summaryrefslogtreecommitdiff
path: root/src/node_crypto.cc
blob: fe9ac2d0cbf076e05120f0dc8bf65c6701bcba66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

#include "node_crypto.h"
#include "node_buffer.h"
#include "node_crypto_bio.h"
#include "node_crypto_common.h"
#include "node_crypto_clienthello-inl.h"
#include "node_crypto_groups.h"
#include "node_errors.h"
#include "node_mutex.h"
#include "node_process.h"
#include "allocated_buffer-inl.h"
#include "tls_wrap.h"  // TLSWrap

#include "async_wrap-inl.h"
#include "base_object-inl.h"
#include "env-inl.h"
#include "memory_tracker-inl.h"
#include "string_bytes.h"
#include "threadpoolwork-inl.h"
#include "util-inl.h"
#include "v8.h"

#include <openssl/ec.h>
#include <openssl/ecdh.h>
#ifndef OPENSSL_NO_ENGINE
# include <openssl/engine.h>
#endif  // !OPENSSL_NO_ENGINE
#include <openssl/evp.h>
#include <openssl/pem.h>
#include <openssl/x509v3.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <openssl/pkcs12.h>

#include <cerrno>
#include <climits>  // INT_MAX
#include <cstring>

#include <algorithm>
#include <memory>
#include <utility>
#include <vector>

namespace node {
namespace crypto {

using node::THROW_ERR_TLS_INVALID_PROTOCOL_METHOD;

using v8::Array;
using v8::ArrayBufferView;
using v8::Boolean;
using v8::ConstructorBehavior;
using v8::Context;
using v8::DontDelete;
using v8::Exception;
using v8::External;
using v8::False;
using v8::Function;
using v8::FunctionCallback;
using v8::FunctionCallbackInfo;
using v8::FunctionTemplate;
using v8::HandleScope;
using v8::Int32;
using v8::Integer;
using v8::Isolate;
using v8::Just;
using v8::Local;
using v8::Maybe;
using v8::MaybeLocal;
using v8::NewStringType;
using v8::Nothing;
using v8::Null;
using v8::Object;
using v8::PropertyAttribute;
using v8::ReadOnly;
using v8::SideEffectType;
using v8::Signature;
using v8::String;
using v8::Uint32;
using v8::Undefined;
using v8::Value;

#ifdef OPENSSL_NO_OCB
# define IS_OCB_MODE(mode) false
#else
# define IS_OCB_MODE(mode) ((mode) == EVP_CIPH_OCB_MODE)
#endif

static const char* const root_certs[] = {
#include "node_root_certs.h"  // NOLINT(build/include_order)
};

static const char system_cert_path[] = NODE_OPENSSL_SYSTEM_CERT_PATH;

static X509_STORE* root_cert_store;

static bool extra_root_certs_loaded = false;

// Just to generate static methods
template void SSLWrap<TLSWrap>::AddMethods(Environment* env,
                                           Local<FunctionTemplate> t);
template void SSLWrap<TLSWrap>::ConfigureSecureContext(SecureContext* sc);
template int SSLWrap<TLSWrap>::SetCACerts(SecureContext* sc);
template void SSLWrap<TLSWrap>::MemoryInfo(MemoryTracker* tracker) const;
template SSL_SESSION* SSLWrap<TLSWrap>::GetSessionCallback(
    SSL* s,
    const unsigned char* key,
    int len,
    int* copy);
template int SSLWrap<TLSWrap>::NewSessionCallback(SSL* s,
                                                  SSL_SESSION* sess);
template void SSLWrap<TLSWrap>::KeylogCallback(const SSL* s,
                                               const char* line);
template void SSLWrap<TLSWrap>::OnClientHello(
    void* arg,
    const ClientHelloParser::ClientHello& hello);
template int SSLWrap<TLSWrap>::TLSExtStatusCallback(SSL* s, void* arg);
template void SSLWrap<TLSWrap>::DestroySSL();
template int SSLWrap<TLSWrap>::SSLCertCallback(SSL* s, void* arg);
template void SSLWrap<TLSWrap>::WaitForCertCb(CertCb cb, void* arg);
template int SSLWrap<TLSWrap>::SelectALPNCallback(
    SSL* s,
    const unsigned char** out,
    unsigned char* outlen,
    const unsigned char* in,
    unsigned int inlen,
    void* arg);

template <typename T>
void Decode(const FunctionCallbackInfo<Value>& args,
            void (*callback)(T*, const FunctionCallbackInfo<Value>&,
                             const char*, size_t)) {
  T* ctx;
  ASSIGN_OR_RETURN_UNWRAP(&ctx, args.Holder());

  if (args[0]->IsString()) {
    StringBytes::InlineDecoder decoder;
    Environment* env = Environment::GetCurrent(args);
    enum encoding enc = ParseEncoding(env->isolate(), args[1], UTF8);
    if (decoder.Decode(env, args[0].As<String>(), enc).IsNothing())
      return;
    callback(ctx, args, decoder.out(), decoder.size());
  } else {
    ArrayBufferViewContents<char> buf(args[0]);
    callback(ctx, args, buf.data(), buf.length());
  }
}

static int PasswordCallback(char* buf, int size, int rwflag, void* u) {
  const char* passphrase = static_cast<char*>(u);
  if (passphrase != nullptr) {
    size_t buflen = static_cast<size_t>(size);
    size_t len = strlen(passphrase);
    if (buflen < len)
      return -1;
    memcpy(buf, passphrase, len);
    return len;
  }

  return -1;
}

// Loads OpenSSL engine by engine id and returns it. The loaded engine
// gets a reference so remember the corresponding call to ENGINE_free.
// In case of error the appropriate js exception is scheduled
// and nullptr is returned.
#ifndef OPENSSL_NO_ENGINE
static ENGINE* LoadEngineById(const char* engine_id, char (*errmsg)[1024]) {
  MarkPopErrorOnReturn mark_pop_error_on_return;

  ENGINE* engine = ENGINE_by_id(engine_id);

  if (engine == nullptr) {
    // Engine not found, try loading dynamically.
    engine = ENGINE_by_id("dynamic");
    if (engine != nullptr) {
      if (!ENGINE_ctrl_cmd_string(engine, "SO_PATH", engine_id, 0) ||
          !ENGINE_ctrl_cmd_string(engine, "LOAD", nullptr, 0)) {
        ENGINE_free(engine);
        engine = nullptr;
      }
    }
  }

  if (engine == nullptr) {
    int err = ERR_get_error();
    if (err != 0) {
      ERR_error_string_n(err, *errmsg, sizeof(*errmsg));
    } else {
      snprintf(*errmsg, sizeof(*errmsg),
               "Engine \"%s\" was not found", engine_id);
    }
  }

  return engine;
}
#endif  // !OPENSSL_NO_ENGINE

// This callback is used to avoid the default passphrase callback in OpenSSL
// which will typically prompt for the passphrase. The prompting is designed
// for the OpenSSL CLI, but works poorly for Node.js because it involves
// synchronous interaction with the controlling terminal, something we never
// want, and use this function to avoid it.
static int NoPasswordCallback(char* buf, int size, int rwflag, void* u) {
  return 0;
}


// namespace node::crypto::error
namespace error {
Maybe<bool> Decorate(Environment* env, Local<Object> obj,
              unsigned long err) {  // NOLINT(runtime/int)
  if (err == 0) return Just(true);  // No decoration necessary.

  const char* ls = ERR_lib_error_string(err);
  const char* fs = ERR_func_error_string(err);
  const char* rs = ERR_reason_error_string(err);

  Isolate* isolate = env->isolate();
  Local<Context> context = isolate->GetCurrentContext();

  if (ls != nullptr) {
    if (obj->Set(context, env->library_string(),
                 OneByteString(isolate, ls)).IsNothing()) {
      return Nothing<bool>();
    }
  }
  if (fs != nullptr) {
    if (obj->Set(context, env->function_string(),
                 OneByteString(isolate, fs)).IsNothing()) {
      return Nothing<bool>();
    }
  }
  if (rs != nullptr) {
    if (obj->Set(context, env->reason_string(),
                 OneByteString(isolate, rs)).IsNothing()) {
      return Nothing<bool>();
    }

    // SSL has no API to recover the error name from the number, so we
    // transform reason strings like "this error" to "ERR_SSL_THIS_ERROR",
    // which ends up being close to the original error macro name.
    std::string reason(rs);

    for (auto& c : reason) {
      if (c == ' ')
        c = '_';
      else
        c = ToUpper(c);
    }

#define OSSL_ERROR_CODES_MAP(V)                                               \
    V(SYS)                                                                    \
    V(BN)                                                                     \
    V(RSA)                                                                    \
    V(DH)                                                                     \
    V(EVP)                                                                    \
    V(BUF)                                                                    \
    V(OBJ)                                                                    \
    V(PEM)                                                                    \
    V(DSA)                                                                    \
    V(X509)                                                                   \
    V(ASN1)                                                                   \
    V(CONF)                                                                   \
    V(CRYPTO)                                                                 \
    V(EC)                                                                     \
    V(SSL)                                                                    \
    V(BIO)                                                                    \
    V(PKCS7)                                                                  \
    V(X509V3)                                                                 \
    V(PKCS12)                                                                 \
    V(RAND)                                                                   \
    V(DSO)                                                                    \
    V(ENGINE)                                                                 \
    V(OCSP)                                                                   \
    V(UI)                                                                     \
    V(COMP)                                                                   \
    V(ECDSA)                                                                  \
    V(ECDH)                                                                   \
    V(OSSL_STORE)                                                             \
    V(FIPS)                                                                   \
    V(CMS)                                                                    \
    V(TS)                                                                     \
    V(HMAC)                                                                   \
    V(CT)                                                                     \
    V(ASYNC)                                                                  \
    V(KDF)                                                                    \
    V(SM2)                                                                    \
    V(USER)                                                                   \

#define V(name) case ERR_LIB_##name: lib = #name "_"; break;
    const char* lib = "";
    const char* prefix = "OSSL_";
    switch (ERR_GET_LIB(err)) { OSSL_ERROR_CODES_MAP(V) }
#undef V
#undef OSSL_ERROR_CODES_MAP
    // Don't generate codes like "ERR_OSSL_SSL_".
    if (lib && strcmp(lib, "SSL_") == 0)
      prefix = "";

    // All OpenSSL reason strings fit in a single 80-column macro definition,
    // all prefix lengths are <= 10, and ERR_OSSL_ is 9, so 128 is more than
    // sufficient.
    char code[128];
    snprintf(code, sizeof(code), "ERR_%s%s%s", prefix, lib, reason.c_str());

    if (obj->Set(env->isolate()->GetCurrentContext(),
             env->code_string(),
             OneByteString(env->isolate(), code)).IsNothing())
      return Nothing<bool>();
  }

  return Just(true);
}
}  // namespace error


struct CryptoErrorVector : public std::vector<std::string> {
  inline void Capture() {
    clear();
    while (auto err = ERR_get_error()) {
      char buf[256];
      ERR_error_string_n(err, buf, sizeof(buf));
      push_back(buf);
    }
    std::reverse(begin(), end());
  }

  inline MaybeLocal<Value> ToException(
      Environment* env,
      Local<String> exception_string = Local<String>()) const {
    if (exception_string.IsEmpty()) {
      CryptoErrorVector copy(*this);
      if (copy.empty()) copy.push_back("no error");  // But possibly a bug...
      // Use last element as the error message, everything else goes
      // into the .opensslErrorStack property on the exception object.
      auto exception_string =
          String::NewFromUtf8(env->isolate(), copy.back().data(),
                              NewStringType::kNormal, copy.back().size())
          .ToLocalChecked();
      copy.pop_back();
      return copy.ToException(env, exception_string);
    }

    Local<Value> exception_v = Exception::Error(exception_string);
    CHECK(!exception_v.IsEmpty());

    if (!empty()) {
      CHECK(exception_v->IsObject());
      Local<Object> exception = exception_v.As<Object>();
      Maybe<bool> ok = exception->Set(env->context(),
                     env->openssl_error_stack(),
                     ToV8Value(env->context(), *this).ToLocalChecked());
      if (ok.IsNothing())
        return MaybeLocal<Value>();
    }

    return exception_v;
  }
};


void ThrowCryptoError(Environment* env,
                      unsigned long err,  // NOLINT(runtime/int)
                      // Default, only used if there is no SSL `err` which can
                      // be used to create a long-style message string.
                      const char* message) {
  char message_buffer[128] = {0};
  if (err != 0 || message == nullptr) {
    ERR_error_string_n(err, message_buffer, sizeof(message_buffer));
    message = message_buffer;
  }
  HandleScope scope(env->isolate());
  Local<String> exception_string =
      String::NewFromUtf8(env->isolate(), message, NewStringType::kNormal)
      .ToLocalChecked();
  CryptoErrorVector errors;
  errors.Capture();
  Local<Value> exception;
  if (!errors.ToException(env, exception_string).ToLocal(&exception))
    return;
  Local<Object> obj;
  if (!exception->ToObject(env->context()).ToLocal(&obj))
    return;
  if (error::Decorate(env, obj, err).IsNothing())
    return;
  env->isolate()->ThrowException(exception);
}


// Ensure that OpenSSL has enough entropy (at least 256 bits) for its PRNG.
// The entropy pool starts out empty and needs to fill up before the PRNG
// can be used securely.  Once the pool is filled, it never dries up again;
// its contents is stirred and reused when necessary.
//
// OpenSSL normally fills the pool automatically but not when someone starts
// generating random numbers before the pool is full: in that case OpenSSL
// keeps lowering the entropy estimate to thwart attackers trying to guess
// the initial state of the PRNG.
//
// When that happens, we will have to wait until enough entropy is available.
// That should normally never take longer than a few milliseconds.
//
// OpenSSL draws from /dev/random and /dev/urandom.  While /dev/random may
// block pending "true" randomness, /dev/urandom is a CSPRNG that doesn't
// block under normal circumstances.
//
// The only time when /dev/urandom may conceivably block is right after boot,
// when the whole system is still low on entropy.  That's not something we can
// do anything about.
inline void CheckEntropy() {
  for (;;) {
    int status = RAND_status();
    CHECK_GE(status, 0);  // Cannot fail.
    if (status != 0)
      break;

    // Give up, RAND_poll() not supported.
    if (RAND_poll() == 0)
      break;
  }
}


bool EntropySource(unsigned char* buffer, size_t length) {
  // Ensure that OpenSSL's PRNG is properly seeded.
  CheckEntropy();
  // RAND_bytes() can return 0 to indicate that the entropy data is not truly
  // random. That's okay, it's still better than V8's stock source of entropy,
  // which is /dev/urandom on UNIX platforms and the current time on Windows.
  return RAND_bytes(buffer, length) != -1;
}

void SecureContext::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
  t->InstanceTemplate()->SetInternalFieldCount(
      SecureContext::kInternalFieldCount);
  Local<String> secureContextString =
      FIXED_ONE_BYTE_STRING(env->isolate(), "SecureContext");
  t->SetClassName(secureContextString);

  env->SetProtoMethod(t, "init", Init);
  env->SetProtoMethod(t, "setKey", SetKey);
#ifndef OPENSSL_NO_ENGINE
  env->SetProtoMethod(t, "setEngineKey", SetEngineKey);
#endif  // !OPENSSL_NO_ENGINE
  env->SetProtoMethod(t, "setCert", SetCert);
  env->SetProtoMethod(t, "addCACert", AddCACert);
  env->SetProtoMethod(t, "addCRL", AddCRL);
  env->SetProtoMethod(t, "addRootCerts", AddRootCerts);
  env->SetProtoMethod(t, "setCipherSuites", SetCipherSuites);
  env->SetProtoMethod(t, "setCiphers", SetCiphers);
  env->SetProtoMethod(t, "setSigalgs", SetSigalgs);
  env->SetProtoMethod(t, "setECDHCurve", SetECDHCurve);
  env->SetProtoMethod(t, "setDHParam", SetDHParam);
  env->SetProtoMethod(t, "setMaxProto", SetMaxProto);
  env->SetProtoMethod(t, "setMinProto", SetMinProto);
  env->SetProtoMethod(t, "getMaxProto", GetMaxProto);
  env->SetProtoMethod(t, "getMinProto", GetMinProto);
  env->SetProtoMethod(t, "setOptions", SetOptions);
  env->SetProtoMethod(t, "setSessionIdContext", SetSessionIdContext);
  env->SetProtoMethod(t, "setSessionTimeout", SetSessionTimeout);
  env->SetProtoMethod(t, "close", Close);
  env->SetProtoMethod(t, "loadPKCS12", LoadPKCS12);
#ifndef OPENSSL_NO_ENGINE
  env->SetProtoMethod(t, "setClientCertEngine", SetClientCertEngine);
#endif  // !OPENSSL_NO_ENGINE
  env->SetProtoMethodNoSideEffect(t, "getTicketKeys", GetTicketKeys);
  env->SetProtoMethod(t, "setTicketKeys", SetTicketKeys);
  env->SetProtoMethod(t, "setFreeListLength", SetFreeListLength);
  env->SetProtoMethod(t, "enableTicketKeyCallback", EnableTicketKeyCallback);
  env->SetProtoMethodNoSideEffect(t, "getCertificate", GetCertificate<true>);
  env->SetProtoMethodNoSideEffect(t, "getIssuer", GetCertificate<false>);

#define SET_INTEGER_CONSTANTS(name, value)                                     \
    t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), name),                        \
           Integer::NewFromUnsigned(env->isolate(), value));
  SET_INTEGER_CONSTANTS("kTicketKeyReturnIndex", kTicketKeyReturnIndex);
  SET_INTEGER_CONSTANTS("kTicketKeyHMACIndex", kTicketKeyHMACIndex);
  SET_INTEGER_CONSTANTS("kTicketKeyAESIndex", kTicketKeyAESIndex);
  SET_INTEGER_CONSTANTS("kTicketKeyNameIndex", kTicketKeyNameIndex);
  SET_INTEGER_CONSTANTS("kTicketKeyIVIndex", kTicketKeyIVIndex);

