
  Expression* val = NULL;
  if (node->mode() == Variable::CONST) {
    val = new Literal(Factory::the_hole_value());
  } else {
    val = node->fun();  // NULL if we don't have a function
  }

  if (val != NULL) {
    {
      // Set the initial value.
      Reference target(this, node->proxy());
      Load(val);
      target.SetValue(NOT_CONST_INIT);
      // The reference is removed from the stack (preserving TOS) when
      // it goes out of scope.
    }
    // Get rid of the assigned value (declarations are statements).
    frame_->Drop();
  }
}


void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ ExpressionStatement");
  CodeForStatementPosition(node);
  Expression* expression = node->expression();
  expression->MarkAsStatement();
  Load(expression);
  // Remove the lingering expression result from the top of stack.
  frame_->Drop();
}


void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "// EmptyStatement");
  CodeForStatementPosition(node);
  // nothing to do
}


void CodeGenerator::VisitIfStatement(IfStatement* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ IfStatement");
  // Generate different code depending on which parts of the if statement
  // are present or not.
  bool has_then_stm = node->HasThenStatement();
  bool has_else_stm = node->HasElseStatement();

  CodeForStatementPosition(node);
  JumpTarget exit;
  if (has_then_stm && has_else_stm) {
    JumpTarget then;
    JumpTarget else_;
    ControlDestination dest(&then, &else_, true);
    LoadCondition(node->condition(), &dest, true);

    if (dest.false_was_fall_through()) {
      // The else target was bound, so we compile the else part first.
      Visit(node->else_statement());

      // We may have dangling jumps to the then part.
      if (then.is_linked()) {
        if (has_valid_frame()) exit.Jump();
        then.Bind();
        Visit(node->then_statement());
      }
    } else {
      // The then target was bound, so we compile the then part first.
      Visit(node->then_statement());

      if (else_.is_linked()) {
        if (has_valid_frame()) exit.Jump();
        else_.Bind();
        Visit(node->else_statement());
      }
    }

  } else if (has_then_stm) {
    ASSERT(!has_else_stm);
    JumpTarget then;
    ControlDestination dest(&then, &exit, true);
    LoadCondition(node->condition(), &dest, true);

    if (dest.false_was_fall_through()) {
      // The exit label was bound.  We may have dangling jumps to the
      // then part.
      if (then.is_linked()) {
        exit.Unuse();
        exit.Jump();
        then.Bind();
        Visit(node->then_statement());
      }
    } else {
      // The then label was bound.
      Visit(node->then_statement());
    }

  } else if (has_else_stm) {
    ASSERT(!has_then_stm);
    JumpTarget else_;
    ControlDestination dest(&exit, &else_, false);
    LoadCondition(node->condition(), &dest, true);

    if (dest.true_was_fall_through()) {
      // The exit label was bound.  We may have dangling jumps to the
      // else part.
      if (else_.is_linked()) {
        exit.Unuse();
        exit.Jump();
        else_.Bind();
        Visit(node->else_statement());
      }
    } else {
      // The else label was bound.
      Visit(node->else_statement());
    }

  } else {
    ASSERT(!has_then_stm && !has_else_stm);
    // We only care about the condition's side effects (not its value
    // or control flow effect).  LoadCondition is called without
    // forcing control flow.
    ControlDestination dest(&exit, &exit, true);
    LoadCondition(node->condition(), &dest, false);
    if (!dest.is_used()) {
      // We got a value on the frame rather than (or in addition to)
      // control flow.
      frame_->Drop();
    }
  }

  if (exit.is_linked()) {
    exit.Bind();
  }
}


void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ ContinueStatement");
  CodeForStatementPosition(node);
  node->target()->continue_target()->Jump();
}


void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ BreakStatement");
  CodeForStatementPosition(node);
  node->target()->break_target()->Jump();
}


void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ ReturnStatement");

  CodeForStatementPosition(node);
  Load(node->expression());
  Result return_value = frame_->Pop();
  if (function_return_is_shadowed_) {
    function_return_.Jump(&return_value);
  } else {
    frame_->PrepareForReturn();
    if (function_return_.is_bound()) {
      // If the function return label is already bound we reuse the
      // code by jumping to the return site.
      function_return_.Jump(&return_value);
    } else {
      function_return_.Bind(&return_value);
      GenerateReturnSequence(&return_value);
    }
  }
}


void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ WithEnterStatement");
  CodeForStatementPosition(node);
  Load(node->expression());
  Result context;
  if (node->is_catch_block()) {
    context = frame_->CallRuntime(Runtime::kPushCatchContext, 1);
  } else {
    context = frame_->CallRuntime(Runtime::kPushContext, 1);
  }

  // Update context local.
  frame_->SaveContextRegister();

  // Verify that the runtime call result and rsi agree.
  if (FLAG_debug_code) {
    __ cmpq(context.reg(), rsi);
    __ Assert(equal, "Runtime::NewContext should end up in rsi");
  }
}


void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ WithExitStatement");
  CodeForStatementPosition(node);
  // Pop context.
  __ movq(rsi, ContextOperand(rsi, Context::PREVIOUS_INDEX));
  // Update context local.
  frame_->SaveContextRegister();
}


void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
  // TODO(X64): This code is completely generic and should be moved somewhere
  // where it can be shared between architectures.
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ SwitchStatement");
  CodeForStatementPosition(node);
  node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);

  // Compile the switch value.
  Load(node->tag());

  ZoneList<CaseClause*>* cases = node->cases();
  int length = cases->length();
  CaseClause* default_clause = NULL;

  JumpTarget next_test;
  // Compile the case label expressions and comparisons.  Exit early
  // if a comparison is unconditionally true.  The target next_test is
  // bound before the loop in order to indicate control flow to the
  // first comparison.
  next_test.Bind();
  for (int i = 0; i < length && !next_test.is_unused(); i++) {
    CaseClause* clause = cases->at(i);
    // The default is not a test, but remember it for later.
    if (clause->is_default()) {
      default_clause = clause;
      continue;
    }

    Comment cmnt(masm_, "[ Case comparison");
    // We recycle the same target next_test for each test.  Bind it if
    // the previous test has not done so and then unuse it for the
    // loop.
    if (next_test.is_linked()) {
      next_test.Bind();
    }
    next_test.Unuse();

    // Duplicate the switch value.
    frame_->Dup();

    // Compile the label expression.
    Load(clause->label());

    // Compare and branch to the body if true or the next test if
    // false.  Prefer the next test as a fall through.
    ControlDestination dest(clause->body_target(), &next_test, false);
    Comparison(equal, true, &dest);

    // If the comparison fell through to the true target, jump to the
    // actual body.
    if (dest.true_was_fall_through()) {
      clause->body_target()->Unuse();
      clause->body_target()->Jump();
    }
  }

  // If there was control flow to a next test from the last one
  // compiled, compile a jump to the default or break target.
  if (!next_test.is_unused()) {
    if (next_test.is_linked()) {
      next_test.Bind();
    }
    // Drop the switch value.
    frame_->Drop();
    if (default_clause != NULL) {
      default_clause->body_target()->Jump();
    } else {
      node->break_target()->Jump();
    }
  }

  // The last instruction emitted was a jump, either to the default
  // clause or the break target, or else to a case body from the loop
  // that compiles the tests.
  ASSERT(!has_valid_frame());
  // Compile case bodies as needed.
  for (int i = 0; i < length; i++) {
    CaseClause* clause = cases->at(i);

    // There are two ways to reach the body: from the corresponding
    // test or as the fall through of the previous body.
    if (clause->body_target()->is_linked() || has_valid_frame()) {
      if (clause->body_target()->is_linked()) {
        if (has_valid_frame()) {
          // If we have both a jump to the test and a fall through, put
          // a jump on the fall through path to avoid the dropping of
          // the switch value on the test path.  The exception is the
          // default which has already had the switch value dropped.
          if (clause->is_default()) {
            clause->body_target()->Bind();
          } else {
            JumpTarget body;
            body.Jump();
            clause->body_target()->Bind();
            frame_->Drop();
            body.Bind();
          }
        } else {
          // No fall through to worry about.
          clause->body_target()->Bind();
          if (!clause->is_default()) {
            frame_->Drop();
          }
        }
      } else {
        // Otherwise, we have only fall through.
        ASSERT(has_valid_frame());
      }

      // We are now prepared to compile the body.
      Comment cmnt(masm_, "[ Case body");
      VisitStatements(clause->statements());
    }
    clause->body_target()->Unuse();
  }

  // We may not have a valid frame here so bind the break target only
  // if needed.
  if (node->break_target()->is_linked()) {
    node->break_target()->Bind();
  }
  node->break_target()->Unuse();
}


void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ DoWhileStatement");
  CodeForStatementPosition(node);
  node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
  JumpTarget body(JumpTarget::BIDIRECTIONAL);
  IncrementLoopNesting();

  ConditionAnalysis info = AnalyzeCondition(node->cond());
  // Label the top of the loop for the backward jump if necessary.
  switch (info) {
    case ALWAYS_TRUE:
      // Use the continue target.
      node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
      node->continue_target()->Bind();
      break;
    case ALWAYS_FALSE:
      // No need to label it.
      node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
      break;
    case DONT_KNOW:
      // Continue is the test, so use the backward body target.
      node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
      body.Bind();
      break;
  }

  CheckStack();  // TODO(1222600): ignore if body contains calls.
  Visit(node->body());

  // Compile the test.
  switch (info) {
    case ALWAYS_TRUE:
      // If control flow can fall off the end of the body, jump back
      // to the top and bind the break target at the exit.
      if (has_valid_frame()) {
        node->continue_target()->Jump();
      }
      if (node->break_target()->is_linked()) {
        node->break_target()->Bind();
      }
      break;
    case ALWAYS_FALSE:
      // We may have had continues or breaks in the body.
      if (node->continue_target()->is_linked()) {
        node->continue_target()->Bind();
      }
      if (node->break_target()->is_linked()) {
        node->break_target()->Bind();
      }
      break;
    case DONT_KNOW:
      // We have to compile the test expression if it can be reached by
      // control flow falling out of the body or via continue.
      if (node->continue_target()->is_linked()) {
        node->continue_target()->Bind();
      }
      if (has_valid_frame()) {
        Comment cmnt(masm_, "[ DoWhileCondition");
        CodeForDoWhileConditionPosition(node);
        ControlDestination dest(&body, node->break_target(), false);
        LoadCondition(node->cond(), &dest, true);
      }
      if (node->break_target()->is_linked()) {
        node->break_target()->Bind();
      }
      break;
  }

  DecrementLoopNesting();
  node->continue_target()->Unuse();
  node->break_target()->Unuse();
}


void CodeGenerator::VisitWhileStatement(WhileStatement* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ WhileStatement");
  CodeForStatementPosition(node);

  // If the condition is always false and has no side effects, we do not
  // need to compile anything.
  ConditionAnalysis info = AnalyzeCondition(node->cond());
  if (info == ALWAYS_FALSE) return;

  // Do not duplicate conditions that may have function literal
  // subexpressions.  This can cause us to compile the function literal
  // twice.
  bool test_at_bottom = !node->may_have_function_literal();
  node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
  IncrementLoopNesting();
  JumpTarget body;
  if (test_at_bottom) {
    body.set_direction(JumpTarget::BIDIRECTIONAL);
  }

  // Based on the condition analysis, compile the test as necessary.
  switch (info) {
    case ALWAYS_TRUE:
      // We will not compile the test expression.  Label the top of the
      // loop with the continue target.
      node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
      node->continue_target()->Bind();
      break;
    case DONT_KNOW: {
      if (test_at_bottom) {
        // Continue is the test at the bottom, no need to label the test
        // at the top.  The body is a backward target.
        node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
      } else {
        // Label the test at the top as the continue target.  The body
        // is a forward-only target.
        node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
        node->continue_target()->Bind();
      }
      // Compile the test with the body as the true target and preferred
      // fall-through and with the break target as the false target.
      ControlDestination dest(&body, node->break_target(), true);
      LoadCondition(node->cond(), &dest, true);

      if (dest.false_was_fall_through()) {
        // If we got the break target as fall-through, the test may have
        // been unconditionally false (if there are no jumps to the
        // body).
        if (!body.is_linked()) {
          DecrementLoopNesting();
          return;
        }

        // Otherwise, jump around the body on the fall through and then
        // bind the body target.
        node->break_target()->Unuse();
        node->break_target()->Jump();
        body.Bind();
      }
      break;
    }
    case ALWAYS_FALSE:
      UNREACHABLE();
      break;
  }

  CheckStack();  // TODO(1222600): ignore if body contains calls.
  Visit(node->body());

  // Based on the condition analysis, compile the backward jump as
  // necessary.
  switch (info) {
    case ALWAYS_TRUE:
      // The loop body has been labeled with the continue target.
      if (has_valid_frame()) {
        node->continue_target()->Jump();
      }
      break;
    case DONT_KNOW:
      if (test_at_bottom) {
        // If we have chosen to recompile the test at the bottom,
        // then it is the continue target.
        if (node->continue_target()->is_linked()) {
          node->continue_target()->Bind();
        }
        if (has_valid_frame()) {
          // The break target is the fall-through (body is a backward
          // jump from here and thus an invalid fall-through).
          ControlDestination dest(&body, node->break_target(), false);
          LoadCondition(node->cond(), &dest, true);
        }
      } else {
        // If we have chosen not to recompile the test at the
        // bottom, jump back to the one at the top.
        if (has_valid_frame()) {
          node->continue_target()->Jump();
        }
      }
      break;
    case ALWAYS_FALSE:
      UNREACHABLE();
      break;
  }

  // The break target may be already bound (by the condition), or there
  // may not be a valid frame.  Bind it only if needed.
  if (node->break_target()->is_linked()) {
    node->break_target()->Bind();
  }
  DecrementLoopNesting();
}


void CodeGenerator::VisitForStatement(ForStatement* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ ForStatement");
  CodeForStatementPosition(node);

  // Compile the init expression if present.
  if (node->init() != NULL) {
    Visit(node->init());
  }

  // If the condition is always false and has no side effects, we do not
  // need to compile anything else.
  ConditionAnalysis info = AnalyzeCondition(node->cond());
  if (info == ALWAYS_FALSE) return;

  // Do not duplicate conditions that may have function literal
  // subexpressions.  This can cause us to compile the function literal
  // twice.
  bool test_at_bottom = !node->may_have_function_literal();
  node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
  IncrementLoopNesting();

  // Target for backward edge if no test at the bottom, otherwise
  // unused.
  JumpTarget loop(JumpTarget::BIDIRECTIONAL);

  // Target for backward edge if there is a test at the bottom,
  // otherwise used as target for test at the top.
  JumpTarget body;
  if (test_at_bottom) {
    body.set_direction(JumpTarget::BIDIRECTIONAL);
  }

  // Based on the condition analysis, compile the test as necessary.
  switch (info) {
    case ALWAYS_TRUE:
      // We will not compile the test expression.  Label the top of the
      // loop.
      if (node->next() == NULL) {
        // Use the continue target if there is no update expression.
        node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
        node->continue_target()->Bind();
      } else {
        // Otherwise use the backward loop target.
        node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
        loop.Bind();
      }
      break;
    case DONT_KNOW: {
      if (test_at_bottom) {
        // Continue is either the update expression or the test at the
        // bottom, no need to label the test at the top.
        node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
      } else if (node->next() == NULL) {
        // We are not recompiling the test at the bottom and there is no
        // update expression.
        node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
        node->continue_target()->Bind();
      } else {
        // We are not recompiling the test at the bottom and there is an
        // update expression.
        node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
        loop.Bind();
      }

      // Compile the test with the body as the true target and preferred
      // fall-through and with the break target as the false target.
      ControlDestination dest(&body, node->break_target(), true);
      LoadCondition(node->cond(), &dest, true);

      if (dest.false_was_fall_through()) {
        // If we got the break target as fall-through, the test may have
        // been unconditionally false (if there are no jumps to the
        // body).
        if (!body.is_linked()) {
          DecrementLoopNesting();
          return;
        }

        // Otherwise, jump around the body on the fall through and then
        // bind the body target.
        node->break_target()->Unuse();
        node->break_target()->Jump();
        body.Bind();
      }
      break;
    }
    case ALWAYS_FALSE:
      UNREACHABLE();
      break;
  }

  CheckStack();  // TODO(1222600): ignore if body contains calls.
  Visit(node->body());

  // If there is an update expression, compile it if necessary.
  if (node->next() != NULL) {
    if (node->continue_target()->is_linked()) {
      node->continue_target()->Bind();
    }

    // Control can reach the update by falling out of the body or by a
    // continue.
    if (has_valid_frame()) {
      // Record the source position of the statement as this code which
      // is after the code for the body actually belongs to the loop
      // statement and not the body.
      CodeForStatementPosition(node);
      Visit(node->next());
    }
  }

  // Based on the condition analysis, compile the backward jump as
  // necessary.
  switch (info) {
    case ALWAYS_TRUE:
      if (has_valid_frame()) {
        if (node->next() == NULL) {
          node->continue_target()->Jump();
        } else {
          loop.Jump();
        }
      }
      break;
    case DONT_KNOW:
      if (test_at_bottom) {
        if (node->continue_target()->is_linked()) {
          // We can have dangling jumps to the continue target if there
          // was no update expression.
          node->continue_target()->Bind();
        }
        // Control can reach the test at the bottom by falling out of
        // the body, by a continue in the body, or from the update
        // expression.
        if (has_valid_frame()) {
          // The break target is the fall-through (body is a backward
          // jump from here).
          ControlDestination dest(&body, node->break_target(), false);
          LoadCondition(node->cond(), &dest, true);
        }
      } else {
        // Otherwise, jump back to the test at the top.
        if (has_valid_frame()) {
          if (node->next() == NULL) {
            node->continue_target()->Jump();
          } else {
            loop.Jump();
          }
        }
      }
      break;
    case ALWAYS_FALSE:
      UNREACHABLE();
      break;
  }

  // The break target may be already bound (by the condition), or there
  // may not be a valid frame.  Bind it only if needed.
  if (node->break_target()->is_linked()) {
    node->break_target()->Bind();
  }
  DecrementLoopNesting();
}


void CodeGenerator::VisitForInStatement(ForInStatement* node) {
  ASSERT(!in_spilled_code());
  VirtualFrame::SpilledScope spilled_scope;
  Comment cmnt(masm_, "[ ForInStatement");
  CodeForStatementPosition(node);

  JumpTarget primitive;
  JumpTarget jsobject;
  JumpTarget fixed_array;
  JumpTarget entry(JumpTarget::BIDIRECTIONAL);
  JumpTarget end_del_check;
  JumpTarget exit;

  // Get the object to enumerate over (converted to JSObject).
  LoadAndSpill(node->enumerable());

  // Both SpiderMonkey and kjs ignore null and undefined in contrast
  // to the specification.  12.6.4 mandates a call to ToObject.
  frame_->EmitPop(rax);

  // rax: value to be iterated over
  __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
  exit.Branch(equal);
  __ CompareRoot(rax, Heap::kNullValueRootIndex);
  exit.Branch(equal);

  // Stack layout in body:
  // [iteration counter (smi)] <- slot 0
  // [length of array]         <- slot 1
  // [FixedArray]              <- slot 2
  // [Map or 0]                <- slot 3
  // [Object]                  <- slot 4

  // Check if enumerable is already a JSObject
  // rax: value to be iterated over
  Condition is_smi = masm_->CheckSmi(rax);
  primitive.Branch(is_smi);
  __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
  jsobject.Branch(above_equal);

  primitive.Bind();
  frame_->EmitPush(rax);
  frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1);
  // function call returns the value in rax, which is where we want it below

  jsobject.Bind();
  // Get the set of properties (as a FixedArray or Map).
  // rax: value to be iterated over
  frame_->EmitPush(rax);  // push the object being iterated over (slot 4)

  frame_->EmitPush(rax);  // push the Object (slot 4) for the runtime call
  frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);

  // If we got a Map, we can do a fast modification check.
  // Otherwise, we got a FixedArray, and we have to do a slow check.
  // rax: map or fixed array (result from call to
  // Runtime::kGetPropertyNamesFast)
  __ movq(rdx, rax);
  __ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
  __ CompareRoot(rcx, Heap::kMetaMapRootIndex);
  fixed_array.Branch(not_equal);

  // Get enum cache
  // rax: map (result from call to Runtime::kGetPropertyNamesFast)
  __ movq(rcx, rax);
  __ movq(rcx, FieldOperand(rcx, Map::kInstanceDescriptorsOffset));
  // Get the bridge array held in the enumeration index field.
  __ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumerationIndexOffset));
  // Get the cache from the bridge array.
  __ movq(rdx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset));

  frame_->EmitPush(rax);  // <- slot 3
  frame_->EmitPush(rdx);  // <- slot 2
  __ movl(rax, FieldOperand(rdx, FixedArray::kLengthOffset));
  __ Integer32ToSmi(rax, rax);
  frame_->EmitPush(rax);  // <- slot 1
  frame_->EmitPush(Smi::FromInt(0));  // <- slot 0
  entry.Jump();

  fixed_array.Bind();
  // rax: fixed array (result from call to Runtime::kGetPropertyNamesFast)
  frame_->EmitPush(Smi::FromInt(0));  // <- slot 3
  frame_->EmitPush(rax);  // <- slot 2

  // Push the length of the array and the initial index onto the stack.
  __ movl(rax, FieldOperand(rax, FixedArray::kLengthOffset));
  __ Integer32ToSmi(rax, rax);
  frame_->EmitPush(rax);  // <- slot 1
  frame_->EmitPush(Smi::FromInt(0));  // <- slot 0

  // Condition.
  entry.Bind();
  // Grab the current frame's height for the break and continue
  // targets only after all the state is pushed on the frame.
  node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
  node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);

  __ movq(rax, frame_->ElementAt(0));  // load the current count
  __ SmiCompare(frame_->ElementAt(1), rax);  // compare to the array length
  node->break_target()->Branch(below_equal);

  // Get the i'th entry of the array.
  __ movq(rdx, frame_->ElementAt(2));
  SmiIndex index = masm_->SmiToIndex(rbx, rax, kPointerSizeLog2);
  __ movq(rbx,
          FieldOperand(rdx, index.reg, index.scale, FixedArray::kHeaderSize));

  // Get the expected map from the stack or a zero map in the
  // permanent slow case rax: current iteration count rbx: i'th entry
  // of the enum cache
  __ movq(rdx, frame_->ElementAt(3));
  // Check if the expected map still matches that of the enumerable.
  // If not, we have to filter the key.
  // rax: current iteration count
  // rbx: i'th entry of the enum cache
  // rdx: expected map value
  __ movq(rcx, frame_->ElementAt(4));
  __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
  __ cmpq(rcx, rdx);
  end_del_check.Branch(equal);

  // Convert the entry to a string (or null if it isn't a property anymore).
  frame_->EmitPush(frame_->ElementAt(4));  // push enumerable
  frame_->EmitPush(rbx);  // push entry
  frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2);
  __ movq(rbx, rax);

  // If the property has been removed while iterating, we just skip it.
  __ CompareRoot(rbx, Heap::kNullValueRootIndex);
  node->continue_target()->Branch(equal);

  end_del_check.Bind();
  // Store the entry in the 'each' expression and take another spin in the
  // loop.  rdx: i'th entry of the enum cache (or string there of)
  frame_->EmitPush(rbx);
  { Reference each(this, node->each());
    // Loading a reference may leave the frame in an unspilled state.
    frame_->SpillAll();
    if (!each.is_illegal()) {
      if (each.size() > 0) {
        frame_->EmitPush(frame_->ElementAt(each.size()));
      }
      // If the reference was to a slot we rely on the convenient property
      // that it doesn't matter whether a value (eg, ebx pushed above) is
      // right on top of or right underneath a zero-sized reference.
      each.SetValue(NOT_CONST_INIT);
      if (each.size() > 0) {
        // It's safe to pop the value lying on top of the reference before
        // unloading the reference itself (which preserves the top of stack,
        // ie, now the topmost value of the non-zero sized reference), since
        // we will discard the top of stack after unloading the reference
        // anyway.
        frame_->Drop();
      }
    }
  }
  // Unloading a reference may leave the frame in an unspilled state.
  frame_->SpillAll();

  // Discard the i'th entry pushed above or else the remainder of the
  // reference, whichever is currently on top of the stack.
  frame_->Drop();

  // Body.
  CheckStack();  // TODO(1222600): ignore if body contains calls.
  VisitAndSpill(node->body());

  // Next.  Reestablish a spilled frame in case we are coming here via
  // a continue in the body.
  node->continue_target()->Bind();
  frame_->SpillAll();
  frame_->EmitPop(rax);
  __ SmiAddConstant(rax, rax, Smi::FromInt(1));
  frame_->EmitPush(rax);
  entry.Jump();

  // Cleanup.  No need to spill because VirtualFrame::Drop is safe for
  // any frame.
  node->break_target()->Bind();
  frame_->Drop(5);

  // Exit.
  exit.Bind();

  node->continue_target()->Unuse();
  node->break_target()->Unuse();
}

void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
  ASSERT(!in_spilled_code());
  VirtualFrame::SpilledScope spilled_scope;
  Comment cmnt(masm_, "[ TryCatchStatement");
  CodeForStatementPosition(node);

  JumpTarget try_block;
  JumpTarget exit;

  try_block.Call();
  // --- Catch block ---
  frame_->EmitPush(rax);

  // Store the caught exception in the catch variable.
  { Reference ref(this, node->catch_var());
    ASSERT(ref.is_slot());
    // Load the exception to the top of the stack.  Here we make use of the
    // convenient property that it doesn't matter whether a value is
    // immediately on top of or underneath a zero-sized reference.
    ref.SetValue(NOT_CONST_INIT);
  }

  // Remove the exception from the stack.
  frame_->Drop();

  VisitStatementsAndSpill(node->catch_block()->statements());
  if (has_valid_frame()) {
    exit.Jump();
  }


  // --- Try block ---
  try_block.Bind();

  frame_->PushTryHandler(TRY_CATCH_HANDLER);
  int handler_height = frame_->height();

  // Shadow the jump targets for all escapes from the try block, including
  // returns.  During shadowing, the original target is hidden as the
  // ShadowTarget and operations on the original actually affect the
  // shadowing target.
  //
  // We should probably try to unify the escaping targets and the return
  // target.
  int nof_escapes = node->escaping_targets()->length();
  List<ShadowTarget*> shadows(1 + nof_escapes);

  // Add the shadow target for the function return.
  static const int kReturnShadowIndex = 0;
  shadows.Add(new ShadowTarget(&function_return_));
  bool function_return_was_shadowed = function_return_is_shadowed_;
  function_return_is_shadowed_ = true;
  ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);