#undef SET_INTEGER_CONSTANTS

  Local<FunctionTemplate> ctx_getter_templ =
      FunctionTemplate::New(env->isolate(),
                            CtxGetter,
                            Local<Value>(),
                            Signature::New(env->isolate(), t));


  t->PrototypeTemplate()->SetAccessorProperty(
      FIXED_ONE_BYTE_STRING(env->isolate(), "_external"),
      ctx_getter_templ,
      Local<FunctionTemplate>(),
      static_cast<PropertyAttribute>(ReadOnly | DontDelete));

  target->Set(env->context(), secureContextString,
              t->GetFunction(env->context()).ToLocalChecked()).Check();
  env->set_secure_context_constructor_template(t);
}

SecureContext::SecureContext(Environment* env, Local<Object> wrap)
    : BaseObject(env, wrap) {
  MakeWeak();
  env->isolate()->AdjustAmountOfExternalAllocatedMemory(kExternalSize);
}

inline void SecureContext::Reset() {
  if (ctx_ != nullptr) {
    env()->isolate()->AdjustAmountOfExternalAllocatedMemory(-kExternalSize);
  }
  ctx_.reset();
  cert_.reset();
  issuer_.reset();
}

SecureContext::~SecureContext() {
  Reset();
}

void SecureContext::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  new SecureContext(env, args.This());
}

// A maxVersion of 0 means "any", but OpenSSL may support TLS versions that
// Node.js doesn't, so pin the max to what we do support.
const int MAX_SUPPORTED_VERSION = TLS1_3_VERSION;

void SecureContext::Init(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  Environment* env = sc->env();

  CHECK_EQ(args.Length(), 3);
  CHECK(args[1]->IsInt32());
  CHECK(args[2]->IsInt32());

  int min_version = args[1].As<Int32>()->Value();
  int max_version = args[2].As<Int32>()->Value();
  const SSL_METHOD* method = TLS_method();

  if (max_version == 0)
    max_version = MAX_SUPPORTED_VERSION;

  if (args[0]->IsString()) {
    const node::Utf8Value sslmethod(env->isolate(), args[0]);

    // Note that SSLv2 and SSLv3 are disallowed but SSLv23_method and friends
    // are still accepted.  They are OpenSSL's way of saying that all known
    // protocols below TLS 1.3 are supported unless explicitly disabled (which
    // we do below for SSLv2 and SSLv3.)
    if (strcmp(*sslmethod, "SSLv2_method") == 0) {
      THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, "SSLv2 methods disabled");
      return;
    } else if (strcmp(*sslmethod, "SSLv2_server_method") == 0) {
      THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, "SSLv2 methods disabled");
      return;
    } else if (strcmp(*sslmethod, "SSLv2_client_method") == 0) {
      THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, "SSLv2 methods disabled");
      return;
    } else if (strcmp(*sslmethod, "SSLv3_method") == 0) {
      THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, "SSLv3 methods disabled");
      return;
    } else if (strcmp(*sslmethod, "SSLv3_server_method") == 0) {
      THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, "SSLv3 methods disabled");
      return;
    } else if (strcmp(*sslmethod, "SSLv3_client_method") == 0) {
      THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, "SSLv3 methods disabled");
      return;
    } else if (strcmp(*sslmethod, "SSLv23_method") == 0) {
      max_version = TLS1_2_VERSION;
    } else if (strcmp(*sslmethod, "SSLv23_server_method") == 0) {
      max_version = TLS1_2_VERSION;
      method = TLS_server_method();
    } else if (strcmp(*sslmethod, "SSLv23_client_method") == 0) {
      max_version = TLS1_2_VERSION;
      method = TLS_client_method();
    } else if (strcmp(*sslmethod, "TLS_method") == 0) {
      min_version = 0;
      max_version = MAX_SUPPORTED_VERSION;
    } else if (strcmp(*sslmethod, "TLS_server_method") == 0) {
      min_version = 0;
      max_version = MAX_SUPPORTED_VERSION;
      method = TLS_server_method();
    } else if (strcmp(*sslmethod, "TLS_client_method") == 0) {
      min_version = 0;
      max_version = MAX_SUPPORTED_VERSION;
      method = TLS_client_method();
    } else if (strcmp(*sslmethod, "TLSv1_method") == 0) {
      min_version = TLS1_VERSION;
      max_version = TLS1_VERSION;
    } else if (strcmp(*sslmethod, "TLSv1_server_method") == 0) {
      min_version = TLS1_VERSION;
      max_version = TLS1_VERSION;
      method = TLS_server_method();
    } else if (strcmp(*sslmethod, "TLSv1_client_method") == 0) {
      min_version = TLS1_VERSION;
      max_version = TLS1_VERSION;
      method = TLS_client_method();
    } else if (strcmp(*sslmethod, "TLSv1_1_method") == 0) {
      min_version = TLS1_1_VERSION;
      max_version = TLS1_1_VERSION;
    } else if (strcmp(*sslmethod, "TLSv1_1_server_method") == 0) {
      min_version = TLS1_1_VERSION;
      max_version = TLS1_1_VERSION;
      method = TLS_server_method();
    } else if (strcmp(*sslmethod, "TLSv1_1_client_method") == 0) {
      min_version = TLS1_1_VERSION;
      max_version = TLS1_1_VERSION;
      method = TLS_client_method();
    } else if (strcmp(*sslmethod, "TLSv1_2_method") == 0) {
      min_version = TLS1_2_VERSION;
      max_version = TLS1_2_VERSION;
    } else if (strcmp(*sslmethod, "TLSv1_2_server_method") == 0) {
      min_version = TLS1_2_VERSION;
      max_version = TLS1_2_VERSION;
      method = TLS_server_method();
    } else if (strcmp(*sslmethod, "TLSv1_2_client_method") == 0) {
      min_version = TLS1_2_VERSION;
      max_version = TLS1_2_VERSION;
      method = TLS_client_method();
    } else {
      const std::string msg("Unknown method: ");
      THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, (msg + * sslmethod).c_str());
      return;
    }
  }

  sc->ctx_.reset(SSL_CTX_new(method));
  SSL_CTX_set_app_data(sc->ctx_.get(), sc);

  // Disable SSLv2 in the case when method == TLS_method() and the
  // cipher list contains SSLv2 ciphers (not the default, should be rare.)
  // The bundled OpenSSL doesn't have SSLv2 support but the system OpenSSL may.
  // SSLv3 is disabled because it's susceptible to downgrade attacks (POODLE.)
  SSL_CTX_set_options(sc->ctx_.get(), SSL_OP_NO_SSLv2);
  SSL_CTX_set_options(sc->ctx_.get(), SSL_OP_NO_SSLv3);

  // Enable automatic cert chaining. This is enabled by default in OpenSSL, but
  // disabled by default in BoringSSL. Enable it explicitly to make the
  // behavior match when Node is built with BoringSSL.
  SSL_CTX_clear_mode(sc->ctx_.get(), SSL_MODE_NO_AUTO_CHAIN);

  // SSL session cache configuration
  SSL_CTX_set_session_cache_mode(sc->ctx_.get(),
                                 SSL_SESS_CACHE_CLIENT |
                                 SSL_SESS_CACHE_SERVER |
                                 SSL_SESS_CACHE_NO_INTERNAL |
                                 SSL_SESS_CACHE_NO_AUTO_CLEAR);

  SSL_CTX_set_min_proto_version(sc->ctx_.get(), min_version);
  SSL_CTX_set_max_proto_version(sc->ctx_.get(), max_version);

  // OpenSSL 1.1.0 changed the ticket key size, but the OpenSSL 1.0.x size was
  // exposed in the public API. To retain compatibility, install a callback
  // which restores the old algorithm.
  if (RAND_bytes(sc->ticket_key_name_, sizeof(sc->ticket_key_name_)) <= 0 ||
      RAND_bytes(sc->ticket_key_hmac_, sizeof(sc->ticket_key_hmac_)) <= 0 ||
      RAND_bytes(sc->ticket_key_aes_, sizeof(sc->ticket_key_aes_)) <= 0) {
    return env->ThrowError("Error generating ticket keys");
  }
  SSL_CTX_set_tlsext_ticket_key_cb(sc->ctx_.get(), TicketCompatibilityCallback);
}


// Takes a string or buffer and loads it into a BIO.
// Caller responsible for BIO_free_all-ing the returned object.
static BIOPointer LoadBIO(Environment* env, Local<Value> v) {
  HandleScope scope(env->isolate());

  if (v->IsString()) {
    const node::Utf8Value s(env->isolate(), v);
    return NodeBIO::NewFixed(*s, s.length());
  }

  if (v->IsArrayBufferView()) {
    ArrayBufferViewContents<char> buf(v.As<ArrayBufferView>());
    return NodeBIO::NewFixed(buf.data(), buf.length());
  }

  return nullptr;
}


void SecureContext::SetKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  unsigned int len = args.Length();
  if (len < 1) {
    return THROW_ERR_MISSING_ARGS(env, "Private key argument is mandatory");
  }

  if (len > 2) {
    return env->ThrowError("Only private key and pass phrase are expected");
  }

  if (len == 2) {
    if (args[1]->IsUndefined() || args[1]->IsNull())
      len = 1;
    else
      THROW_AND_RETURN_IF_NOT_STRING(env, args[1], "Pass phrase");
  }

  BIOPointer bio(LoadBIO(env, args[0]));
  if (!bio)
    return;

  node::Utf8Value passphrase(env->isolate(), args[1]);

  EVPKeyPointer key(
      PEM_read_bio_PrivateKey(bio.get(),
                              nullptr,
                              PasswordCallback,
                              *passphrase));

  if (!key) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    return ThrowCryptoError(env, err, "PEM_read_bio_PrivateKey");
  }

  int rv = SSL_CTX_use_PrivateKey(sc->ctx_.get(), key.get());

  if (!rv) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    return ThrowCryptoError(env, err, "SSL_CTX_use_PrivateKey");
  }
}

void SecureContext::SetSigalgs(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  Environment* env = sc->env();
  ClearErrorOnReturn clear_error_on_return;

  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsString());

  const node::Utf8Value sigalgs(env->isolate(), args[0]);

  int rv = SSL_CTX_set1_sigalgs_list(sc->ctx_.get(), *sigalgs);

  if (rv == 0) {
    return ThrowCryptoError(env, ERR_get_error());
  }
}

#ifndef OPENSSL_NO_ENGINE
// Helpers for the smart pointer.
void ENGINE_free_fn(ENGINE* engine) { ENGINE_free(engine); }

void ENGINE_finish_and_free_fn(ENGINE* engine) {
  ENGINE_finish(engine);
  ENGINE_free(engine);
}

void SecureContext::SetEngineKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  CHECK_EQ(args.Length(), 2);

  char errmsg[1024];
  const node::Utf8Value engine_id(env->isolate(), args[1]);
  std::unique_ptr<ENGINE, std::function<void(ENGINE*)>> e =
                         { LoadEngineById(*engine_id, &errmsg),
                           ENGINE_free_fn };
  if (e.get() == nullptr) {
    return env->ThrowError(errmsg);
  }

  if (!ENGINE_init(e.get())) {
    return env->ThrowError("ENGINE_init");
  }

  e.get_deleter() = ENGINE_finish_and_free_fn;

  const node::Utf8Value key_name(env->isolate(), args[0]);
  EVPKeyPointer key(ENGINE_load_private_key(e.get(), *key_name,
                                            nullptr, nullptr));

  if (!key) {
    return ThrowCryptoError(env, ERR_get_error(), "ENGINE_load_private_key");
  }

  int rv = SSL_CTX_use_PrivateKey(sc->ctx_.get(), key.get());

  if (rv == 0) {
    return ThrowCryptoError(env, ERR_get_error(), "SSL_CTX_use_PrivateKey");
  }

  sc->private_key_engine_ = std::move(e);
}
#endif  // !OPENSSL_NO_ENGINE

int SSL_CTX_use_certificate_chain(SSL_CTX* ctx,
                                  X509Pointer&& x,
                                  STACK_OF(X509)* extra_certs,
                                  X509Pointer* cert,
                                  X509Pointer* issuer_) {
  CHECK(!*issuer_);
  CHECK(!*cert);
  X509* issuer = nullptr;

  int ret = SSL_CTX_use_certificate(ctx, x.get());

  if (ret) {
    // If we could set up our certificate, now proceed to
    // the CA certificates.
    SSL_CTX_clear_extra_chain_certs(ctx);

    for (int i = 0; i < sk_X509_num(extra_certs); i++) {
      X509* ca = sk_X509_value(extra_certs, i);

      // NOTE: Increments reference count on `ca`
      if (!SSL_CTX_add1_chain_cert(ctx, ca)) {
        ret = 0;
        issuer = nullptr;
        break;
      }
      // Note that we must not free r if it was successfully
      // added to the chain (while we must free the main
      // certificate, since its reference count is increased
      // by SSL_CTX_use_certificate).

      // Find issuer
      if (issuer != nullptr || X509_check_issued(ca, x.get()) != X509_V_OK)
        continue;

      issuer = ca;
    }
  }

  // Try getting issuer from a cert store
  if (ret) {
    if (issuer == nullptr) {
      ret = SSL_CTX_get_issuer(ctx, x.get(), &issuer);
      ret = ret < 0 ? 0 : 1;
      // NOTE: get_cert_store doesn't increment reference count,
      // no need to free `store`
    } else {
      // Increment issuer reference count
      issuer = X509_dup(issuer);
      if (issuer == nullptr) {
        ret = 0;
      }
    }
  }

  issuer_->reset(issuer);

  if (ret && x != nullptr) {
    cert->reset(X509_dup(x.get()));
    if (!*cert)
      ret = 0;
  }
  return ret;
}


// Read a file that contains our certificate in "PEM" format,
// possibly followed by a sequence of CA certificates that should be
// sent to the peer in the Certificate message.
//
// Taken from OpenSSL - edited for style.
int SSL_CTX_use_certificate_chain(SSL_CTX* ctx,
                                  BIOPointer&& in,
                                  X509Pointer* cert,
                                  X509Pointer* issuer) {
  // Just to ensure that `ERR_peek_last_error` below will return only errors
  // that we are interested in
  ERR_clear_error();

  X509Pointer x(
      PEM_read_bio_X509_AUX(in.get(), nullptr, NoPasswordCallback, nullptr));

  if (!x)
    return 0;

  unsigned long err = 0;  // NOLINT(runtime/int)

  StackOfX509 extra_certs(sk_X509_new_null());
  if (!extra_certs)
    return 0;

  while (X509Pointer extra {PEM_read_bio_X509(in.get(),
                                    nullptr,
                                    NoPasswordCallback,
                                    nullptr)}) {
    if (sk_X509_push(extra_certs.get(), extra.get())) {
      extra.release();
      continue;
    }

    return 0;
  }

  // When the while loop ends, it's usually just EOF.
  err = ERR_peek_last_error();
  if (ERR_GET_LIB(err) == ERR_LIB_PEM &&
      ERR_GET_REASON(err) == PEM_R_NO_START_LINE) {
    ERR_clear_error();
  } else {
    // some real error
    return 0;
  }

  return SSL_CTX_use_certificate_chain(ctx,
                                       std::move(x),
                                       extra_certs.get(),
                                       cert,
                                       issuer);
}


void SecureContext::SetCert(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  if (args.Length() != 1) {
    return THROW_ERR_MISSING_ARGS(env, "Certificate argument is mandatory");
  }

  BIOPointer bio(LoadBIO(env, args[0]));
  if (!bio)
    return;

  sc->cert_.reset();
  sc->issuer_.reset();

  int rv = SSL_CTX_use_certificate_chain(sc->ctx_.get(),
                                         std::move(bio),
                                         &sc->cert_,
                                         &sc->issuer_);

  if (!rv) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    return ThrowCryptoError(env, err, "SSL_CTX_use_certificate_chain");
  }
}


static X509_STORE* NewRootCertStore() {
  static std::vector<X509*> root_certs_vector;
  static Mutex root_certs_vector_mutex;
  Mutex::ScopedLock lock(root_certs_vector_mutex);

  if (root_certs_vector.empty()) {
    for (size_t i = 0; i < arraysize(root_certs); i++) {
      X509* x509 =
          PEM_read_bio_X509(NodeBIO::NewFixed(root_certs[i],
                                              strlen(root_certs[i])).get(),
                            nullptr,   // no re-use of X509 structure
                            NoPasswordCallback,
                            nullptr);  // no callback data

      // Parse errors from the built-in roots are fatal.
      CHECK_NOT_NULL(x509);

      root_certs_vector.push_back(x509);
    }
  }

  X509_STORE* store = X509_STORE_new();
  if (*system_cert_path != '\0') {
    X509_STORE_load_locations(store, system_cert_path, nullptr);
  }

  Mutex::ScopedLock cli_lock(node::per_process::cli_options_mutex);
  if (per_process::cli_options->ssl_openssl_cert_store) {
    X509_STORE_set_default_paths(store);
  } else {
    for (X509* cert : root_certs_vector) {
      X509_up_ref(cert);
      X509_STORE_add_cert(store, cert);
    }
  }

  return store;
}


void GetRootCertificates(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  Local<Value> result[arraysize(root_certs)];

  for (size_t i = 0; i < arraysize(root_certs); i++) {
    if (!String::NewFromOneByte(
            env->isolate(),
            reinterpret_cast<const uint8_t*>(root_certs[i]),
            NewStringType::kNormal).ToLocal(&result[i])) {
      return;
    }
  }

  args.GetReturnValue().Set(
      Array::New(env->isolate(), result, arraysize(root_certs)));
}


void SecureContext::AddCACert(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  ClearErrorOnReturn clear_error_on_return;

  if (args.Length() != 1) {
    return THROW_ERR_MISSING_ARGS(env, "CA certificate argument is mandatory");
  }