  // Add the remaining shadow targets.
  for (int i = 0; i < nof_escapes; i++) {
    shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
  }

  // Generate code for the statements in the try block.
  VisitStatementsAndSpill(node->try_block()->statements());

  // Stop the introduced shadowing and count the number of required unlinks.
  // After shadowing stops, the original targets are unshadowed and the
  // ShadowTargets represent the formerly shadowing targets.
  bool has_unlinks = false;
  for (int i = 0; i < shadows.length(); i++) {
    shadows[i]->StopShadowing();
    has_unlinks = has_unlinks || shadows[i]->is_linked();
  }
  function_return_is_shadowed_ = function_return_was_shadowed;

  // Get an external reference to the handler address.
  ExternalReference handler_address(Top::k_handler_address);

  // Make sure that there's nothing left on the stack above the
  // handler structure.
  if (FLAG_debug_code) {
    __ movq(kScratchRegister, handler_address);
    __ cmpq(rsp, Operand(kScratchRegister, 0));
    __ Assert(equal, "stack pointer should point to top handler");
  }

  // If we can fall off the end of the try block, unlink from try chain.
  if (has_valid_frame()) {
    // The next handler address is on top of the frame.  Unlink from
    // the handler list and drop the rest of this handler from the
    // frame.
    ASSERT(StackHandlerConstants::kNextOffset == 0);
    __ movq(kScratchRegister, handler_address);
    frame_->EmitPop(Operand(kScratchRegister, 0));
    frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
    if (has_unlinks) {
      exit.Jump();
    }
  }

  // Generate unlink code for the (formerly) shadowing targets that
  // have been jumped to.  Deallocate each shadow target.
  Result return_value;
  for (int i = 0; i < shadows.length(); i++) {
    if (shadows[i]->is_linked()) {
      // Unlink from try chain; be careful not to destroy the TOS if
      // there is one.
      if (i == kReturnShadowIndex) {
        shadows[i]->Bind(&return_value);
        return_value.ToRegister(rax);
      } else {
        shadows[i]->Bind();
      }
      // Because we can be jumping here (to spilled code) from
      // unspilled code, we need to reestablish a spilled frame at
      // this block.
      frame_->SpillAll();

      // Reload sp from the top handler, because some statements that we
      // break from (eg, for...in) may have left stuff on the stack.
      __ movq(kScratchRegister, handler_address);
      __ movq(rsp, Operand(kScratchRegister, 0));
      frame_->Forget(frame_->height() - handler_height);

      ASSERT(StackHandlerConstants::kNextOffset == 0);
      __ movq(kScratchRegister, handler_address);
      frame_->EmitPop(Operand(kScratchRegister, 0));
      frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);

      if (i == kReturnShadowIndex) {
        if (!function_return_is_shadowed_) frame_->PrepareForReturn();
        shadows[i]->other_target()->Jump(&return_value);
      } else {
        shadows[i]->other_target()->Jump();
      }
    }
  }

  exit.Bind();
}


void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
  ASSERT(!in_spilled_code());
  VirtualFrame::SpilledScope spilled_scope;
  Comment cmnt(masm_, "[ TryFinallyStatement");
  CodeForStatementPosition(node);

  // State: Used to keep track of reason for entering the finally
  // block. Should probably be extended to hold information for
  // break/continue from within the try block.
  enum { FALLING, THROWING, JUMPING };

  JumpTarget try_block;
  JumpTarget finally_block;

  try_block.Call();

  frame_->EmitPush(rax);
  // In case of thrown exceptions, this is where we continue.
  __ Move(rcx, Smi::FromInt(THROWING));
  finally_block.Jump();

  // --- Try block ---
  try_block.Bind();

  frame_->PushTryHandler(TRY_FINALLY_HANDLER);
  int handler_height = frame_->height();

  // Shadow the jump targets for all escapes from the try block, including
  // returns.  During shadowing, the original target is hidden as the
  // ShadowTarget and operations on the original actually affect the
  // shadowing target.
  //
  // We should probably try to unify the escaping targets and the return
  // target.
  int nof_escapes = node->escaping_targets()->length();
  List<ShadowTarget*> shadows(1 + nof_escapes);

  // Add the shadow target for the function return.
  static const int kReturnShadowIndex = 0;
  shadows.Add(new ShadowTarget(&function_return_));
  bool function_return_was_shadowed = function_return_is_shadowed_;
  function_return_is_shadowed_ = true;
  ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);

  // Add the remaining shadow targets.
  for (int i = 0; i < nof_escapes; i++) {
    shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
  }

  // Generate code for the statements in the try block.
  VisitStatementsAndSpill(node->try_block()->statements());

  // Stop the introduced shadowing and count the number of required unlinks.
  // After shadowing stops, the original targets are unshadowed and the
  // ShadowTargets represent the formerly shadowing targets.
  int nof_unlinks = 0;
  for (int i = 0; i < shadows.length(); i++) {
    shadows[i]->StopShadowing();
    if (shadows[i]->is_linked()) nof_unlinks++;
  }
  function_return_is_shadowed_ = function_return_was_shadowed;

  // Get an external reference to the handler address.
  ExternalReference handler_address(Top::k_handler_address);

  // If we can fall off the end of the try block, unlink from the try
  // chain and set the state on the frame to FALLING.
  if (has_valid_frame()) {
    // The next handler address is on top of the frame.
    ASSERT(StackHandlerConstants::kNextOffset == 0);
    __ movq(kScratchRegister, handler_address);
    frame_->EmitPop(Operand(kScratchRegister, 0));
    frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);

    // Fake a top of stack value (unneeded when FALLING) and set the
    // state in ecx, then jump around the unlink blocks if any.
    frame_->EmitPush(Heap::kUndefinedValueRootIndex);
    __ Move(rcx, Smi::FromInt(FALLING));
    if (nof_unlinks > 0) {
      finally_block.Jump();
    }
  }

  // Generate code to unlink and set the state for the (formerly)
  // shadowing targets that have been jumped to.
  for (int i = 0; i < shadows.length(); i++) {
    if (shadows[i]->is_linked()) {
      // If we have come from the shadowed return, the return value is
      // on the virtual frame.  We must preserve it until it is
      // pushed.
      if (i == kReturnShadowIndex) {
        Result return_value;
        shadows[i]->Bind(&return_value);
        return_value.ToRegister(rax);
      } else {
        shadows[i]->Bind();
      }
      // Because we can be jumping here (to spilled code) from
      // unspilled code, we need to reestablish a spilled frame at
      // this block.
      frame_->SpillAll();

      // Reload sp from the top handler, because some statements that
      // we break from (eg, for...in) may have left stuff on the
      // stack.
      __ movq(kScratchRegister, handler_address);
      __ movq(rsp, Operand(kScratchRegister, 0));
      frame_->Forget(frame_->height() - handler_height);

      // Unlink this handler and drop it from the frame.
      ASSERT(StackHandlerConstants::kNextOffset == 0);
      __ movq(kScratchRegister, handler_address);
      frame_->EmitPop(Operand(kScratchRegister, 0));
      frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);

      if (i == kReturnShadowIndex) {
        // If this target shadowed the function return, materialize
        // the return value on the stack.
        frame_->EmitPush(rax);
      } else {
        // Fake TOS for targets that shadowed breaks and continues.
        frame_->EmitPush(Heap::kUndefinedValueRootIndex);
      }
      __ Move(rcx, Smi::FromInt(JUMPING + i));
      if (--nof_unlinks > 0) {
        // If this is not the last unlink block, jump around the next.
        finally_block.Jump();
      }
    }
  }

  // --- Finally block ---
  finally_block.Bind();

  // Push the state on the stack.
  frame_->EmitPush(rcx);

  // We keep two elements on the stack - the (possibly faked) result
  // and the state - while evaluating the finally block.
  //
  // Generate code for the statements in the finally block.
  VisitStatementsAndSpill(node->finally_block()->statements());

  if (has_valid_frame()) {
    // Restore state and return value or faked TOS.
    frame_->EmitPop(rcx);
    frame_->EmitPop(rax);
  }

  // Generate code to jump to the right destination for all used
  // formerly shadowing targets.  Deallocate each shadow target.
  for (int i = 0; i < shadows.length(); i++) {
    if (has_valid_frame() && shadows[i]->is_bound()) {
      BreakTarget* original = shadows[i]->other_target();
      __ SmiCompare(rcx, Smi::FromInt(JUMPING + i));
      if (i == kReturnShadowIndex) {
        // The return value is (already) in rax.
        Result return_value = allocator_->Allocate(rax);
        ASSERT(return_value.is_valid());
        if (function_return_is_shadowed_) {
          original->Branch(equal, &return_value);
        } else {
          // Branch around the preparation for return which may emit
          // code.
          JumpTarget skip;
          skip.Branch(not_equal);
          frame_->PrepareForReturn();
          original->Jump(&return_value);
          skip.Bind();
        }
      } else {
        original->Branch(equal);
      }
    }
  }

  if (has_valid_frame()) {
    // Check if we need to rethrow the exception.
    JumpTarget exit;
    __ SmiCompare(rcx, Smi::FromInt(THROWING));
    exit.Branch(not_equal);

    // Rethrow exception.
    frame_->EmitPush(rax);  // undo pop from above
    frame_->CallRuntime(Runtime::kReThrow, 1);

    // Done.
    exit.Bind();
  }
}


void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
  ASSERT(!in_spilled_code());
  Comment cmnt(masm_, "[ DebuggerStatement");
  CodeForStatementPosition(node);
#ifdef ENABLE_DEBUGGER_SUPPORT
  // Spill everything, even constants, to the frame.
  frame_->SpillAll();
  frame_->CallRuntime(Runtime::kDebugBreak, 0);
  // Ignore the return value.
#endif
}


void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
  // Call the runtime to instantiate the function boilerplate object.
  // The inevitable call will sync frame elements to memory anyway, so
  // we do it eagerly to allow us to push the arguments directly into
  // place.
  ASSERT(boilerplate->IsBoilerplate());
  frame_->SyncRange(0, frame_->element_count() - 1);

  // Create a new closure.
  frame_->EmitPush(rsi);
  __ movq(kScratchRegister, boilerplate, RelocInfo::EMBEDDED_OBJECT);
  frame_->EmitPush(kScratchRegister);
  Result result = frame_->CallRuntime(Runtime::kNewClosure, 2);
  frame_->Push(&result);
}


void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
  Comment cmnt(masm_, "[ FunctionLiteral");

  // Build the function boilerplate and instantiate it.
  Handle<JSFunction> boilerplate =
      Compiler::BuildBoilerplate(node, script_, this);
  // Check for stack-overflow exception.
  if (HasStackOverflow()) return;
  InstantiateBoilerplate(boilerplate);
}


void CodeGenerator::VisitFunctionBoilerplateLiteral(
    FunctionBoilerplateLiteral* node) {
  Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
  InstantiateBoilerplate(node->boilerplate());
}


void CodeGenerator::VisitConditional(Conditional* node) {
  Comment cmnt(masm_, "[ Conditional");
  JumpTarget then;
  JumpTarget else_;
  JumpTarget exit;
  ControlDestination dest(&then, &else_, true);
  LoadCondition(node->condition(), &dest, true);

  if (dest.false_was_fall_through()) {
    // The else target was bound, so we compile the else part first.
    Load(node->else_expression());

    if (then.is_linked()) {
      exit.Jump();
      then.Bind();
      Load(node->then_expression());
    }
  } else {
    // The then target was bound, so we compile the then part first.
    Load(node->then_expression());

    if (else_.is_linked()) {
      exit.Jump();
      else_.Bind();
      Load(node->else_expression());
    }
  }

  exit.Bind();
}


void CodeGenerator::VisitSlot(Slot* node) {
  Comment cmnt(masm_, "[ Slot");
  LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF);
}


void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
  Comment cmnt(masm_, "[ VariableProxy");
  Variable* var = node->var();
  Expression* expr = var->rewrite();
  if (expr != NULL) {
    Visit(expr);
  } else {
    ASSERT(var->is_global());
    Reference ref(this, node);
    ref.GetValue();
  }
}


void CodeGenerator::VisitLiteral(Literal* node) {
  Comment cmnt(masm_, "[ Literal");
  frame_->Push(node->handle());
}


// Materialize the regexp literal 'node' in the literals array
// 'literals' of the function.  Leave the regexp boilerplate in
// 'boilerplate'.
class DeferredRegExpLiteral: public DeferredCode {
 public:
  DeferredRegExpLiteral(Register boilerplate,
                        Register literals,
                        RegExpLiteral* node)
      : boilerplate_(boilerplate), literals_(literals), node_(node) {
    set_comment("[ DeferredRegExpLiteral");
  }

  void Generate();

 private:
  Register boilerplate_;
  Register literals_;
  RegExpLiteral* node_;
};


void DeferredRegExpLiteral::Generate() {
  // Since the entry is undefined we call the runtime system to
  // compute the literal.
  // Literal array (0).
  __ push(literals_);
  // Literal index (1).
  __ Push(Smi::FromInt(node_->literal_index()));
  // RegExp pattern (2).
  __ Push(node_->pattern());
  // RegExp flags (3).
  __ Push(node_->flags());
  __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
  if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax);
}


void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
  Comment cmnt(masm_, "[ RegExp Literal");

  // Retrieve the literals array and check the allocated entry.  Begin
  // with a writable copy of the function of this activation in a
  // register.
  frame_->PushFunction();
  Result literals = frame_->Pop();
  literals.ToRegister();
  frame_->Spill(literals.reg());

  // Load the literals array of the function.
  __ movq(literals.reg(),
          FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));

  // Load the literal at the ast saved index.
  Result boilerplate = allocator_->Allocate();
  ASSERT(boilerplate.is_valid());
  int literal_offset =
      FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
  __ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));

  // Check whether we need to materialize the RegExp object.  If so,
  // jump to the deferred code passing the literals array.
  DeferredRegExpLiteral* deferred =
      new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node);
  __ CompareRoot(boilerplate.reg(), Heap::kUndefinedValueRootIndex);
  deferred->Branch(equal);
  deferred->BindExit();
  literals.Unuse();

  // Push the boilerplate object.
  frame_->Push(&boilerplate);
}


// Materialize the object literal 'node' in the literals array
// 'literals' of the function.  Leave the object boilerplate in
// 'boilerplate'.
class DeferredObjectLiteral: public DeferredCode {
 public:
  DeferredObjectLiteral(Register boilerplate,
                        Register literals,
                        ObjectLiteral* node)
      : boilerplate_(boilerplate), literals_(literals), node_(node) {
    set_comment("[ DeferredObjectLiteral");
  }

  void Generate();

 private:
  Register boilerplate_;
  Register literals_;
  ObjectLiteral* node_;
};


void DeferredObjectLiteral::Generate() {
  // Since the entry is undefined we call the runtime system to
  // compute the literal.
  // Literal array (0).
  __ push(literals_);
  // Literal index (1).
  __ Push(Smi::FromInt(node_->literal_index()));
  // Constant properties (2).
  __ Push(node_->constant_properties());
  __ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
  if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax);
}


void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
  Comment cmnt(masm_, "[ ObjectLiteral");

  // Retrieve the literals array and check the allocated entry.  Begin
  // with a writable copy of the function of this activation in a
  // register.
  frame_->PushFunction();
  Result literals = frame_->Pop();
  literals.ToRegister();
  frame_->Spill(literals.reg());

  // Load the literals array of the function.
  __ movq(literals.reg(),
          FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));

  // Load the literal at the ast saved index.
  Result boilerplate = allocator_->Allocate();
  ASSERT(boilerplate.is_valid());
  int literal_offset =
      FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
  __ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));

  // Check whether we need to materialize the object literal boilerplate.
  // If so, jump to the deferred code passing the literals array.
  DeferredObjectLiteral* deferred =
      new DeferredObjectLiteral(boilerplate.reg(), literals.reg(), node);
  __ CompareRoot(boilerplate.reg(), Heap::kUndefinedValueRootIndex);
  deferred->Branch(equal);
  deferred->BindExit();
  literals.Unuse();

  // Push the boilerplate object.
  frame_->Push(&boilerplate);
  // Clone the boilerplate object.
  Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
  if (node->depth() == 1) {
    clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
  }
  Result clone = frame_->CallRuntime(clone_function_id, 1);
  // Push the newly cloned literal object as the result.
  frame_->Push(&clone);

  for (int i = 0; i < node->properties()->length(); i++) {
    ObjectLiteral::Property* property = node->properties()->at(i);
    switch (property->kind()) {
      case ObjectLiteral::Property::CONSTANT:
        break;
      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
        if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
        // else fall through.
      case ObjectLiteral::Property::COMPUTED: {
        Handle<Object> key(property->key()->handle());
        if (key->IsSymbol()) {
          // Duplicate the object as the IC receiver.
          frame_->Dup();
          Load(property->value());
          frame_->Push(key);
          Result ignored = frame_->CallStoreIC();
          // Drop the duplicated receiver and ignore the result.
          frame_->Drop();
          break;
        }
        // Fall through
      }
      case ObjectLiteral::Property::PROTOTYPE: {
        // Duplicate the object as an argument to the runtime call.
        frame_->Dup();
        Load(property->key());
        Load(property->value());
        Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 3);
        // Ignore the result.
        break;
      }
      case ObjectLiteral::Property::SETTER: {
        // Duplicate the object as an argument to the runtime call.
        frame_->Dup();
        Load(property->key());
        frame_->Push(Smi::FromInt(1));
        Load(property->value());
        Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
        // Ignore the result.
        break;
      }
      case ObjectLiteral::Property::GETTER: {
        // Duplicate the object as an argument to the runtime call.
        frame_->Dup();
        Load(property->key());
        frame_->Push(Smi::FromInt(0));
        Load(property->value());
        Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
        // Ignore the result.
        break;
      }
      default: UNREACHABLE();
    }
  }
}


// Materialize the array literal 'node' in the literals array 'literals'
// of the function.  Leave the array boilerplate in 'boilerplate'.
class DeferredArrayLiteral: public DeferredCode {
 public:
  DeferredArrayLiteral(Register boilerplate,
                       Register literals,
                       ArrayLiteral* node)
      : boilerplate_(boilerplate), literals_(literals), node_(node) {
    set_comment("[ DeferredArrayLiteral");
  }

  void Generate();

 private:
  Register boilerplate_;
  Register literals_;
  ArrayLiteral* node_;
};


void DeferredArrayLiteral::Generate() {
  // Since the entry is undefined we call the runtime system to
  // compute the literal.
  // Literal array (0).
  __ push(literals_);
  // Literal index (1).
  __ Push(Smi::FromInt(node_->literal_index()));
  // Constant properties (2).
  __ Push(node_->literals());
  __ CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3);
  if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax);
}


void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
  Comment cmnt(masm_, "[ ArrayLiteral");

  // Retrieve the literals array and check the allocated entry.  Begin
  // with a writable copy of the function of this activation in a
  // register.
  frame_->PushFunction();
  Result literals = frame_->Pop();
  literals.ToRegister();
  frame_->Spill(literals.reg());

  // Load the literals array of the function.
  __ movq(literals.reg(),
          FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));

  // Load the literal at the ast saved index.
  Result boilerplate = allocator_->Allocate();
  ASSERT(boilerplate.is_valid());
  int literal_offset =
      FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
  __ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));

  // Check whether we need to materialize the object literal boilerplate.
  // If so, jump to the deferred code passing the literals array.
  DeferredArrayLiteral* deferred =
      new DeferredArrayLiteral(boilerplate.reg(), literals.reg(), node);
  __ CompareRoot(boilerplate.reg(), Heap::kUndefinedValueRootIndex);
  deferred->Branch(equal);
  deferred->BindExit();
  literals.Unuse();

  // Push the resulting array literal boilerplate on the stack.
  frame_->Push(&boilerplate);
  // Clone the boilerplate object.
  Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
  if (node->depth() == 1) {
    clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
  }
  Result clone = frame_->CallRuntime(clone_function_id, 1);
  // Push the newly cloned literal object as the result.
  frame_->Push(&clone);

  // Generate code to set the elements in the array that are not
  // literals.
  for (int i = 0; i < node->values()->length(); i++) {
    Expression* value = node->values()->at(i);

    // If value is a literal the property value is already set in the
    // boilerplate object.
    if (value->AsLiteral() != NULL) continue;
    // If value is a materialized literal the property value is already set
    // in the boilerplate object if it is simple.
    if (CompileTimeValue::IsCompileTimeValue(value)) continue;

    // The property must be set by generated code.
    Load(value);

    // Get the property value off the stack.
    Result prop_value = frame_->Pop();
    prop_value.ToRegister();

    // Fetch the array literal while leaving a copy on the stack and
    // use it to get the elements array.
    frame_->Dup();
    Result elements = frame_->Pop();
    elements.ToRegister();
    frame_->Spill(elements.reg());
    // Get the elements FixedArray.
    __ movq(elements.reg(),
            FieldOperand(elements.reg(), JSObject::kElementsOffset));

    // Write to the indexed properties array.
    int offset = i * kPointerSize + FixedArray::kHeaderSize;
    __ movq(FieldOperand(elements.reg(), offset), prop_value.reg());

    // Update the write barrier for the array address.
    frame_->Spill(prop_value.reg());  // Overwritten by the write barrier.
    Result scratch = allocator_->Allocate();
    ASSERT(scratch.is_valid());
    __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg());
  }
}


void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
  ASSERT(!in_spilled_code());
  // Call runtime routine to allocate the catch extension object and
  // assign the exception value to the catch variable.
  Comment cmnt(masm_, "[ CatchExtensionObject");
  Load(node->key());
  Load(node->value());
  Result result =
      frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
  frame_->Push(&result);
}


void CodeGenerator::VisitAssignment(Assignment* node) {
  Comment cmnt(masm_, "[ Assignment");

  { Reference target(this, node->target());
    if (target.is_illegal()) {
      // Fool the virtual frame into thinking that we left the assignment's
      // value on the frame.
      frame_->Push(Smi::FromInt(0));
      return;
    }
    Variable* var = node->target()->AsVariableProxy()->AsVariable();

    if (node->starts_initialization_block()) {
      ASSERT(target.type() == Reference::NAMED ||
             target.type() == Reference::KEYED);
      // Change to slow case in the beginning of an initialization
      // block to avoid the quadratic behavior of repeatedly adding
      // fast properties.

      // The receiver is the argument to the runtime call.  It is the
      // first value pushed when the reference was loaded to the
      // frame.
      frame_->PushElementAt(target.size() - 1);
      Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
    }
    if (node->op() == Token::ASSIGN ||
        node->op() == Token::INIT_VAR ||
        node->op() == Token::INIT_CONST) {
      Load(node->value());

    } else {
      Literal* literal = node->value()->AsLiteral();
      bool overwrite_value =
          (node->value()->AsBinaryOperation() != NULL &&
           node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
      Variable* right_var = node->value()->AsVariableProxy()->AsVariable();
      // There are two cases where the target is not read in the right hand
      // side, that are easy to test for: the right hand side is a literal,
      // or the right hand side is a different variable.  TakeValue invalidates
      // the target, with an implicit promise that it will be written to again
      // before it is read.
      if (literal != NULL || (right_var != NULL && right_var != var)) {
        target.TakeValue();
      } else {
        target.GetValue();
      }
      Load(node->value());
      GenericBinaryOperation(node->binary_op(),
                             node->type(),
                             overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
    }

    if (var != NULL &&
        var->mode() == Variable::CONST &&
        node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
      // Assignment ignored - leave the value on the stack.
    } else {
      CodeForSourcePosition(node->position());
      if (node->op() == Token::INIT_CONST) {
        // Dynamic constant initializations must use the function context
        // and initialize the actual constant declared. Dynamic variable
        // initializations are simply assignments and use SetValue.
        target.SetValue(CONST_INIT);
      } else {
        target.SetValue(NOT_CONST_INIT);
      }
      if (node->ends_initialization_block()) {
        ASSERT(target.type() == Reference::NAMED ||
               target.type() == Reference::KEYED);
        // End of initialization block. Revert to fast case.  The
        // argument to the runtime call is the receiver, which is the
        // first value pushed as part of the reference, which is below
        // the lhs value.
        frame_->PushElementAt(target.size());
        Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
      }
    }
  }
}


void CodeGenerator::VisitThrow(Throw* node) {
  Comment cmnt(masm_, "[ Throw");
  Load(node->exception());
  Result result = frame_->CallRuntime(Runtime::kThrow, 1);
  frame_->Push(&result);
}


void CodeGenerator::VisitProperty(Property* node) {
  Comment cmnt(masm_, "[ Property");
  Reference property(this, node);
  property.GetValue();
}


void CodeGenerator::VisitCall(Call* node) {
  Comment cmnt(masm_, "[ Call");

  ZoneList<Expression*>* args = node->arguments();

  // Check if the function is a variable or a property.
  Expression* function = node->expression();
  Variable* var = function->AsVariableProxy()->AsVariable();
  Property* property = function->AsProperty();

  // ------------------------------------------------------------------------
  // Fast-case: Use inline caching.
  // ---
  // According to ECMA-262, section 11.2.3, page 44, the function to call
  // must be resolved after the arguments have been evaluated. The IC code
  // automatically handles this by loading the arguments before the function
  // is resolved in cache misses (this also holds for megamorphic calls).
  // ------------------------------------------------------------------------

  if (var != NULL && var->is_possibly_eval()) {
    // ----------------------------------
    // JavaScript example: 'eval(arg)'  // eval is not known to be shadowed
    // ----------------------------------

    // In a call to eval, we first call %ResolvePossiblyDirectEval to
    // resolve the function we need to call and the receiver of the
    // call.  Then we call the resolved function using the given
    // arguments.

    // Prepare the stack for the call to the resolved function.
    Load(function);

    // Allocate a frame slot for the receiver.
    frame_->Push(Factory::undefined_value());
    int arg_count = args->length();
    for (int i = 0; i < arg_count; i++) {
      Load(args->at(i));
    }

    // Prepare the stack for the call to ResolvePossiblyDirectEval.
    frame_->PushElementAt(arg_count + 1);
    if (arg_count > 0) {
      frame_->PushElementAt(arg_count);
    } else {
      frame_->Push(Factory::undefined_value());
    }

    // Resolve the call.
    Result result =
        frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 2);

    // Touch up the stack with the right values for the function and the
    // receiver.  Use a scratch register to avoid destroying the result.
    Result scratch = allocator_->Allocate();
    ASSERT(scratch.is_valid());
    __ movq(scratch.reg(),
            FieldOperand(result.reg(), FixedArray::OffsetOfElementAt(0)));
    frame_->SetElementAt(arg_count + 1, &scratch);

    // We can reuse the result register now.
    frame_->Spill(result.reg());
    __ movq(result.reg(),
            FieldOperand(result.reg(), FixedArray::OffsetOfElementAt(1)));
    frame_->SetElementAt(arg_count, &result);

    // Call the function.
    CodeForSourcePosition(node->position());
    InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
    CallFunctionStub call_function(arg_count, in_loop);
    result = frame_->CallStub(&call_function, arg_count + 1);

    // Restore the context and overwrite the function on the stack with
    // the result.
    frame_->RestoreContextRegister();
    frame_->SetElementAt(0, &result);

  } else if (var != NULL && !var->is_this() && var->is_global()) {
    // ----------------------------------
    // JavaScript example: 'foo(1, 2, 3)'  // foo is global
    // ----------------------------------

    // Push the name of the function and the receiver onto the stack.
    frame_->Push(var->name());

    // Pass the global object as the receiver and let the IC stub
    // patch the stack to use the global proxy as 'this' in the
    // invoked function.
    LoadGlobal();

    // Load the arguments.
    int arg_count = args->length();
    for (int i = 0; i < arg_count; i++) {
      Load(args->at(i));
    }

    // Call the IC initialization code.
    CodeForSourcePosition(node->position());
    Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT,
                                       arg_count,
                                       loop_nesting());
    frame_->RestoreContextRegister();
    // Replace the function on the stack with the result.
    frame_->SetElementAt(0, &result);

  } else if (var != NULL && var->slot() != NULL &&
             var->slot()->type() == Slot::LOOKUP) {
    // ----------------------------------
    // JavaScript example: 'with (obj) foo(1, 2, 3)'  // foo is in obj
    // ----------------------------------

    // Load the function from the context.  Sync the frame so we can
    // push the arguments directly into place.
    frame_->SyncRange(0, frame_->element_count() - 1);
    frame_->EmitPush(rsi);
    frame_->EmitPush(var->name());
    frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
    // The runtime call returns a pair of values in rax and rdx.  The
    // looked-up function is in rax and the receiver is in rdx.  These
    // register references are not ref counted here.  We spill them
    // eagerly since they are arguments to an inevitable call (and are
    // not sharable by the arguments).
    ASSERT(!allocator()->is_used(rax));
    frame_->EmitPush(rax);

    // Load the receiver.
    ASSERT(!allocator()->is_used(rdx));
    frame_->EmitPush(rdx);

    // Call the function.
    CallWithArguments(args, node->position());

  } else if (property != NULL) {
    // Check if the key is a literal string.
    Literal* literal = property->key()->AsLiteral();

    if (literal != NULL && literal->handle()->IsSymbol()) {
      // ------------------------------------------------------------------
      // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
      // ------------------------------------------------------------------

      Handle<String> name = Handle<String>::cast(literal->handle());

      if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION &&
          name->IsEqualTo(CStrVector("apply")) &&
          args->length() == 2 &&
          args->at(1)->AsVariableProxy() != NULL &&
          args->at(1)->AsVariableProxy()->IsArguments()) {
        // Use the optimized Function.prototype.apply that avoids
        // allocating lazily allocated arguments objects.
        CallApplyLazy(property,
                      args->at(0),
                      args->at(1)->AsVariableProxy(),
                      node->position());

      } else {
        // Push the name of the function and the receiver onto the stack.
        frame_->Push(name);
        Load(property->obj());

        // Load the arguments.
        int arg_count = args->length();
        for (int i = 0; i < arg_count; i++) {
          Load(args->at(i));
        }

        // Call the IC initialization code.
        CodeForSourcePosition(node->position());
        Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET,
                                           arg_count,
                                           loop_nesting());
        frame_->RestoreContextRegister();
        // Replace the function on the stack with the result.
        frame_->SetElementAt(0, &result);
      }

    } else {
      // -------------------------------------------
      // JavaScript example: 'array[index](1, 2, 3)'
      // -------------------------------------------

      // Load the function to call from the property through a reference.
      Reference ref(this, property);
      ref.GetValue();

      // Pass receiver to called function.
      if (property->is_synthetic()) {
        // Use global object as receiver.
        LoadGlobalReceiver();
      } else {
        // The reference's size is non-negative.
        frame_->PushElementAt(ref.size());
      }

      // Call the function.
      CallWithArguments(args, node->position());
    }

  } else {
    // ----------------------------------
    // JavaScript example: 'foo(1, 2, 3)'  // foo is not global
    // ----------------------------------

    // Load the function.
    Load(function);

    // Pass the global proxy as the receiver.
    LoadGlobalReceiver();

    // Call the function.
    CallWithArguments(args, node->position());
  }
}


void CodeGenerator::VisitCallNew(CallNew* node) {
  Comment cmnt(masm_, "[ CallNew");

  // According to ECMA-262, section 11.2.2, page 44, the function
  // expression in new calls must be evaluated before the
  // arguments. This is different from ordinary calls, where the
  // actual function to call is resolved after the arguments have been
  // evaluated.

  // Compute function to call and use the global object as the
  // receiver. There is no need to use the global proxy here because
  // it will always be replaced with a newly allocated object.
  Load(node->expression());
  LoadGlobal();

  // Push the arguments ("left-to-right") on the stack.
  ZoneList<Expression*>* args = node->arguments();
  int arg_count = args->length();
  for (int i = 0; i < arg_count; i++) {
    Load(args->at(i));
  }

  // Call the construct call builtin that handles allocation and
  // constructor invocation.
  CodeForSourcePosition(node->position());
  Result result = frame_->CallConstructor(arg_count);
  // Replace the function on the stack with the result.
  frame_->SetElementAt(0, &result);
}


void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
  if (CheckForInlineRuntimeCall(node)) {
    return;
  }

  ZoneList<Expression*>* args = node->arguments();
  Comment cmnt(masm_, "[ CallRuntime");
  Runtime::Function* function = node->function();

  if (function == NULL) {
    // Prepare stack for calling JS runtime function.
    frame_->Push(node->name());
    // Push the builtins object found in the current global object.
    Result temp = allocator()->Allocate();
    ASSERT(temp.is_valid());
    __ movq(temp.reg(), GlobalObject());
    __ movq(temp.reg(),
            FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
    frame_->Push(&temp);
  }

  // Push the arguments ("left-to-right").
  int arg_count = args->length();
  for (int i = 0; i < arg_count; i++) {
    Load(args->at(i));
  }

  if (function == NULL) {
    // Call the JS runtime function.
    Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET,
                                       arg_count,
                                       loop_nesting_);
    frame_->RestoreContextRegister();
    frame_->SetElementAt(0, &answer);
  } else {
    // Call the C runtime function.
    Result answer = frame_->CallRuntime(function, arg_count);
    frame_->Push(&answer);
  }
}


void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
  Comment cmnt(masm_, "[ UnaryOperation");

  Token::Value op = node->op();

  if (op == Token::NOT) {
    // Swap the true and false targets but keep the same actual label
    // as the fall through.
    destination()->Invert();
    LoadCondition(node->expression(), destination(), true);
    // Swap the labels back.
    destination()->Invert();

  } else if (op == Token::DELETE) {
    Property* property = node->expression()->AsProperty();
    if (property != NULL) {
      Load(property->obj());
      Load(property->key());
      Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2);
      frame_->Push(&answer);
      return;
    }

    Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
    if (variable != NULL) {
      Slot* slot = variable->slot();
      if (variable->is_global()) {
        LoadGlobal();
        frame_->Push(variable->name());
        Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
                                              CALL_FUNCTION, 2);
        frame_->Push(&answer);
        return;

      } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
        // Call the runtime to look up the context holding the named
        // variable.  Sync the virtual frame eagerly so we can push the
        // arguments directly into place.
        frame_->SyncRange(0, frame_->element_count() - 1);
        frame_->EmitPush(rsi);
        frame_->EmitPush(variable->name());
        Result context = frame_->CallRuntime(Runtime::kLookupContext, 2);
        ASSERT(context.is_register());
        frame_->EmitPush(context.reg());
        context.Unuse();
        frame_->EmitPush(variable->name());
        Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
                                              CALL_FUNCTION, 2);
        frame_->Push(&answer);
        return;
      }

      // Default: Result of deleting non-global, not dynamically
      // introduced variables is false.
      frame_->Push(Factory::false_value());

    } else {
      // Default: Result of deleting expressions is true.
      Load(node->expression());  // may have side-effects
      frame_->SetElementAt(0, Factory::true_value());
    }

  } else if (op == Token::TYPEOF) {
    // Special case for loading the typeof expression; see comment on
    // LoadTypeofExpression().
    LoadTypeofExpression(node->expression());
    Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
    frame_->Push(&answer);

  } else if (op == Token::VOID) {
    Expression* expression = node->expression();
    if (expression && expression->AsLiteral() && (
        expression->AsLiteral()->IsTrue() ||
        expression->AsLiteral()->IsFalse() ||
        expression->AsLiteral()->handle()->IsNumber() ||
        expression->AsLiteral()->handle()->IsString() ||
        expression->AsLiteral()->handle()->IsJSRegExp() ||
        expression->AsLiteral()->IsNull())) {
      // Omit evaluating the value of the primitive literal.
      // It will be discarded anyway, and can have no side effect.
      frame_->Push(Factory::undefined_value());
    } else {
      Load(node->expression());
      frame_->SetElementAt(0, Factory::undefined_value());
    }

  } else {
    Load(node->expression());
    switch (op) {
      case Token::NOT:
      case Token::DELETE:
      case Token::TYPEOF:
        UNREACHABLE();  // handled above
        break;

      case Token::SUB: {
        bool overwrite =
          (node->expression()->AsBinaryOperation() != NULL &&
           node->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
        UnarySubStub stub(overwrite);
        // TODO(1222589): remove dependency of TOS being cached inside stub
        Result operand = frame_->Pop();
        Result answer = frame_->CallStub(&stub, &operand);
        frame_->Push(&answer);
        break;
      }

      case Token::BIT_NOT: {
        // Smi check.
        JumpTarget smi_label;
        JumpTarget continue_label;
        Result operand = frame_->Pop();
        operand.ToRegister();

        Condition is_smi = masm_->CheckSmi(operand.reg());
        smi_label.Branch(is_smi, &operand);

        frame_->Push(&operand);  // undo popping of TOS
        Result answer = frame_->InvokeBuiltin(Builtins::BIT_NOT,
                                              CALL_FUNCTION, 1);
        continue_label.Jump(&answer);
        smi_label.Bind(&answer);
        answer.ToRegister();
        frame_->Spill(answer.reg());
        __ SmiNot(answer.reg(), answer.reg());
        continue_label.Bind(&answer);
        frame_->Push(&answer);
        break;
      }

      case Token::ADD: {
        // Smi check.
        JumpTarget continue_label;
        Result operand = frame_->Pop();
        operand.ToRegister();
        Condition is_smi = masm_->CheckSmi(operand.reg());
        continue_label.Branch(is_smi, &operand);
        frame_->Push(&operand);
        Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
                                              CALL_FUNCTION, 1);

        continue_label.Bind(&answer);
        frame_->Push(&answer);
        break;
      }

      default:
        UNREACHABLE();
    }
  }
}


// The value in dst was optimistically incremented or decremented.  The
// result overflowed or was not smi tagged.  Undo the operation, call
// into the runtime to convert the argument to a number, and call the
// specialized add or subtract stub.  The result is left in dst.
class DeferredPrefixCountOperation: public DeferredCode {
 public:
  DeferredPrefixCountOperation(Register dst, bool is_increment)
      : dst_(dst), is_increment_(is_increment) {
    set_comment("[ DeferredCountOperation");
  }

  virtual void Generate();

 private:
  Register dst_;
  bool is_increment_;
};


void DeferredPrefixCountOperation::Generate() {
  __ push(dst_);
  __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
  __ push(rax);
  __ Push(Smi::FromInt(1));
  if (is_increment_) {
    __ CallRuntime(Runtime::kNumberAdd, 2);
  } else {
    __ CallRuntime(Runtime::kNumberSub, 2);
  }
  if (!dst_.is(rax)) __ movq(dst_, rax);
}


// The value in dst was optimistically incremented or decremented.  The
// result overflowed or was not smi tagged.  Undo the operation and call
// into the runtime to convert the argument to a number.  Update the
// original value in old.  Call the specialized add or subtract stub.
// The result is left in dst.
class DeferredPostfixCountOperation: public DeferredCode {
 public:
  DeferredPostfixCountOperation(Register dst, Register old, bool is_increment)
      : dst_(dst), old_(old), is_increment_(is_increment) {
    set_comment("[ DeferredCountOperation");
  }

  virtual void Generate();

 private:
  Register dst_;
  Register old_;
  bool is_increment_;
};


void DeferredPostfixCountOperation::Generate() {
  __ push(dst_);
  __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);

  // Save the result of ToNumber to use as the old value.
  __ push(rax);

  // Call the runtime for the addition or subtraction.
  __ push(rax);
  __ Push(Smi::FromInt(1));
  if (is_increment_) {
    __ CallRuntime(Runtime::kNumberAdd, 2);
  } else {
    __ CallRuntime(Runtime::kNumberSub, 2);
  }
  if (!dst_.is(rax)) __ movq(dst_, rax);
  __ pop(old_);
}


void CodeGenerator::VisitCountOperation(CountOperation* node) {
  Comment cmnt(masm_, "[ CountOperation");

  bool is_postfix = node->is_postfix();
  bool is_increment = node->op() == Token::INC;

  Variable* var = node->expression()->AsVariableProxy()->AsVariable();
  bool is_const = (var != NULL && var->mode() == Variable::CONST);

  // Postfix operations need a stack slot under the reference to hold
  // the old value while the new value is being stored.  This is so that
  // in the case that storing the new value requires a call, the old
  // value will be in the frame to be spilled.
  if (is_postfix) frame_->Push(Smi::FromInt(0));

  { Reference target(this, node->expression());
    if (target.is_illegal()) {
      // Spoof the virtual frame to have the expected height (one higher
      // than on entry).
      if (!is_postfix) frame_->Push(Smi::FromInt(0));
      return;
    }
    target.TakeValue();

    Result new_value = frame_->Pop();
    new_value.ToRegister();

    Result old_value;  // Only allocated in the postfix case.
    if (is_postfix) {
      // Allocate a temporary to preserve the old value.
      old_value = allocator_->Allocate();
      ASSERT(old_value.is_valid());
      __ movq(old_value.reg(), new_value.reg());
    }
    // Ensure the new value is writable.
    frame_->Spill(new_value.reg());

    DeferredCode* deferred = NULL;
    if (is_postfix) {
      deferred = new DeferredPostfixCountOperation(new_value.reg(),
                                                   old_value.reg(),
                                                   is_increment);
    } else {
      deferred = new DeferredPrefixCountOperation(new_value.reg(),
                                                  is_increment);
    }

    __ JumpIfNotSmi(new_value.reg(), deferred->entry_label());
    if (is_increment) {
      __ SmiAddConstant(kScratchRegister,
                        new_value.reg(),
                        Smi::FromInt(1),
                        deferred->entry_label());
    } else {
      __ SmiSubConstant(kScratchRegister,
                        new_value.reg(),
                        Smi::FromInt(1),
                        deferred->entry_label());
    }
    __ movq(new_value.reg(), kScratchRegister);
    deferred->BindExit();

    // Postfix: store the old value in the allocated slot under the
    // reference.
    if (is_postfix) frame_->SetElementAt(target.size(), &old_value);

    frame_->Push(&new_value);
    // Non-constant: update the reference.
    if (!is_const) target.SetValue(NOT_CONST_INIT);
  }

  // Postfix: drop the new value and use the old.
  if (is_postfix) frame_->Drop();
}


void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
  // TODO(X64): This code was copied verbatim from codegen-ia32.
  //     Either find a reason to change it or move it to a shared location.

  Comment cmnt(masm_, "[ BinaryOperation");
  Token::Value op = node->op();

  // According to ECMA-262 section 11.11, page 58, the binary logical
  // operators must yield the result of one of the two expressions
  // before any ToBoolean() conversions. This means that the value
  // produced by a && or || operator is not necessarily a boolean.

  // NOTE: If the left hand side produces a materialized value (not
  // control flow), we force the right hand side to do the same. This
  // is necessary because we assume that if we get control flow on the
  // last path out of an expression we got it on all paths.
  if (op == Token::AND) {
    JumpTarget is_true;
    ControlDestination dest(&is_true, destination()->false_target(), true);
    LoadCondition(node->left(), &dest, false);

    if (dest.false_was_fall_through()) {
      // The current false target was used as the fall-through.  If
      // there are no dangling jumps to is_true then the left
      // subexpression was unconditionally false.  Otherwise we have
      // paths where we do have to evaluate the right subexpression.
      if (is_true.is_linked()) {
        // We need to compile the right subexpression.  If the jump to
        // the current false target was a forward jump then we have a
        // valid frame, we have just bound the false target, and we
        // have to jump around the code for the right subexpression.
        if (has_valid_frame()) {
          destination()->false_target()->Unuse();
          destination()->false_target()->Jump();
        }
        is_true.Bind();
        // The left subexpression compiled to control flow, so the
        // right one is free to do so as well.
        LoadCondition(node->right(), destination(), false);
      } else {
        // We have actually just jumped to or bound the current false
        // target but the current control destination is not marked as
        // used.
        destination()->Use(false);
      }

    } else if (dest.is_used()) {
      // The left subexpression compiled to control flow (and is_true
      // was just bound), so the right is free to do so as well.
      LoadCondition(node->right(), destination(), false);

    } else {
      // We have a materialized value on the frame, so we exit with
      // one on all paths.  There are possibly also jumps to is_true
      // from nested subexpressions.
      JumpTarget pop_and_continue;
      JumpTarget exit;

      // Avoid popping the result if it converts to 'false' using the
      // standard ToBoolean() conversion as described in ECMA-262,
      // section 9.2, page 30.
      //
      // Duplicate the TOS value. The duplicate will be popped by
      // ToBoolean.
      frame_->Dup();
      ControlDestination dest(&pop_and_continue, &exit, true);
      ToBoolean(&dest);

      // Pop the result of evaluating the first part.
      frame_->Drop();

      // Compile right side expression.
      is_true.Bind();
      Load(node->right());

      // Exit (always with a materialized value).
      exit.Bind();
    }

  } else if (op == Token::OR) {
    JumpTarget is_false;
    ControlDestination dest(destination()->true_target(), &is_false, false);
    LoadCondition(node->left(), &dest, false);

    if (dest.true_was_fall_through()) {
      // The current true target was used as the fall-through.  If
      // there are no dangling jumps to is_false then the left
      // subexpression was unconditionally true.  Otherwise we have
      // paths where we do have to evaluate the right subexpression.
      if (is_false.is_linked()) {
        // We need to compile the right subexpression.  If the jump to
        // the current true target was a forward jump then we have a
        // valid frame, we have just bound the true target, and we
        // have to jump around the code for the right subexpression.
        if (has_valid_frame()) {
          destination()->true_target()->Unuse();
          destination()->true_target()->Jump();
        }
        is_false.Bind();
        // The left subexpression compiled to control flow, so the
        // right one is free to do so as well.
        LoadCondition(node->right(), destination(), false);
      } else {
        // We have just jumped to or bound the current true target but
        // the current control destination is not marked as used.
        destination()->Use(true);
      }

    } else if (dest.is_used()) {
      // The left subexpression compiled to control flow (and is_false
      // was just bound), so the right is free to do so as well.
      LoadCondition(node->right(), destination(), false);

    } else {
      // We have a materialized value on the frame, so we exit with
      // one on all paths.  There are possibly also jumps to is_false
      // from nested subexpressions.
      JumpTarget pop_and_continue;
      JumpTarget exit;

      // Avoid popping the result if it converts to 'true' using the
      // standard ToBoolean() conversion as described in ECMA-262,
      // section 9.2, page 30.
      //
      // Duplicate the TOS value. The duplicate will be popped by
      // ToBoolean.
      frame_->Dup();
      ControlDestination dest(&exit, &pop_and_continue, false);
      ToBoolean(&dest);

      // Pop the result of evaluating the first part.
      frame_->Drop();

      // Compile right side expression.
      is_false.Bind();
      Load(node->right());

      // Exit (always with a materialized value).
      exit.Bind();
    }

  } else {
    // NOTE: The code below assumes that the slow cases (calls to runtime)
    // never return a constant/immutable object.
    OverwriteMode overwrite_mode = NO_OVERWRITE;
    if (node->left()->AsBinaryOperation() != NULL &&
        node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) {
      overwrite_mode = OVERWRITE_LEFT;
    } else if (node->right()->AsBinaryOperation() != NULL &&
               node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) {
      overwrite_mode = OVERWRITE_RIGHT;
    }

    Load(node->left());
    Load(node->right());
    GenericBinaryOperation(node->op(), node->type(), overwrite_mode);
  }
}



void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
  Comment cmnt(masm_, "[ CompareOperation");

  // Get the expressions from the node.
  Expression* left = node->left();
  Expression* right = node->right();
  Token::Value op = node->op();
  // To make typeof testing for natives implemented in JavaScript really
  // efficient, we generate special code for expressions of the form:
  // 'typeof <expression> == <string>'.
  UnaryOperation* operation = left->AsUnaryOperation();
  if ((op == Token::EQ || op == Token::EQ_STRICT) &&
      (operation != NULL && operation->op() == Token::TYPEOF) &&
      (right->AsLiteral() != NULL &&
       right->AsLiteral()->handle()->IsString())) {
    Handle<String> check(Handle<String>::cast(right->AsLiteral()->handle()));

    // Load the operand and move it to a register.
    LoadTypeofExpression(operation->expression());
    Result answer = frame_->Pop();
    answer.ToRegister();

    if (check->Equals(Heap::number_symbol())) {
      Condition is_smi = masm_->CheckSmi(answer.reg());
      destination()->true_target()->Branch(is_smi);
      frame_->Spill(answer.reg());
      __ movq(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
      __ CompareRoot(answer.reg(), Heap::kHeapNumberMapRootIndex);
      answer.Unuse();
      destination()->Split(equal);

    } else if (check->Equals(Heap::string_symbol())) {
      Condition is_smi = masm_->CheckSmi(answer.reg());
      destination()->false_target()->Branch(is_smi);

      // It can be an undetectable string object.
      __ movq(kScratchRegister,
              FieldOperand(answer.reg(), HeapObject::kMapOffset));
      __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
               Immediate(1 << Map::kIsUndetectable));
      destination()->false_target()->Branch(not_zero);
      __ CmpInstanceType(kScratchRegister, FIRST_NONSTRING_TYPE);
      answer.Unuse();
      destination()->Split(below);  // Unsigned byte comparison needed.

    } else if (check->Equals(Heap::boolean_symbol())) {
      __ CompareRoot(answer.reg(), Heap::kTrueValueRootIndex);
      destination()->true_target()->Branch(equal);
      __ CompareRoot(answer.reg(), Heap::kFalseValueRootIndex);
      answer.Unuse();
      destination()->Split(equal);

    } else if (check->Equals(Heap::undefined_symbol())) {
      __ CompareRoot(answer.reg(), Heap::kUndefinedValueRootIndex);
      destination()->true_target()->Branch(equal);

      Condition is_smi = masm_->CheckSmi(answer.reg());
      destination()->false_target()->Branch(is_smi);

      // It can be an undetectable object.
      __ movq(kScratchRegister,
              FieldOperand(answer.reg(), HeapObject::kMapOffset));
      __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
               Immediate(1 << Map::kIsUndetectable));
      answer.Unuse();
      destination()->Split(not_zero);

    } else if (check->Equals(Heap::function_symbol())) {
      Condition is_smi = masm_->CheckSmi(answer.reg());
      destination()->false_target()->Branch(is_smi);
      frame_->Spill(answer.reg());
      __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
      destination()->true_target()->Branch(equal);
      // Regular expressions are callable so typeof == 'function'.
      __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE);
      answer.Unuse();
      destination()->Split(equal);

    } else if (check->Equals(Heap::object_symbol())) {
      Condition is_smi = masm_->CheckSmi(answer.reg());
      destination()->false_target()->Branch(is_smi);
      __ CompareRoot(answer.reg(), Heap::kNullValueRootIndex);
      destination()->true_target()->Branch(equal);

      // Regular expressions are typeof == 'function', not 'object'.
      __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, kScratchRegister);
      destination()->false_target()->Branch(equal);

      // It can be an undetectable object.
      __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
               Immediate(1 << Map::kIsUndetectable));
      destination()->false_target()->Branch(not_zero);
      __ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE);
      destination()->false_target()->Branch(below);
      __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
      answer.Unuse();
      destination()->Split(below_equal);
    } else {
      // Uncommon case: typeof testing against a string literal that is
      // never returned from the typeof operator.
      answer.Unuse();
      destination()->Goto(false);
    }
    return;
  }

  Condition cc = no_condition;
  bool strict = false;
  switch (op) {
    case Token::EQ_STRICT:
      strict = true;
      // Fall through
    case Token::EQ:
      cc = equal;
      break;
    case Token::LT:
      cc = less;
      break;
    case Token::GT:
      cc = greater;
      break;
    case Token::LTE:
      cc = less_equal;
      break;
    case Token::GTE:
      cc = greater_equal;
      break;
    case Token::IN: {
      Load(left);
      Load(right);
      Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
      frame_->Push(&answer);  // push the result
      return;
    }
    case Token::INSTANCEOF: {
      Load(left);
      Load(right);
      InstanceofStub stub;
      Result answer = frame_->CallStub(&stub, 2);
      answer.ToRegister();
      __ testq(answer.reg(), answer.reg());
      answer.Unuse();
      destination()->Split(zero);
      return;
    }
    default:
      UNREACHABLE();
  }
  Load(left);
  Load(right);
  Comparison(cc, strict, destination());
}


void CodeGenerator::VisitThisFunction(ThisFunction* node) {
  frame_->PushFunction();
}


void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
  ASSERT(args->length() == 1);

  // ArgumentsAccessStub expects the key in rdx and the formal
  // parameter count in rax.
  Load(args->at(0));
  Result key = frame_->Pop();
  // Explicitly create a constant result.
  Result count(Handle<Smi>(Smi::FromInt(scope_->num_parameters())));
  // Call the shared stub to get to arguments[key].
  ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
  Result result = frame_->CallStub(&stub, &key, &count);
  frame_->Push(&result);
}


void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
  ASSERT(args->length() == 1);
  Load(args->at(0));
  Result value = frame_->Pop();
  value.ToRegister();
  ASSERT(value.is_valid());
  Condition is_smi = masm_->CheckSmi(value.reg());
  destination()->false_target()->Branch(is_smi);
  // It is a heap object - get map.
  // Check if the object is a JS array or not.
  __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, kScratchRegister);
  value.Unuse();
  destination()->Split(equal);
}


void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
  ASSERT(args->length() == 0);

  // Get the frame pointer for the calling frame.
  Result fp = allocator()->Allocate();
  __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));

  // Skip the arguments adaptor frame if it exists.
  Label check_frame_marker;
  __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
                Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
  __ j(not_equal, &check_frame_marker);
  __ movq(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset));

  // Check the marker in the calling frame.
  __ bind(&check_frame_marker);
  __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset),
                Smi::FromInt(StackFrame::CONSTRUCT));
  fp.Unuse();
  destination()->Split(equal);
}


void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
  ASSERT(args->length() == 0);
  // ArgumentsAccessStub takes the parameter count as an input argument
  // in register eax.  Create a constant result for it.
  Result count(Handle<Smi>(Smi::FromInt(scope_->num_parameters())));
  // Call the shared stub to get to the arguments.length.
  ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH);
  Result result = frame_->CallStub(&stub, &count);
  frame_->Push(&result);
}


void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) {
  Comment(masm_, "[ GenerateFastCharCodeAt");
  ASSERT(args->length() == 2);

  Label slow_case;
  Label end;
  Label not_a_flat_string;
  Label try_again_with_new_string;
  Label ascii_string;
  Label got_char_code;

  Load(args->at(0));
  Load(args->at(1));
  Result index = frame_->Pop();
  Result object = frame_->Pop();

  // Get register rcx to use as shift amount later.
  Result shift_amount;
  if (object.is_register() && object.reg().is(rcx)) {
    Result fresh = allocator_->Allocate();
    shift_amount = object;
    object = fresh;
    __ movq(object.reg(), rcx);
  }
  if (index.is_register() && index.reg().is(rcx)) {
    Result fresh = allocator_->Allocate();
    shift_amount = index;
    index = fresh;
    __ movq(index.reg(), rcx);
  }
  // There could be references to ecx in the frame. Allocating will
  // spill them, otherwise spill explicitly.
  if (shift_amount.is_valid()) {
    frame_->Spill(rcx);
  } else {
    shift_amount = allocator()->Allocate(rcx);
  }
  ASSERT(shift_amount.is_register());
  ASSERT(shift_amount.reg().is(rcx));
  ASSERT(allocator_->count(rcx) == 1);

  // We will mutate the index register and possibly the object register.
  // The case where they are somehow the same register is handled
  // because we only mutate them in the case where the receiver is a
  // heap object and the index is not.
  object.ToRegister();
  index.ToRegister();
  frame_->Spill(object.reg());
  frame_->Spill(index.reg());

  // We need a single extra temporary register.
  Result temp = allocator()->Allocate();
  ASSERT(temp.is_valid());

  // There is no virtual frame effect from here up to the final result
  // push.