  BIOPointer bio(LoadBIO(env, args[0]));
  if (!bio)
    return;

  X509_STORE* cert_store = SSL_CTX_get_cert_store(sc->ctx_.get());
  while (X509* x509 = PEM_read_bio_X509_AUX(
      bio.get(), nullptr, NoPasswordCallback, nullptr)) {
    if (cert_store == root_cert_store) {
      cert_store = NewRootCertStore();
      SSL_CTX_set_cert_store(sc->ctx_.get(), cert_store);
    }
    X509_STORE_add_cert(cert_store, x509);
    SSL_CTX_add_client_CA(sc->ctx_.get(), x509);
    X509_free(x509);
  }
}


void SecureContext::AddCRL(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  if (args.Length() != 1) {
    return THROW_ERR_MISSING_ARGS(env, "CRL argument is mandatory");
  }

  ClearErrorOnReturn clear_error_on_return;

  BIOPointer bio(LoadBIO(env, args[0]));
  if (!bio)
    return;

  DeleteFnPtr<X509_CRL, X509_CRL_free> crl(
      PEM_read_bio_X509_CRL(bio.get(), nullptr, NoPasswordCallback, nullptr));

  if (!crl)
    return env->ThrowError("Failed to parse CRL");

  X509_STORE* cert_store = SSL_CTX_get_cert_store(sc->ctx_.get());
  if (cert_store == root_cert_store) {
    cert_store = NewRootCertStore();
    SSL_CTX_set_cert_store(sc->ctx_.get(), cert_store);
  }

  X509_STORE_add_crl(cert_store, crl.get());
  X509_STORE_set_flags(cert_store,
                       X509_V_FLAG_CRL_CHECK | X509_V_FLAG_CRL_CHECK_ALL);
}


static unsigned long AddCertsFromFile(  // NOLINT(runtime/int)
    X509_STORE* store,
    const char* file) {
  ERR_clear_error();
  MarkPopErrorOnReturn mark_pop_error_on_return;

  BIOPointer bio(BIO_new_file(file, "r"));
  if (!bio)
    return ERR_get_error();

  while (X509* x509 =
      PEM_read_bio_X509(bio.get(), nullptr, NoPasswordCallback, nullptr)) {
    X509_STORE_add_cert(store, x509);
    X509_free(x509);
  }

  unsigned long err = ERR_peek_error();  // NOLINT(runtime/int)
  // Ignore error if its EOF/no start line found.
  if (ERR_GET_LIB(err) == ERR_LIB_PEM &&
      ERR_GET_REASON(err) == PEM_R_NO_START_LINE) {
    return 0;
  }

  return err;
}


void UseExtraCaCerts(const std::string& file) {
  ClearErrorOnReturn clear_error_on_return;

  if (root_cert_store == nullptr) {
    root_cert_store = NewRootCertStore();

    if (!file.empty()) {
      unsigned long err = AddCertsFromFile(  // NOLINT(runtime/int)
                                           root_cert_store,
                                           file.c_str());
      if (err) {
        fprintf(stderr,
                "Warning: Ignoring extra certs from `%s`, load failed: %s\n",
                file.c_str(),
                ERR_error_string(err, nullptr));
      } else {
        extra_root_certs_loaded = true;
      }
    }
  }
}


static void IsExtraRootCertsFileLoaded(
    const FunctionCallbackInfo<Value>& args) {
  return args.GetReturnValue().Set(extra_root_certs_loaded);
}


void SecureContext::AddRootCerts(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  ClearErrorOnReturn clear_error_on_return;

  if (root_cert_store == nullptr) {
    root_cert_store = NewRootCertStore();
  }

  // Increment reference count so global store is not deleted along with CTX.
  X509_STORE_up_ref(root_cert_store);
  SSL_CTX_set_cert_store(sc->ctx_.get(), root_cert_store);
}


void SecureContext::SetCipherSuites(const FunctionCallbackInfo<Value>& args) {
  // BoringSSL doesn't allow API config of TLS1.3 cipher suites.
#ifndef OPENSSL_IS_BORINGSSL
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  Environment* env = sc->env();
  ClearErrorOnReturn clear_error_on_return;

  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsString());

  const node::Utf8Value ciphers(args.GetIsolate(), args[0]);
  if (!SSL_CTX_set_ciphersuites(sc->ctx_.get(), *ciphers)) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    return ThrowCryptoError(env, err, "Failed to set ciphers");
  }
#endif
}


void SecureContext::SetCiphers(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  Environment* env = sc->env();
  ClearErrorOnReturn clear_error_on_return;

  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsString());

  const node::Utf8Value ciphers(args.GetIsolate(), args[0]);
  if (!SSL_CTX_set_cipher_list(sc->ctx_.get(), *ciphers)) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)

    if (strlen(*ciphers) == 0 && ERR_GET_REASON(err) == SSL_R_NO_CIPHER_MATCH) {
      // TLS1.2 ciphers were deliberately cleared, so don't consider
      // SSL_R_NO_CIPHER_MATCH to be an error (this is how _set_cipher_suites()
      // works). If the user actually sets a value (like "no-such-cipher"), then
      // that's actually an error.
      return;
    }
    return ThrowCryptoError(env, err, "Failed to set ciphers");
  }
}


void SecureContext::SetECDHCurve(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  Environment* env = sc->env();

  if (args.Length() != 1)
    return THROW_ERR_MISSING_ARGS(env, "ECDH curve name argument is mandatory");

  THROW_AND_RETURN_IF_NOT_STRING(env, args[0], "ECDH curve name");

  node::Utf8Value curve(env->isolate(), args[0]);

  if (strcmp(*curve, "auto") == 0)
    return;

  if (!SSL_CTX_set1_curves_list(sc->ctx_.get(), *curve))
    return env->ThrowError("Failed to set ECDH curve");
}


void SecureContext::SetDHParam(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.This());
  Environment* env = sc->env();
  ClearErrorOnReturn clear_error_on_return;

  // Auto DH is not supported in openssl 1.0.1, so dhparam needs
  // to be specified explicitly
  if (args.Length() != 1)
    return THROW_ERR_MISSING_ARGS(env, "DH argument is mandatory");

  DHPointer dh;
  {
    BIOPointer bio(LoadBIO(env, args[0]));
    if (!bio)
      return;

    dh.reset(PEM_read_bio_DHparams(bio.get(), nullptr, nullptr, nullptr));
  }

  // Invalid dhparam is silently discarded and DHE is no longer used.
  if (!dh)
    return;

  const BIGNUM* p;
  DH_get0_pqg(dh.get(), &p, nullptr, nullptr);
  const int size = BN_num_bits(p);
  if (size < 1024) {
    return THROW_ERR_INVALID_ARG_VALUE(
        env, "DH parameter is less than 1024 bits");
  } else if (size < 2048) {
    args.GetReturnValue().Set(FIXED_ONE_BYTE_STRING(
        env->isolate(), "DH parameter is less than 2048 bits"));
  }

  SSL_CTX_set_options(sc->ctx_.get(), SSL_OP_SINGLE_DH_USE);
  int r = SSL_CTX_set_tmp_dh(sc->ctx_.get(), dh.get());

  if (!r)
    return env->ThrowTypeError("Error setting temp DH parameter");
}


void SecureContext::SetMinProto(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsInt32());

  int version = args[0].As<Int32>()->Value();

  CHECK(SSL_CTX_set_min_proto_version(sc->ctx_.get(), version));
}


void SecureContext::SetMaxProto(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsInt32());

  int version = args[0].As<Int32>()->Value();

  CHECK(SSL_CTX_set_max_proto_version(sc->ctx_.get(), version));
}


void SecureContext::GetMinProto(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  CHECK_EQ(args.Length(), 0);

  long version =  // NOLINT(runtime/int)
    SSL_CTX_get_min_proto_version(sc->ctx_.get());
  args.GetReturnValue().Set(static_cast<uint32_t>(version));
}


void SecureContext::GetMaxProto(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  CHECK_EQ(args.Length(), 0);

  long version =  // NOLINT(runtime/int)
    SSL_CTX_get_max_proto_version(sc->ctx_.get());
  args.GetReturnValue().Set(static_cast<uint32_t>(version));
}


void SecureContext::SetOptions(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  int64_t val;

  if (args.Length() != 1 ||
      !args[0]->IntegerValue(args.GetIsolate()->GetCurrentContext()).To(&val)) {
    return THROW_ERR_INVALID_ARG_TYPE(
        sc->env(), "Options must be an integer value");
  }

  SSL_CTX_set_options(sc->ctx_.get(),
                      static_cast<long>(val));  // NOLINT(runtime/int)
}


void SecureContext::SetSessionIdContext(
    const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  Environment* env = sc->env();

  if (args.Length() != 1) {
    return THROW_ERR_MISSING_ARGS(
        env, "Session ID context argument is mandatory");
  }

  THROW_AND_RETURN_IF_NOT_STRING(env, args[0], "Session ID context");

  const node::Utf8Value sessionIdContext(args.GetIsolate(), args[0]);
  const unsigned char* sid_ctx =
      reinterpret_cast<const unsigned char*>(*sessionIdContext);
  unsigned int sid_ctx_len = sessionIdContext.length();

  int r = SSL_CTX_set_session_id_context(sc->ctx_.get(), sid_ctx, sid_ctx_len);
  if (r == 1)
    return;

  BUF_MEM* mem;
  Local<String> message;

  BIOPointer bio(BIO_new(BIO_s_mem()));
  if (!bio) {
    message = FIXED_ONE_BYTE_STRING(args.GetIsolate(),
                                    "SSL_CTX_set_session_id_context error");
  } else {
    ERR_print_errors(bio.get());
    BIO_get_mem_ptr(bio.get(), &mem);
    message = OneByteString(args.GetIsolate(), mem->data, mem->length);
  }

  args.GetIsolate()->ThrowException(Exception::TypeError(message));
}


void SecureContext::SetSessionTimeout(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  if (args.Length() != 1 || !args[0]->IsInt32()) {
    return THROW_ERR_INVALID_ARG_TYPE(
        sc->env(), "Session timeout must be a 32-bit integer");
  }

  int32_t sessionTimeout = args[0].As<Int32>()->Value();
  SSL_CTX_set_timeout(sc->ctx_.get(), sessionTimeout);
}


void SecureContext::Close(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  sc->Reset();
}


// Takes .pfx or .p12 and password in string or buffer format
void SecureContext::LoadPKCS12(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  std::vector<char> pass;
  bool ret = false;

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  ClearErrorOnReturn clear_error_on_return;

  if (args.Length() < 1) {
    return THROW_ERR_MISSING_ARGS(env, "PFX certificate argument is mandatory");
  }

  BIOPointer in(LoadBIO(env, args[0]));
  if (!in)
    return env->ThrowError("Unable to load BIO");

  if (args.Length() >= 2) {
    THROW_AND_RETURN_IF_NOT_BUFFER(env, args[1], "Pass phrase");
    Local<ArrayBufferView> abv = args[1].As<ArrayBufferView>();
    size_t passlen = abv->ByteLength();
    pass.resize(passlen + 1);
    abv->CopyContents(pass.data(), passlen);
    pass[passlen] = '\0';
  }

  // Free previous certs
  sc->issuer_.reset();
  sc->cert_.reset();

  X509_STORE* cert_store = SSL_CTX_get_cert_store(sc->ctx_.get());

  DeleteFnPtr<PKCS12, PKCS12_free> p12;
  EVPKeyPointer pkey;
  X509Pointer cert;
  StackOfX509 extra_certs;

  PKCS12* p12_ptr = nullptr;
  EVP_PKEY* pkey_ptr = nullptr;
  X509* cert_ptr = nullptr;
  STACK_OF(X509)* extra_certs_ptr = nullptr;
  if (d2i_PKCS12_bio(in.get(), &p12_ptr) &&
      (p12.reset(p12_ptr), true) &&  // Move ownership to the smart pointer.
      PKCS12_parse(p12.get(), pass.data(),
                   &pkey_ptr,
                   &cert_ptr,
                   &extra_certs_ptr) &&
      (pkey.reset(pkey_ptr), cert.reset(cert_ptr),
       extra_certs.reset(extra_certs_ptr), true) &&  // Move ownership.
      SSL_CTX_use_certificate_chain(sc->ctx_.get(),
                                    std::move(cert),
                                    extra_certs.get(),
                                    &sc->cert_,
                                    &sc->issuer_) &&
      SSL_CTX_use_PrivateKey(sc->ctx_.get(), pkey.get())) {
    // Add CA certs too
    for (int i = 0; i < sk_X509_num(extra_certs.get()); i++) {
      X509* ca = sk_X509_value(extra_certs.get(), i);

      if (cert_store == root_cert_store) {
        cert_store = NewRootCertStore();
        SSL_CTX_set_cert_store(sc->ctx_.get(), cert_store);
      }
      X509_STORE_add_cert(cert_store, ca);
      SSL_CTX_add_client_CA(sc->ctx_.get(), ca);
    }
    ret = true;
  }

  if (!ret) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    const char* str = ERR_reason_error_string(err);
    return env->ThrowError(str);
  }
}


#ifndef OPENSSL_NO_ENGINE
void SecureContext::SetClientCertEngine(
    const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsString());

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  MarkPopErrorOnReturn mark_pop_error_on_return;

  // SSL_CTX_set_client_cert_engine does not itself support multiple
  // calls by cleaning up before overwriting the client_cert_engine
  // internal context variable.
  // Instead of trying to fix up this problem we in turn also do not
  // support multiple calls to SetClientCertEngine.
  if (sc->client_cert_engine_provided_) {
    return env->ThrowError(
        "Multiple calls to SetClientCertEngine are not allowed");
  }

  const node::Utf8Value engine_id(env->isolate(), args[0]);
  char errmsg[1024];
  DeleteFnPtr<ENGINE, ENGINE_free_fn> engine(
      LoadEngineById(*engine_id, &errmsg));

  if (!engine)
    return env->ThrowError(errmsg);

  // Note that this takes another reference to `engine`.
  int r = SSL_CTX_set_client_cert_engine(sc->ctx_.get(), engine.get());
  if (r == 0)
    return ThrowCryptoError(env, ERR_get_error());
  sc->client_cert_engine_provided_ = true;
}
#endif  // !OPENSSL_NO_ENGINE


void SecureContext::GetTicketKeys(const FunctionCallbackInfo<Value>& args) {
#if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys)

  SecureContext* wrap;
  ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder());

  Local<Object> buff = Buffer::New(wrap->env(), 48).ToLocalChecked();
  memcpy(Buffer::Data(buff), wrap->ticket_key_name_, 16);
  memcpy(Buffer::Data(buff) + 16, wrap->ticket_key_hmac_, 16);
  memcpy(Buffer::Data(buff) + 32, wrap->ticket_key_aes_, 16);

  args.GetReturnValue().Set(buff);
#endif  // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys)
}


void SecureContext::SetTicketKeys(const FunctionCallbackInfo<Value>& args) {
#if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys)
  SecureContext* wrap;
  ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder());
  Environment* env = wrap->env();

  // TODO(@sam-github) Move type and len check to js, and CHECK() in C++.
  if (args.Length() < 1) {
    return THROW_ERR_MISSING_ARGS(env, "Ticket keys argument is mandatory");
  }

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Ticket keys");
  ArrayBufferViewContents<char> buf(args[0].As<ArrayBufferView>());

  if (buf.length() != 48) {
    return THROW_ERR_INVALID_ARG_VALUE(
        env, "Ticket keys length must be 48 bytes");
  }

  memcpy(wrap->ticket_key_name_, buf.data(), 16);
  memcpy(wrap->ticket_key_hmac_, buf.data() + 16, 16);
  memcpy(wrap->ticket_key_aes_, buf.data() + 32, 16);

  args.GetReturnValue().Set(true);
#endif  // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys)
}


void SecureContext::SetFreeListLength(const FunctionCallbackInfo<Value>& args) {
}


// Currently, EnableTicketKeyCallback and TicketKeyCallback are only present for
// the regression test in test/parallel/test-https-resume-after-renew.js.
void SecureContext::EnableTicketKeyCallback(
    const FunctionCallbackInfo<Value>& args) {
  SecureContext* wrap;
  ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder());

  SSL_CTX_set_tlsext_ticket_key_cb(wrap->ctx_.get(), TicketKeyCallback);
}


int SecureContext::TicketKeyCallback(SSL* ssl,
                                     unsigned char* name,
                                     unsigned char* iv,
                                     EVP_CIPHER_CTX* ectx,
                                     HMAC_CTX* hctx,
                                     int enc) {
  static const int kTicketPartSize = 16;

  SecureContext* sc = static_cast<SecureContext*>(
      SSL_CTX_get_app_data(SSL_get_SSL_CTX(ssl)));

  Environment* env = sc->env();
  HandleScope handle_scope(env->isolate());
  Context::Scope context_scope(env->context());

  Local<Value> argv[] = {
    Buffer::Copy(env,
                 reinterpret_cast<char*>(name),
                 kTicketPartSize).ToLocalChecked(),
    Buffer::Copy(env,
                 reinterpret_cast<char*>(iv),
                 kTicketPartSize).ToLocalChecked(),
    Boolean::New(env->isolate(), enc != 0)
  };