  // If the receiver is a smi trigger the slow case.
  __ JumpIfSmi(object.reg(), &slow_case);

  // If the index is negative or non-smi trigger the slow case.
  __ JumpIfNotPositiveSmi(index.reg(), &slow_case);

  // Untag the index.
  __ SmiToInteger32(index.reg(), index.reg());

  __ bind(&try_again_with_new_string);
  // Fetch the instance type of the receiver into rcx.
  __ movq(rcx, FieldOperand(object.reg(), HeapObject::kMapOffset));
  __ movzxbl(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset));
  // If the receiver is not a string trigger the slow case.
  __ testb(rcx, Immediate(kIsNotStringMask));
  __ j(not_zero, &slow_case);

  // Here we make assumptions about the tag values and the shifts needed.
  // See the comment in objects.h.
  ASSERT(kLongStringTag == 0);
  ASSERT(kMediumStringTag + String::kLongLengthShift ==
         String::kMediumLengthShift);
  ASSERT(kShortStringTag + String::kLongLengthShift ==
         String::kShortLengthShift);
  __ and_(rcx, Immediate(kStringSizeMask));
  __ addq(rcx, Immediate(String::kLongLengthShift));
  // Fetch the length field into the temporary register.
  __ movl(temp.reg(), FieldOperand(object.reg(), String::kLengthOffset));
  __ shrl_cl(temp.reg());
  // Check for index out of range.
  __ cmpl(index.reg(), temp.reg());
  __ j(greater_equal, &slow_case);
  // Reload the instance type (into the temp register this time)..
  __ movq(temp.reg(), FieldOperand(object.reg(), HeapObject::kMapOffset));
  __ movzxbl(temp.reg(), FieldOperand(temp.reg(), Map::kInstanceTypeOffset));

  // We need special handling for non-flat strings.
  ASSERT_EQ(0, kSeqStringTag);
  __ testb(temp.reg(), Immediate(kStringRepresentationMask));
  __ j(not_zero, &not_a_flat_string);
  // Check for 1-byte or 2-byte string.
  ASSERT_EQ(0, kTwoByteStringTag);
  __ testb(temp.reg(), Immediate(kStringEncodingMask));
  __ j(not_zero, &ascii_string);

  // 2-byte string.
  // Load the 2-byte character code into the temp register.
  __ movzxwl(temp.reg(), FieldOperand(object.reg(),
                                      index.reg(),
                                      times_2,
                                      SeqTwoByteString::kHeaderSize));
  __ jmp(&got_char_code);

  // ASCII string.
  __ bind(&ascii_string);
  // Load the byte into the temp register.
  __ movzxbl(temp.reg(), FieldOperand(object.reg(),
                                      index.reg(),
                                      times_1,
                                      SeqAsciiString::kHeaderSize));
  __ bind(&got_char_code);
  __ Integer32ToSmi(temp.reg(), temp.reg());
  __ jmp(&end);

  // Handle non-flat strings.
  __ bind(&not_a_flat_string);
  __ and_(temp.reg(), Immediate(kStringRepresentationMask));
  __ cmpb(temp.reg(), Immediate(kConsStringTag));
  __ j(not_equal, &slow_case);

  // ConsString.
  // Check that the right hand side is the empty string (ie if this is really a
  // flat string in a cons string).  If that is not the case we would rather go
  // to the runtime system now, to flatten the string.
  __ movq(temp.reg(), FieldOperand(object.reg(), ConsString::kSecondOffset));
  __ CompareRoot(temp.reg(), Heap::kEmptyStringRootIndex);
  __ j(not_equal, &slow_case);
  // Get the first of the two strings.
  __ movq(object.reg(), FieldOperand(object.reg(), ConsString::kFirstOffset));
  __ jmp(&try_again_with_new_string);

  __ bind(&slow_case);
  // Move the undefined value into the result register, which will
  // trigger the slow case.
  __ LoadRoot(temp.reg(), Heap::kUndefinedValueRootIndex);

  __ bind(&end);
  frame_->Push(&temp);
}


void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
  ASSERT(args->length() == 1);
  Load(args->at(0));
  Result value = frame_->Pop();
  value.ToRegister();
  ASSERT(value.is_valid());
  Condition positive_smi = masm_->CheckPositiveSmi(value.reg());
  value.Unuse();
  destination()->Split(positive_smi);
}


void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
  ASSERT(args->length() == 1);
  Load(args->at(0));
  Result value = frame_->Pop();
  value.ToRegister();
  ASSERT(value.is_valid());
  Condition is_smi = masm_->CheckSmi(value.reg());
  value.Unuse();
  destination()->Split(is_smi);
}


void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
  // Conditionally generate a log call.
  // Args:
  //   0 (literal string): The type of logging (corresponds to the flags).
  //     This is used to determine whether or not to generate the log call.
  //   1 (string): Format string.  Access the string at argument index 2
  //     with '%2s' (see Logger::LogRuntime for all the formats).
  //   2 (array): Arguments to the format string.
  ASSERT_EQ(args->length(), 3);
#ifdef ENABLE_LOGGING_AND_PROFILING
  if (ShouldGenerateLog(args->at(0))) {
    Load(args->at(1));
    Load(args->at(2));
    frame_->CallRuntime(Runtime::kLog, 2);
  }
#endif
  // Finally, we're expected to leave a value on the top of the stack.
  frame_->Push(Factory::undefined_value());
}


void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
  ASSERT(args->length() == 2);

  // Load the two objects into registers and perform the comparison.
  Load(args->at(0));
  Load(args->at(1));
  Result right = frame_->Pop();
  Result left = frame_->Pop();
  right.ToRegister();
  left.ToRegister();
  __ cmpq(right.reg(), left.reg());
  right.Unuse();
  left.Unuse();
  destination()->Split(equal);
}


void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
  ASSERT(args->length() == 0);
  // RBP value is aligned, so it should be tagged as a smi (without necesarily
  // being padded as a smi, so it should not be treated as a smi.).
  ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
  Result rbp_as_smi = allocator_->Allocate();
  ASSERT(rbp_as_smi.is_valid());
  __ movq(rbp_as_smi.reg(), rbp);
  frame_->Push(&rbp_as_smi);
}


void CodeGenerator::GenerateRandomPositiveSmi(ZoneList<Expression*>* args) {
  ASSERT(args->length() == 0);
  frame_->SpillAll();
  __ push(rsi);

  // Make sure the frame is aligned like the OS expects.
  static const int kFrameAlignment = OS::ActivationFrameAlignment();
  if (kFrameAlignment > 0) {
    ASSERT(IsPowerOf2(kFrameAlignment));
    __ movq(rbx, rsp);  // Save in AMD-64 abi callee-saved register.
    __ and_(rsp, Immediate(-kFrameAlignment));
  }

  // Call V8::RandomPositiveSmi().
  __ Call(FUNCTION_ADDR(V8::RandomPositiveSmi), RelocInfo::RUNTIME_ENTRY);

  // Restore stack pointer from callee-saved register.
  if (kFrameAlignment > 0) {
    __ movq(rsp, rbx);
  }

  __ pop(rsi);
  Result result = allocator_->Allocate(rax);
  frame_->Push(&result);
}


void CodeGenerator::GenerateFastMathOp(MathOp op, ZoneList<Expression*>* args) {
  JumpTarget done;
  JumpTarget call_runtime;
  ASSERT(args->length() == 1);

  // Load number and duplicate it.
  Load(args->at(0));
  frame_->Dup();

  // Get the number into an unaliased register and load it onto the
  // floating point stack still leaving one copy on the frame.
  Result number = frame_->Pop();
  number.ToRegister();
  frame_->Spill(number.reg());
  FloatingPointHelper::LoadFloatOperand(masm_, number.reg());
  number.Unuse();

  // Perform the operation on the number.
  switch (op) {
    case SIN:
      __ fsin();
      break;
    case COS:
      __ fcos();
      break;
  }

  // Go slow case if argument to operation is out of range.
  Result eax_reg = allocator()->Allocate(rax);
  ASSERT(eax_reg.is_valid());
  __ fnstsw_ax();
  __ testl(rax, Immediate(0x0400));  // Bit 10 is condition flag C2.
  eax_reg.Unuse();
  call_runtime.Branch(not_zero);

  // Allocate heap number for result if possible.
  Result scratch = allocator()->Allocate();
  Result heap_number = allocator()->Allocate();
  __ AllocateHeapNumber(heap_number.reg(),
                        scratch.reg(),
                        call_runtime.entry_label());
  scratch.Unuse();

  // Store the result in the allocated heap number.
  __ fstp_d(FieldOperand(heap_number.reg(), HeapNumber::kValueOffset));
  // Replace the extra copy of the argument with the result.
  frame_->SetElementAt(0, &heap_number);
  done.Jump();

  call_runtime.Bind();
  // Free ST(0) which was not popped before calling into the runtime.
  __ ffree(0);
  Result answer;
  switch (op) {
    case SIN:
      answer = frame_->CallRuntime(Runtime::kMath_sin, 1);
      break;
    case COS:
      answer = frame_->CallRuntime(Runtime::kMath_cos, 1);
      break;
  }
  frame_->Push(&answer);
  done.Bind();
}


void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
  ASSERT(args->length() == 1);
  JumpTarget leave, null, function, non_function_constructor;
  Load(args->at(0));  // Load the object.
  Result obj = frame_->Pop();
  obj.ToRegister();
  frame_->Spill(obj.reg());

  // If the object is a smi, we return null.
  Condition is_smi = masm_->CheckSmi(obj.reg());
  null.Branch(is_smi);

  // Check that the object is a JS object but take special care of JS
  // functions to make sure they have 'Function' as their class.

  __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg());
  null.Branch(below);

  // As long as JS_FUNCTION_TYPE is the last instance type and it is
  // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
  // LAST_JS_OBJECT_TYPE.
  ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
  ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
  __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
  function.Branch(equal);

  // Check if the constructor in the map is a function.
  __ movq(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset));
  __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
  non_function_constructor.Branch(not_equal);

  // The obj register now contains the constructor function. Grab the
  // instance class name from there.
  __ movq(obj.reg(),
          FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset));
  __ movq(obj.reg(),
          FieldOperand(obj.reg(),
                       SharedFunctionInfo::kInstanceClassNameOffset));
  frame_->Push(&obj);
  leave.Jump();

  // Functions have class 'Function'.
  function.Bind();
  frame_->Push(Factory::function_class_symbol());
  leave.Jump();

  // Objects with a non-function constructor have class 'Object'.
  non_function_constructor.Bind();
  frame_->Push(Factory::Object_symbol());
  leave.Jump();

  // Non-JS objects have class null.
  null.Bind();
  frame_->Push(Factory::null_value());

  // All done.
  leave.Bind();
}


void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
  ASSERT(args->length() == 2);
  JumpTarget leave;
  Load(args->at(0));  // Load the object.
  Load(args->at(1));  // Load the value.
  Result value = frame_->Pop();
  Result object = frame_->Pop();
  value.ToRegister();
  object.ToRegister();

  // if (object->IsSmi()) return value.
  Condition is_smi = masm_->CheckSmi(object.reg());
  leave.Branch(is_smi, &value);

  // It is a heap object - get its map.
  Result scratch = allocator_->Allocate();
  ASSERT(scratch.is_valid());
  // if (!object->IsJSValue()) return value.
  __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
  leave.Branch(not_equal, &value);

  // Store the value.
  __ movq(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
  // Update the write barrier.  Save the value as it will be
  // overwritten by the write barrier code and is needed afterward.
  Result duplicate_value = allocator_->Allocate();
  ASSERT(duplicate_value.is_valid());
  __ movq(duplicate_value.reg(), value.reg());
  // The object register is also overwritten by the write barrier and
  // possibly aliased in the frame.
  frame_->Spill(object.reg());
  __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
                 scratch.reg());
  object.Unuse();
  scratch.Unuse();
  duplicate_value.Unuse();

  // Leave.
  leave.Bind(&value);
  frame_->Push(&value);
}


void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
  ASSERT(args->length() == 1);
  JumpTarget leave;
  Load(args->at(0));  // Load the object.
  frame_->Dup();
  Result object = frame_->Pop();
  object.ToRegister();
  ASSERT(object.is_valid());
  // if (object->IsSmi()) return object.
  Condition is_smi = masm_->CheckSmi(object.reg());
  leave.Branch(is_smi);
  // It is a heap object - get map.
  Result temp = allocator()->Allocate();
  ASSERT(temp.is_valid());
  // if (!object->IsJSValue()) return object.
  __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
  leave.Branch(not_equal);
  __ movq(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
  object.Unuse();
  frame_->SetElementAt(0, &temp);
  leave.Bind();
}


// -----------------------------------------------------------------------------
// CodeGenerator implementation of Expressions

void CodeGenerator::LoadAndSpill(Expression* expression) {
  // TODO(x64): No architecture specific code. Move to shared location.
  ASSERT(in_spilled_code());
  set_in_spilled_code(false);
  Load(expression);
  frame_->SpillAll();
  set_in_spilled_code(true);
}


void CodeGenerator::Load(Expression* expr) {
#ifdef DEBUG
  int original_height = frame_->height();
#endif
  ASSERT(!in_spilled_code());
  JumpTarget true_target;
  JumpTarget false_target;
  ControlDestination dest(&true_target, &false_target, true);
  LoadCondition(expr, &dest, false);

  if (dest.false_was_fall_through()) {
    // The false target was just bound.
    JumpTarget loaded;
    frame_->Push(Factory::false_value());
    // There may be dangling jumps to the true target.
    if (true_target.is_linked()) {
      loaded.Jump();
      true_target.Bind();
      frame_->Push(Factory::true_value());
      loaded.Bind();
    }

  } else if (dest.is_used()) {
    // There is true, and possibly false, control flow (with true as
    // the fall through).
    JumpTarget loaded;
    frame_->Push(Factory::true_value());
    if (false_target.is_linked()) {
      loaded.Jump();
      false_target.Bind();
      frame_->Push(Factory::false_value());
      loaded.Bind();
    }

  } else {
    // We have a valid value on top of the frame, but we still may
    // have dangling jumps to the true and false targets from nested
    // subexpressions (eg, the left subexpressions of the
    // short-circuited boolean operators).
    ASSERT(has_valid_frame());
    if (true_target.is_linked() || false_target.is_linked()) {
      JumpTarget loaded;
      loaded.Jump();  // Don't lose the current TOS.
      if (true_target.is_linked()) {
        true_target.Bind();
        frame_->Push(Factory::true_value());
        if (false_target.is_linked()) {
          loaded.Jump();
        }
      }
      if (false_target.is_linked()) {
        false_target.Bind();
        frame_->Push(Factory::false_value());
      }
      loaded.Bind();
    }
  }

  ASSERT(has_valid_frame());
  ASSERT(frame_->height() == original_height + 1);
}


// Emit code to load the value of an expression to the top of the
// frame. If the expression is boolean-valued it may be compiled (or
// partially compiled) into control flow to the control destination.
// If force_control is true, control flow is forced.
void CodeGenerator::LoadCondition(Expression* x,
                                  ControlDestination* dest,
                                  bool force_control) {
  ASSERT(!in_spilled_code());
  int original_height = frame_->height();

  { CodeGenState new_state(this, dest);
    Visit(x);

    // If we hit a stack overflow, we may not have actually visited
    // the expression.  In that case, we ensure that we have a
    // valid-looking frame state because we will continue to generate
    // code as we unwind the C++ stack.
    //
    // It's possible to have both a stack overflow and a valid frame
    // state (eg, a subexpression overflowed, visiting it returned
    // with a dummied frame state, and visiting this expression
    // returned with a normal-looking state).
    if (HasStackOverflow() &&
        !dest->is_used() &&
        frame_->height() == original_height) {
      dest->Goto(true);
    }
  }

  if (force_control && !dest->is_used()) {
    // Convert the TOS value into flow to the control destination.
    // TODO(X64): Make control flow to control destinations work.
    ToBoolean(dest);
  }

  ASSERT(!(force_control && !dest->is_used()));
  ASSERT(dest->is_used() || frame_->height() == original_height + 1);
}


// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
// convert it to a boolean in the condition code register or jump to
// 'false_target'/'true_target' as appropriate.
void CodeGenerator::ToBoolean(ControlDestination* dest) {
  Comment cmnt(masm_, "[ ToBoolean");

  // The value to convert should be popped from the frame.
  Result value = frame_->Pop();
  value.ToRegister();
  // Fast case checks.

  // 'false' => false.
  __ CompareRoot(value.reg(), Heap::kFalseValueRootIndex);
  dest->false_target()->Branch(equal);

  // 'true' => true.
  __ CompareRoot(value.reg(), Heap::kTrueValueRootIndex);
  dest->true_target()->Branch(equal);

  // 'undefined' => false.
  __ CompareRoot(value.reg(), Heap::kUndefinedValueRootIndex);
  dest->false_target()->Branch(equal);

  // Smi => false iff zero.
  __ SmiCompare(value.reg(), Smi::FromInt(0));
  dest->false_target()->Branch(equal);
  Condition is_smi = masm_->CheckSmi(value.reg());
  dest->true_target()->Branch(is_smi);

  // Call the stub for all other cases.
  frame_->Push(&value);  // Undo the Pop() from above.
  ToBooleanStub stub;
  Result temp = frame_->CallStub(&stub, 1);
  // Convert the result to a condition code.
  __ testq(temp.reg(), temp.reg());
  temp.Unuse();
  dest->Split(not_equal);
}


void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) {
  UNIMPLEMENTED();
  // TODO(X64): Implement security policy for loads of smis.
}


bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
  return false;
}

//------------------------------------------------------------------------------
// CodeGenerator implementation of variables, lookups, and stores.

Reference::Reference(CodeGenerator* cgen, Expression* expression)
    : cgen_(cgen), expression_(expression), type_(ILLEGAL) {
  cgen->LoadReference(this);
}


Reference::~Reference() {
  cgen_->UnloadReference(this);
}


void CodeGenerator::LoadReference(Reference* ref) {
  // References are loaded from both spilled and unspilled code.  Set the
  // state to unspilled to allow that (and explicitly spill after
  // construction at the construction sites).
  bool was_in_spilled_code = in_spilled_code_;
  in_spilled_code_ = false;

  Comment cmnt(masm_, "[ LoadReference");
  Expression* e = ref->expression();
  Property* property = e->AsProperty();
  Variable* var = e->AsVariableProxy()->AsVariable();

  if (property != NULL) {
    // The expression is either a property or a variable proxy that rewrites
    // to a property.
    Load(property->obj());
    // We use a named reference if the key is a literal symbol, unless it is
    // a string that can be legally parsed as an integer.  This is because
    // otherwise we will not get into the slow case code that handles [] on
    // String objects.
    Literal* literal = property->key()->AsLiteral();
    uint32_t dummy;
    if (literal != NULL &&
        literal->handle()->IsSymbol() &&
        !String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
      ref->set_type(Reference::NAMED);
    } else {
      Load(property->key());
      ref->set_type(Reference::KEYED);
    }
  } else if (var != NULL) {
    // The expression is a variable proxy that does not rewrite to a
    // property.  Global variables are treated as named property references.
    if (var->is_global()) {
      LoadGlobal();
      ref->set_type(Reference::NAMED);
    } else {
      ASSERT(var->slot() != NULL);
      ref->set_type(Reference::SLOT);
    }
  } else {
    // Anything else is a runtime error.
    Load(e);
    frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
  }

  in_spilled_code_ = was_in_spilled_code;
}


void CodeGenerator::UnloadReference(Reference* ref) {
  // Pop a reference from the stack while preserving TOS.
  Comment cmnt(masm_, "[ UnloadReference");
  frame_->Nip(ref->size());
}


Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
  // Currently, this assertion will fail if we try to assign to
  // a constant variable that is constant because it is read-only
  // (such as the variable referring to a named function expression).
  // We need to implement assignments to read-only variables.
  // Ideally, we should do this during AST generation (by converting
  // such assignments into expression statements); however, in general
  // we may not be able to make the decision until past AST generation,
  // that is when the entire program is known.
  ASSERT(slot != NULL);
  int index = slot->index();
  switch (slot->type()) {
    case Slot::PARAMETER:
      return frame_->ParameterAt(index);

    case Slot::LOCAL:
      return frame_->LocalAt(index);

    case Slot::CONTEXT: {
      // Follow the context chain if necessary.
      ASSERT(!tmp.is(rsi));  // do not overwrite context register
      Register context = rsi;
      int chain_length = scope()->ContextChainLength(slot->var()->scope());
      for (int i = 0; i < chain_length; i++) {
        // Load the closure.
        // (All contexts, even 'with' contexts, have a closure,
        // and it is the same for all contexts inside a function.
        // There is no need to go to the function context first.)
        __ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
        // Load the function context (which is the incoming, outer context).
        __ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
        context = tmp;
      }
      // We may have a 'with' context now. Get the function context.
      // (In fact this mov may never be the needed, since the scope analysis
      // may not permit a direct context access in this case and thus we are
      // always at a function context. However it is safe to dereference be-
      // cause the function context of a function context is itself. Before
      // deleting this mov we should try to create a counter-example first,
      // though...)
      __ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
      return ContextOperand(tmp, index);
    }

    default:
      UNREACHABLE();
      return Operand(rsp, 0);
  }
}


Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
                                                         Result tmp,
                                                         JumpTarget* slow) {
  ASSERT(slot->type() == Slot::CONTEXT);
  ASSERT(tmp.is_register());
  Register context = rsi;

  for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
    if (s->num_heap_slots() > 0) {
      if (s->calls_eval()) {
        // Check that extension is NULL.
        __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
                Immediate(0));
        slow->Branch(not_equal, not_taken);
      }
      __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
      __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
      context = tmp.reg();
    }
  }
  // Check that last extension is NULL.
  __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
  slow->Branch(not_equal, not_taken);
  __ movq(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX));
  return ContextOperand(tmp.reg(), slot->index());
}


void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
  if (slot->type() == Slot::LOOKUP) {
    ASSERT(slot->var()->is_dynamic());

    JumpTarget slow;
    JumpTarget done;
    Result value;

    // Generate fast-case code for variables that might be shadowed by
    // eval-introduced variables.  Eval is used a lot without
    // introducing variables.  In those cases, we do not want to
    // perform a runtime call for all variables in the scope
    // containing the eval.
    if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
      value = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, &slow);
      // If there was no control flow to slow, we can exit early.
      if (!slow.is_linked()) {
        frame_->Push(&value);
        return;
      }

      done.Jump(&value);

    } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
      Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
      // Only generate the fast case for locals that rewrite to slots.
      // This rules out argument loads.
      if (potential_slot != NULL) {
        // Allocate a fresh register to use as a temp in
        // ContextSlotOperandCheckExtensions and to hold the result
        // value.
        value = allocator_->Allocate();
        ASSERT(value.is_valid());
        __ movq(value.reg(),
               ContextSlotOperandCheckExtensions(potential_slot,
                                                 value,
                                                 &slow));
        if (potential_slot->var()->mode() == Variable::CONST) {
          __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
          done.Branch(not_equal, &value);
          __ LoadRoot(value.reg(), Heap::kUndefinedValueRootIndex);
        }
        // There is always control flow to slow from
        // ContextSlotOperandCheckExtensions so we have to jump around
        // it.
        done.Jump(&value);
      }
    }

    slow.Bind();
    // A runtime call is inevitable.  We eagerly sync frame elements
    // to memory so that we can push the arguments directly into place
    // on top of the frame.
    frame_->SyncRange(0, frame_->element_count() - 1);
    frame_->EmitPush(rsi);
    __ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT);
    frame_->EmitPush(kScratchRegister);
    if (typeof_state == INSIDE_TYPEOF) {
       value =
         frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
    } else {
       value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
    }

    done.Bind(&value);
    frame_->Push(&value);

  } else if (slot->var()->mode() == Variable::CONST) {
    // Const slots may contain 'the hole' value (the constant hasn't been
    // initialized yet) which needs to be converted into the 'undefined'
    // value.
    //
    // We currently spill the virtual frame because constants use the
    // potentially unsafe direct-frame access of SlotOperand.
    VirtualFrame::SpilledScope spilled_scope;
    Comment cmnt(masm_, "[ Load const");
    JumpTarget exit;
    __ movq(rcx, SlotOperand(slot, rcx));
    __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
    exit.Branch(not_equal);
    __ LoadRoot(rcx, Heap::kUndefinedValueRootIndex);
    exit.Bind();
    frame_->EmitPush(rcx);