  Local<Value> ret = node::MakeCallback(env->isolate(),
                                        sc->object(),
                                        env->ticketkeycallback_string(),
                                        arraysize(argv),
                                        argv,
                                        {0, 0}).ToLocalChecked();
  Local<Array> arr = ret.As<Array>();

  int r =
      arr->Get(env->context(),
               kTicketKeyReturnIndex).ToLocalChecked()
               ->Int32Value(env->context()).FromJust();
  if (r < 0)
    return r;

  Local<Value> hmac = arr->Get(env->context(),
                               kTicketKeyHMACIndex).ToLocalChecked();
  Local<Value> aes = arr->Get(env->context(),
                              kTicketKeyAESIndex).ToLocalChecked();
  if (Buffer::Length(aes) != kTicketPartSize)
    return -1;

  if (enc) {
    Local<Value> name_val = arr->Get(env->context(),
                                     kTicketKeyNameIndex).ToLocalChecked();
    Local<Value> iv_val = arr->Get(env->context(),
                                   kTicketKeyIVIndex).ToLocalChecked();

    if (Buffer::Length(name_val) != kTicketPartSize ||
        Buffer::Length(iv_val) != kTicketPartSize) {
      return -1;
    }

    name_val.As<ArrayBufferView>()->CopyContents(name, kTicketPartSize);
    iv_val.As<ArrayBufferView>()->CopyContents(iv, kTicketPartSize);
  }

  ArrayBufferViewContents<unsigned char> hmac_buf(hmac);
  HMAC_Init_ex(hctx,
               hmac_buf.data(),
               hmac_buf.length(),
               EVP_sha256(),
               nullptr);

  ArrayBufferViewContents<unsigned char> aes_key(aes.As<ArrayBufferView>());
  if (enc) {
    EVP_EncryptInit_ex(ectx,
                       EVP_aes_128_cbc(),
                       nullptr,
                       aes_key.data(),
                       iv);
  } else {
    EVP_DecryptInit_ex(ectx,
                       EVP_aes_128_cbc(),
                       nullptr,
                       aes_key.data(),
                       iv);
  }

  return r;
}


int SecureContext::TicketCompatibilityCallback(SSL* ssl,
                                               unsigned char* name,
                                               unsigned char* iv,
                                               EVP_CIPHER_CTX* ectx,
                                               HMAC_CTX* hctx,
                                               int enc) {
  SecureContext* sc = static_cast<SecureContext*>(
      SSL_CTX_get_app_data(SSL_get_SSL_CTX(ssl)));

  if (enc) {
    memcpy(name, sc->ticket_key_name_, sizeof(sc->ticket_key_name_));
    if (RAND_bytes(iv, 16) <= 0 ||
        EVP_EncryptInit_ex(ectx, EVP_aes_128_cbc(), nullptr,
                           sc->ticket_key_aes_, iv) <= 0 ||
        HMAC_Init_ex(hctx, sc->ticket_key_hmac_, sizeof(sc->ticket_key_hmac_),
                     EVP_sha256(), nullptr) <= 0) {
      return -1;
    }
    return 1;
  }

  if (memcmp(name, sc->ticket_key_name_, sizeof(sc->ticket_key_name_)) != 0) {
    // The ticket key name does not match. Discard the ticket.
    return 0;
  }

  if (EVP_DecryptInit_ex(ectx, EVP_aes_128_cbc(), nullptr, sc->ticket_key_aes_,
                         iv) <= 0 ||
      HMAC_Init_ex(hctx, sc->ticket_key_hmac_, sizeof(sc->ticket_key_hmac_),
                   EVP_sha256(), nullptr) <= 0) {
    return -1;
  }
  return 1;
}


void SecureContext::CtxGetter(const FunctionCallbackInfo<Value>& info) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, info.This());
  Local<External> ext = External::New(info.GetIsolate(), sc->ctx_.get());
  info.GetReturnValue().Set(ext);
}


template <bool primary>
void SecureContext::GetCertificate(const FunctionCallbackInfo<Value>& args) {
  SecureContext* wrap;
  ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder());
  Environment* env = wrap->env();
  X509* cert;

  if (primary)
    cert = wrap->cert_.get();
  else
    cert = wrap->issuer_.get();
  if (cert == nullptr)
    return args.GetReturnValue().SetNull();

  int size = i2d_X509(cert, nullptr);
  Local<Object> buff = Buffer::New(env, size).ToLocalChecked();
  unsigned char* serialized = reinterpret_cast<unsigned char*>(
      Buffer::Data(buff));
  i2d_X509(cert, &serialized);

  args.GetReturnValue().Set(buff);
}


template <class Base>
void SSLWrap<Base>::AddMethods(Environment* env, Local<FunctionTemplate> t) {
  HandleScope scope(env->isolate());

  env->SetProtoMethodNoSideEffect(t, "getPeerCertificate", GetPeerCertificate);
  env->SetProtoMethodNoSideEffect(t, "getCertificate", GetCertificate);
  env->SetProtoMethodNoSideEffect(t, "getFinished", GetFinished);
  env->SetProtoMethodNoSideEffect(t, "getPeerFinished", GetPeerFinished);
  env->SetProtoMethodNoSideEffect(t, "getSession", GetSession);
  env->SetProtoMethod(t, "setSession", SetSession);
  env->SetProtoMethod(t, "loadSession", LoadSession);
  env->SetProtoMethodNoSideEffect(t, "isSessionReused", IsSessionReused);
  env->SetProtoMethodNoSideEffect(t, "verifyError", VerifyError);
  env->SetProtoMethodNoSideEffect(t, "getCipher", GetCipher);
  env->SetProtoMethodNoSideEffect(t, "getSharedSigalgs", GetSharedSigalgs);
  env->SetProtoMethodNoSideEffect(
      t, "exportKeyingMaterial", ExportKeyingMaterial);
  env->SetProtoMethod(t, "endParser", EndParser);
  env->SetProtoMethod(t, "certCbDone", CertCbDone);
  env->SetProtoMethod(t, "renegotiate", Renegotiate);
  env->SetProtoMethodNoSideEffect(t, "getTLSTicket", GetTLSTicket);
  env->SetProtoMethod(t, "newSessionDone", NewSessionDone);
  env->SetProtoMethod(t, "setOCSPResponse", SetOCSPResponse);
  env->SetProtoMethod(t, "requestOCSP", RequestOCSP);
  env->SetProtoMethodNoSideEffect(t, "getEphemeralKeyInfo",
                                  GetEphemeralKeyInfo);
  env->SetProtoMethodNoSideEffect(t, "getProtocol", GetProtocol);

#ifdef SSL_set_max_send_fragment
  env->SetProtoMethod(t, "setMaxSendFragment", SetMaxSendFragment);
#endif  // SSL_set_max_send_fragment

  env->SetProtoMethodNoSideEffect(t, "getALPNNegotiatedProtocol",
                                  GetALPNNegotiatedProto);
  env->SetProtoMethod(t, "setALPNProtocols", SetALPNProtocols);
}


template <class Base>
void SSLWrap<Base>::ConfigureSecureContext(SecureContext* sc) {
  // OCSP stapling
  SSL_CTX_set_tlsext_status_cb(sc->ctx_.get(), TLSExtStatusCallback);
  SSL_CTX_set_tlsext_status_arg(sc->ctx_.get(), nullptr);
}


template <class Base>
SSL_SESSION* SSLWrap<Base>::GetSessionCallback(SSL* s,
                                               const unsigned char* key,
                                               int len,
                                               int* copy) {
  Base* w = static_cast<Base*>(SSL_get_app_data(s));

  *copy = 0;
  return w->next_sess_.release();
}


template <class Base>
int SSLWrap<Base>::NewSessionCallback(SSL* s, SSL_SESSION* sess) {
  Base* w = static_cast<Base*>(SSL_get_app_data(s));
  Environment* env = w->ssl_env();
  HandleScope handle_scope(env->isolate());
  Context::Scope context_scope(env->context());

  if (!w->session_callbacks_)
    return 0;

  // Check if session is small enough to be stored
  int size = i2d_SSL_SESSION(sess, nullptr);
  if (size > SecureContext::kMaxSessionSize)
    return 0;

  // Serialize session
  Local<Object> session = Buffer::New(env, size).ToLocalChecked();
  unsigned char* session_data = reinterpret_cast<unsigned char*>(
      Buffer::Data(session));
  memset(session_data, 0, size);
  i2d_SSL_SESSION(sess, &session_data);

  unsigned int session_id_length;
  const unsigned char* session_id_data = SSL_SESSION_get_id(sess,
                                                            &session_id_length);
  Local<Object> session_id = Buffer::Copy(
      env,
      reinterpret_cast<const char*>(session_id_data),
      session_id_length).ToLocalChecked();
  Local<Value> argv[] = { session_id, session };
  // On servers, we pause the handshake until callback of 'newSession', which
  // calls NewSessionDoneCb(). On clients, there is no callback to wait for.
  if (w->is_server())
    w->awaiting_new_session_ = true;
  w->MakeCallback(env->onnewsession_string(), arraysize(argv), argv);

  return 0;
}


template <class Base>
void SSLWrap<Base>::KeylogCallback(const SSL* s, const char* line) {
  Base* w = static_cast<Base*>(SSL_get_app_data(s));
  Environment* env = w->ssl_env();
  HandleScope handle_scope(env->isolate());
  Context::Scope context_scope(env->context());

  const size_t size = strlen(line);
  Local<Value> line_bf = Buffer::Copy(env, line, 1 + size).ToLocalChecked();
  char* data = Buffer::Data(line_bf);
  data[size] = '\n';
  w->MakeCallback(env->onkeylog_string(), 1, &line_bf);
}


template <class Base>
void SSLWrap<Base>::OnClientHello(void* arg,
                                  const ClientHelloParser::ClientHello& hello) {
  Base* w = static_cast<Base*>(arg);
  Environment* env = w->ssl_env();
  HandleScope handle_scope(env->isolate());
  Local<Context> context = env->context();
  Context::Scope context_scope(context);

  Local<Object> hello_obj = Object::New(env->isolate());
  Local<Object> buff = Buffer::Copy(
      env,
      reinterpret_cast<const char*>(hello.session_id()),
      hello.session_size()).ToLocalChecked();
  hello_obj->Set(context, env->session_id_string(), buff).Check();
  if (hello.servername() == nullptr) {
    hello_obj->Set(context,
                   env->servername_string(),
                   String::Empty(env->isolate())).Check();
  } else {
    Local<String> servername = OneByteString(env->isolate(),
                                             hello.servername(),
                                             hello.servername_size());
    hello_obj->Set(context, env->servername_string(), servername).Check();
  }
  hello_obj->Set(context,
                 env->tls_ticket_string(),
                 Boolean::New(env->isolate(), hello.has_ticket())).Check();

  Local<Value> argv[] = { hello_obj };
  w->MakeCallback(env->onclienthello_string(), arraysize(argv), argv);
}

template <class Base>
void SSLWrap<Base>::GetPeerCertificate(
    const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->ssl_env();

  bool abbreviated = args.Length() < 1 || !args[0]->IsTrue();

  Local<Value> ret;
  if (GetPeerCert(env, w->ssl_, abbreviated, w->is_server()).ToLocal(&ret))
    args.GetReturnValue().Set(ret);
}


template <class Base>
void SSLWrap<Base>::GetCertificate(
    const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->ssl_env();

  Local<Value> ret;
  if (GetCert(env, w->ssl_).ToLocal(&ret))
    args.GetReturnValue().Set(ret);
}


template <class Base>
void SSLWrap<Base>::GetFinished(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  // We cannot just pass nullptr to SSL_get_finished()
  // because it would further be propagated to memcpy(),
  // where the standard requirements as described in ISO/IEC 9899:2011
  // sections 7.21.2.1, 7.21.1.2, and 7.1.4, would be violated.
  // Thus, we use a dummy byte.
  char dummy[1];
  size_t len = SSL_get_finished(w->ssl_.get(), dummy, sizeof dummy);
  if (len == 0)
    return;

  AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, len);
  CHECK_EQ(len, SSL_get_finished(w->ssl_.get(), buf.data(), len));
  args.GetReturnValue().Set(buf.ToBuffer().ToLocalChecked());
}


template <class Base>
void SSLWrap<Base>::GetPeerFinished(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  // We cannot just pass nullptr to SSL_get_peer_finished()
  // because it would further be propagated to memcpy(),
  // where the standard requirements as described in ISO/IEC 9899:2011
  // sections 7.21.2.1, 7.21.1.2, and 7.1.4, would be violated.
  // Thus, we use a dummy byte.
  char dummy[1];
  size_t len = SSL_get_peer_finished(w->ssl_.get(), dummy, sizeof dummy);
  if (len == 0)
    return;

  AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, len);
  CHECK_EQ(len, SSL_get_peer_finished(w->ssl_.get(), buf.data(), len));
  args.GetReturnValue().Set(buf.ToBuffer().ToLocalChecked());
}


template <class Base>
void SSLWrap<Base>::GetSession(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  SSL_SESSION* sess = SSL_get_session(w->ssl_.get());
  if (sess == nullptr)
    return;

  int slen = i2d_SSL_SESSION(sess, nullptr);
  if (slen <= 0)
    return;  // Invalid or malformed session.

  AllocatedBuffer sbuf = AllocatedBuffer::AllocateManaged(env, slen);
  unsigned char* p = reinterpret_cast<unsigned char*>(sbuf.data());
  CHECK_LT(0, i2d_SSL_SESSION(sess, &p));
  args.GetReturnValue().Set(sbuf.ToBuffer().ToLocalChecked());
}


template <class Base>
void SSLWrap<Base>::SetSession(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  if (args.Length() < 1)
    return THROW_ERR_MISSING_ARGS(env, "Session argument is mandatory");

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Session");

  SSLSessionPointer sess = GetTLSSession(args[0]);
  if (sess == nullptr)
    return;

  if (!SetTLSSession(w->ssl_, sess))
    return env->ThrowError("SSL_set_session error");
}


template <class Base>
void SSLWrap<Base>::LoadSession(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  // TODO(@sam-github) check arg length and types in js, and CHECK in c++
  if (args.Length() >= 1 && Buffer::HasInstance(args[0])) {
    ArrayBufferViewContents<unsigned char> sbuf(args[0]);

    const unsigned char* p = sbuf.data();
    SSL_SESSION* sess = d2i_SSL_SESSION(nullptr, &p, sbuf.length());

    // Setup next session and move hello to the BIO buffer
    w->next_sess_.reset(sess);
  }
}


template <class Base>
void SSLWrap<Base>::IsSessionReused(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  bool yes = SSL_session_reused(w->ssl_.get());
  args.GetReturnValue().Set(yes);
}


template <class Base>
void SSLWrap<Base>::EndParser(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  w->hello_parser_.End();
}


template <class Base>
void SSLWrap<Base>::Renegotiate(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  ClearErrorOnReturn clear_error_on_return;

  if (SSL_renegotiate(w->ssl_.get()) != 1) {
    return ThrowCryptoError(w->ssl_env(), ERR_get_error());
  }
}


template <class Base>
void SSLWrap<Base>::GetTLSTicket(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->ssl_env();

  SSL_SESSION* sess = SSL_get_session(w->ssl_.get());
  if (sess == nullptr)
    return;

  const unsigned char* ticket;
  size_t length;
  SSL_SESSION_get0_ticket(sess, &ticket, &length);

  if (ticket == nullptr)
    return;

  Local<Object> buff = Buffer::Copy(
      env, reinterpret_cast<const char*>(ticket), length).ToLocalChecked();

  args.GetReturnValue().Set(buff);
}


template <class Base>
void SSLWrap<Base>::NewSessionDone(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  w->awaiting_new_session_ = false;
  w->NewSessionDoneCb();
}


template <class Base>
void SSLWrap<Base>::SetOCSPResponse(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->env();

  if (args.Length() < 1)
    return THROW_ERR_MISSING_ARGS(env, "OCSP response argument is mandatory");

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "OCSP response");

  w->ocsp_response_.Reset(args.GetIsolate(), args[0].As<ArrayBufferView>());
}


template <class Base>
void SSLWrap<Base>::RequestOCSP(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  SSL_set_tlsext_status_type(w->ssl_.get(), TLSEXT_STATUSTYPE_ocsp);
}


template <class Base>
void SSLWrap<Base>::GetEphemeralKeyInfo(
    const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = Environment::GetCurrent(args);

  CHECK(w->ssl_);

  // tmp key is available on only client
  if (w->is_server())
    return args.GetReturnValue().SetNull();

  Local<Object> ret;
  if (GetEphemeralKey(env, w->ssl_).ToLocal(&ret))
    args.GetReturnValue().Set(ret);

  // TODO(@sam-github) semver-major: else return ThrowCryptoError(env,
  // ERR_get_error())
}


#ifdef SSL_set_max_send_fragment
template <class Base>
void SSLWrap<Base>::SetMaxSendFragment(
    const FunctionCallbackInfo<Value>& args) {
  CHECK(args.Length() >= 1 && args[0]->IsNumber());

  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  int rv = SSL_set_max_send_fragment(
      w->ssl_.get(),
      args[0]->Int32Value(w->ssl_env()->context()).FromJust());
  args.GetReturnValue().Set(rv);
}
#endif  // SSL_set_max_send_fragment


template <class Base>
void SSLWrap<Base>::VerifyError(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  // XXX(bnoordhuis) The UNABLE_TO_GET_ISSUER_CERT error when there is no
  // peer certificate is questionable but it's compatible with what was
  // here before.
  long x509_verify_error =  // NOLINT(runtime/int)
      VerifyPeerCertificate(w->ssl_, X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT);

  if (x509_verify_error == X509_V_OK)
    return args.GetReturnValue().SetNull();

  const char* reason = X509_verify_cert_error_string(x509_verify_error);
  const char* code = reason;
  code = X509ErrorCode(x509_verify_error);

  Isolate* isolate = args.GetIsolate();
  Local<String> reason_string = OneByteString(isolate, reason);
  Local<Value> exception_value = Exception::Error(reason_string);
  Local<Object> exception_object =
    exception_value->ToObject(isolate->GetCurrentContext()).ToLocalChecked();
  exception_object->Set(w->env()->context(), w->env()->code_string(),
                        OneByteString(isolate, code)).Check();
  args.GetReturnValue().Set(exception_object);
}


template <class Base>
void SSLWrap<Base>::GetCipher(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->ssl_env();

  const SSL_CIPHER* c = SSL_get_current_cipher(w->ssl_.get());
  if (c == nullptr)
    return;

  Local<Object> ret;
  if (GetCipherInfo(env, w->ssl_).ToLocal(&ret))
    args.GetReturnValue().Set(ret);
}


template <class Base>
void SSLWrap<Base>::GetSharedSigalgs(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->ssl_env();

  SSL* ssl = w->ssl_.get();
  int nsig = SSL_get_shared_sigalgs(ssl, 0, nullptr, nullptr, nullptr, nullptr,
                                    nullptr);
  MaybeStackBuffer<Local<Value>, 16> ret_arr(nsig);

  for (int i = 0; i < nsig; i++) {
    int hash_nid;
    int sign_nid;
    std::string sig_with_md;

    SSL_get_shared_sigalgs(ssl, i, &sign_nid, &hash_nid, nullptr, nullptr,
                           nullptr);

    switch (sign_nid) {
      case EVP_PKEY_RSA:
        sig_with_md = "RSA+";
        break;

      case EVP_PKEY_RSA_PSS:
        sig_with_md = "RSA-PSS+";
        break;

      case EVP_PKEY_DSA:
        sig_with_md = "DSA+";
        break;

      case EVP_PKEY_EC:
        sig_with_md = "ECDSA+";
        break;

      case NID_ED25519:
        sig_with_md = "Ed25519+";
        break;

      case NID_ED448:
        sig_with_md = "Ed448+";
        break;
#ifndef OPENSSL_NO_GOST
      case NID_id_GostR3410_2001:
        sig_with_md = "gost2001+";
        break;

      case NID_id_GostR3410_2012_256:
        sig_with_md = "gost2012_256+";
        break;

      case NID_id_GostR3410_2012_512:
        sig_with_md = "gost2012_512+";
        break;
#endif  // !OPENSSL_NO_GOST
      default:
        const char* sn = OBJ_nid2sn(sign_nid);

        if (sn != nullptr) {
          sig_with_md = std::string(sn) + "+";
        } else {
          sig_with_md = "UNDEF+";
        }
        break;
    }

    const char* sn_hash = OBJ_nid2sn(hash_nid);
    if (sn_hash != nullptr) {
      sig_with_md += std::string(sn_hash);
    } else {
      sig_with_md += "UNDEF";
    }
    ret_arr[i] = OneByteString(env->isolate(), sig_with_md.c_str());
  }

  args.GetReturnValue().Set(
                 Array::New(env->isolate(), ret_arr.out(), ret_arr.length()));
}

template <class Base>
void SSLWrap<Base>::ExportKeyingMaterial(
    const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsInt32());
  CHECK(args[1]->IsString());

  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->ssl_env();

  uint32_t olen = args[0].As<Uint32>()->Value();
  node::Utf8Value label(env->isolate(), args[1]);

  AllocatedBuffer out = AllocatedBuffer::AllocateManaged(env, olen);

  ByteSource context;
  bool use_context = !args[2]->IsUndefined();
  if (use_context)
    context = ByteSource::FromBuffer(args[2]);

  if (SSL_export_keying_material(w->ssl_.get(),
                                 reinterpret_cast<unsigned char*>(out.data()),
                                 olen,
                                 *label,
                                 label.length(),
                                 reinterpret_cast<const unsigned char*>(
                                     context.get()),
                                 context.size(),
                                 use_context) != 1) {
    return ThrowCryptoError(env, ERR_get_error(), "SSL_export_keying_material");
  }

  args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked());
}

template <class Base>
void SSLWrap<Base>::GetProtocol(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  const char* tls_version = SSL_get_version(w->ssl_.get());
  args.GetReturnValue().Set(OneByteString(args.GetIsolate(), tls_version));
}


template <class Base>
int SSLWrap<Base>::SelectALPNCallback(SSL* s,
                                      const unsigned char** out,
                                      unsigned char* outlen,
                                      const unsigned char* in,
                                      unsigned int inlen,
                                      void* arg) {
  Base* w = static_cast<Base*>(SSL_get_app_data(s));
  Environment* env = w->env();
  HandleScope handle_scope(env->isolate());
  Context::Scope context_scope(env->context());

  Local<Value> alpn_buffer =
      w->object()->GetPrivate(
          env->context(),
          env->alpn_buffer_private_symbol()).ToLocalChecked();
  ArrayBufferViewContents<unsigned char> alpn_protos(alpn_buffer);
  int status = SSL_select_next_proto(const_cast<unsigned char**>(out), outlen,
                                     alpn_protos.data(), alpn_protos.length(),
                                     in, inlen);
  // According to 3.2. Protocol Selection of RFC7301, fatal
  // no_application_protocol alert shall be sent but OpenSSL 1.0.2 does not
  // support it yet. See
  // https://rt.openssl.org/Ticket/Display.html?id=3463&user=guest&pass=guest
  return status == OPENSSL_NPN_NEGOTIATED ? SSL_TLSEXT_ERR_OK
                                          : SSL_TLSEXT_ERR_NOACK;
}


template <class Base>
void SSLWrap<Base>::GetALPNNegotiatedProto(
    const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  const unsigned char* alpn_proto;
  unsigned int alpn_proto_len;

  SSL_get0_alpn_selected(w->ssl_.get(), &alpn_proto, &alpn_proto_len);

  Local<Value> result;
  if (alpn_proto_len == 0) {
    result = False(args.GetIsolate());
  } else if (alpn_proto_len == sizeof("h2") - 1 &&
             0 == memcmp(alpn_proto, "h2", sizeof("h2") - 1)) {
    result = w->env()->h2_string();
  } else if (alpn_proto_len == sizeof("http/1.1") - 1 &&
             0 == memcmp(alpn_proto, "http/1.1", sizeof("http/1.1") - 1)) {
    result = w->env()->http_1_1_string();
  } else {
    result = OneByteString(args.GetIsolate(), alpn_proto, alpn_proto_len);
  }

  args.GetReturnValue().Set(result);
}


template <class Base>
void SSLWrap<Base>::SetALPNProtocols(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->env();
  if (args.Length() < 1 || !Buffer::HasInstance(args[0]))
    return env->ThrowTypeError("Must give a Buffer as first argument");

  if (w->is_client()) {
    CHECK(SetALPN(w->ssl_, args[0]));
  } else {
    CHECK(
        w->object()->SetPrivate(
            env->context(),
            env->alpn_buffer_private_symbol(),
            args[0]).FromJust());
    // Server should select ALPN protocol from list of advertised by client
    SSL_CTX_set_alpn_select_cb(SSL_get_SSL_CTX(w->ssl_.get()),
                               SelectALPNCallback,
                               nullptr);
  }
}


template <class Base>
int SSLWrap<Base>::TLSExtStatusCallback(SSL* s, void* arg) {
  Base* w = static_cast<Base*>(SSL_get_app_data(s));
  Environment* env = w->env();
  HandleScope handle_scope(env->isolate());

  if (w->is_client()) {
    // Incoming response
    Local<Value> arg;
    MaybeLocal<Value> ret = GetSSLOCSPResponse(env, s, Null(env->isolate()));
    if (ret.ToLocal(&arg))
      w->MakeCallback(env->onocspresponse_string(), 1, &arg);

    // No async acceptance is possible, so always return 1 to accept the
    // response.  The listener for 'OCSPResponse' event has no control over
    // return value, but it can .destroy() the connection if the response is not
    // acceptable.
    return 1;
  } else {
    // Outgoing response
    if (w->ocsp_response_.IsEmpty())
      return SSL_TLSEXT_ERR_NOACK;

    Local<ArrayBufferView> obj = PersistentToLocal::Default(env->isolate(),
                                                            w->ocsp_response_);
    size_t len = obj->ByteLength();

    // OpenSSL takes control of the pointer after accepting it
    unsigned char* data = MallocOpenSSL<unsigned char>(len);
    obj->CopyContents(data, len);

    if (!SSL_set_tlsext_status_ocsp_resp(s, data, len))
      OPENSSL_free(data);
    w->ocsp_response_.Reset();

    return SSL_TLSEXT_ERR_OK;
  }
}


template <class Base>
void SSLWrap<Base>::WaitForCertCb(CertCb cb, void* arg) {
  cert_cb_ = cb;
  cert_cb_arg_ = arg;
}


template <class Base>
int SSLWrap<Base>::SSLCertCallback(SSL* s, void* arg) {
  Base* w = static_cast<Base*>(SSL_get_app_data(s));

  if (!w->is_server())
    return 1;

  if (!w->is_waiting_cert_cb())
    return 1;

  if (w->cert_cb_running_)
    // Not an error. Suspend handshake with SSL_ERROR_WANT_X509_LOOKUP, and
    // handshake will continue after certcb is done.
    return -1;

  Environment* env = w->env();
  Local<Context> context = env->context();
  HandleScope handle_scope(env->isolate());
  Context::Scope context_scope(context);
  w->cert_cb_running_ = true;

  Local<Object> info = Object::New(env->isolate());

  const char* servername = GetServerName(s);
  if (servername == nullptr) {
    info->Set(context,
              env->servername_string(),
              String::Empty(env->isolate())).Check();
  } else {
    Local<String> str = OneByteString(env->isolate(), servername,
                                      strlen(servername));
    info->Set(context, env->servername_string(), str).Check();
  }

  const bool ocsp = (SSL_get_tlsext_status_type(s) == TLSEXT_STATUSTYPE_ocsp);
  info->Set(context, env->ocsp_request_string(),
            Boolean::New(env->isolate(), ocsp)).Check();

  Local<Value> argv[] = { info };
  w->MakeCallback(env->oncertcb_string(), arraysize(argv), argv);

  if (!w->cert_cb_running_)
    return 1;

  // Performing async action, wait...
  return -1;
}


template <class Base>
void SSLWrap<Base>::CertCbDone(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->env();

  CHECK(w->is_waiting_cert_cb() && w->cert_cb_running_);

  Local<Object> object = w->object();
  Local<Value> ctx = object->Get(env->context(),
                                 env->sni_context_string()).ToLocalChecked();
  Local<FunctionTemplate> cons = env->secure_context_constructor_template();

  // Not an object, probably undefined or null
  if (!ctx->IsObject())
    goto fire_cb;

  if (cons->HasInstance(ctx)) {
    SecureContext* sc = Unwrap<SecureContext>(ctx.As<Object>());
    CHECK_NOT_NULL(sc);
    // Store the SNI context for later use.
    w->sni_context_ = BaseObjectPtr<SecureContext>(sc);

    if (UseSNIContext(w->ssl_, w->sni_context_) && !w->SetCACerts(sc)) {
      // Not clear why sometimes we throw error, and sometimes we call
      // onerror(). Both cause .destroy(), but onerror does a bit more.
      unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
      return ThrowCryptoError(env, err, "CertCbDone");
    }
  } else {
    // Failure: incorrect SNI context object
    Local<Value> err = Exception::TypeError(env->sni_context_err_string());
    w->MakeCallback(env->onerror_string(), 1, &err);
    return;
  }

 fire_cb:
  CertCb cb;
  void* arg;

  cb = w->cert_cb_;
  arg = w->cert_cb_arg_;

  w->cert_cb_running_ = false;
  w->cert_cb_ = nullptr;
  w->cert_cb_arg_ = nullptr;

  cb(arg);
}


template <class Base>
void SSLWrap<Base>::DestroySSL() {
  if (!ssl_)
    return;

  env_->isolate()->AdjustAmountOfExternalAllocatedMemory(-kExternalSize);
  ssl_.reset();
}


template <class Base>
int SSLWrap<Base>::SetCACerts(SecureContext* sc) {
  int err = SSL_set1_verify_cert_store(ssl_.get(),
                                       SSL_CTX_get_cert_store(sc->ctx_.get()));
  if (err != 1)
    return err;

  STACK_OF(X509_NAME)* list = SSL_dup_CA_list(
      SSL_CTX_get_client_CA_list(sc->ctx_.get()));

  // NOTE: `SSL_set_client_CA_list` takes the ownership of `list`
  SSL_set_client_CA_list(ssl_.get(), list);
  return 1;
}

template <class Base>
void SSLWrap<Base>::MemoryInfo(MemoryTracker* tracker) const {
  tracker->TrackField("ocsp_response", ocsp_response_);
  tracker->TrackField("sni_context", sni_context_);
}

int VerifyCallback(int preverify_ok, X509_STORE_CTX* ctx) {
  // From https://www.openssl.org/docs/man1.1.1/man3/SSL_verify_cb:
  //
  //   If VerifyCallback returns 1, the verification process is continued. If
  //   VerifyCallback always returns 1, the TLS/SSL handshake will not be
  //   terminated with respect to verification failures and the connection will
  //   be established. The calling process can however retrieve the error code
  //   of the last verification error using SSL_get_verify_result(3) or by
  //   maintaining its own error storage managed by VerifyCallback.
  //
  // Since we cannot perform I/O quickly enough with X509_STORE_CTX_ APIs in
  // this callback, we ignore all preverify_ok errors and let the handshake
  // continue. It is imperative that the user use Connection::VerifyError after
  // the 'secure' callback has been made.
  return 1;
}

static bool IsSupportedAuthenticatedMode(const EVP_CIPHER* cipher) {
  const int mode = EVP_CIPHER_mode(cipher);
  // Check `chacha20-poly1305` separately, it is also an AEAD cipher,
  // but its mode is 0 which doesn't indicate
  return EVP_CIPHER_nid(cipher) == NID_chacha20_poly1305 ||
         mode == EVP_CIPH_CCM_MODE ||
         mode == EVP_CIPH_GCM_MODE ||
         IS_OCB_MODE(mode);
}

static bool IsSupportedAuthenticatedMode(const EVP_CIPHER_CTX* ctx) {
  const EVP_CIPHER* cipher = EVP_CIPHER_CTX_cipher(ctx);
  return IsSupportedAuthenticatedMode(cipher);
}

enum class ParseKeyResult {
  kParseKeyOk,
  kParseKeyNotRecognized,
  kParseKeyNeedPassphrase,
  kParseKeyFailed
};

static ParseKeyResult TryParsePublicKey(
    EVPKeyPointer* pkey,
    const BIOPointer& bp,
    const char* name,
    // NOLINTNEXTLINE(runtime/int)
    const std::function<EVP_PKEY*(const unsigned char** p, long l)>& parse) {
  unsigned char* der_data;
  long der_len;  // NOLINT(runtime/int)

  // This skips surrounding data and decodes PEM to DER.
  {
    MarkPopErrorOnReturn mark_pop_error_on_return;
    if (PEM_bytes_read_bio(&der_data, &der_len, nullptr, name,
                           bp.get(), nullptr, nullptr) != 1)
      return ParseKeyResult::kParseKeyNotRecognized;
  }

  // OpenSSL might modify the pointer, so we need to make a copy before parsing.
  const unsigned char* p = der_data;
  pkey->reset(parse(&p, der_len));
  OPENSSL_clear_free(der_data, der_len);

  return *pkey ? ParseKeyResult::kParseKeyOk :
                 ParseKeyResult::kParseKeyFailed;
}

static ParseKeyResult ParsePublicKeyPEM(EVPKeyPointer* pkey,
                                        const char* key_pem,
                                        int key_pem_len) {
  BIOPointer bp(BIO_new_mem_buf(const_cast<char*>(key_pem), key_pem_len));
  if (!bp)
    return ParseKeyResult::kParseKeyFailed;

  ParseKeyResult ret;

  // Try parsing as a SubjectPublicKeyInfo first.
  ret = TryParsePublicKey(pkey, bp, "PUBLIC KEY",
      [](const unsigned char** p, long l) {  // NOLINT(runtime/int)
        return d2i_PUBKEY(nullptr, p, l);
      });
  if (ret != ParseKeyResult::kParseKeyNotRecognized)
    return ret;

  // Maybe it is PKCS#1.
  CHECK(BIO_reset(bp.get()));
  ret = TryParsePublicKey(pkey, bp, "RSA PUBLIC KEY",
      [](const unsigned char** p, long l) {  // NOLINT(runtime/int)
        return d2i_PublicKey(EVP_PKEY_RSA, nullptr, p, l);
      });
  if (ret != ParseKeyResult::kParseKeyNotRecognized)
    return ret;