  } else if (slot->type() == Slot::PARAMETER) {
    frame_->PushParameterAt(slot->index());

  } else if (slot->type() == Slot::LOCAL) {
    frame_->PushLocalAt(slot->index());

  } else {
    // The other remaining slot types (LOOKUP and GLOBAL) cannot reach
    // here.
    //
    // The use of SlotOperand below is safe for an unspilled frame
    // because it will always be a context slot.
    ASSERT(slot->type() == Slot::CONTEXT);
    Result temp = allocator_->Allocate();
    ASSERT(temp.is_valid());
    __ movq(temp.reg(), SlotOperand(slot, temp.reg()));
    frame_->Push(&temp);
  }
}


void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
                                                  TypeofState state) {
  LoadFromSlot(slot, state);

  // Bail out quickly if we're not using lazy arguments allocation.
  if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;

  // ... or if the slot isn't a non-parameter arguments slot.
  if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;

  // Pop the loaded value from the stack.
  Result value = frame_->Pop();

  // If the loaded value is a constant, we know if the arguments
  // object has been lazily loaded yet.
  if (value.is_constant()) {
    if (value.handle()->IsTheHole()) {
      Result arguments = StoreArgumentsObject(false);
      frame_->Push(&arguments);
    } else {
      frame_->Push(&value);
    }
    return;
  }

  // The loaded value is in a register. If it is the sentinel that
  // indicates that we haven't loaded the arguments object yet, we
  // need to do it now.
  JumpTarget exit;
  __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
  frame_->Push(&value);
  exit.Branch(not_equal);
  Result arguments = StoreArgumentsObject(false);
  frame_->SetElementAt(0, &arguments);
  exit.Bind();
}


void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
  if (slot->type() == Slot::LOOKUP) {
    ASSERT(slot->var()->is_dynamic());

    // For now, just do a runtime call.  Since the call is inevitable,
    // we eagerly sync the virtual frame so we can directly push the
    // arguments into place.
    frame_->SyncRange(0, frame_->element_count() - 1);

    frame_->EmitPush(rsi);
    frame_->EmitPush(slot->var()->name());

    Result value;
    if (init_state == CONST_INIT) {
      // Same as the case for a normal store, but ignores attribute
      // (e.g. READ_ONLY) of context slot so that we can initialize const
      // properties (introduced via eval("const foo = (some expr);")). Also,
      // uses the current function context instead of the top context.
      //
      // Note that we must declare the foo upon entry of eval(), via a
      // context slot declaration, but we cannot initialize it at the same
      // time, because the const declaration may be at the end of the eval
      // code (sigh...) and the const variable may have been used before
      // (where its value is 'undefined'). Thus, we can only do the
      // initialization when we actually encounter the expression and when
      // the expression operands are defined and valid, and thus we need the
      // split into 2 operations: declaration of the context slot followed
      // by initialization.
      value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
    } else {
      value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3);
    }
    // Storing a variable must keep the (new) value on the expression
    // stack. This is necessary for compiling chained assignment
    // expressions.
    frame_->Push(&value);
  } else {
    ASSERT(!slot->var()->is_dynamic());

    JumpTarget exit;
    if (init_state == CONST_INIT) {
      ASSERT(slot->var()->mode() == Variable::CONST);
      // Only the first const initialization must be executed (the slot
      // still contains 'the hole' value). When the assignment is executed,
      // the code is identical to a normal store (see below).
      //
      // We spill the frame in the code below because the direct-frame
      // access of SlotOperand is potentially unsafe with an unspilled
      // frame.
      VirtualFrame::SpilledScope spilled_scope;
      Comment cmnt(masm_, "[ Init const");
      __ movq(rcx, SlotOperand(slot, rcx));
      __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
      exit.Branch(not_equal);
    }

    // We must execute the store.  Storing a variable must keep the (new)
    // value on the stack. This is necessary for compiling assignment
    // expressions.
    //
    // Note: We will reach here even with slot->var()->mode() ==
    // Variable::CONST because of const declarations which will initialize
    // consts to 'the hole' value and by doing so, end up calling this code.
    if (slot->type() == Slot::PARAMETER) {
      frame_->StoreToParameterAt(slot->index());
    } else if (slot->type() == Slot::LOCAL) {
      frame_->StoreToLocalAt(slot->index());
    } else {
      // The other slot types (LOOKUP and GLOBAL) cannot reach here.
      //
      // The use of SlotOperand below is safe for an unspilled frame
      // because the slot is a context slot.
      ASSERT(slot->type() == Slot::CONTEXT);
      frame_->Dup();
      Result value = frame_->Pop();
      value.ToRegister();
      Result start = allocator_->Allocate();
      ASSERT(start.is_valid());
      __ movq(SlotOperand(slot, start.reg()), value.reg());
      // RecordWrite may destroy the value registers.
      //
      // TODO(204): Avoid actually spilling when the value is not
      // needed (probably the common case).
      frame_->Spill(value.reg());
      int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
      Result temp = allocator_->Allocate();
      ASSERT(temp.is_valid());
      __ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
      // The results start, value, and temp are unused by going out of
      // scope.
    }

    exit.Bind();
  }
}


Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
    Slot* slot,
    TypeofState typeof_state,
    JumpTarget* slow) {
  // Check that no extension objects have been created by calls to
  // eval from the current scope to the global scope.
  Register context = rsi;
  Result tmp = allocator_->Allocate();
  ASSERT(tmp.is_valid());  // All non-reserved registers were available.

  Scope* s = scope();
  while (s != NULL) {
    if (s->num_heap_slots() > 0) {
      if (s->calls_eval()) {
        // Check that extension is NULL.
        __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
               Immediate(0));
        slow->Branch(not_equal, not_taken);
      }
      // Load next context in chain.
      __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
      __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
      context = tmp.reg();
    }
    // If no outer scope calls eval, we do not need to check more
    // context extensions.  If we have reached an eval scope, we check
    // all extensions from this point.
    if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
    s = s->outer_scope();
  }

  if (s->is_eval_scope()) {
    // Loop up the context chain.  There is no frame effect so it is
    // safe to use raw labels here.
    Label next, fast;
    if (!context.is(tmp.reg())) {
      __ movq(tmp.reg(), context);
    }
    // Load map for comparison into register, outside loop.
    __ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex);
    __ bind(&next);
    // Terminate at global context.
    __ cmpq(kScratchRegister, FieldOperand(tmp.reg(), HeapObject::kMapOffset));
    __ j(equal, &fast);
    // Check that extension is NULL.
    __ cmpq(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
    slow->Branch(not_equal);
    // Load next context in chain.
    __ movq(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
    __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
    __ jmp(&next);
    __ bind(&fast);
  }
  tmp.Unuse();

  // All extension objects were empty and it is safe to use a global
  // load IC call.
  LoadGlobal();
  frame_->Push(slot->var()->name());
  RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
                         ? RelocInfo::CODE_TARGET
                         : RelocInfo::CODE_TARGET_CONTEXT;
  Result answer = frame_->CallLoadIC(mode);
  // A test rax instruction following the call signals that the inobject
  // property case was inlined.  Ensure that there is not a test rax
  // instruction here.
  masm_->nop();
  // Discard the global object. The result is in answer.
  frame_->Drop();
  return answer;
}


void CodeGenerator::LoadGlobal() {
  if (in_spilled_code()) {
    frame_->EmitPush(GlobalObject());
  } else {
    Result temp = allocator_->Allocate();
    __ movq(temp.reg(), GlobalObject());
    frame_->Push(&temp);
  }
}


void CodeGenerator::LoadGlobalReceiver() {
  Result temp = allocator_->Allocate();
  Register reg = temp.reg();
  __ movq(reg, GlobalObject());
  __ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
  frame_->Push(&temp);
}


ArgumentsAllocationMode CodeGenerator::ArgumentsMode() const {
  if (scope_->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
  ASSERT(scope_->arguments_shadow() != NULL);
  // We don't want to do lazy arguments allocation for functions that
  // have heap-allocated contexts, because it interfers with the
  // uninitialized const tracking in the context objects.
  return (scope_->num_heap_slots() > 0)
      ? EAGER_ARGUMENTS_ALLOCATION
      : LAZY_ARGUMENTS_ALLOCATION;
}


Result CodeGenerator::StoreArgumentsObject(bool initial) {
  ArgumentsAllocationMode mode = ArgumentsMode();
  ASSERT(mode != NO_ARGUMENTS_ALLOCATION);

  Comment cmnt(masm_, "[ store arguments object");
  if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
    // When using lazy arguments allocation, we store the hole value
    // as a sentinel indicating that the arguments object hasn't been
    // allocated yet.
    frame_->Push(Factory::the_hole_value());
  } else {
    ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
    frame_->PushFunction();
    frame_->PushReceiverSlotAddress();
    frame_->Push(Smi::FromInt(scope_->num_parameters()));
    Result result = frame_->CallStub(&stub, 3);
    frame_->Push(&result);
  }

  { Reference shadow_ref(this, scope_->arguments_shadow());
    Reference arguments_ref(this, scope_->arguments());
    ASSERT(shadow_ref.is_slot() && arguments_ref.is_slot());
    // Here we rely on the convenient property that references to slot
    // take up zero space in the frame (ie, it doesn't matter that the
    // stored value is actually below the reference on the frame).
    JumpTarget done;
    bool skip_arguments = false;
    if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
      // We have to skip storing into the arguments slot if it has
      // already been written to. This can happen if the a function
      // has a local variable named 'arguments'.
      LoadFromSlot(scope_->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
      Result arguments = frame_->Pop();
      if (arguments.is_constant()) {
        // We have to skip updating the arguments object if it has
        // been assigned a proper value.
        skip_arguments = !arguments.handle()->IsTheHole();
      } else {
        __ CompareRoot(arguments.reg(), Heap::kTheHoleValueRootIndex);
        arguments.Unuse();
        done.Branch(not_equal);
      }
    }
    if (!skip_arguments) {
      arguments_ref.SetValue(NOT_CONST_INIT);
      if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
    }
    shadow_ref.SetValue(NOT_CONST_INIT);
  }
  return frame_->Pop();
}


void CodeGenerator::LoadTypeofExpression(Expression* expr) {
  // Special handling of identifiers as subexpressions of typeof.
  Variable* variable = expr->AsVariableProxy()->AsVariable();
  if (variable != NULL && !variable->is_this() && variable->is_global()) {
    // For a global variable we build the property reference
    // <global>.<variable> and perform a (regular non-contextual) property
    // load to make sure we do not get reference errors.
    Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
    Literal key(variable->name());
    Property property(&global, &key, RelocInfo::kNoPosition);
    Reference ref(this, &property);
    ref.GetValue();
  } else if (variable != NULL && variable->slot() != NULL) {
    // For a variable that rewrites to a slot, we signal it is the immediate
    // subexpression of a typeof.
    LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF);
  } else {
    // Anything else can be handled normally.
    Load(expr);
  }
}


void CodeGenerator::Comparison(Condition cc,
                               bool strict,
                               ControlDestination* dest) {
  // Strict only makes sense for equality comparisons.
  ASSERT(!strict || cc == equal);

  Result left_side;
  Result right_side;
  // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
  if (cc == greater || cc == less_equal) {
    cc = ReverseCondition(cc);
    left_side = frame_->Pop();
    right_side = frame_->Pop();
  } else {
    right_side = frame_->Pop();
    left_side = frame_->Pop();
  }
  ASSERT(cc == less || cc == equal || cc == greater_equal);

  // If either side is a constant smi, optimize the comparison.
  bool left_side_constant_smi =
      left_side.is_constant() && left_side.handle()->IsSmi();
  bool right_side_constant_smi =
      right_side.is_constant() && right_side.handle()->IsSmi();
  bool left_side_constant_null =
      left_side.is_constant() && left_side.handle()->IsNull();
  bool right_side_constant_null =
      right_side.is_constant() && right_side.handle()->IsNull();

  if (left_side_constant_smi || right_side_constant_smi) {
    if (left_side_constant_smi && right_side_constant_smi) {
      // Trivial case, comparing two constants.
      int left_value = Smi::cast(*left_side.handle())->value();
      int right_value = Smi::cast(*right_side.handle())->value();
      switch (cc) {
        case less:
          dest->Goto(left_value < right_value);
          break;
        case equal:
          dest->Goto(left_value == right_value);
          break;
        case greater_equal:
          dest->Goto(left_value >= right_value);
          break;
        default:
          UNREACHABLE();
      }
    } else {  // Only one side is a constant Smi.
      // If left side is a constant Smi, reverse the operands.
      // Since one side is a constant Smi, conversion order does not matter.
      if (left_side_constant_smi) {
        Result temp = left_side;
        left_side = right_side;
        right_side = temp;
        cc = ReverseCondition(cc);
        // This may reintroduce greater or less_equal as the value of cc.
        // CompareStub and the inline code both support all values of cc.
      }
      // Implement comparison against a constant Smi, inlining the case
      // where both sides are Smis.
      left_side.ToRegister();

      // Here we split control flow to the stub call and inlined cases
      // before finally splitting it to the control destination.  We use
      // a jump target and branching to duplicate the virtual frame at
      // the first split.  We manually handle the off-frame references
      // by reconstituting them on the non-fall-through path.
      JumpTarget is_smi;
      Register left_reg = left_side.reg();
      Handle<Object> right_val = right_side.handle();

      Condition left_is_smi = masm_->CheckSmi(left_side.reg());
      is_smi.Branch(left_is_smi);

      // Setup and call the compare stub.
      CompareStub stub(cc, strict);
      Result result = frame_->CallStub(&stub, &left_side, &right_side);
      result.ToRegister();
      __ testq(result.reg(), result.reg());
      result.Unuse();
      dest->true_target()->Branch(cc);
      dest->false_target()->Jump();

      is_smi.Bind();
      left_side = Result(left_reg);
      right_side = Result(right_val);
      // Test smi equality and comparison by signed int comparison.
      // Both sides are smis, so we can use an Immediate.
      __ SmiCompare(left_side.reg(), Smi::cast(*right_side.handle()));
      left_side.Unuse();
      right_side.Unuse();
      dest->Split(cc);
    }
  } else if (cc == equal &&
             (left_side_constant_null || right_side_constant_null)) {
    // To make null checks efficient, we check if either the left side or
    // the right side is the constant 'null'.
    // If so, we optimize the code by inlining a null check instead of
    // calling the (very) general runtime routine for checking equality.
    Result operand = left_side_constant_null ? right_side : left_side;
    right_side.Unuse();
    left_side.Unuse();
    operand.ToRegister();
    __ CompareRoot(operand.reg(), Heap::kNullValueRootIndex);
    if (strict) {
      operand.Unuse();
      dest->Split(equal);
    } else {
      // The 'null' value is only equal to 'undefined' if using non-strict
      // comparisons.
      dest->true_target()->Branch(equal);
      __ CompareRoot(operand.reg(), Heap::kUndefinedValueRootIndex);
      dest->true_target()->Branch(equal);
      Condition is_smi = masm_->CheckSmi(operand.reg());
      dest->false_target()->Branch(is_smi);

      // It can be an undetectable object.
      // Use a scratch register in preference to spilling operand.reg().
      Result temp = allocator()->Allocate();
      ASSERT(temp.is_valid());
      __ movq(temp.reg(),
              FieldOperand(operand.reg(), HeapObject::kMapOffset));
      __ testb(FieldOperand(temp.reg(), Map::kBitFieldOffset),
               Immediate(1 << Map::kIsUndetectable));
      temp.Unuse();
      operand.Unuse();
      dest->Split(not_zero);
    }
  } else {  // Neither side is a constant Smi or null.
    // If either side is a non-smi constant, skip the smi check.
    bool known_non_smi =
        (left_side.is_constant() && !left_side.handle()->IsSmi()) ||
        (right_side.is_constant() && !right_side.handle()->IsSmi());
    left_side.ToRegister();
    right_side.ToRegister();

    if (known_non_smi) {
      // When non-smi, call out to the compare stub.
      CompareStub stub(cc, strict);
      Result answer = frame_->CallStub(&stub, &left_side, &right_side);
      // The result is a Smi, which is negative, zero, or positive.
      __ SmiTest(answer.reg());  // Sets both zero and sign flag.
      answer.Unuse();
      dest->Split(cc);
    } else {
      // Here we split control flow to the stub call and inlined cases
      // before finally splitting it to the control destination.  We use
      // a jump target and branching to duplicate the virtual frame at
      // the first split.  We manually handle the off-frame references
      // by reconstituting them on the non-fall-through path.
      JumpTarget is_smi;
      Register left_reg = left_side.reg();
      Register right_reg = right_side.reg();

      Condition both_smi = masm_->CheckBothSmi(left_reg, right_reg);
      is_smi.Branch(both_smi);
      // When non-smi, call out to the compare stub.
      CompareStub stub(cc, strict);
      Result answer = frame_->CallStub(&stub, &left_side, &right_side);
      __ SmiTest(answer.reg());  // Sets both zero and sign flags.
      answer.Unuse();
      dest->true_target()->Branch(cc);
      dest->false_target()->Jump();

      is_smi.Bind();
      left_side = Result(left_reg);
      right_side = Result(right_reg);
      __ SmiCompare(left_side.reg(), right_side.reg());
      right_side.Unuse();
      left_side.Unuse();
      dest->Split(cc);
    }
  }
}


class DeferredInlineBinaryOperation: public DeferredCode {
 public:
  DeferredInlineBinaryOperation(Token::Value op,
                                Register dst,
                                Register left,
                                Register right,
                                OverwriteMode mode)
      : op_(op), dst_(dst), left_(left), right_(right), mode_(mode) {
    set_comment("[ DeferredInlineBinaryOperation");
  }

  virtual void Generate();

 private:
  Token::Value op_;
  Register dst_;
  Register left_;
  Register right_;
  OverwriteMode mode_;
};


void DeferredInlineBinaryOperation::Generate() {
  GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB);
  stub.GenerateCall(masm_, left_, right_);
  if (!dst_.is(rax)) __ movq(dst_, rax);
}


void CodeGenerator::GenericBinaryOperation(Token::Value op,
                                           SmiAnalysis* type,
                                           OverwriteMode overwrite_mode) {
  Comment cmnt(masm_, "[ BinaryOperation");
  Comment cmnt_token(masm_, Token::String(op));

  if (op == Token::COMMA) {
    // Simply discard left value.
    frame_->Nip(1);
    return;
  }

  // Set the flags based on the operation, type and loop nesting level.
  GenericBinaryFlags flags;
  switch (op) {
    case Token::BIT_OR:
    case Token::BIT_AND:
    case Token::BIT_XOR:
    case Token::SHL:
    case Token::SHR:
    case Token::SAR:
      // Bit operations always assume they likely operate on Smis. Still only
      // generate the inline Smi check code if this operation is part of a loop.
      flags = (loop_nesting() > 0)
              ? NO_SMI_CODE_IN_STUB
              : NO_GENERIC_BINARY_FLAGS;
      break;

    default:
      // By default only inline the Smi check code for likely smis if this
      // operation is part of a loop.
      flags = ((loop_nesting() > 0) && type->IsLikelySmi())
              ? NO_SMI_CODE_IN_STUB
              : NO_GENERIC_BINARY_FLAGS;
      break;
  }

  Result right = frame_->Pop();
  Result left = frame_->Pop();

  if (op == Token::ADD) {
    bool left_is_string = left.is_constant() && left.handle()->IsString();
    bool right_is_string = right.is_constant() && right.handle()->IsString();
    if (left_is_string || right_is_string) {
      frame_->Push(&left);
      frame_->Push(&right);
      Result answer;
      if (left_is_string) {
        if (right_is_string) {
          // TODO(lrn): if both are constant strings
          // -- do a compile time cons, if allocation during codegen is allowed.
          answer = frame_->CallRuntime(Runtime::kStringAdd, 2);
        } else {
          answer =
            frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2);
        }
      } else if (right_is_string) {
        answer =
          frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2);
      }
      frame_->Push(&answer);
      return;
    }
    // Neither operand is known to be a string.
  }

  bool left_is_smi = left.is_constant() && left.handle()->IsSmi();
  bool left_is_non_smi = left.is_constant() && !left.handle()->IsSmi();
  bool right_is_smi = right.is_constant() && right.handle()->IsSmi();
  bool right_is_non_smi = right.is_constant() && !right.handle()->IsSmi();
  bool generate_no_smi_code = false;  // No smi code at all, inline or in stub.

  if (left_is_smi && right_is_smi) {
    // Compute the constant result at compile time, and leave it on the frame.
    int left_int = Smi::cast(*left.handle())->value();
    int right_int = Smi::cast(*right.handle())->value();
    if (FoldConstantSmis(op, left_int, right_int)) return;
  }

  if (left_is_non_smi || right_is_non_smi) {
    // Set flag so that we go straight to the slow case, with no smi code.
    generate_no_smi_code = true;
  } else if (right_is_smi) {
    ConstantSmiBinaryOperation(op, &left, right.handle(),
                               type, false, overwrite_mode);
    return;
  } else if (left_is_smi) {
    ConstantSmiBinaryOperation(op, &right, left.handle(),
                               type, true, overwrite_mode);
    return;
  }

  if ((flags & NO_SMI_CODE_IN_STUB) != 0 && !generate_no_smi_code) {
    LikelySmiBinaryOperation(op, &left, &right, overwrite_mode);
  } else {
    frame_->Push(&left);
    frame_->Push(&right);
    // If we know the arguments aren't smis, use the binary operation stub
    // that does not check for the fast smi case.
    // The same stub is used for NO_SMI_CODE and SMI_CODE_INLINED.
    if (generate_no_smi_code) {
      flags = NO_SMI_CODE_IN_STUB;
    }
    GenericBinaryOpStub stub(op, overwrite_mode, flags);
    Result answer = frame_->CallStub(&stub, 2);
    frame_->Push(&answer);
  }
}


// Emit a LoadIC call to get the value from receiver and leave it in
// dst.  The receiver register is restored after the call.
class DeferredReferenceGetNamedValue: public DeferredCode {
 public:
  DeferredReferenceGetNamedValue(Register dst,
                                 Register receiver,
                                 Handle<String> name)
      : dst_(dst), receiver_(receiver),  name_(name) {
    set_comment("[ DeferredReferenceGetNamedValue");
  }

  virtual void Generate();

  Label* patch_site() { return &patch_site_; }

 private:
  Label patch_site_;
  Register dst_;
  Register receiver_;
  Handle<String> name_;
};


void DeferredReferenceGetNamedValue::Generate() {
  __ push(receiver_);
  __ Move(rcx, name_);
  Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
  __ Call(ic, RelocInfo::CODE_TARGET);
  // The call must be followed by a test rax instruction to indicate
  // that the inobject property case was inlined.
  //
  // Store the delta to the map check instruction here in the test
  // instruction.  Use masm_-> instead of the __ macro since the
  // latter can't return a value.
  int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
  // Here we use masm_-> instead of the __ macro because this is the
  // instruction that gets patched and coverage code gets in the way.
  masm_->testl(rax, Immediate(-delta_to_patch_site));
  __ IncrementCounter(&Counters::named_load_inline_miss, 1);

  if (!dst_.is(rax)) __ movq(dst_, rax);
  __ pop(receiver_);
}


void DeferredInlineSmiAdd::Generate() {
  GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
  igostub.GenerateCall(masm_, dst_, value_);
  if (!dst_.is(rax)) __ movq(dst_, rax);
}


void DeferredInlineSmiAddReversed::Generate() {
  GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
  igostub.GenerateCall(masm_, value_, dst_);
  if (!dst_.is(rax)) __ movq(dst_, rax);
}


void DeferredInlineSmiSub::Generate() {
  GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB);
  igostub.GenerateCall(masm_, dst_, value_);
  if (!dst_.is(rax)) __ movq(dst_, rax);
}


void DeferredInlineSmiOperation::Generate() {
  // For mod we don't generate all the Smi code inline.
  GenericBinaryOpStub stub(
      op_,
      overwrite_mode_,
      (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB);
  stub.GenerateCall(masm_, src_, value_);
  if (!dst_.is(rax)) __ movq(dst_, rax);
}


void CodeGenerator::ConstantSmiBinaryOperation(Token::Value op,
                                               Result* operand,
                                               Handle<Object> value,
                                               SmiAnalysis* type,
                                               bool reversed,
                                               OverwriteMode overwrite_mode) {
  // NOTE: This is an attempt to inline (a bit) more of the code for
  // some possible smi operations (like + and -) when (at least) one
  // of the operands is a constant smi.
  // Consumes the argument "operand".