  // X.509 fallback.
  CHECK(BIO_reset(bp.get()));
  return TryParsePublicKey(pkey, bp, "CERTIFICATE",
      [](const unsigned char** p, long l) {  // NOLINT(runtime/int)
        X509Pointer x509(d2i_X509(nullptr, p, l));
        return x509 ? X509_get_pubkey(x509.get()) : nullptr;
      });
}

static ParseKeyResult ParsePublicKey(EVPKeyPointer* pkey,
                                     const PublicKeyEncodingConfig& config,
                                     const char* key,
                                     size_t key_len) {
  if (config.format_ == kKeyFormatPEM) {
    return ParsePublicKeyPEM(pkey, key, key_len);
  } else {
    CHECK_EQ(config.format_, kKeyFormatDER);

    const unsigned char* p = reinterpret_cast<const unsigned char*>(key);
    if (config.type_.ToChecked() == kKeyEncodingPKCS1) {
      pkey->reset(d2i_PublicKey(EVP_PKEY_RSA, nullptr, &p, key_len));
    } else {
      CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSPKI);
      pkey->reset(d2i_PUBKEY(nullptr, &p, key_len));
    }

    return *pkey ? ParseKeyResult::kParseKeyOk :
                   ParseKeyResult::kParseKeyFailed;
  }
}

static inline Local<Value> BIOToStringOrBuffer(Environment* env,
                                               BIO* bio,
                                               PKFormatType format) {
  BUF_MEM* bptr;
  BIO_get_mem_ptr(bio, &bptr);
  if (format == kKeyFormatPEM) {
    // PEM is an ASCII format, so we will return it as a string.
    return String::NewFromUtf8(env->isolate(), bptr->data,
                               NewStringType::kNormal,
                               bptr->length).ToLocalChecked();
  } else {
    CHECK_EQ(format, kKeyFormatDER);
    // DER is binary, return it as a buffer.
    return Buffer::Copy(env, bptr->data, bptr->length).ToLocalChecked();
  }
}

static bool WritePublicKeyInner(EVP_PKEY* pkey,
                                const BIOPointer& bio,
                                const PublicKeyEncodingConfig& config) {
  if (config.type_.ToChecked() == kKeyEncodingPKCS1) {
    // PKCS#1 is only valid for RSA keys.
    CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_RSA);
    RSAPointer rsa(EVP_PKEY_get1_RSA(pkey));
    if (config.format_ == kKeyFormatPEM) {
      // Encode PKCS#1 as PEM.
      return PEM_write_bio_RSAPublicKey(bio.get(), rsa.get()) == 1;
    } else {
      // Encode PKCS#1 as DER.
      CHECK_EQ(config.format_, kKeyFormatDER);
      return i2d_RSAPublicKey_bio(bio.get(), rsa.get()) == 1;
    }
  } else {
    CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSPKI);
    if (config.format_ == kKeyFormatPEM) {
      // Encode SPKI as PEM.
      return PEM_write_bio_PUBKEY(bio.get(), pkey) == 1;
    } else {
      // Encode SPKI as DER.
      CHECK_EQ(config.format_, kKeyFormatDER);
      return i2d_PUBKEY_bio(bio.get(), pkey) == 1;
    }
  }
}

static MaybeLocal<Value> WritePublicKey(Environment* env,
                                        EVP_PKEY* pkey,
                                        const PublicKeyEncodingConfig& config) {
  BIOPointer bio(BIO_new(BIO_s_mem()));
  CHECK(bio);

  if (!WritePublicKeyInner(pkey, bio, config)) {
    ThrowCryptoError(env, ERR_get_error(), "Failed to encode public key");
    return MaybeLocal<Value>();
  }
  return BIOToStringOrBuffer(env, bio.get(), config.format_);
}

static bool IsASN1Sequence(const unsigned char* data, size_t size,
                           size_t* data_offset, size_t* data_size) {
  if (size < 2 || data[0] != 0x30)
    return false;

  if (data[1] & 0x80) {
    // Long form.
    size_t n_bytes = data[1] & ~0x80;
    if (n_bytes + 2 > size || n_bytes > sizeof(size_t))
      return false;
    size_t length = 0;
    for (size_t i = 0; i < n_bytes; i++)
      length = (length << 8) | data[i + 2];
    *data_offset = 2 + n_bytes;
    *data_size = std::min(size - 2 - n_bytes, length);
  } else {
    // Short form.
    *data_offset = 2;
    *data_size = std::min<size_t>(size - 2, data[1]);
  }

  return true;
}

static bool IsRSAPrivateKey(const unsigned char* data, size_t size) {
  // Both RSAPrivateKey and RSAPublicKey structures start with a SEQUENCE.
  size_t offset, len;
  if (!IsASN1Sequence(data, size, &offset, &len))
    return false;

  // An RSAPrivateKey sequence always starts with a single-byte integer whose
  // value is either 0 or 1, whereas an RSAPublicKey starts with the modulus
  // (which is the product of two primes and therefore at least 4), so we can
  // decide the type of the structure based on the first three bytes of the
  // sequence.
  return len >= 3 &&
         data[offset] == 2 &&
         data[offset + 1] == 1 &&
         !(data[offset + 2] & 0xfe);
}

static bool IsEncryptedPrivateKeyInfo(const unsigned char* data, size_t size) {
  // Both PrivateKeyInfo and EncryptedPrivateKeyInfo start with a SEQUENCE.
  size_t offset, len;
  if (!IsASN1Sequence(data, size, &offset, &len))
    return false;

  // A PrivateKeyInfo sequence always starts with an integer whereas an
  // EncryptedPrivateKeyInfo starts with an AlgorithmIdentifier.
  return len >= 1 &&
         data[offset] != 2;
}

static ParseKeyResult ParsePrivateKey(EVPKeyPointer* pkey,
                                      const PrivateKeyEncodingConfig& config,
                                      const char* key,
                                      size_t key_len) {
  // OpenSSL needs a non-const pointer, that's why the const_cast is required.
  char* const passphrase = const_cast<char*>(config.passphrase_.get());

  if (config.format_ == kKeyFormatPEM) {
    BIOPointer bio(BIO_new_mem_buf(key, key_len));
    if (!bio)
      return ParseKeyResult::kParseKeyFailed;

    pkey->reset(PEM_read_bio_PrivateKey(bio.get(),
                                        nullptr,
                                        PasswordCallback,
                                        passphrase));
  } else {
    CHECK_EQ(config.format_, kKeyFormatDER);

    if (config.type_.ToChecked() == kKeyEncodingPKCS1) {
      const unsigned char* p = reinterpret_cast<const unsigned char*>(key);
      pkey->reset(d2i_PrivateKey(EVP_PKEY_RSA, nullptr, &p, key_len));
    } else if (config.type_.ToChecked() == kKeyEncodingPKCS8) {
      BIOPointer bio(BIO_new_mem_buf(key, key_len));
      if (!bio)
        return ParseKeyResult::kParseKeyFailed;

      if (IsEncryptedPrivateKeyInfo(
              reinterpret_cast<const unsigned char*>(key), key_len)) {
        pkey->reset(d2i_PKCS8PrivateKey_bio(bio.get(),
                                            nullptr,
                                            PasswordCallback,
                                            passphrase));
      } else {
        PKCS8Pointer p8inf(d2i_PKCS8_PRIV_KEY_INFO_bio(bio.get(), nullptr));
        if (p8inf)
          pkey->reset(EVP_PKCS82PKEY(p8inf.get()));
      }
    } else {
      CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSEC1);
      const unsigned char* p = reinterpret_cast<const unsigned char*>(key);
      pkey->reset(d2i_PrivateKey(EVP_PKEY_EC, nullptr, &p, key_len));
    }
  }

  // OpenSSL can fail to parse the key but still return a non-null pointer.
  unsigned long err = ERR_peek_error();  // NOLINT(runtime/int)
  if (err != 0)
    pkey->reset();

  if (*pkey)
    return ParseKeyResult::kParseKeyOk;
  if (ERR_GET_LIB(err) == ERR_LIB_PEM &&
      ERR_GET_REASON(err) == PEM_R_BAD_PASSWORD_READ) {
    if (config.passphrase_.get() == nullptr)
      return ParseKeyResult::kParseKeyNeedPassphrase;
  }
  return ParseKeyResult::kParseKeyFailed;
}

ByteSource::ByteSource(ByteSource&& other)
      : data_(other.data_),
        allocated_data_(other.allocated_data_),
        size_(other.size_) {
  other.allocated_data_ = nullptr;
}

ByteSource::~ByteSource() {
  OPENSSL_clear_free(allocated_data_, size_);
}

ByteSource& ByteSource::operator=(ByteSource&& other) {
  if (&other != this) {
    OPENSSL_clear_free(allocated_data_, size_);
    data_ = other.data_;
    allocated_data_ = other.allocated_data_;
    other.allocated_data_ = nullptr;
    size_ = other.size_;
  }
  return *this;
}

const char* ByteSource::get() const {
  return data_;
}

size_t ByteSource::size() const {
  return size_;
}

ByteSource ByteSource::FromStringOrBuffer(Environment* env,
                                          Local<Value> value) {
  return Buffer::HasInstance(value) ? FromBuffer(value)
                                    : FromString(env, value.As<String>());
}

ByteSource ByteSource::FromString(Environment* env, Local<String> str,
                                  bool ntc) {
  CHECK(str->IsString());
  size_t size = str->Utf8Length(env->isolate());
  size_t alloc_size = ntc ? size + 1 : size;
  char* data = MallocOpenSSL<char>(alloc_size);
  int opts = String::NO_OPTIONS;
  if (!ntc) opts |= String::NO_NULL_TERMINATION;
  str->WriteUtf8(env->isolate(), data, alloc_size, nullptr, opts);
  return Allocated(data, size);
}

ByteSource ByteSource::FromBuffer(Local<Value> buffer, bool ntc) {
  CHECK(buffer->IsArrayBufferView());
  Local<ArrayBufferView> abv = buffer.As<ArrayBufferView>();
  size_t size = abv->ByteLength();
  if (ntc) {
    char* data = MallocOpenSSL<char>(size + 1);
    abv->CopyContents(data, size);
    data[size] = 0;
    return Allocated(data, size);
  }
  return Foreign(Buffer::Data(buffer), size);
}

ByteSource ByteSource::NullTerminatedCopy(Environment* env,
                                          Local<Value> value) {
  return Buffer::HasInstance(value) ? FromBuffer(value, true)
                                    : FromString(env, value.As<String>(), true);
}

ByteSource ByteSource::FromSymmetricKeyObject(Local<Value> handle) {
  CHECK(handle->IsObject());
  KeyObject* key = Unwrap<KeyObject>(handle.As<Object>());
  CHECK_NOT_NULL(key);
  return Foreign(key->GetSymmetricKey(), key->GetSymmetricKeySize());
}

ByteSource::ByteSource(const char* data, char* allocated_data, size_t size)
      : data_(data),
        allocated_data_(allocated_data),
        size_(size) {}

ByteSource ByteSource::Allocated(char* data, size_t size) {
  return ByteSource(data, data, size);
}

ByteSource ByteSource::Foreign(const char* data, size_t size) {
  return ByteSource(data, nullptr, size);
}

enum KeyEncodingContext {
  kKeyContextInput,
  kKeyContextExport,
  kKeyContextGenerate
};

static void GetKeyFormatAndTypeFromJs(
    AsymmetricKeyEncodingConfig* config,
    const FunctionCallbackInfo<Value>& args,
    unsigned int* offset,
    KeyEncodingContext context) {
  // During key pair generation, it is possible not to specify a key encoding,
  // which will lead to a key object being returned.
  if (args[*offset]->IsUndefined()) {
    CHECK_EQ(context, kKeyContextGenerate);
    CHECK(args[*offset + 1]->IsUndefined());
    config->output_key_object_ = true;
  } else {
    config->output_key_object_ = false;

    CHECK(args[*offset]->IsInt32());
    config->format_ = static_cast<PKFormatType>(
        args[*offset].As<Int32>()->Value());

    if (args[*offset + 1]->IsInt32()) {
      config->type_ = Just<PKEncodingType>(static_cast<PKEncodingType>(
          args[*offset + 1].As<Int32>()->Value()));
    } else {
      CHECK(context == kKeyContextInput && config->format_ == kKeyFormatPEM);
      CHECK(args[*offset + 1]->IsNullOrUndefined());
      config->type_ = Nothing<PKEncodingType>();
    }
  }

  *offset += 2;
}

static PublicKeyEncodingConfig GetPublicKeyEncodingFromJs(
    const FunctionCallbackInfo<Value>& args,
    unsigned int* offset,
    KeyEncodingContext context) {
  PublicKeyEncodingConfig result;
  GetKeyFormatAndTypeFromJs(&result, args, offset, context);
  return result;
}

static inline ManagedEVPPKey GetParsedKey(Environment* env,
                                          EVPKeyPointer&& pkey,
                                          ParseKeyResult ret,
                                          const char* default_msg) {
  switch (ret) {
    case ParseKeyResult::kParseKeyOk:
      CHECK(pkey);
      break;
    case ParseKeyResult::kParseKeyNeedPassphrase:
      THROW_ERR_MISSING_PASSPHRASE(env,
                                   "Passphrase required for encrypted key");
      break;
    default:
      ThrowCryptoError(env, ERR_get_error(), default_msg);
  }

  return ManagedEVPPKey(std::move(pkey));
}

static NonCopyableMaybe<PrivateKeyEncodingConfig> GetPrivateKeyEncodingFromJs(
    const FunctionCallbackInfo<Value>& args,
    unsigned int* offset,
    KeyEncodingContext context) {
  Environment* env = Environment::GetCurrent(args);

  PrivateKeyEncodingConfig result;
  GetKeyFormatAndTypeFromJs(&result, args, offset, context);

  if (result.output_key_object_) {
    if (context != kKeyContextInput)
      (*offset)++;
  } else {
    bool needs_passphrase = false;
    if (context != kKeyContextInput) {
      if (args[*offset]->IsString()) {
        String::Utf8Value cipher_name(env->isolate(),
                                      args[*offset].As<String>());
        result.cipher_ = EVP_get_cipherbyname(*cipher_name);
        if (result.cipher_ == nullptr) {
          THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env);
          return NonCopyableMaybe<PrivateKeyEncodingConfig>();
        }
        needs_passphrase = true;
      } else {
        CHECK(args[*offset]->IsNullOrUndefined());
        result.cipher_ = nullptr;
      }
      (*offset)++;
    }

    if (args[*offset]->IsString() || Buffer::HasInstance(args[*offset])) {
      CHECK_IMPLIES(context != kKeyContextInput, result.cipher_ != nullptr);

      result.passphrase_ = ByteSource::NullTerminatedCopy(env, args[*offset]);
    } else {
      CHECK(args[*offset]->IsNullOrUndefined() && !needs_passphrase);
    }
  }

  (*offset)++;
  return NonCopyableMaybe<PrivateKeyEncodingConfig>(std::move(result));
}

static ManagedEVPPKey GetPrivateKeyFromJs(
    const FunctionCallbackInfo<Value>& args,
    unsigned int* offset,
    bool allow_key_object) {
  if (args[*offset]->IsString() || Buffer::HasInstance(args[*offset])) {
    Environment* env = Environment::GetCurrent(args);
    ByteSource key = ByteSource::FromStringOrBuffer(env, args[(*offset)++]);
    NonCopyableMaybe<PrivateKeyEncodingConfig> config =
        GetPrivateKeyEncodingFromJs(args, offset, kKeyContextInput);
    if (config.IsEmpty())
      return ManagedEVPPKey();

    EVPKeyPointer pkey;
    ParseKeyResult ret =
        ParsePrivateKey(&pkey, config.Release(), key.get(), key.size());
    return GetParsedKey(env, std::move(pkey), ret,
                        "Failed to read private key");
  } else {
    CHECK(args[*offset]->IsObject() && allow_key_object);
    KeyObject* key;
    ASSIGN_OR_RETURN_UNWRAP(&key, args[*offset].As<Object>(), ManagedEVPPKey());
    CHECK_EQ(key->GetKeyType(), kKeyTypePrivate);
    (*offset) += 4;
    return key->GetAsymmetricKey();
  }
}

static ManagedEVPPKey GetPublicOrPrivateKeyFromJs(
    const FunctionCallbackInfo<Value>& args,
    unsigned int* offset) {
  if (args[*offset]->IsString() || Buffer::HasInstance(args[*offset])) {
    Environment* env = Environment::GetCurrent(args);
    ByteSource data = ByteSource::FromStringOrBuffer(env, args[(*offset)++]);
    NonCopyableMaybe<PrivateKeyEncodingConfig> config_ =
        GetPrivateKeyEncodingFromJs(args, offset, kKeyContextInput);
    if (config_.IsEmpty())
      return ManagedEVPPKey();

    ParseKeyResult ret;
    PrivateKeyEncodingConfig config = config_.Release();
    EVPKeyPointer pkey;
    if (config.format_ == kKeyFormatPEM) {
      // For PEM, we can easily determine whether it is a public or private key
      // by looking for the respective PEM tags.
      ret = ParsePublicKeyPEM(&pkey, data.get(), data.size());
      if (ret == ParseKeyResult::kParseKeyNotRecognized) {
        ret = ParsePrivateKey(&pkey, config, data.get(), data.size());
      }
    } else {
      // For DER, the type determines how to parse it. SPKI, PKCS#8 and SEC1 are
      // easy, but PKCS#1 can be a public key or a private key.
      bool is_public;
      switch (config.type_.ToChecked()) {
        case kKeyEncodingPKCS1:
          is_public = !IsRSAPrivateKey(
              reinterpret_cast<const unsigned char*>(data.get()), data.size());
          break;
        case kKeyEncodingSPKI:
          is_public = true;
          break;
        case kKeyEncodingPKCS8:
        case kKeyEncodingSEC1:
          is_public = false;
          break;
        default:
          UNREACHABLE("Invalid key encoding type");
      }

      if (is_public) {
        ret = ParsePublicKey(&pkey, config, data.get(), data.size());
      } else {
        ret = ParsePrivateKey(&pkey, config, data.get(), data.size());
      }
    }

    return GetParsedKey(env, std::move(pkey), ret,
                        "Failed to read asymmetric key");
  } else {
    CHECK(args[*offset]->IsObject());
    KeyObject* key = Unwrap<KeyObject>(args[*offset].As<Object>());
    CHECK_NOT_NULL(key);
    CHECK_NE(key->GetKeyType(), kKeyTypeSecret);
    (*offset) += 4;
    return key->GetAsymmetricKey();
  }
}

static MaybeLocal<Value> WritePrivateKey(
    Environment* env,
    EVP_PKEY* pkey,
    const PrivateKeyEncodingConfig& config) {
  BIOPointer bio(BIO_new(BIO_s_mem()));
  CHECK(bio);

  bool err;

  if (config.type_.ToChecked() == kKeyEncodingPKCS1) {
    // PKCS#1 is only permitted for RSA keys.
    CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_RSA);

    RSAPointer rsa(EVP_PKEY_get1_RSA(pkey));
    if (config.format_ == kKeyFormatPEM) {
      // Encode PKCS#1 as PEM.
      const char* pass = config.passphrase_.get();
      err = PEM_write_bio_RSAPrivateKey(
                bio.get(), rsa.get(),
                config.cipher_,
                reinterpret_cast<unsigned char*>(const_cast<char*>(pass)),
                config.passphrase_.size(),
                nullptr, nullptr) != 1;
    } else {
      // Encode PKCS#1 as DER. This does not permit encryption.
      CHECK_EQ(config.format_, kKeyFormatDER);
      CHECK_NULL(config.cipher_);
      err = i2d_RSAPrivateKey_bio(bio.get(), rsa.get()) != 1;
    }
  } else if (config.type_.ToChecked() == kKeyEncodingPKCS8) {
    if (config.format_ == kKeyFormatPEM) {
      // Encode PKCS#8 as PEM.
      err = PEM_write_bio_PKCS8PrivateKey(
                bio.get(), pkey,
                config.cipher_,
                const_cast<char*>(config.passphrase_.get()),
                config.passphrase_.size(),
                nullptr, nullptr) != 1;
    } else {
      // Encode PKCS#8 as DER.
      CHECK_EQ(config.format_, kKeyFormatDER);
      err = i2d_PKCS8PrivateKey_bio(
                bio.get(), pkey,
                config.cipher_,
                const_cast<char*>(config.passphrase_.get()),
                config.passphrase_.size(),
                nullptr, nullptr) != 1;
    }
  } else {
    CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSEC1);

    // SEC1 is only permitted for EC keys.
    CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_EC);

    ECKeyPointer ec_key(EVP_PKEY_get1_EC_KEY(pkey));
    if (config.format_ == kKeyFormatPEM) {
      // Encode SEC1 as PEM.
      const char* pass = config.passphrase_.get();
      err = PEM_write_bio_ECPrivateKey(
                bio.get(), ec_key.get(),
                config.cipher_,
                reinterpret_cast<unsigned char*>(const_cast<char*>(pass)),
                config.passphrase_.size(),
                nullptr, nullptr) != 1;
    } else {
      // Encode SEC1 as DER. This does not permit encryption.
      CHECK_EQ(config.format_, kKeyFormatDER);
      CHECK_NULL(config.cipher_);
      err = i2d_ECPrivateKey_bio(bio.get(), ec_key.get()) != 1;
    }
  }

  if (err) {
    ThrowCryptoError(env, ERR_get_error(), "Failed to encode private key");
    return MaybeLocal<Value>();
  }
  return BIOToStringOrBuffer(env, bio.get(), config.format_);
}

ManagedEVPPKey::ManagedEVPPKey(EVPKeyPointer&& pkey) : pkey_(std::move(pkey)) {}

ManagedEVPPKey::ManagedEVPPKey(const ManagedEVPPKey& that) {
  *this = that;
}

ManagedEVPPKey& ManagedEVPPKey::operator=(const ManagedEVPPKey& that) {
  pkey_.reset(that.get());

  if (pkey_)
    EVP_PKEY_up_ref(pkey_.get());

  return *this;
}

ManagedEVPPKey::operator bool() const {
  return !!pkey_;
}

EVP_PKEY* ManagedEVPPKey::get() const {
  return pkey_.get();
}

Local<Function> KeyObject::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
  t->InstanceTemplate()->SetInternalFieldCount(
      KeyObject::kInternalFieldCount);

  env->SetProtoMethod(t, "init", Init);
  env->SetProtoMethodNoSideEffect(t, "getSymmetricKeySize",
                                  GetSymmetricKeySize);
  env->SetProtoMethodNoSideEffect(t, "getAsymmetricKeyType",
                                  GetAsymmetricKeyType);
  env->SetProtoMethod(t, "export", Export);

  auto function = t->GetFunction(env->context()).ToLocalChecked();
  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "KeyObject"),
              function).Check();

  return function;
}

MaybeLocal<Object> KeyObject::Create(Environment* env,
                                     KeyType key_type,
                                     const ManagedEVPPKey& pkey) {
  CHECK_NE(key_type, kKeyTypeSecret);
  Local<Value> type = Integer::New(env->isolate(), key_type);
  Local<Object> obj;
  if (!env->crypto_key_object_constructor()
           ->NewInstance(env->context(), 1, &type)
           .ToLocal(&obj)) {
    return MaybeLocal<Object>();
  }

  KeyObject* key = Unwrap<KeyObject>(obj);
  CHECK_NOT_NULL(key);
  if (key_type == kKeyTypePublic)
    key->InitPublic(pkey);
  else
    key->InitPrivate(pkey);
  return obj;
}

ManagedEVPPKey KeyObject::GetAsymmetricKey() const {
  CHECK_NE(key_type_, kKeyTypeSecret);
  return this->asymmetric_key_;
}

const char* KeyObject::GetSymmetricKey() const {
  CHECK_EQ(key_type_, kKeyTypeSecret);
  return this->symmetric_key_.get();
}

size_t KeyObject::GetSymmetricKeySize() const {
  CHECK_EQ(key_type_, kKeyTypeSecret);
  return this->symmetric_key_len_;
}

void KeyObject::New(const FunctionCallbackInfo<Value>& args) {
  CHECK(args.IsConstructCall());
  CHECK(args[0]->IsInt32());
  KeyType key_type = static_cast<KeyType>(args[0].As<Uint32>()->Value());
  Environment* env = Environment::GetCurrent(args);
  new KeyObject(env, args.This(), key_type);
}

KeyType KeyObject::GetKeyType() const {
  return this->key_type_;
}

KeyObject::KeyObject(Environment* env,
                     Local<Object> wrap,
                     KeyType key_type)
    : BaseObject(env, wrap),
      key_type_(key_type),
      symmetric_key_(nullptr, nullptr) {
  MakeWeak();
}

void KeyObject::Init(const FunctionCallbackInfo<Value>& args) {
  KeyObject* key;
  ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder());
  MarkPopErrorOnReturn mark_pop_error_on_return;

  unsigned int offset;
  ManagedEVPPKey pkey;

  switch (key->key_type_) {
  case kKeyTypeSecret:
    CHECK_EQ(args.Length(), 1);
    CHECK(args[0]->IsArrayBufferView());
    key->InitSecret(args[0].As<ArrayBufferView>());
    break;
  case kKeyTypePublic:
    CHECK_EQ(args.Length(), 3);

    offset = 0;
    pkey = GetPublicOrPrivateKeyFromJs(args, &offset);
    if (!pkey)
      return;
    key->InitPublic(pkey);
    break;
  case kKeyTypePrivate:
    CHECK_EQ(args.Length(), 4);

    offset = 0;
    pkey = GetPrivateKeyFromJs(args, &offset, false);
    if (!pkey)
      return;
    key->InitPrivate(pkey);
    break;
  default:
    CHECK(false);
  }
}

void KeyObject::InitSecret(Local<ArrayBufferView> abv) {
  CHECK_EQ(this->key_type_, kKeyTypeSecret);

  size_t key_len = abv->ByteLength();
  char* mem = MallocOpenSSL<char>(key_len);
  abv->CopyContents(mem, key_len);
  this->symmetric_key_ = std::unique_ptr<char, std::function<void(char*)>>(mem,
      [key_len](char* p) {
        OPENSSL_clear_free(p, key_len);
      });
  this->symmetric_key_len_ = key_len;
}

void KeyObject::InitPublic(const ManagedEVPPKey& pkey) {
  CHECK_EQ(this->key_type_, kKeyTypePublic);
  CHECK(pkey);
  this->asymmetric_key_ = pkey;
}

void KeyObject::InitPrivate(const ManagedEVPPKey& pkey) {
  CHECK_EQ(this->key_type_, kKeyTypePrivate);
  CHECK(pkey);
  this->asymmetric_key_ = pkey;
}

Local<Value> KeyObject::GetAsymmetricKeyType() const {
  CHECK_NE(this->key_type_, kKeyTypeSecret);
  switch (EVP_PKEY_id(this->asymmetric_key_.get())) {
  case EVP_PKEY_RSA:
    return env()->crypto_rsa_string();
  case EVP_PKEY_RSA_PSS:
    return env()->crypto_rsa_pss_string();
  case EVP_PKEY_DSA:
    return env()->crypto_dsa_string();
  case EVP_PKEY_DH:
    return env()->crypto_dh_string();
  case EVP_PKEY_EC:
    return env()->crypto_ec_string();
  case EVP_PKEY_ED25519:
    return env()->crypto_ed25519_string();
  case EVP_PKEY_ED448:
    return env()->crypto_ed448_string();
  case EVP_PKEY_X25519:
    return env()->crypto_x25519_string();
  case EVP_PKEY_X448:
    return env()->crypto_x448_string();
  default:
    return Undefined(env()->isolate());
  }
}

void KeyObject::GetAsymmetricKeyType(const FunctionCallbackInfo<Value>& args) {
  KeyObject* key;
  ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder());

  args.GetReturnValue().Set(key->GetAsymmetricKeyType());
}

void KeyObject::GetSymmetricKeySize(const FunctionCallbackInfo<Value>& args) {
  KeyObject* key;
  ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder());
  args.GetReturnValue().Set(static_cast<uint32_t>(key->GetSymmetricKeySize()));
}

void KeyObject::Export(const FunctionCallbackInfo<Value>& args) {
  KeyObject* key;
  ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder());

  MaybeLocal<Value> result;
  if (key->key_type_ == kKeyTypeSecret) {
    result = key->ExportSecretKey();
  } else if (key->key_type_ == kKeyTypePublic) {
    unsigned int offset = 0;
    PublicKeyEncodingConfig config =
        GetPublicKeyEncodingFromJs(args, &offset, kKeyContextExport);
    CHECK_EQ(offset, static_cast<unsigned int>(args.Length()));
    result = key->ExportPublicKey(config);
  } else {
    CHECK_EQ(key->key_type_, kKeyTypePrivate);
    unsigned int offset = 0;
    NonCopyableMaybe<PrivateKeyEncodingConfig> config =
        GetPrivateKeyEncodingFromJs(args, &offset, kKeyContextExport);
    if (config.IsEmpty())
      return;
    CHECK_EQ(offset, static_cast<unsigned int>(args.Length()));
    result = key->ExportPrivateKey(config.Release());
  }

  if (!result.IsEmpty())
    args.GetReturnValue().Set(result.ToLocalChecked());
}

Local<Value> KeyObject::ExportSecretKey() const {
  return Buffer::Copy(env(), symmetric_key_.get(), symmetric_key_len_)
      .ToLocalChecked();
}

MaybeLocal<Value> KeyObject::ExportPublicKey(
    const PublicKeyEncodingConfig& config) const {
  return WritePublicKey(env(), asymmetric_key_.get(), config);
}

MaybeLocal<Value> KeyObject::ExportPrivateKey(
    const PrivateKeyEncodingConfig& config) const {
  return WritePrivateKey(env(), asymmetric_key_.get(), config);
}

CipherBase::CipherBase(Environment* env,
                       Local<Object> wrap,
                       CipherKind kind)
    : BaseObject(env, wrap),
      ctx_(nullptr),
      kind_(kind),
      auth_tag_state_(kAuthTagUnknown),
      auth_tag_len_(kNoAuthTagLength),
      pending_auth_failed_(false) {
  MakeWeak();
}

void CipherBase::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);

  t->InstanceTemplate()->SetInternalFieldCount(
      CipherBase::kInternalFieldCount);

  env->SetProtoMethod(t, "init", Init);
  env->SetProtoMethod(t, "initiv", InitIv);
  env->SetProtoMethod(t, "update", Update);
  env->SetProtoMethod(t, "final", Final);
  env->SetProtoMethod(t, "setAutoPadding", SetAutoPadding);
  env->SetProtoMethodNoSideEffect(t, "getAuthTag", GetAuthTag);
  env->SetProtoMethod(t, "setAuthTag", SetAuthTag);
  env->SetProtoMethod(t, "setAAD", SetAAD);

  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "CipherBase"),
              t->GetFunction(env->context()).ToLocalChecked()).Check();
}


void CipherBase::New(const FunctionCallbackInfo<Value>& args) {
  CHECK(args.IsConstructCall());
  CipherKind kind = args[0]->IsTrue() ? kCipher : kDecipher;
  Environment* env = Environment::GetCurrent(args);
  new CipherBase(env, args.This(), kind);
}

void CipherBase::CommonInit(const char* cipher_type,
                            const EVP_CIPHER* cipher,
                            const unsigned char* key,
                            int key_len,
                            const unsigned char* iv,
                            int iv_len,
                            unsigned int auth_tag_len) {
  CHECK(!ctx_);
  ctx_.reset(EVP_CIPHER_CTX_new());

  const int mode = EVP_CIPHER_mode(cipher);
  if (mode == EVP_CIPH_WRAP_MODE)
    EVP_CIPHER_CTX_set_flags(ctx_.get(), EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);

  const bool encrypt = (kind_ == kCipher);
  if (1 != EVP_CipherInit_ex(ctx_.get(), cipher, nullptr,
                             nullptr, nullptr, encrypt)) {
    return ThrowCryptoError(env(), ERR_get_error(),
                            "Failed to initialize cipher");
  }

  if (IsSupportedAuthenticatedMode(cipher)) {
    CHECK_GE(iv_len, 0);
    if (!InitAuthenticated(cipher_type, iv_len, auth_tag_len))
      return;
  }

  if (!EVP_CIPHER_CTX_set_key_length(ctx_.get(), key_len)) {
    ctx_.reset();
    return env()->ThrowError("Invalid key length");
  }

  if (1 != EVP_CipherInit_ex(ctx_.get(), nullptr, nullptr, key, iv, encrypt)) {
    return ThrowCryptoError(env(), ERR_get_error(),
                            "Failed to initialize cipher");
  }
}

void CipherBase::Init(const char* cipher_type,
                      const char* key_buf,
                      int key_buf_len,
                      unsigned int auth_tag_len) {
  HandleScope scope(env()->isolate());
  MarkPopErrorOnReturn mark_pop_error_on_return;

#ifdef NODE_FIPS_MODE
  if (FIPS_mode()) {
    return env()->ThrowError(
        "crypto.createCipher() is not supported in FIPS mode.");
  }
#endif  // NODE_FIPS_MODE

  const EVP_CIPHER* const cipher = EVP_get_cipherbyname(cipher_type);
  if (cipher == nullptr)
    return THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env());

  unsigned char key[EVP_MAX_KEY_LENGTH];
  unsigned char iv[EVP_MAX_IV_LENGTH];

  int key_len = EVP_BytesToKey(cipher,
                               EVP_md5(),
                               nullptr,
                               reinterpret_cast<const unsigned char*>(key_buf),
                               key_buf_len,
                               1,
                               key,
                               iv);
  CHECK_NE(key_len, 0);

  const int mode = EVP_CIPHER_mode(cipher);
  if (kind_ == kCipher && (mode == EVP_CIPH_CTR_MODE ||
                           mode == EVP_CIPH_GCM_MODE ||
                           mode == EVP_CIPH_CCM_MODE)) {
    // Ignore the return value (i.e. possible exception) because we are
    // not calling back into JS anyway.
    ProcessEmitWarning(env(),
                       "Use Cipheriv for counter mode of %s",
                       cipher_type);
  }

  CommonInit(cipher_type, cipher, key, key_len, iv,
             EVP_CIPHER_iv_length(cipher), auth_tag_len);
}


void CipherBase::Init(const FunctionCallbackInfo<Value>& args) {
  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());

  CHECK_GE(args.Length(), 3);

  const node::Utf8Value cipher_type(args.GetIsolate(), args[0]);
  ArrayBufferViewContents<char> key_buf(args[1]);

  // Don't assign to cipher->auth_tag_len_ directly; the value might not
  // represent a valid length at this point.
  unsigned int auth_tag_len;
  if (args[2]->IsUint32()) {
    auth_tag_len = args[2].As<Uint32>()->Value();
  } else {
    CHECK(args[2]->IsInt32() && args[2].As<Int32>()->Value() == -1);
    auth_tag_len = kNoAuthTagLength;
  }

  cipher->Init(*cipher_type, key_buf.data(), key_buf.length(), auth_tag_len);
}

void CipherBase::InitIv(const char* cipher_type,
                        const unsigned char* key,
                        int key_len,
                        const unsigned char* iv,
                        int iv_len,
                        unsigned int auth_tag_len) {
  HandleScope scope(env()->isolate());
  MarkPopErrorOnReturn mark_pop_error_on_return;

  const EVP_CIPHER* const cipher = EVP_get_cipherbyname(cipher_type);
  if (cipher == nullptr) {
    return THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env());
  }

  const int expected_iv_len = EVP_CIPHER_iv_length(cipher);
  const bool is_authenticated_mode = IsSupportedAuthenticatedMode(cipher);
  const bool has_iv = iv_len >= 0;

  // Throw if no IV was passed and the cipher requires an IV
  if (!has_iv && expected_iv_len != 0) {
    char msg[128];
    snprintf(msg, sizeof(msg), "Missing IV for cipher %s", cipher_type);
    return env()->ThrowError(msg);
  }