  // TODO(199): Optimize some special cases of operations involving a
  // smi literal (multiply by 2, shift by 0, etc.).
  if (IsUnsafeSmi(value)) {
    Result unsafe_operand(value);
    if (reversed) {
      LikelySmiBinaryOperation(op, &unsafe_operand, operand,
                               overwrite_mode);
    } else {
      LikelySmiBinaryOperation(op, operand, &unsafe_operand,
                               overwrite_mode);
    }
    ASSERT(!operand->is_valid());
    return;
  }

  // Get the literal value.
  Smi* smi_value = Smi::cast(*value);
  int int_value = smi_value->value();

  switch (op) {
    case Token::ADD: {
      operand->ToRegister();
      frame_->Spill(operand->reg());
      DeferredCode* deferred = NULL;
      if (reversed) {
        deferred = new DeferredInlineSmiAddReversed(operand->reg(),
                                                    smi_value,
                                                    overwrite_mode);
      } else {
        deferred = new DeferredInlineSmiAdd(operand->reg(),
                                            smi_value,
                                            overwrite_mode);
      }
      __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
      __ SmiAddConstant(operand->reg(),
                        operand->reg(),
                        smi_value,
                        deferred->entry_label());
      deferred->BindExit();
      frame_->Push(operand);
      break;
    }

    case Token::SUB: {
      if (reversed) {
        Result constant_operand(value);
        LikelySmiBinaryOperation(op, &constant_operand, operand,
                                 overwrite_mode);
      } else {
        operand->ToRegister();
        frame_->Spill(operand->reg());
        DeferredCode* deferred = new DeferredInlineSmiSub(operand->reg(),
                                                          smi_value,
                                                          overwrite_mode);
        __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
        // A smi currently fits in a 32-bit Immediate.
        __ SmiSubConstant(operand->reg(),
                          operand->reg(),
                          smi_value,
                          deferred->entry_label());
        deferred->BindExit();
        frame_->Push(operand);
      }
      break;
    }

    case Token::SAR:
      if (reversed) {
        Result constant_operand(value);
        LikelySmiBinaryOperation(op, &constant_operand, operand,
                                 overwrite_mode);
      } else {
        // Only the least significant 5 bits of the shift value are used.
        // In the slow case, this masking is done inside the runtime call.
        int shift_value = int_value & 0x1f;
        operand->ToRegister();
        frame_->Spill(operand->reg());
        DeferredInlineSmiOperation* deferred =
            new DeferredInlineSmiOperation(op,
                                           operand->reg(),
                                           operand->reg(),
                                           smi_value,
                                           overwrite_mode);
        __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
        __ SmiShiftArithmeticRightConstant(operand->reg(),
                                           operand->reg(),
                                           shift_value);
        deferred->BindExit();
        frame_->Push(operand);
      }
      break;

    case Token::SHR:
      if (reversed) {
        Result constant_operand(value);
        LikelySmiBinaryOperation(op, &constant_operand, operand,
                                 overwrite_mode);
      } else {
        // Only the least significant 5 bits of the shift value are used.
        // In the slow case, this masking is done inside the runtime call.
        int shift_value = int_value & 0x1f;
        operand->ToRegister();
        Result answer = allocator()->Allocate();
        ASSERT(answer.is_valid());
        DeferredInlineSmiOperation* deferred =
            new DeferredInlineSmiOperation(op,
                                           answer.reg(),
                                           operand->reg(),
                                           smi_value,
                                           overwrite_mode);
        __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
        __ SmiShiftLogicalRightConstant(answer.reg(),
                                        operand->reg(),
                                        shift_value,
                                        deferred->entry_label());
        deferred->BindExit();
        operand->Unuse();
        frame_->Push(&answer);
      }
      break;

    case Token::SHL:
      if (reversed) {
        Result constant_operand(value);
        LikelySmiBinaryOperation(op, &constant_operand, operand,
                                 overwrite_mode);
      } else {
        // Only the least significant 5 bits of the shift value are used.
        // In the slow case, this masking is done inside the runtime call.
        int shift_value = int_value & 0x1f;
        operand->ToRegister();
        if (shift_value == 0) {
          // Spill operand so it can be overwritten in the slow case.
          frame_->Spill(operand->reg());
          DeferredInlineSmiOperation* deferred =
              new DeferredInlineSmiOperation(op,
                                             operand->reg(),
                                             operand->reg(),
                                             smi_value,
                                             overwrite_mode);
          __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
          deferred->BindExit();
          frame_->Push(operand);
        } else {
          // Use a fresh temporary for nonzero shift values.
          Result answer = allocator()->Allocate();
          ASSERT(answer.is_valid());
          DeferredInlineSmiOperation* deferred =
              new DeferredInlineSmiOperation(op,
                                             answer.reg(),
                                             operand->reg(),
                                             smi_value,
                                             overwrite_mode);
          __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
          __ SmiShiftLeftConstant(answer.reg(),
                                  operand->reg(),
                                  shift_value,
                                  deferred->entry_label());
          deferred->BindExit();
          operand->Unuse();
          frame_->Push(&answer);
        }
      }
      break;

    case Token::BIT_OR:
    case Token::BIT_XOR:
    case Token::BIT_AND: {
      operand->ToRegister();
      frame_->Spill(operand->reg());
      if (reversed) {
        // Bit operations with a constant smi are commutative.
        // We can swap left and right operands with no problem.
        // Swap left and right overwrite modes.  0->0, 1->2, 2->1.
        overwrite_mode = static_cast<OverwriteMode>((2 * overwrite_mode) % 3);
      }
      DeferredCode* deferred =  new DeferredInlineSmiOperation(op,
                                                               operand->reg(),
                                                               operand->reg(),
                                                               smi_value,
                                                               overwrite_mode);
      __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
      if (op == Token::BIT_AND) {
        __ SmiAndConstant(operand->reg(), operand->reg(), smi_value);
      } else if (op == Token::BIT_XOR) {
        if (int_value != 0) {
          __ SmiXorConstant(operand->reg(), operand->reg(), smi_value);
        }
      } else {
        ASSERT(op == Token::BIT_OR);
        if (int_value != 0) {
          __ SmiOrConstant(operand->reg(), operand->reg(), smi_value);
        }
      }
      deferred->BindExit();
      frame_->Push(operand);
      break;
    }

    // Generate inline code for mod of powers of 2 and negative powers of 2.
    case Token::MOD:
      if (!reversed &&
          int_value != 0 &&
          (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) {
        operand->ToRegister();
        frame_->Spill(operand->reg());
        DeferredCode* deferred =
            new DeferredInlineSmiOperation(op,
                                           operand->reg(),
                                           operand->reg(),
                                           smi_value,
                                           overwrite_mode);
        // Check for negative or non-Smi left hand side.
        __ JumpIfNotPositiveSmi(operand->reg(), deferred->entry_label());
        if (int_value < 0) int_value = -int_value;
        if (int_value == 1) {
          __ Move(operand->reg(), Smi::FromInt(0));
        } else {
          __ SmiAndConstant(operand->reg(),
                            operand->reg(),
                            Smi::FromInt(int_value - 1));
        }
        deferred->BindExit();
        frame_->Push(operand);
        break;  // This break only applies if we generated code for MOD.
      }
      // Fall through if we did not find a power of 2 on the right hand side!
      // The next case must be the default.

    default: {
      Result constant_operand(value);
      if (reversed) {
        LikelySmiBinaryOperation(op, &constant_operand, operand,
                                 overwrite_mode);
      } else {
        LikelySmiBinaryOperation(op, operand, &constant_operand,
                                 overwrite_mode);
      }
      break;
    }
  }
  ASSERT(!operand->is_valid());
}

void CodeGenerator::LikelySmiBinaryOperation(Token::Value op,
                                             Result* left,
                                             Result* right,
                                             OverwriteMode overwrite_mode) {
  // Special handling of div and mod because they use fixed registers.
  if (op == Token::DIV || op == Token::MOD) {
    // We need rax as the quotient register, rdx as the remainder
    // register, neither left nor right in rax or rdx, and left copied
    // to rax.
    Result quotient;
    Result remainder;
    bool left_is_in_rax = false;
    // Step 1: get rax for quotient.
    if ((left->is_register() && left->reg().is(rax)) ||
        (right->is_register() && right->reg().is(rax))) {
      // One or both is in rax.  Use a fresh non-rdx register for
      // them.
      Result fresh = allocator_->Allocate();
      ASSERT(fresh.is_valid());
      if (fresh.reg().is(rdx)) {
        remainder = fresh;
        fresh = allocator_->Allocate();
        ASSERT(fresh.is_valid());
      }
      if (left->is_register() && left->reg().is(rax)) {
        quotient = *left;
        *left = fresh;
        left_is_in_rax = true;
      }
      if (right->is_register() && right->reg().is(rax)) {
        quotient = *right;
        *right = fresh;
      }
      __ movq(fresh.reg(), rax);
    } else {
      // Neither left nor right is in rax.
      quotient = allocator_->Allocate(rax);
    }
    ASSERT(quotient.is_register() && quotient.reg().is(rax));
    ASSERT(!(left->is_register() && left->reg().is(rax)));
    ASSERT(!(right->is_register() && right->reg().is(rax)));

    // Step 2: get rdx for remainder if necessary.
    if (!remainder.is_valid()) {
      if ((left->is_register() && left->reg().is(rdx)) ||
          (right->is_register() && right->reg().is(rdx))) {
        Result fresh = allocator_->Allocate();
        ASSERT(fresh.is_valid());
        if (left->is_register() && left->reg().is(rdx)) {
          remainder = *left;
          *left = fresh;
        }
        if (right->is_register() && right->reg().is(rdx)) {
          remainder = *right;
          *right = fresh;
        }
        __ movq(fresh.reg(), rdx);
      } else {
        // Neither left nor right is in rdx.
        remainder = allocator_->Allocate(rdx);
      }
    }
    ASSERT(remainder.is_register() && remainder.reg().is(rdx));
    ASSERT(!(left->is_register() && left->reg().is(rdx)));
    ASSERT(!(right->is_register() && right->reg().is(rdx)));

    left->ToRegister();
    right->ToRegister();
    frame_->Spill(rax);
    frame_->Spill(rdx);

    // Check that left and right are smi tagged.
    DeferredInlineBinaryOperation* deferred =
        new DeferredInlineBinaryOperation(op,
                                          (op == Token::DIV) ? rax : rdx,
                                          left->reg(),
                                          right->reg(),
                                          overwrite_mode);
    __ JumpIfNotBothSmi(left->reg(), right->reg(), deferred->entry_label());

    if (op == Token::DIV) {
      __ SmiDiv(rax, left->reg(), right->reg(), deferred->entry_label());
      deferred->BindExit();
      left->Unuse();
      right->Unuse();
      frame_->Push(&quotient);
    } else {
      ASSERT(op == Token::MOD);
      __ SmiMod(rdx, left->reg(), right->reg(), deferred->entry_label());
      deferred->BindExit();
      left->Unuse();
      right->Unuse();
      frame_->Push(&remainder);
    }
    return;
  }

  // Special handling of shift operations because they use fixed
  // registers.
  if (op == Token::SHL || op == Token::SHR || op == Token::SAR) {
    // Move left out of rcx if necessary.
    if (left->is_register() && left->reg().is(rcx)) {
      *left = allocator_->Allocate();
      ASSERT(left->is_valid());
      __ movq(left->reg(), rcx);
    }
    right->ToRegister(rcx);
    left->ToRegister();
    ASSERT(left->is_register() && !left->reg().is(rcx));
    ASSERT(right->is_register() && right->reg().is(rcx));

    // We will modify right, it must be spilled.
    frame_->Spill(rcx);

    // Use a fresh answer register to avoid spilling the left operand.
    Result answer = allocator_->Allocate();
    ASSERT(answer.is_valid());
    // Check that both operands are smis using the answer register as a
    // temporary.
    DeferredInlineBinaryOperation* deferred =
        new DeferredInlineBinaryOperation(op,
                                          answer.reg(),
                                          left->reg(),
                                          rcx,
                                          overwrite_mode);
    __ movq(answer.reg(), left->reg());
    __ or_(answer.reg(), rcx);
    __ JumpIfNotSmi(answer.reg(), deferred->entry_label());

    // Perform the operation.
    switch (op) {
      case Token::SAR:
        __ SmiShiftArithmeticRight(answer.reg(), left->reg(), rcx);
        break;
      case Token::SHR: {
        __ SmiShiftLogicalRight(answer.reg(),
                              left->reg(),
                              rcx,
                              deferred->entry_label());
        break;
      }
      case Token::SHL: {
        __ SmiShiftLeft(answer.reg(),
                        left->reg(),
                        rcx,
                        deferred->entry_label());
        break;
      }
      default:
        UNREACHABLE();
    }
    deferred->BindExit();
    left->Unuse();
    right->Unuse();
    frame_->Push(&answer);
    return;
  }

  // Handle the other binary operations.
  left->ToRegister();
  right->ToRegister();
  // A newly allocated register answer is used to hold the answer.  The
  // registers containing left and right are not modified so they don't
  // need to be spilled in the fast case.
  Result answer = allocator_->Allocate();
  ASSERT(answer.is_valid());

  // Perform the smi tag check.
  DeferredInlineBinaryOperation* deferred =
      new DeferredInlineBinaryOperation(op,
                                        answer.reg(),
                                        left->reg(),
                                        right->reg(),
                                        overwrite_mode);
  __ JumpIfNotBothSmi(left->reg(), right->reg(), deferred->entry_label());

  switch (op) {
    case Token::ADD:
      __ SmiAdd(answer.reg(),
                left->reg(),
                right->reg(),
                deferred->entry_label());
      break;

    case Token::SUB:
      __ SmiSub(answer.reg(),
                left->reg(),
                right->reg(),
                deferred->entry_label());
      break;

    case Token::MUL: {
      __ SmiMul(answer.reg(),
                left->reg(),
                right->reg(),
                deferred->entry_label());
      break;
    }

    case Token::BIT_OR:
      __ SmiOr(answer.reg(), left->reg(), right->reg());
      break;

    case Token::BIT_AND:
      __ SmiAnd(answer.reg(), left->reg(), right->reg());
      break;

    case Token::BIT_XOR:
      __ SmiXor(answer.reg(), left->reg(), right->reg());
      break;

    default:
      UNREACHABLE();
      break;
  }
  deferred->BindExit();
  left->Unuse();
  right->Unuse();
  frame_->Push(&answer);
}


#undef __
#define __ ACCESS_MASM(masm)


Handle<String> Reference::GetName() {
  ASSERT(type_ == NAMED);
  Property* property = expression_->AsProperty();
  if (property == NULL) {
    // Global variable reference treated as a named property reference.
    VariableProxy* proxy = expression_->AsVariableProxy();
    ASSERT(proxy->AsVariable() != NULL);
    ASSERT(proxy->AsVariable()->is_global());
    return proxy->name();
  } else {
    Literal* raw_name = property->key()->AsLiteral();
    ASSERT(raw_name != NULL);
    return Handle<String>(String::cast(*raw_name->handle()));
  }
}


void Reference::GetValue() {
  ASSERT(!cgen_->in_spilled_code());
  ASSERT(cgen_->HasValidEntryRegisters());
  ASSERT(!is_illegal());
  MacroAssembler* masm = cgen_->masm();

  // Record the source position for the property load.
  Property* property = expression_->AsProperty();
  if (property != NULL) {
    cgen_->CodeForSourcePosition(property->position());
  }

  switch (type_) {
    case SLOT: {
      Comment cmnt(masm, "[ Load from Slot");
      Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
      ASSERT(slot != NULL);
      cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
      break;
    }

    case NAMED: {
      Variable* var = expression_->AsVariableProxy()->AsVariable();
      bool is_global = var != NULL;
      ASSERT(!is_global || var->is_global());

      // Do not inline the inobject property case for loads from the global
      // object.  Also do not inline for unoptimized code.  This saves time
      // in the code generator.  Unoptimized code is toplevel code or code
      // that is not in a loop.
      if (is_global ||
          cgen_->scope()->is_global_scope() ||
          cgen_->loop_nesting() == 0) {
        Comment cmnt(masm, "[ Load from named Property");
        cgen_->frame()->Push(GetName());

        RelocInfo::Mode mode = is_global
                               ? RelocInfo::CODE_TARGET_CONTEXT
                               : RelocInfo::CODE_TARGET;
        Result answer = cgen_->frame()->CallLoadIC(mode);
        // A test rax instruction following the call signals that the
        // inobject property case was inlined.  Ensure that there is not
        // a test rax instruction here.
        __ nop();
        cgen_->frame()->Push(&answer);
      } else {
        // Inline the inobject property case.
        Comment cmnt(masm, "[ Inlined named property load");
        Result receiver = cgen_->frame()->Pop();
        receiver.ToRegister();
        Result value = cgen_->allocator()->Allocate();
        ASSERT(value.is_valid());
        // Cannot use r12 for receiver, because that changes
        // the distance between a call and a fixup location,
        // due to a special encoding of r12 as r/m in a ModR/M byte.
        if (receiver.reg().is(r12)) {
          // Swap receiver and value.
          __ movq(value.reg(), receiver.reg());
          Result temp = receiver;
          receiver = value;
          value = temp;
          cgen_->frame()->Spill(value.reg());  // r12 may have been shared.
        }

        DeferredReferenceGetNamedValue* deferred =
            new DeferredReferenceGetNamedValue(value.reg(),
                                               receiver.reg(),
                                               GetName());

        // Check that the receiver is a heap object.
        __ JumpIfSmi(receiver.reg(), deferred->entry_label());

        __ bind(deferred->patch_site());
        // This is the map check instruction that will be patched (so we can't
        // use the double underscore macro that may insert instructions).
        // Initially use an invalid map to force a failure.
        masm->Move(kScratchRegister, Factory::null_value());
        masm->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
                   kScratchRegister);
        // This branch is always a forwards branch so it's always a fixed
        // size which allows the assert below to succeed and patching to work.
        // Don't use deferred->Branch(...), since that might add coverage code.
        masm->j(not_equal, deferred->entry_label());

        // The delta from the patch label to the load offset must be
        // statically known.
        ASSERT(masm->SizeOfCodeGeneratedSince(deferred->patch_site()) ==
               LoadIC::kOffsetToLoadInstruction);
        // The initial (invalid) offset has to be large enough to force
        // a 32-bit instruction encoding to allow patching with an
        // arbitrary offset.  Use kMaxInt (minus kHeapObjectTag).
        int offset = kMaxInt;
        masm->movq(value.reg(), FieldOperand(receiver.reg(), offset));

        __ IncrementCounter(&Counters::named_load_inline, 1);
        deferred->BindExit();
        cgen_->frame()->Push(&receiver);
        cgen_->frame()->Push(&value);
      }
      break;
    }

    case KEYED: {
      Comment cmnt(masm, "[ Load from keyed Property");
      Variable* var = expression_->AsVariableProxy()->AsVariable();
      bool is_global = var != NULL;
      ASSERT(!is_global || var->is_global());

      // Inline array load code if inside of a loop.  We do not know
      // the receiver map yet, so we initially generate the code with
      // a check against an invalid map.  In the inline cache code, we
      // patch the map check if appropriate.
      if (cgen_->loop_nesting() > 0) {
        Comment cmnt(masm, "[ Inlined load from keyed Property");

        Result key = cgen_->frame()->Pop();
        Result receiver = cgen_->frame()->Pop();
        key.ToRegister();
        receiver.ToRegister();

        // Use a fresh temporary to load the elements without destroying
        // the receiver which is needed for the deferred slow case.
        Result elements = cgen_->allocator()->Allocate();
        ASSERT(elements.is_valid());

        // Use a fresh temporary for the index and later the loaded
        // value.
        Result index = cgen_->allocator()->Allocate();
        ASSERT(index.is_valid());

        DeferredReferenceGetKeyedValue* deferred =
            new DeferredReferenceGetKeyedValue(index.reg(),
                                               receiver.reg(),
                                               key.reg(),
                                               is_global);

        // Check that the receiver is not a smi (only needed if this
        // is not a load from the global context) and that it has the
        // expected map.
        if (!is_global) {
          __ JumpIfSmi(receiver.reg(), deferred->entry_label());
        }

        // Initially, use an invalid map. The map is patched in the IC
        // initialization code.
        __ bind(deferred->patch_site());
        // Use masm-> here instead of the double underscore macro since extra
        // coverage code can interfere with the patching.
        masm->movq(kScratchRegister, Factory::null_value(),
                   RelocInfo::EMBEDDED_OBJECT);
        masm->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
                   kScratchRegister);
        deferred->Branch(not_equal);

        // Check that the key is a non-negative smi.
        __ JumpIfNotPositiveSmi(key.reg(), deferred->entry_label());

        // Get the elements array from the receiver and check that it
        // is not a dictionary.
        __ movq(elements.reg(),
                FieldOperand(receiver.reg(), JSObject::kElementsOffset));
        __ Cmp(FieldOperand(elements.reg(), HeapObject::kMapOffset),
               Factory::fixed_array_map());
        deferred->Branch(not_equal);

        // Shift the key to get the actual index value and check that
        // it is within bounds.
        __ SmiToInteger32(index.reg(), key.reg());
        __ cmpl(index.reg(),
                FieldOperand(elements.reg(), FixedArray::kLengthOffset));
        deferred->Branch(above_equal);

        // The index register holds the un-smi-tagged key. It has been
        // zero-extended to 64-bits, so it can be used directly as index in the
        // operand below.
        // Load and check that the result is not the hole.  We could
        // reuse the index or elements register for the value.
        //
        // TODO(206): Consider whether it makes sense to try some
        // heuristic about which register to reuse.  For example, if
        // one is rax, the we can reuse that one because the value
        // coming from the deferred code will be in rax.
        Result value = index;
        __ movq(value.reg(),
                Operand(elements.reg(),
                        index.reg(),
                        times_pointer_size,
                        FixedArray::kHeaderSize - kHeapObjectTag));
        elements.Unuse();
        index.Unuse();
        __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
        deferred->Branch(equal);
        __ IncrementCounter(&Counters::keyed_load_inline, 1);

        deferred->BindExit();
        // Restore the receiver and key to the frame and push the
        // result on top of it.
        cgen_->frame()->Push(&receiver);
        cgen_->frame()->Push(&key);
        cgen_->frame()->Push(&value);

      } else {
        Comment cmnt(masm, "[ Load from keyed Property");
        RelocInfo::Mode mode = is_global
                               ? RelocInfo::CODE_TARGET_CONTEXT
                               : RelocInfo::CODE_TARGET;
        Result answer = cgen_->frame()->CallKeyedLoadIC(mode);
        // Make sure that we do not have a test instruction after the
        // call.  A test instruction after the call is used to
        // indicate that we have generated an inline version of the
        // keyed load.  The explicit nop instruction is here because
        // the push that follows might be peep-hole optimized away.
        __ nop();
        cgen_->frame()->Push(&answer);
      }
      break;
    }

    default:
      UNREACHABLE();
  }
}


void Reference::TakeValue() {
  // TODO(X64): This function is completely architecture independent. Move
  // it somewhere shared.

  // For non-constant frame-allocated slots, we invalidate the value in the
  // slot.  For all others, we fall back on GetValue.
  ASSERT(!cgen_->in_spilled_code());
  ASSERT(!is_illegal());
  if (type_ != SLOT) {
    GetValue();
    return;
  }

  Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
  ASSERT(slot != NULL);
  if (slot->type() == Slot::LOOKUP ||
      slot->type() == Slot::CONTEXT ||
      slot->var()->mode() == Variable::CONST ||
      slot->is_arguments()) {
    GetValue();
    return;
  }

  // Only non-constant, frame-allocated parameters and locals can reach
  // here.  Be careful not to use the optimizations for arguments
  // object access since it may not have been initialized yet.
  ASSERT(!slot->is_arguments());
  if (slot->type() == Slot::PARAMETER) {
    cgen_->frame()->TakeParameterAt(slot->index());
  } else {
    ASSERT(slot->type() == Slot::LOCAL);
    cgen_->frame()->TakeLocalAt(slot->index());
  }
}


void Reference::SetValue(InitState init_state) {
  ASSERT(cgen_->HasValidEntryRegisters());
  ASSERT(!is_illegal());
  MacroAssembler* masm = cgen_->masm();
  switch (type_) {
    case SLOT: {
      Comment cmnt(masm, "[ Store to Slot");
      Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
      ASSERT(slot != NULL);
      cgen_->StoreToSlot(slot, init_state);
      break;
    }

    case NAMED: {
      Comment cmnt(masm, "[ Store to named Property");
      cgen_->frame()->Push(GetName());
      Result answer = cgen_->frame()->CallStoreIC();
      cgen_->frame()->Push(&answer);
      break;
    }

    case KEYED: {
      Comment cmnt(masm, "[ Store to keyed Property");

      // Generate inlined version of the keyed store if the code is in
      // a loop and the key is likely to be a smi.
      Property* property = expression()->AsProperty();
      ASSERT(property != NULL);
      SmiAnalysis* key_smi_analysis = property->key()->type();

      if (cgen_->loop_nesting() > 0 && key_smi_analysis->IsLikelySmi()) {
        Comment cmnt(masm, "[ Inlined store to keyed Property");

        // Get the receiver, key and value into registers.
        Result value = cgen_->frame()->Pop();
        Result key = cgen_->frame()->Pop();
        Result receiver = cgen_->frame()->Pop();

        Result tmp = cgen_->allocator_->Allocate();
        ASSERT(tmp.is_valid());

        // Determine whether the value is a constant before putting it
        // in a register.
        bool value_is_constant = value.is_constant();

        // Make sure that value, key and receiver are in registers.
        value.ToRegister();
        key.ToRegister();
        receiver.ToRegister();

        DeferredReferenceSetKeyedValue* deferred =
            new DeferredReferenceSetKeyedValue(value.reg(),
                                               key.reg(),
                                               receiver.reg());

        // Check that the value is a smi if it is not a constant.
        // We can skip the write barrier for smis and constants.
        if (!value_is_constant) {
          __ JumpIfNotSmi(value.reg(), deferred->entry_label());
        }

        // Check that the key is a non-negative smi.
        __ JumpIfNotPositiveSmi(key.reg(), deferred->entry_label());

        // Check that the receiver is not a smi.
        __ JumpIfSmi(receiver.reg(), deferred->entry_label());

        // Check that the receiver is a JSArray.
        __ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, kScratchRegister);
        deferred->Branch(not_equal);

        // Check that the key is within bounds.  Both the key and the
        // length of the JSArray are smis.
        __ SmiCompare(FieldOperand(receiver.reg(), JSArray::kLengthOffset),
                      key.reg());
        deferred->Branch(less_equal);

        // Get the elements array from the receiver and check that it
        // is a flat array (not a dictionary).
        __ movq(tmp.reg(),
                FieldOperand(receiver.reg(), JSObject::kElementsOffset));
        // Bind the deferred code patch site to be able to locate the
        // fixed array map comparison.  When debugging, we patch this
        // comparison to always fail so that we will hit the IC call
        // in the deferred code which will allow the debugger to
        // break for fast case stores.
        __ bind(deferred->patch_site());
        // Avoid using __ to ensure the distance from patch_site
        // to the map address is always the same.
        masm->movq(kScratchRegister, Factory::fixed_array_map(),
                   RelocInfo::EMBEDDED_OBJECT);
        __ cmpq(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
                kScratchRegister);
        deferred->Branch(not_equal);

        // Store the value.
        SmiIndex index =
            masm->SmiToIndex(kScratchRegister, key.reg(), kPointerSizeLog2);
              __ movq(Operand(tmp.reg(),
                        index.reg,
                        index.scale,
                        FixedArray::kHeaderSize - kHeapObjectTag),
                value.reg());
        __ IncrementCounter(&Counters::keyed_store_inline, 1);

        deferred->BindExit();

        cgen_->frame()->Push(&receiver);
        cgen_->frame()->Push(&key);
        cgen_->frame()->Push(&value);
      } else {
        Result answer = cgen_->frame()->CallKeyedStoreIC();
        // Make sure that we do not have a test instruction after the
        // call.  A test instruction after the call is used to
        // indicate that we have generated an inline version of the
        // keyed store.
        masm->nop();
        cgen_->frame()->Push(&answer);
      }
      break;
    }

    default:
      UNREACHABLE();
  }
}


void ToBooleanStub::Generate(MacroAssembler* masm) {
  Label false_result, true_result, not_string;
  __ movq(rax, Operand(rsp, 1 * kPointerSize));

  // 'null' => false.
  __ CompareRoot(rax, Heap::kNullValueRootIndex);
  __ j(equal, &false_result);

  // Get the map and type of the heap object.
  // We don't use CmpObjectType because we manipulate the type field.
  __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
  __ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset));

  // Undetectable => false.
  __ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset));
  __ and_(rbx, Immediate(1 << Map::kIsUndetectable));
  __ j(not_zero, &false_result);

  // JavaScript object => true.
  __ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE));
  __ j(above_equal, &true_result);

  // String value => false iff empty.
  __ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE));
  __ j(above_equal, &not_string);
  __ and_(rcx, Immediate(kStringSizeMask));
  __ cmpq(rcx, Immediate(kShortStringTag));
  __ j(not_equal, &true_result);  // Empty string is always short.
  __ movl(rdx, FieldOperand(rax, String::kLengthOffset));
  __ shr(rdx, Immediate(String::kShortLengthShift));
  __ j(zero, &false_result);
  __ jmp(&true_result);

  __ bind(&not_string);
  // HeapNumber => false iff +0, -0, or NaN.
  // These three cases set C3 when compared to zero in the FPU.
  __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
  __ j(not_equal, &true_result);
  __ fldz();  // Load zero onto fp stack
  // Load heap-number double value onto fp stack
  __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
  __ FCmp();
  __ j(zero, &false_result);
  // Fall through to |true_result|.

  // Return 1/0 for true/false in rax.
  __ bind(&true_result);
  __ movq(rax, Immediate(1));
  __ ret(1 * kPointerSize);
  __ bind(&false_result);
  __ xor_(rax, rax);
  __ ret(1 * kPointerSize);
}


bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
  // TODO(X64): This method is identical to the ia32 version.
  // Either find a reason to change it, or move it somewhere where it can be
  // shared. (Notice: It assumes that a Smi can fit in an int).

  Object* answer_object = Heap::undefined_value();
  switch (op) {
    case Token::ADD:
      if (Smi::IsValid(left + right)) {
        answer_object = Smi::FromInt(left + right);
      }
      break;
    case Token::SUB:
      if (Smi::IsValid(left - right)) {
        answer_object = Smi::FromInt(left - right);
      }
      break;
    case Token::MUL: {
        double answer = static_cast<double>(left) * right;
        if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
          // If the product is zero and the non-zero factor is negative,
          // the spec requires us to return floating point negative zero.
          if (answer != 0 || (left + right) >= 0) {
            answer_object = Smi::FromInt(static_cast<int>(answer));
          }
        }
      }
      break;
    case Token::DIV:
    case Token::MOD:
      break;
    case Token::BIT_OR:
      answer_object = Smi::FromInt(left | right);
      break;
    case Token::BIT_AND:
      answer_object = Smi::FromInt(left & right);
      break;
    case Token::BIT_XOR:
      answer_object = Smi::FromInt(left ^ right);
      break;

    case Token::SHL: {
        int shift_amount = right & 0x1F;
        if (Smi::IsValid(left << shift_amount)) {
          answer_object = Smi::FromInt(left << shift_amount);
        }
        break;
      }
    case Token::SHR: {
        int shift_amount = right & 0x1F;
        unsigned int unsigned_left = left;
        unsigned_left >>= shift_amount;
        if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
          answer_object = Smi::FromInt(unsigned_left);
        }
        break;
      }
    case Token::SAR: {
        int shift_amount = right & 0x1F;
        unsigned int unsigned_left = left;
        if (left < 0) {
          // Perform arithmetic shift of a negative number by
          // complementing number, logical shifting, complementing again.
          unsigned_left = ~unsigned_left;
          unsigned_left >>= shift_amount;
          unsigned_left = ~unsigned_left;
        } else {
          unsigned_left >>= shift_amount;
        }
        ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left)));
        answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left));
        break;
      }
    default:
      UNREACHABLE();
      break;
  }
  if (answer_object == Heap::undefined_value()) {
    return false;
  }
  frame_->Push(Handle<Object>(answer_object));
  return true;
}


// End of CodeGenerator implementation.

void UnarySubStub::Generate(MacroAssembler* masm) {
  Label slow;
  Label done;
  Label try_float;
  // Check whether the value is a smi.
  __ JumpIfNotSmi(rax, &try_float);

  // Enter runtime system if the value of the smi is zero
  // to make sure that we switch between 0 and -0.
  // Also enter it if the value of the smi is Smi::kMinValue.
  __ SmiNeg(rax, rax, &done);

  // Either zero or Smi::kMinValue, neither of which become a smi when negated.
  __ SmiCompare(rax, Smi::FromInt(0));
  __ j(not_equal, &slow);
  __ Move(rax, Factory::minus_zero_value());
  __ jmp(&done);

  // Enter runtime system.
  __ bind(&slow);
  __ pop(rcx);  // pop return address
  __ push(rax);
  __ push(rcx);  // push return address
  __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
  __ jmp(&done);

  // Try floating point case.
  __ bind(&try_float);
  __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
  __ Cmp(rdx, Factory::heap_number_map());
  __ j(not_equal, &slow);
  // Operand is a float, negate its value by flipping sign bit.
  __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset));
  __ movq(kScratchRegister, Immediate(0x01));
  __ shl(kScratchRegister, Immediate(63));
  __ xor_(rdx, kScratchRegister);  // Flip sign.
  // rdx is value to store.
  if (overwrite_) {
    __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx);
  } else {
    __ AllocateHeapNumber(rcx, rbx, &slow);
    // rcx: allocated 'empty' number
    __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx);
    __ movq(rax, rcx);
  }

  __ bind(&done);
  __ StubReturn(1);
}


void CompareStub::Generate(MacroAssembler* masm) {
  Label call_builtin, done;

  // NOTICE! This code is only reached after a smi-fast-case check, so
  // it is certain that at least one operand isn't a smi.

  if (cc_ == equal) {  // Both strict and non-strict.
    Label slow;  // Fallthrough label.
    // Equality is almost reflexive (everything but NaN), so start by testing
    // for "identity and not NaN".
    {
      Label not_identical;
      __ cmpq(rax, rdx);
      __ j(not_equal, &not_identical);
      // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
      // so we do the second best thing - test it ourselves.

      Label return_equal;
      Label heap_number;
      // If it's not a heap number, then return equal.
      __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
             Factory::heap_number_map());
      __ j(equal, &heap_number);
      __ bind(&return_equal);
      __ xor_(rax, rax);
      __ ret(0);

      __ bind(&heap_number);
      // It is a heap number, so return non-equal if it's NaN and equal if it's
      // not NaN.
      // The representation of NaN values has all exponent bits (52..62) set,
      // and not all mantissa bits (0..51) clear.
      // We only allow QNaNs, which have bit 51 set (which also rules out
      // the value being Infinity).

      // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e.,
      // all bits in the mask are set. We only need to check the word
      // that contains the exponent and high bit of the mantissa.
      ASSERT_NE(0, (kQuietNaNHighBitsMask << 1) & 0x80000000u);
      __ movl(rdx, FieldOperand(rdx, HeapNumber::kExponentOffset));
      __ xorl(rax, rax);
      __ addl(rdx, rdx);  // Shift value and mask so mask applies to top bits.
      __ cmpl(rdx, Immediate(kQuietNaNHighBitsMask << 1));
      __ setcc(above_equal, rax);
      __ ret(0);

      __ bind(&not_identical);
    }

    // If we're doing a strict equality comparison, we don't have to do
    // type conversion, so we generate code to do fast comparison for objects
    // and oddballs. Non-smi numbers and strings still go through the usual
    // slow-case code.
    if (strict_) {
      // If either is a Smi (we know that not both are), then they can only
      // be equal if the other is a HeapNumber. If so, use the slow case.
      {
        Label not_smis;
        __ SelectNonSmi(rbx, rax, rdx, &not_smis);

        // Check if the non-smi operand is a heap number.
        __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
               Factory::heap_number_map());
        // If heap number, handle it in the slow case.
        __ j(equal, &slow);
        // Return non-equal.  ebx (the lower half of rbx) is not zero.
        __ movq(rax, rbx);
        __ ret(0);

        __ bind(&not_smis);
      }

      // If either operand is a JSObject or an oddball value, then they are not
      // equal since their pointers are different
      // There is no test for undetectability in strict equality.

      // If the first object is a JS object, we have done pointer comparison.
      ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
      Label first_non_object;
      __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
      __ j(below, &first_non_object);
      // Return non-zero (eax (not rax) is not zero)
      Label return_not_equal;
      ASSERT(kHeapObjectTag != 0);
      __ bind(&return_not_equal);
      __ ret(0);

      __ bind(&first_non_object);
      // Check for oddballs: true, false, null, undefined.
      __ CmpInstanceType(rcx, ODDBALL_TYPE);
      __ j(equal, &return_not_equal);

      __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
      __ j(above_equal, &return_not_equal);

      // Check for oddballs: true, false, null, undefined.
      __ CmpInstanceType(rcx, ODDBALL_TYPE);
      __ j(equal, &return_not_equal);

      // Fall through to the general case.
    }
    __ bind(&slow);
  }

  // Push arguments below the return address to prepare jump to builtin.
  __ pop(rcx);
  __ push(rax);
  __ push(rdx);
  __ push(rcx);

  // Inlined floating point compare.
  // Call builtin if operands are not floating point or smi.
  Label check_for_symbols;
  // Push arguments on stack, for helper functions.
  FloatingPointHelper::CheckNumberOperands(masm, &check_for_symbols);
  FloatingPointHelper::LoadFloatOperands(masm, rax, rdx);
  __ FCmp();

  // Jump to builtin for NaN.
  __ j(parity_even, &call_builtin);

  // TODO(1243847): Use cmov below once CpuFeatures are properly hooked up.
  Label below_lbl, above_lbl;
  // use rdx, rax to convert unsigned to signed comparison
  __ j(below, &below_lbl);
  __ j(above, &above_lbl);

  __ xor_(rax, rax);  // equal
  __ ret(2 * kPointerSize);

  __ bind(&below_lbl);
  __ movq(rax, Immediate(-1));
  __ ret(2 * kPointerSize);

  __ bind(&above_lbl);
  __ movq(rax, Immediate(1));
  __ ret(2 * kPointerSize);  // rax, rdx were pushed

  // Fast negative check for symbol-to-symbol equality.
  __ bind(&check_for_symbols);
  if (cc_ == equal) {
    BranchIfNonSymbol(masm, &call_builtin, rax, kScratchRegister);
    BranchIfNonSymbol(masm, &call_builtin, rdx, kScratchRegister);

    // We've already checked for object identity, so if both operands
    // are symbols they aren't equal. Register eax (not rax) already holds a
    // non-zero value, which indicates not equal, so just return.
    __ ret(2 * kPointerSize);
  }

  __ bind(&call_builtin);
  // must swap argument order
  __ pop(rcx);
  __ pop(rdx);
  __ pop(rax);
  __ push(rdx);
  __ push(rax);

  // Figure out which native to call and setup the arguments.
  Builtins::JavaScript builtin;
  if (cc_ == equal) {
    builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
  } else {
    builtin = Builtins::COMPARE;
    int ncr;  // NaN compare result
    if (cc_ == less || cc_ == less_equal) {
      ncr = GREATER;
    } else {
      ASSERT(cc_ == greater || cc_ == greater_equal);  // remaining cases
      ncr = LESS;
    }
    __ Push(Smi::FromInt(ncr));
  }

  // Restore return address on the stack.
  __ push(rcx);

  // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
  // tagged as a small integer.
  __ InvokeBuiltin(builtin, JUMP_FUNCTION);
}


void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
                                    Label* label,
                                    Register object,
                                    Register scratch) {
  __ JumpIfSmi(object, label);
  __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset));
  __ movzxbq(scratch,
             FieldOperand(scratch, Map::kInstanceTypeOffset));
  __ and_(scratch, Immediate(kIsSymbolMask | kIsNotStringMask));
  __ cmpb(scratch, Immediate(kSymbolTag | kStringTag));
  __ j(not_equal, label);
}


// Call the function just below TOS on the stack with the given
// arguments. The receiver is the TOS.
void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
                                      int position) {
  // Push the arguments ("left-to-right") on the stack.
  int arg_count = args->length();
  for (int i = 0; i < arg_count; i++) {
    Load(args->at(i));
  }

  // Record the position for debugging purposes.
  CodeForSourcePosition(position);

  // Use the shared code stub to call the function.
  InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
  CallFunctionStub call_function(arg_count, in_loop);
  Result answer = frame_->CallStub(&call_function, arg_count + 1);
  // Restore context and replace function on the stack with the
  // result of the stub invocation.
  frame_->RestoreContextRegister();
  frame_->SetElementAt(0, &answer);
}


void InstanceofStub::Generate(MacroAssembler* masm) {
  // Implements "value instanceof function" operator.
  // Expected input state:
  //   rsp[0] : return address
  //   rsp[1] : function pointer
  //   rsp[2] : value

  // Get the object - go slow case if it's a smi.
  Label slow;
  __ movq(rax, Operand(rsp, 2 * kPointerSize));
  __ JumpIfSmi(rax, &slow);

  // Check that the left hand is a JS object. Leave its map in rax.
  __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax);
  __ j(below, &slow);
  __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE);
  __ j(above, &slow);

  // Get the prototype of the function.
  __ movq(rdx, Operand(rsp, 1 * kPointerSize));
  __ TryGetFunctionPrototype(rdx, rbx, &slow);

  // Check that the function prototype is a JS object.
  __ JumpIfSmi(rbx, &slow);
  __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister);
  __ j(below, &slow);
  __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
  __ j(above, &slow);

  // Register mapping: rax is object map and rbx is function prototype.
  __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));

  // Loop through the prototype chain looking for the function prototype.
  Label loop, is_instance, is_not_instance;
  __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
  __ bind(&loop);
  __ cmpq(rcx, rbx);
  __ j(equal, &is_instance);
  __ cmpq(rcx, kScratchRegister);
  __ j(equal, &is_not_instance);
  __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
  __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
  __ jmp(&loop);

  __ bind(&is_instance);
  __ xorl(rax, rax);
  __ ret(2 * kPointerSize);

  __ bind(&is_not_instance);
  __ movl(rax, Immediate(1));
  __ ret(2 * kPointerSize);

  // Slow-case: Go through the JavaScript implementation.
  __ bind(&slow);
  __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
}


void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
  // The displacement is used for skipping the return address and the
  // frame pointer on the stack. It is the offset of the last
  // parameter (if any) relative to the frame pointer.
  static const int kDisplacement = 2 * kPointerSize;

  // Check if the calling frame is an arguments adaptor frame.
  Label runtime;
  __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
  __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
                Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
  __ j(not_equal, &runtime);
  // Value in rcx is Smi encoded.

  // Patch the arguments.length and the parameters pointer.
  __ movq(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
  __ movq(Operand(rsp, 1 * kPointerSize), rcx);
  SmiIndex index = masm->SmiToIndex(rcx, rcx, kPointerSizeLog2);
  __ lea(rdx, Operand(rdx, index.reg, index.scale, kDisplacement));
  __ movq(Operand(rsp, 2 * kPointerSize), rdx);

  // Do the runtime call to allocate the arguments object.
  __ bind(&runtime);
  Runtime::Function* f = Runtime::FunctionForId(Runtime::kNewArgumentsFast);
  __ TailCallRuntime(ExternalReference(f), 3, f->result_size);
}


void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
  // The key is in rdx and the parameter count is in rax.

  // The displacement is used for skipping the frame pointer on the
  // stack. It is the offset of the last parameter (if any) relative
  // to the frame pointer.
  static const int kDisplacement = 1 * kPointerSize;

  // Check that the key is a smi.
  Label slow;
  __ JumpIfNotSmi(rdx, &slow);

  // Check if the calling frame is an arguments adaptor frame.
  Label adaptor;
  __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
  __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset),
                Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
  __ j(equal, &adaptor);

  // Check index against formal parameters count limit passed in
  // through register rax. Use unsigned comparison to get negative
  // check for free.
  __ cmpq(rdx, rax);
  __ j(above_equal, &slow);

  // Read the argument from the stack and return it.
  SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
  __ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
  index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
  __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
  __ Ret();

  // Arguments adaptor case: Check index against actual arguments
  // limit found in the arguments adaptor frame. Use unsigned
  // comparison to get negative check for free.
  __ bind(&adaptor);
  __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
  __ cmpq(rdx, rcx);
  __ j(above_equal, &slow);

  // Read the argument from the stack and return it.
  index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
  __ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
  index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
  __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
  __ Ret();

  // Slow-case: Handle non-smi or out-of-bounds access to arguments
  // by calling the runtime system.
  __ bind(&slow);
  __ pop(rbx);  // Return address.
  __ push(rdx);
  __ push(rbx);
  Runtime::Function* f =
      Runtime::FunctionForId(Runtime::kGetArgumentsProperty);
  __ TailCallRuntime(ExternalReference(f), 1, f->result_size);
}


void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) {
  // Check if the calling frame is an arguments adaptor frame.
  Label adaptor;
  __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
  __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
                Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
  __ j(equal, &adaptor);

  // Nothing to do: The formal number of parameters has already been
  // passed in register rax by calling function. Just return it.
  __ ret(0);

  // Arguments adaptor case: Read the arguments length from the
  // adaptor frame and return it.
  __ bind(&adaptor);
  __ movq(rax, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
  __ ret(0);
}


int CEntryStub::MinorKey() {
  ASSERT(result_size_ <= 2);
#ifdef _WIN64
  // Simple results returned in rax (using default code).
  // Complex results must be written to address passed as first argument.
  // Use even numbers for minor keys, reserving the odd numbers for
  // CEntryDebugBreakStub.
  return (result_size_ < 2) ? 0 : result_size_ * 2;
#else
  // Single results returned in rax (both AMD64 and Win64 calling conventions)
  // and a struct of two pointers in rax+rdx (AMD64 calling convention only)
  // by default.
  return 0;
#endif
}


void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
  // Check that stack should contain next handler, frame pointer, state and
  // return address in that order.
  ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize,
            StackHandlerConstants::kStateOffset);
  ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize,
            StackHandlerConstants::kPCOffset);

  ExternalReference handler_address(Top::k_handler_address);
  __ movq(kScratchRegister, handler_address);
  __ movq(rsp, Operand(kScratchRegister, 0));
  // get next in chain
  __ pop(rcx);
  __ movq(Operand(kScratchRegister, 0), rcx);
  __ pop(rbp);  // pop frame pointer
  __ pop(rdx);  // remove state

  // Before returning we restore the context from the frame pointer if not NULL.
  // The frame pointer is NULL in the exception handler of a JS entry frame.
  __ xor_(rsi, rsi);  // tentatively set context pointer to NULL
  Label skip;
  __ cmpq(rbp, Immediate(0));
  __ j(equal, &skip);
  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
  __ bind(&skip);
  __ ret(0);
}


void CEntryStub::GenerateCore(MacroAssembler* masm,
                              Label* throw_normal_exception,
                              Label* throw_termination_exception,
                              Label* throw_out_of_memory_exception,
                              ExitFrame::Mode mode,
                              bool do_gc,
                              bool always_allocate_scope) {
  // rax: result parameter for PerformGC, if any.
  // rbx: pointer to C function  (C callee-saved).
  // rbp: frame pointer  (restored after C call).
  // rsp: stack pointer  (restored after C call).
  // r14: number of arguments including receiver (C callee-saved).
  // r15: pointer to the first argument (C callee-saved).
  //      This pointer is reused in LeaveExitFrame(), so it is stored in a
  //      callee-saved register.

  if (do_gc) {
    // Pass failure code returned from last attempt as first argument to GC.
#ifdef _WIN64
    __ movq(rcx, rax);
#else  // ! defined(_WIN64)
    __ movq(rdi, rax);
#endif
    __ movq(kScratchRegister,
            FUNCTION_ADDR(Runtime::PerformGC),
            RelocInfo::RUNTIME_ENTRY);
    __ call(kScratchRegister);
  }

  ExternalReference scope_depth =
      ExternalReference::heap_always_allocate_scope_depth();
  if (always_allocate_scope) {
    __ movq(kScratchRegister, scope_depth);
    __ incl(Operand(kScratchRegister, 0));
  }

  // Call C function.
#ifdef _WIN64
  // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9
  // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots.
  __ movq(Operand(rsp, 4 * kPointerSize), r14);  // argc.
  __ movq(Operand(rsp, 5 * kPointerSize), r15);  // argv.
  if (result_size_ < 2) {
    // Pass a pointer to the Arguments object as the first argument.
    // Return result in single register (rax).
    __ lea(rcx, Operand(rsp, 4 * kPointerSize));
  } else {
    ASSERT_EQ(2, result_size_);
    // Pass a pointer to the result location as the first argument.
    __ lea(rcx, Operand(rsp, 6 * kPointerSize));
    // Pass a pointer to the Arguments object as the second argument.
    __ lea(rdx, Operand(rsp, 4 * kPointerSize));
  }

#else  // ! defined(_WIN64)
  // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
  __ movq(rdi, r14);  // argc.
  __ movq(rsi, r15);  // argv.
#endif
  __ call(rbx);
  // Result is in rax - do not destroy this register!

  if (always_allocate_scope) {
    __ movq(kScratchRegister, scope_depth);
    __ decl(Operand(kScratchRegister, 0));
  }

  // Check for failure result.
  Label failure_returned;
  ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
#ifdef _WIN64
  // If return value is on the stack, pop it to registers.
  if (result_size_ > 1) {
    ASSERT_EQ(2, result_size_);
    // Read result values stored on stack. Result is stored
    // above the four argument mirror slots and the two
    // Arguments object slots.
    __ movq(rax, Operand(rsp, 6 * kPointerSize));
    __ movq(rdx, Operand(rsp, 7 * kPointerSize));
  }
#endif
  __ lea(rcx, Operand(rax, 1));
  // Lower 2 bits of rcx are 0 iff rax has failure tag.
  __ testl(rcx, Immediate(kFailureTagMask));
  __ j(zero, &failure_returned);

  // Exit the JavaScript to C++ exit frame.
  __ LeaveExitFrame(mode, result_size_);
  __ ret(0);

  // Handling of failure.
  __ bind(&failure_returned);

  Label retry;
  // If the returned exception is RETRY_AFTER_GC continue at retry label
  ASSERT(Failure::RETRY_AFTER_GC == 0);
  __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
  __ j(zero, &retry);

  // Special handling of out of memory exceptions.
  __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE);
  __ cmpq(rax, kScratchRegister);
  __ j(equal, throw_out_of_memory_exception);

  // Retrieve the pending exception and clear the variable.
  ExternalReference pending_exception_address(Top::k_pending_exception_address);
  __ movq(kScratchRegister, pending_exception_address);
  __ movq(rax, Operand(kScratchRegister, 0));
  __ movq(rdx, ExternalReference::the_hole_value_location());
  __ movq(rdx, Operand(rdx, 0));
  __ movq(Operand(kScratchRegister, 0), rdx);

  // Special handling of termination exceptions which are uncatchable
  // by javascript code.
  __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
  __ j(equal, throw_termination_exception);

  // Handle normal exception.
  __ jmp(throw_normal_exception);

  // Retry.
  __ bind(&retry);
}


void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
                                          UncatchableExceptionType type) {
  // Fetch top stack handler.
  ExternalReference handler_address(Top::k_handler_address);
  __ movq(kScratchRegister, handler_address);
  __ movq(rsp, Operand(kScratchRegister, 0));

  // Unwind the handlers until the ENTRY handler is found.
  Label loop, done;
  __ bind(&loop);
  // Load the type of the current stack handler.
  const int kStateOffset = StackHandlerConstants::kStateOffset;
  __ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY));
  __ j(equal, &done);
  // Fetch the next handler in the list.
  const int kNextOffset = StackHandlerConstants::kNextOffset;
  __ movq(rsp, Operand(rsp, kNextOffset));
  __ jmp(&loop);
  __ bind(&done);

  // Set the top handler address to next handler past the current ENTRY handler.
  __ movq(kScratchRegister, handler_address);
  __ pop(Operand(kScratchRegister, 0));

  if (type == OUT_OF_MEMORY) {
    // Set external caught exception to false.
    ExternalReference external_caught(Top::k_external_caught_exception_address);
    __ movq(rax, Immediate(false));
    __ store_rax(external_caught);

    // Set pending exception and rax to out of memory exception.
    ExternalReference pending_exception(Top::k_pending_exception_address);
    __ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
    __ store_rax(pending_exception);
  }

  // Clear the context pointer.
  __ xor_(rsi, rsi);

  // Restore registers from handler.
  ASSERT_EQ(StackHandlerConstants::kNextOffset + kPointerSize,
            StackHandlerConstants::kFPOffset);
  __ pop(rbp);  // FP
  ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize,
            StackHandlerConstants::kStateOffset);
  __ pop(rdx);  // State

  ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize,
            StackHandlerConstants::kPCOffset);
  __ ret(0);
}


void CallFunctionStub::Generate(MacroAssembler* masm) {
  Label slow;

  // Get the function to call from the stack.
  // +2 ~ receiver, return address
  __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize));

  // Check that the function really is a JavaScript function.
  __ JumpIfSmi(rdi, &slow);
  // Goto slow case if we do not have a function.
  __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
  __ j(not_equal, &slow);

  // Fast-case: Just invoke the function.
  ParameterCount actual(argc_);
  __ InvokeFunction(rdi, actual, JUMP_FUNCTION);

  // Slow-case: Non-function called.
  __ bind(&slow);
  __ Set(rax, argc_);
  __ Set(rbx, 0);
  __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
  Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
  __ Jump(adaptor, RelocInfo::CODE_TARGET);
}


void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) {
  // rax: number of arguments including receiver
  // rbx: pointer to C function  (C callee-saved)
  // rbp: frame pointer of calling JS frame (restored after C call)
  // rsp: stack pointer  (restored after C call)
  // rsi: current context (restored)

  // NOTE: Invocations of builtins may return failure objects
  // instead of a proper result. The builtin entry handles
  // this by performing a garbage collection and retrying the
  // builtin once.

  ExitFrame::Mode mode = is_debug_break ?
      ExitFrame::MODE_DEBUG :
      ExitFrame::MODE_NORMAL;

  // Enter the exit frame that transitions from JavaScript to C++.
  __ EnterExitFrame(mode, result_size_);

  // rax: Holds the context at this point, but should not be used.
  //      On entry to code generated by GenerateCore, it must hold
  //      a failure result if the collect_garbage argument to GenerateCore
  //      is true.  This failure result can be the result of code
  //      generated by a previous call to GenerateCore.  The value
  //      of rax is then passed to Runtime::PerformGC.
  // rbx: pointer to builtin function  (C callee-saved).
  // rbp: frame pointer of exit frame  (restored after C call).
  // rsp: stack pointer (restored after C call).
  // r14: number of arguments including receiver (C callee-saved).
  // r15: argv pointer (C callee-saved).

  Label throw_normal_exception;
  Label throw_termination_exception;
  Label throw_out_of_memory_exception;

  // Call into the runtime system.
  GenerateCore(masm,
               &throw_normal_exception,
               &throw_termination_exception,
               &throw_out_of_memory_exception,
               mode,
               false,
               false);

  // Do space-specific GC and retry runtime call.
  GenerateCore(masm,
               &throw_normal_exception,
               &throw_termination_exception,
               &throw_out_of_memory_exception,
               mode,
               true,
               false);

  // Do full GC and retry runtime call one final time.
  Failure* failure = Failure::InternalError();
  __ movq(rax, failure, RelocInfo::NONE);
  GenerateCore(masm,
               &throw_normal_exception,
               &throw_termination_exception,
               &throw_out_of_memory_exception,
               mode,
               true,
               true);

  __ bind(&throw_out_of_memory_exception);
  GenerateThrowUncatchable(masm, OUT_OF_MEMORY);

  __ bind(&throw_termination_exception);
  GenerateThrowUncatchable(masm, TERMINATION);

  __ bind(&throw_normal_exception);
  GenerateThrowTOS(masm);
}


void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
  UNREACHABLE();
}


void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
  Label invoke, exit;
#ifdef ENABLE_LOGGING_AND_PROFILING
  Label not_outermost_js, not_outermost_js_2;
#endif

  // Setup frame.
  __ push(rbp);
  __ movq(rbp, rsp);

  // Push the stack frame type marker twice.
  int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
  __ Push(Smi::FromInt(marker));  // context slot
  __ Push(Smi::FromInt(marker));  // function slot
  // Save callee-saved registers (X64 calling conventions).
  __ push(r12);
  __ push(r13);
  __ push(r14);
  __ push(r15);
  __ push(rdi);
  __ push(rsi);
  __ push(rbx);
  // TODO(X64): Push XMM6-XMM15 (low 64 bits) as well, or make them
  // callee-save in JS code as well.

  // Save copies of the top frame descriptor on the stack.
  ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
  __ load_rax(c_entry_fp);
  __ push(rax);

#ifdef ENABLE_LOGGING_AND_PROFILING
  // If this is the outermost JS call, set js_entry_sp value.
  ExternalReference js_entry_sp(Top::k_js_entry_sp_address);
  __ load_rax(js_entry_sp);
  __ testq(rax, rax);
  __ j(not_zero, &not_outermost_js);
  __ movq(rax, rbp);
  __ store_rax(js_entry_sp);
  __ bind(&not_outermost_js);
#endif

  // Call a faked try-block that does the invoke.
  __ call(&invoke);

  // Caught exception: Store result (exception) in the pending
  // exception field in the JSEnv and return a failure sentinel.
  ExternalReference pending_exception(Top::k_pending_exception_address);
  __ store_rax(pending_exception);
  __ movq(rax, Failure::Exception(), RelocInfo::NONE);
  __ jmp(&exit);

  // Invoke: Link this frame into the handler chain.
  __ bind(&invoke);
  __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);

  // Clear any pending exceptions.
  __ load_rax(ExternalReference::the_hole_value_location());
  __ store_rax(pending_exception);

  // Fake a receiver (NULL).
  __ push(Immediate(0));  // receiver

  // Invoke the function by calling through JS entry trampoline
  // builtin and pop the faked function when we return. We load the address
  // from an external reference instead of inlining the call target address
  // directly in the code, because the builtin stubs may not have been
  // generated yet at the time this code is generated.
  if (is_construct) {
    ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
    __ load_rax(construct_entry);
  } else {
    ExternalReference entry(Builtins::JSEntryTrampoline);
    __ load_rax(entry);
  }
  __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
  __ call(kScratchRegister);

  // Unlink this frame from the handler chain.
  __ movq(kScratchRegister, ExternalReference(Top::k_handler_address));
  __ pop(Operand(kScratchRegister, 0));
  // Pop next_sp.
  __ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));

#ifdef ENABLE_LOGGING_AND_PROFILING
  // If current EBP value is the same as js_entry_sp value, it means that
  // the current function is the outermost.
  __ movq(kScratchRegister, js_entry_sp);
  __ cmpq(rbp, Operand(kScratchRegister, 0));
  __ j(not_equal, &not_outermost_js_2);
  __ movq(Operand(kScratchRegister, 0), Immediate(0));
  __ bind(&not_outermost_js_2);
#endif

  // Restore the top frame descriptor from the stack.
  __ bind(&exit);
  __ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address));
  __ pop(Operand(kScratchRegister, 0));

  // Restore callee-saved registers (X64 conventions).
  __ pop(rbx);
  __ pop(rsi);
  __ pop(rdi);
  __ pop(r15);
  __ pop(r14);
  __ pop(r13);
  __ pop(r12);
  __ addq(rsp, Immediate(2 * kPointerSize));  // remove markers

  // Restore frame pointer and return.
  __ pop(rbp);
  __ ret(0);
}


// -----------------------------------------------------------------------------
// Implementation of stubs.

//  Stub classes have public member named masm, not masm_.

void StackCheckStub::Generate(MacroAssembler* masm) {
  // Because builtins always remove the receiver from the stack, we
  // have to fake one to avoid underflowing the stack. The receiver
  // must be inserted below the return address on the stack so we
  // temporarily store that in a register.
  __ pop(rax);
  __ Push(Smi::FromInt(0));
  __ push(rax);

  // Do tail-call to runtime routine.
  Runtime::Function* f = Runtime::FunctionForId(Runtime::kStackGuard);
  __ TailCallRuntime(ExternalReference(f), 1, f->result_size);
}


void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
                                           Register number) {
  Label load_smi, done;

  __ JumpIfSmi(number, &load_smi);
  __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
  __ jmp(&done);

  __ bind(&load_smi);
  __ SmiToInteger32(number, number);
  __ push(number);
  __ fild_s(Operand(rsp, 0));
  __ pop(number);

  __ bind(&done);
}


void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
                                           Register src,
                                           XMMRegister dst) {
  Label load_smi, done;

  __ JumpIfSmi(src, &load_smi);
  __ movsd(dst, FieldOperand(src, HeapNumber::kValueOffset));
  __ jmp(&done);

  __ bind(&load_smi);
  __ SmiToInteger32(src, src);
  __ cvtlsi2sd(dst, src);

  __ bind(&done);
}


void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
                                            XMMRegister dst1,
                                            XMMRegister dst2) {
  __ movq(kScratchRegister, Operand(rsp, 2 * kPointerSize));
  LoadFloatOperand(masm, kScratchRegister, dst1);
  __ movq(kScratchRegister, Operand(rsp, 1 * kPointerSize));
  LoadFloatOperand(masm, kScratchRegister, dst2);
}


void FloatingPointHelper::LoadInt32Operand(MacroAssembler* masm,
                                           const Operand& src,
                                           Register dst) {
  // TODO(X64): Convert number operands to int32 values.
  // Don't convert a Smi to a double first.
  UNIMPLEMENTED();
}


void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm) {
  Label load_smi_1, load_smi_2, done_load_1, done;
  __ movq(kScratchRegister, Operand(rsp, 2 * kPointerSize));
  __ JumpIfSmi(kScratchRegister, &load_smi_1);
  __ fld_d(FieldOperand(kScratchRegister, HeapNumber::kValueOffset));
  __ bind(&done_load_1);

  __ movq(kScratchRegister, Operand(rsp, 1 * kPointerSize));
  __ JumpIfSmi(kScratchRegister, &load_smi_2);
  __ fld_d(FieldOperand(kScratchRegister, HeapNumber::kValueOffset));
  __ jmp(&done);

  __ bind(&load_smi_1);
  __ SmiToInteger32(kScratchRegister, kScratchRegister);
  __ push(kScratchRegister);
  __ fild_s(Operand(rsp, 0));
  __ pop(kScratchRegister);
  __ jmp(&done_load_1);

  __ bind(&load_smi_2);
  __ SmiToInteger32(kScratchRegister, kScratchRegister);
  __ push(kScratchRegister);
  __ fild_s(Operand(rsp, 0));
  __ pop(kScratchRegister);

  __ bind(&done);
}


void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
                                            Register lhs,
                                            Register rhs) {
  Label load_smi_lhs, load_smi_rhs, done_load_lhs, done;
  __ JumpIfSmi(lhs, &load_smi_lhs);
  __ fld_d(FieldOperand(lhs, HeapNumber::kValueOffset));
  __ bind(&done_load_lhs);

  __ JumpIfSmi(rhs, &load_smi_rhs);
  __ fld_d(FieldOperand(rhs, HeapNumber::kValueOffset));
  __ jmp(&done);

  __ bind(&load_smi_lhs);
  __ SmiToInteger64(kScratchRegister, lhs);
  __ push(kScratchRegister);
  __ fild_d(Operand(rsp, 0));
  __ pop(kScratchRegister);
  __ jmp(&done_load_lhs);

  __ bind(&load_smi_rhs);
  __ SmiToInteger64(kScratchRegister, rhs);
  __ push(kScratchRegister);
  __ fild_d(Operand(rsp, 0));
  __ pop(kScratchRegister);

  __ bind(&done);
}


void FloatingPointHelper::CheckNumberOperands(MacroAssembler* masm,
                                              Label* non_float) {
  Label test_other, done;
  // Test if both operands are numbers (heap_numbers or smis).
  // If not, jump to label non_float.
  __ JumpIfSmi(rdx, &test_other);  // argument in rdx is OK
  __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), Factory::heap_number_map());
  __ j(not_equal, non_float);  // The argument in rdx is not a number.

  __ bind(&test_other);
  __ JumpIfSmi(rax, &done);  // argument in rax is OK
  __ Cmp(FieldOperand(rax, HeapObject::kMapOffset), Factory::heap_number_map());
  __ j(not_equal, non_float);  // The argument in rax is not a number.

  // Fall-through: Both operands are numbers.
  __ bind(&done);
}


const char* GenericBinaryOpStub::GetName() {
  switch (op_) {
    case Token::ADD: return "GenericBinaryOpStub_ADD";
    case Token::SUB: return "GenericBinaryOpStub_SUB";
    case Token::MUL: return "GenericBinaryOpStub_MUL";
    case Token::DIV: return "GenericBinaryOpStub_DIV";
    case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR";
    case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND";
    case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR";
    case Token::SAR: return "GenericBinaryOpStub_SAR";
    case Token::SHL: return "GenericBinaryOpStub_SHL";
    case Token::SHR: return "GenericBinaryOpStub_SHR";
    default:         return "GenericBinaryOpStub";
  }
}


void GenericBinaryOpStub::GenerateCall(
    MacroAssembler* masm,
    Register left,
    Register right) {
  if (!ArgsInRegistersSupported()) {
    // Pass arguments on the stack.
    __ push(left);
    __ push(right);
  } else {
    // The calling convention with registers is left in rdx and right in rax.
    Register left_arg = rdx;
    Register right_arg = rax;
    if (!(left.is(left_arg) && right.is(right_arg))) {
      if (left.is(right_arg) && right.is(left_arg)) {
        if (IsOperationCommutative()) {
          SetArgsReversed();
        } else {
          __ xchg(left, right);
        }
      } else if (left.is(left_arg)) {
        __ movq(right_arg, right);
      } else if (left.is(right_arg)) {
        if (IsOperationCommutative()) {
          __ movq(left_arg, right);
          SetArgsReversed();
        } else {
          // Order of moves important to avoid destroying left argument.
          __ movq(left_arg, left);
          __ movq(right_arg, right);
        }
      } else if (right.is(left_arg)) {
        if (IsOperationCommutative()) {
          __ movq(right_arg, left);
          SetArgsReversed();
        } else {
          // Order of moves important to avoid destroying right argument.
          __ movq(right_arg, right);
          __ movq(left_arg, left);
        }
      } else if (right.is(right_arg)) {
        __ movq(left_arg, left);
      } else {
        // Order of moves is not important.
        __ movq(left_arg, left);
        __ movq(right_arg, right);
      }
    }

    // Update flags to indicate that arguments are in registers.
    SetArgsInRegisters();
    __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
  }

  // Call the stub.
  __ CallStub(this);
}


void GenericBinaryOpStub::GenerateCall(
    MacroAssembler* masm,
    Register left,
    Smi* right) {
  if (!ArgsInRegistersSupported()) {
    // Pass arguments on the stack.
    __ push(left);
    __ Push(right);
  } else {
    // The calling convention with registers is left in rdx and right in rax.
    Register left_arg = rdx;
    Register right_arg = rax;
    if (left.is(left_arg)) {
      __ Move(right_arg, right);
    } else if (left.is(right_arg) && IsOperationCommutative()) {
      __ Move(left_arg, right);
      SetArgsReversed();
    } else {
      __ movq(left_arg, left);
      __ Move(right_arg, right);
    }

    // Update flags to indicate that arguments are in registers.
    SetArgsInRegisters();
    __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
  }

  // Call the stub.
  __ CallStub(this);
}


void GenericBinaryOpStub::GenerateCall(
    MacroAssembler* masm,
    Smi* left,
    Register right) {
  if (!ArgsInRegistersSupported()) {
    // Pass arguments on the stack.
    __ Push(left);
    __ push(right);
  } else {
    // The calling convention with registers is left in rdx and right in rax.
    Register left_arg = rdx;
    Register right_arg = rax;
    if (right.is(right_arg)) {
      __ Move(left_arg, left);
    } else if (right.is(left_arg) && IsOperationCommutative()) {
      __ Move(right_arg, left);
      SetArgsReversed();
    } else {
      __ Move(left_arg, left);
      __ movq(right_arg, right);
    }
    // Update flags to indicate that arguments are in registers.
    SetArgsInRegisters();
    __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
  }

  // Call the stub.
  __ CallStub(this);
}


void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
  // Perform fast-case smi code for the operation (rax <op> rbx) and
  // leave result in register rax.

  // Smi check both operands.
  __ JumpIfNotBothSmi(rax, rbx, slow);

  switch (op_) {
    case Token::ADD: {
      __ SmiAdd(rax, rax, rbx, slow);
      break;
    }

    case Token::SUB: {
      __ SmiSub(rax, rax, rbx, slow);
      break;
    }

    case Token::MUL:
      __ SmiMul(rax, rax, rbx, slow);
      break;

    case Token::DIV:
      __ SmiDiv(rax, rax, rbx, slow);
      break;

    case Token::MOD:
      __ SmiMod(rax, rax, rbx, slow);
      break;

    case Token::BIT_OR:
      __ SmiOr(rax, rax, rbx);
      break;

    case Token::BIT_AND:
      __ SmiAnd(rax, rax, rbx);
      break;

    case Token::BIT_XOR:
      __ SmiXor(rax, rax, rbx);
      break;

    case Token::SHL:
    case Token::SHR:
    case Token::SAR:
      // Move the second operand into register ecx.
      __ movq(rcx, rbx);
      // Perform the operation.
      switch (op_) {
        case Token::SAR:
          __ SmiShiftArithmeticRight(rax, rax, rcx);
          break;
        case Token::SHR:
          __ SmiShiftLogicalRight(rax, rax, rcx, slow);
          break;
        case Token::SHL:
          __ SmiShiftLeft(rax, rax, rcx, slow);
          break;
        default:
          UNREACHABLE();
      }
      break;

    default:
      UNREACHABLE();
      break;
  }
}


void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
  Label call_runtime;
  if (HasSmiCodeInStub()) {
    // The fast case smi code wasn't inlined in the stub caller
    // code. Generate it here to speed up common operations.
    Label slow;
    __ movq(rbx, Operand(rsp, 1 * kPointerSize));  // get y
    __ movq(rax, Operand(rsp, 2 * kPointerSize));  // get x
    GenerateSmiCode(masm, &slow);
    GenerateReturn(masm);

    // Too bad. The fast case smi code didn't succeed.
    __ bind(&slow);
  }

  // Make sure the arguments are in rdx and rax.
  GenerateLoadArguments(masm);

  // Floating point case.
  switch (op_) {
    case Token::ADD:
    case Token::SUB:
    case Token::MUL:
    case Token::DIV: {
      // rax: y
      // rdx: x
      FloatingPointHelper::CheckNumberOperands(masm, &call_runtime);
      // Fast-case: Both operands are numbers.
      // Allocate a heap number, if needed.
      Label skip_allocation;
      switch (mode_) {
        case OVERWRITE_LEFT:
          __ movq(rax, rdx);
          // Fall through!
        case OVERWRITE_RIGHT:
          // If the argument in rax is already an object, we skip the
          // allocation of a heap number.
          __ JumpIfNotSmi(rax, &skip_allocation);
          // Fall through!
        case NO_OVERWRITE:
          // Allocate a heap number for the result. Keep rax and rdx intact
          // for the possible runtime call.
          __ AllocateHeapNumber(rbx, rcx, &call_runtime);
          __ movq(rax, rbx);
          __ bind(&skip_allocation);
          break;
        default: UNREACHABLE();
      }
      // xmm4 and xmm5 are volatile XMM registers.
      FloatingPointHelper::LoadFloatOperands(masm, xmm4, xmm5);

      switch (op_) {
        case Token::ADD: __ addsd(xmm4, xmm5); break;
        case Token::SUB: __ subsd(xmm4, xmm5); break;
        case Token::MUL: __ mulsd(xmm4, xmm5); break;
        case Token::DIV: __ divsd(xmm4, xmm5); break;
        default: UNREACHABLE();
      }
      __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm4);
      GenerateReturn(masm);
    }
    case Token::MOD: {
      // For MOD we go directly to runtime in the non-smi case.
      break;
    }
    case Token::BIT_OR:
    case Token::BIT_AND:
    case Token::BIT_XOR:
    case Token::SAR:
    case Token::SHL:
    case Token::SHR: {
      FloatingPointHelper::CheckNumberOperands(masm, &call_runtime);
      // TODO(X64): Don't convert a Smi to float and then back to int32
      // afterwards.
      FloatingPointHelper::LoadFloatOperands(masm);

      Label skip_allocation, non_smi_result, operand_conversion_failure;

      // Reserve space for converted numbers.
      __ subq(rsp, Immediate(2 * kPointerSize));

      if (use_sse3_) {
        // Truncate the operands to 32-bit integers and check for
        // exceptions in doing so.
        CpuFeatures::Scope scope(SSE3);
        __ fisttp_s(Operand(rsp, 0 * kPointerSize));
        __ fisttp_s(Operand(rsp, 1 * kPointerSize));
        __ fnstsw_ax();
        __ testl(rax, Immediate(1));
        __ j(not_zero, &operand_conversion_failure);
      } else {
        // Check if right operand is int32.
        __ fist_s(Operand(rsp, 0 * kPointerSize));
        __ fild_s(Operand(rsp, 0 * kPointerSize));
        __ FCmp();
        __ j(not_zero, &operand_conversion_failure);
        __ j(parity_even, &operand_conversion_failure);

        // Check if left operand is int32.
        __ fist_s(Operand(rsp, 1 * kPointerSize));
        __ fild_s(Operand(rsp, 1 * kPointerSize));
        __ FCmp();
        __ j(not_zero, &operand_conversion_failure);
        __ j(parity_even, &operand_conversion_failure);
      }

      // Get int32 operands and perform bitop.
      __ pop(rcx);
      __ pop(rax);
      switch (op_) {
        case Token::BIT_OR:  __ orl(rax, rcx); break;
        case Token::BIT_AND: __ andl(rax, rcx); break;
        case Token::BIT_XOR: __ xorl(rax, rcx); break;
        case Token::SAR: __ sarl_cl(rax); break;
        case Token::SHL: __ shll_cl(rax); break;
        case Token::SHR: __ shrl_cl(rax); break;
        default: UNREACHABLE();
      }
      if (op_ == Token::SHR) {
        // Check if result is non-negative. This can only happen for a shift
        // by zero, which also doesn't update the sign flag.
        __ testl(rax, rax);
        __ j(negative, &non_smi_result);
      }
      __ JumpIfNotValidSmiValue(rax, &non_smi_result);
      // Tag smi result, if possible, and return.
      __ Integer32ToSmi(rax, rax);
      GenerateReturn(masm);

      // All ops except SHR return a signed int32 that we load in a HeapNumber.
      if (op_ != Token::SHR && non_smi_result.is_linked()) {
        __ bind(&non_smi_result);
        // Allocate a heap number if needed.
        __ movsxlq(rbx, rax);  // rbx: sign extended 32-bit result
        switch (mode_) {
          case OVERWRITE_LEFT:
          case OVERWRITE_RIGHT:
            // If the operand was an object, we skip the
            // allocation of a heap number.
            __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ?
                                 1 * kPointerSize : 2 * kPointerSize));
            __ JumpIfNotSmi(rax, &skip_allocation);
            // Fall through!
          case NO_OVERWRITE:
            __ AllocateHeapNumber(rax, rcx, &call_runtime);
            __ bind(&skip_allocation);
            break;
          default: UNREACHABLE();
        }
        // Store the result in the HeapNumber and return.
        __ movq(Operand(rsp, 1 * kPointerSize), rbx);
        __ fild_s(Operand(rsp, 1 * kPointerSize));
        __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
        GenerateReturn(masm);
      }

      // Clear the FPU exception flag and reset the stack before calling
      // the runtime system.
      __ bind(&operand_conversion_failure);
      __ addq(rsp, Immediate(2 * kPointerSize));
      if (use_sse3_) {
        // If we've used the SSE3 instructions for truncating the
        // floating point values to integers and it failed, we have a
        // pending #IA exception. Clear it.
        __ fnclex();
      } else {
        // The non-SSE3 variant does early bailout if the right
        // operand isn't a 32-bit integer, so we may have a single
        // value on the FPU stack we need to get rid of.
        __ ffree(0);
      }

      // SHR should return uint32 - go to runtime for non-smi/negative result.
      if (op_ == Token::SHR) {
        __ bind(&non_smi_result);
      }
      __ movq(rax, Operand(rsp, 1 * kPointerSize));
      __ movq(rdx, Operand(rsp, 2 * kPointerSize));
      break;
    }
    default: UNREACHABLE(); break;
  }

  // If all else fails, use the runtime system to get the correct
  // result. If arguments was passed in registers now place them on the
  // stack in the correct order below the return address.
  __ bind(&call_runtime);
  if (HasArgumentsInRegisters()) {
    __ pop(rcx);
    if (HasArgumentsReversed()) {
      __ push(rax);
      __ push(rdx);
    } else {
      __ push(rdx);
      __ push(rax);
    }
    __ push(rcx);
  }
  switch (op_) {
    case Token::ADD:
      __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
      break;
    case Token::SUB:
      __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
      break;
    case Token::MUL:
      __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
        break;
    case Token::DIV:
      __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
      break;
    case Token::MOD:
      __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
      break;
    case Token::BIT_OR:
      __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
      break;
    case Token::BIT_AND:
      __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
      break;
    case Token::BIT_XOR:
      __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
      break;
    case Token::SAR:
      __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
      break;
    case Token::SHL:
      __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
      break;
    case Token::SHR:
      __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
      break;
    default:
      UNREACHABLE();
  }
}


void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) {
  // If arguments are not passed in registers read them from the stack.
  if (!HasArgumentsInRegisters()) {
    __ movq(rax, Operand(rsp, 1 * kPointerSize));
    __ movq(rdx, Operand(rsp, 2 * kPointerSize));
  }
}


void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) {
  // If arguments are not passed in registers remove them from the stack before
  // returning.
  if (!HasArgumentsInRegisters()) {
    __ ret(2 * kPointerSize);  // Remove both operands
  } else {
    __ ret(0);
  }
}


int CompareStub::MinorKey() {
  // Encode the two parameters in a unique 16 bit value.
  ASSERT(static_cast<unsigned>(cc_) < (1 << 15));
  return (static_cast<unsigned>(cc_) << 1) | (strict_ ? 1 : 0);
}

#undef __

#define __ masm.

#ifdef _WIN64
typedef double (*ModuloFunction)(double, double);
// Define custom fmod implementation.
ModuloFunction CreateModuloFunction() {
  size_t actual_size;
  byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
                                                 &actual_size,
                                                 true));
  CHECK(buffer);
  Assembler masm(buffer, static_cast<int>(actual_size));
  // Generated code is put into a fixed, unmovable, buffer, and not into
  // the V8 heap. We can't, and don't, refer to any relocatable addresses
  // (e.g. the JavaScript nan-object).

  // Windows 64 ABI passes double arguments in xmm0, xmm1 and
  // returns result in xmm0.
  // Argument backing space is allocated on the stack above
  // the return address.

  // Compute x mod y.
  // Load y and x (use argument backing store as temporary storage).
  __ movsd(Operand(rsp, kPointerSize * 2), xmm1);
  __ movsd(Operand(rsp, kPointerSize), xmm0);
  __ fld_d(Operand(rsp, kPointerSize * 2));
  __ fld_d(Operand(rsp, kPointerSize));

  // Clear exception flags before operation.
  {
    Label no_exceptions;
    __ fwait();
    __ fnstsw_ax();
    // Clear if Illegal Operand or Zero Division exceptions are set.
    __ testb(rax, Immediate(5));
    __ j(zero, &no_exceptions);
    __ fnclex();
    __ bind(&no_exceptions);
  }

  // Compute st(0) % st(1)
  {
    Label partial_remainder_loop;
    __ bind(&partial_remainder_loop);
    __ fprem();
    __ fwait();
    __ fnstsw_ax();
    __ testl(rax, Immediate(0x400 /* C2 */));
    // If C2 is set, computation only has partial result. Loop to
    // continue computation.
    __ j(not_zero, &partial_remainder_loop);
  }

  Label valid_result;
  Label return_result;
  // If Invalid Operand or Zero Division exceptions are set,
  // return NaN.
  __ testb(rax, Immediate(5));
  __ j(zero, &valid_result);
  __ fstp(0);  // Drop result in st(0).
  int64_t kNaNValue = V8_INT64_C(0x7ff8000000000000);
  __ movq(rcx, kNaNValue, RelocInfo::NONE);
  __ movq(Operand(rsp, kPointerSize), rcx);
  __ movsd(xmm0, Operand(rsp, kPointerSize));
  __ jmp(&return_result);

  // If result is valid, return that.
  __ bind(&valid_result);
  __ fstp_d(Operand(rsp, kPointerSize));
  __ movsd(xmm0, Operand(rsp, kPointerSize));

  // Clean up FPU stack and exceptions and return xmm0
  __ bind(&return_result);
  __ fstp(0);  // Unload y.

  Label clear_exceptions;
  __ testb(rax, Immediate(0x3f /* Any Exception*/));
  __ j(not_zero, &clear_exceptions);
  __ ret(0);
  __ bind(&clear_exceptions);
  __ fnclex();
  __ ret(0);

  CodeDesc desc;
  masm.GetCode(&desc);
  // Call the function from C++.
  return FUNCTION_CAST<ModuloFunction>(buffer);
}

#endif

#undef __

} }  // namespace v8::internal