  // Throw if an IV was passed which does not match the cipher's fixed IV length
  if (!is_authenticated_mode && has_iv && iv_len != expected_iv_len) {
    return env()->ThrowError("Invalid IV length");
  }

  if (EVP_CIPHER_nid(cipher) == NID_chacha20_poly1305) {
    CHECK(has_iv);
    // Check for invalid IV lengths, since OpenSSL does not under some
    // conditions:
    //   https://www.openssl.org/news/secadv/20190306.txt.
    if (iv_len > 12) {
      return env()->ThrowError("Invalid IV length");
    }
  }

  CommonInit(cipher_type, cipher, key, key_len, iv, iv_len, auth_tag_len);
}


static ByteSource GetSecretKeyBytes(Environment* env, Local<Value> value) {
  // A key can be passed as a string, buffer or KeyObject with type 'secret'.
  // If it is a string, we need to convert it to a buffer. We are not doing that
  // in JS to avoid creating an unprotected copy on the heap.
  return value->IsString() || Buffer::HasInstance(value) ?
           ByteSource::FromStringOrBuffer(env, value) :
           ByteSource::FromSymmetricKeyObject(value);
}

void CipherBase::InitIv(const FunctionCallbackInfo<Value>& args) {
  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());
  Environment* env = cipher->env();

  CHECK_GE(args.Length(), 4);

  const node::Utf8Value cipher_type(env->isolate(), args[0]);
  const ByteSource key = GetSecretKeyBytes(env, args[1]);

  ArrayBufferViewContents<unsigned char> iv_buf;
  ssize_t iv_len = -1;
  if (!args[2]->IsNull()) {
    CHECK(args[2]->IsArrayBufferView());
    iv_buf.Read(args[2].As<ArrayBufferView>());
    iv_len = iv_buf.length();
  }

  // Don't assign to cipher->auth_tag_len_ directly; the value might not
  // represent a valid length at this point.
  unsigned int auth_tag_len;
  if (args[3]->IsUint32()) {
    auth_tag_len = args[3].As<Uint32>()->Value();
  } else {
    CHECK(args[3]->IsInt32() && args[3].As<Int32>()->Value() == -1);
    auth_tag_len = kNoAuthTagLength;
  }

  cipher->InitIv(*cipher_type,
                 reinterpret_cast<const unsigned char*>(key.get()),
                 key.size(),
                 iv_buf.data(),
                 static_cast<int>(iv_len),
                 auth_tag_len);
}


static bool IsValidGCMTagLength(unsigned int tag_len) {
  return tag_len == 4 || tag_len == 8 || (tag_len >= 12 && tag_len <= 16);
}

bool CipherBase::InitAuthenticated(const char* cipher_type, int iv_len,
                                   unsigned int auth_tag_len) {
  CHECK(IsAuthenticatedMode());
  MarkPopErrorOnReturn mark_pop_error_on_return;

  if (!EVP_CIPHER_CTX_ctrl(ctx_.get(),
                           EVP_CTRL_AEAD_SET_IVLEN,
                           iv_len,
                           nullptr)) {
    env()->ThrowError("Invalid IV length");
    return false;
  }

  const int mode = EVP_CIPHER_CTX_mode(ctx_.get());
  if (mode == EVP_CIPH_GCM_MODE) {
    if (auth_tag_len != kNoAuthTagLength) {
      if (!IsValidGCMTagLength(auth_tag_len)) {
        char msg[50];
        snprintf(msg, sizeof(msg),
            "Invalid authentication tag length: %u", auth_tag_len);
        env()->ThrowError(msg);
        return false;
      }

      // Remember the given authentication tag length for later.
      auth_tag_len_ = auth_tag_len;
    }
  } else {
    if (auth_tag_len == kNoAuthTagLength) {
      char msg[128];
      snprintf(msg, sizeof(msg), "authTagLength required for %s", cipher_type);
      env()->ThrowError(msg);
      return false;
    }

#ifdef NODE_FIPS_MODE
    // TODO(tniessen) Support CCM decryption in FIPS mode
    if (mode == EVP_CIPH_CCM_MODE && kind_ == kDecipher && FIPS_mode()) {
      env()->ThrowError("CCM decryption not supported in FIPS mode");
      return false;
    }
#endif

    // Tell OpenSSL about the desired length.
    if (!EVP_CIPHER_CTX_ctrl(ctx_.get(), EVP_CTRL_AEAD_SET_TAG, auth_tag_len,
                             nullptr)) {
      env()->ThrowError("Invalid authentication tag length");
      return false;
    }

    // Remember the given authentication tag length for later.
    auth_tag_len_ = auth_tag_len;

    if (mode == EVP_CIPH_CCM_MODE) {
      // Restrict the message length to min(INT_MAX, 2^(8*(15-iv_len))-1) bytes.
      CHECK(iv_len >= 7 && iv_len <= 13);
      max_message_size_ = INT_MAX;
      if (iv_len == 12) max_message_size_ = 16777215;
      if (iv_len == 13) max_message_size_ = 65535;
    }
  }

  return true;
}


bool CipherBase::CheckCCMMessageLength(int message_len) {
  CHECK(ctx_);
  CHECK(EVP_CIPHER_CTX_mode(ctx_.get()) == EVP_CIPH_CCM_MODE);

  if (message_len > max_message_size_) {
    env()->ThrowError("Message exceeds maximum size");
    return false;
  }

  return true;
}


bool CipherBase::IsAuthenticatedMode() const {
  // Check if this cipher operates in an AEAD mode that we support.
  CHECK(ctx_);
  return IsSupportedAuthenticatedMode(ctx_.get());
}


void CipherBase::GetAuthTag(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());

  // Only callable after Final and if encrypting.
  if (cipher->ctx_ ||
      cipher->kind_ != kCipher ||
      cipher->auth_tag_len_ == kNoAuthTagLength) {
    return args.GetReturnValue().SetUndefined();
  }

  Local<Object> buf =
      Buffer::Copy(env, cipher->auth_tag_, cipher->auth_tag_len_)
      .ToLocalChecked();
  args.GetReturnValue().Set(buf);
}


void CipherBase::SetAuthTag(const FunctionCallbackInfo<Value>& args) {
  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());

  if (!cipher->ctx_ ||
      !cipher->IsAuthenticatedMode() ||
      cipher->kind_ != kDecipher ||
      cipher->auth_tag_state_ != kAuthTagUnknown) {
    return args.GetReturnValue().Set(false);
  }

  unsigned int tag_len = Buffer::Length(args[0]);
  const int mode = EVP_CIPHER_CTX_mode(cipher->ctx_.get());
  bool is_valid;
  if (mode == EVP_CIPH_GCM_MODE) {
    // Restrict GCM tag lengths according to NIST 800-38d, page 9.
    is_valid = (cipher->auth_tag_len_ == kNoAuthTagLength ||
                cipher->auth_tag_len_ == tag_len) &&
               IsValidGCMTagLength(tag_len);
  } else {
    // At this point, the tag length is already known and must match the
    // length of the given authentication tag.
    CHECK(IsSupportedAuthenticatedMode(cipher->ctx_.get()));
    CHECK_NE(cipher->auth_tag_len_, kNoAuthTagLength);
    is_valid = cipher->auth_tag_len_ == tag_len;
  }

  if (!is_valid) {
    char msg[50];
    snprintf(msg, sizeof(msg),
        "Invalid authentication tag length: %u", tag_len);
    return cipher->env()->ThrowError(msg);
  }

  cipher->auth_tag_len_ = tag_len;
  cipher->auth_tag_state_ = kAuthTagKnown;
  CHECK_LE(cipher->auth_tag_len_, sizeof(cipher->auth_tag_));

  memset(cipher->auth_tag_, 0, sizeof(cipher->auth_tag_));
  args[0].As<ArrayBufferView>()->CopyContents(
      cipher->auth_tag_, cipher->auth_tag_len_);

  args.GetReturnValue().Set(true);
}


bool CipherBase::MaybePassAuthTagToOpenSSL() {
  if (auth_tag_state_ == kAuthTagKnown) {
    if (!EVP_CIPHER_CTX_ctrl(ctx_.get(),
                             EVP_CTRL_AEAD_SET_TAG,
                             auth_tag_len_,
                             reinterpret_cast<unsigned char*>(auth_tag_))) {
      return false;
    }
    auth_tag_state_ = kAuthTagPassedToOpenSSL;
  }
  return true;
}


bool CipherBase::SetAAD(const char* data, unsigned int len, int plaintext_len) {
  if (!ctx_ || !IsAuthenticatedMode())
    return false;
  MarkPopErrorOnReturn mark_pop_error_on_return;

  int outlen;
  const int mode = EVP_CIPHER_CTX_mode(ctx_.get());

  // When in CCM mode, we need to set the authentication tag and the plaintext
  // length in advance.
  if (mode == EVP_CIPH_CCM_MODE) {
    if (plaintext_len < 0) {
      env()->ThrowError("plaintextLength required for CCM mode with AAD");
      return false;
    }

    if (!CheckCCMMessageLength(plaintext_len))
      return false;

    if (kind_ == kDecipher) {
      if (!MaybePassAuthTagToOpenSSL())
        return false;
    }

    // Specify the plaintext length.
    if (!EVP_CipherUpdate(ctx_.get(), nullptr, &outlen, nullptr, plaintext_len))
      return false;
  }

  return 1 == EVP_CipherUpdate(ctx_.get(),
                               nullptr,
                               &outlen,
                               reinterpret_cast<const unsigned char*>(data),
                               len);
}


void CipherBase::SetAAD(const FunctionCallbackInfo<Value>& args) {
  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());

  CHECK_EQ(args.Length(), 2);
  CHECK(args[1]->IsInt32());
  int plaintext_len = args[1].As<Int32>()->Value();
  ArrayBufferViewContents<char> buf(args[0]);

  bool b = cipher->SetAAD(buf.data(), buf.length(), plaintext_len);
  args.GetReturnValue().Set(b);  // Possibly report invalid state failure
}

CipherBase::UpdateResult CipherBase::Update(const char* data,
                                            int len,
                                            AllocatedBuffer* out) {
  if (!ctx_)
    return kErrorState;
  MarkPopErrorOnReturn mark_pop_error_on_return;

  const int mode = EVP_CIPHER_CTX_mode(ctx_.get());

  if (mode == EVP_CIPH_CCM_MODE) {
    if (!CheckCCMMessageLength(len))
      return kErrorMessageSize;
  }

  // Pass the authentication tag to OpenSSL if possible. This will only happen
  // once, usually on the first update.
  if (kind_ == kDecipher && IsAuthenticatedMode()) {
    CHECK(MaybePassAuthTagToOpenSSL());
  }

  int buf_len = len + EVP_CIPHER_CTX_block_size(ctx_.get());
  // For key wrapping algorithms, get output size by calling
  // EVP_CipherUpdate() with null output.
  if (kind_ == kCipher && mode == EVP_CIPH_WRAP_MODE &&
      EVP_CipherUpdate(ctx_.get(),
                       nullptr,
                       &buf_len,
                       reinterpret_cast<const unsigned char*>(data),
                       len) != 1) {
    return kErrorState;
  }

  *out = AllocatedBuffer::AllocateManaged(env(), buf_len);
  int r = EVP_CipherUpdate(ctx_.get(),
                           reinterpret_cast<unsigned char*>(out->data()),
                           &buf_len,
                           reinterpret_cast<const unsigned char*>(data),
                           len);

  CHECK_LE(static_cast<size_t>(buf_len), out->size());
  out->Resize(buf_len);

  // When in CCM mode, EVP_CipherUpdate will fail if the authentication tag is
  // invalid. In that case, remember the error and throw in final().
  if (!r && kind_ == kDecipher && mode == EVP_CIPH_CCM_MODE) {
    pending_auth_failed_ = true;
    return kSuccess;
  }
  return r == 1 ? kSuccess : kErrorState;
}


void CipherBase::Update(const FunctionCallbackInfo<Value>& args) {
  Decode<CipherBase>(args, [](CipherBase* cipher,
                              const FunctionCallbackInfo<Value>& args,
                              const char* data, size_t size) {
    AllocatedBuffer out;
    UpdateResult r = cipher->Update(data, size, &out);

    if (r != kSuccess) {
      if (r == kErrorState) {
        Environment* env = Environment::GetCurrent(args);
        ThrowCryptoError(env, ERR_get_error(),
                         "Trying to add data in unsupported state");
      }
      return;
    }

    CHECK(out.data() != nullptr || out.size() == 0);
    args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked());
  });
}


bool CipherBase::SetAutoPadding(bool auto_padding) {
  if (!ctx_)
    return false;
  MarkPopErrorOnReturn mark_pop_error_on_return;
  return EVP_CIPHER_CTX_set_padding(ctx_.get(), auto_padding);
}


void CipherBase::SetAutoPadding(const FunctionCallbackInfo<Value>& args) {
  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());

  bool b = cipher->SetAutoPadding(args.Length() < 1 || args[0]->IsTrue());
  args.GetReturnValue().Set(b);  // Possibly report invalid state failure
}

bool CipherBase::Final(AllocatedBuffer* out) {
  if (!ctx_)
    return false;

  const int mode = EVP_CIPHER_CTX_mode(ctx_.get());

  *out = AllocatedBuffer::AllocateManaged(
      env(),
      static_cast<size_t>(EVP_CIPHER_CTX_block_size(ctx_.get())));

  if (kind_ == kDecipher && IsSupportedAuthenticatedMode(ctx_.get())) {
    MaybePassAuthTagToOpenSSL();
  }

  // In CCM mode, final() only checks whether authentication failed in update().
  // EVP_CipherFinal_ex must not be called and will fail.
  bool ok;
  if (kind_ == kDecipher && mode == EVP_CIPH_CCM_MODE) {
    ok = !pending_auth_failed_;
    *out = AllocatedBuffer(env());  // Empty buffer.
  } else {
    int out_len = out->size();
    ok = EVP_CipherFinal_ex(ctx_.get(),
                            reinterpret_cast<unsigned char*>(out->data()),
                            &out_len) == 1;

    if (out_len >= 0)
      out->Resize(out_len);
    else
      *out = AllocatedBuffer();  // *out will not be used.

    if (ok && kind_ == kCipher && IsAuthenticatedMode()) {
      // In GCM mode, the authentication tag length can be specified in advance,
      // but defaults to 16 bytes when encrypting. In CCM and OCB mode, it must
      // always be given by the user.
      if (auth_tag_len_ == kNoAuthTagLength) {
        CHECK(mode == EVP_CIPH_GCM_MODE);
        auth_tag_len_ = sizeof(auth_tag_);
      }
      CHECK_EQ(1, EVP_CIPHER_CTX_ctrl(ctx_.get(), EVP_CTRL_AEAD_GET_TAG,
                      auth_tag_len_,
                      reinterpret_cast<unsigned char*>(auth_tag_)));
    }
  }

  ctx_.reset();

  return ok;
}


void CipherBase::Final(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());
  if (cipher->ctx_ == nullptr) return env->ThrowError("Unsupported state");

  AllocatedBuffer out;

  // Check IsAuthenticatedMode() first, Final() destroys the EVP_CIPHER_CTX.
  const bool is_auth_mode = cipher->IsAuthenticatedMode();
  bool r = cipher->Final(&out);

  if (!r) {
    const char* msg = is_auth_mode
                          ? "Unsupported state or unable to authenticate data"
                          : "Unsupported state";

    return ThrowCryptoError(env, ERR_get_error(), msg);
  }

  args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked());
}

Hmac::Hmac(Environment* env, Local<Object> wrap)
    : BaseObject(env, wrap),
      ctx_(nullptr) {
  MakeWeak();
}

void Hmac::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);

  t->InstanceTemplate()->SetInternalFieldCount(
      Hmac::kInternalFieldCount);

  env->SetProtoMethod(t, "init", HmacInit);
  env->SetProtoMethod(t, "update", HmacUpdate);
  env->SetProtoMethod(t, "digest", HmacDigest);

  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "Hmac"),
              t->GetFunction(env->context()).ToLocalChecked()).Check();
}


void Hmac::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  new Hmac(env, args.This());
}


void Hmac::HmacInit(const char* hash_type, const char* key, int key_len) {
  HandleScope scope(env()->isolate());

  const EVP_MD* md = EVP_get_digestbyname(hash_type);
  if (md == nullptr) {
    return env()->ThrowError("Unknown message digest");
  }
  if (key_len == 0) {
    key = "";
  }
  ctx_.reset(HMAC_CTX_new());
  if (!ctx_ || !HMAC_Init_ex(ctx_.get(), key, key_len, md, nullptr)) {
    ctx_.reset();
    return ThrowCryptoError(env(), ERR_get_error());
  }
}


void Hmac::HmacInit(const FunctionCallbackInfo<Value>& args) {
  Hmac* hmac;
  ASSIGN_OR_RETURN_UNWRAP(&hmac, args.Holder());
  Environment* env = hmac->env();

  const node::Utf8Value hash_type(env->isolate(), args[0]);
  ByteSource key = GetSecretKeyBytes(env, args[1]);
  hmac->HmacInit(*hash_type, key.get(), key.size());
}


bool Hmac::HmacUpdate(const char* data, int len) {
  if (!ctx_)
    return false;
  int r = HMAC_Update(ctx_.get(),
                      reinterpret_cast<const unsigned char*>(data),
                      len);
  return r == 1;
}


void Hmac::HmacUpdate(const FunctionCallbackInfo<Value>& args) {
  Decode<Hmac>(args, [](Hmac* hmac, const FunctionCallbackInfo<Value>& args,
                        const char* data, size_t size) {
    bool r = hmac->HmacUpdate(data, size);
    args.GetReturnValue().Set(r);
  });
}


void Hmac::HmacDigest(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  Hmac* hmac;
  ASSIGN_OR_RETURN_UNWRAP(&hmac, args.Holder());

  enum encoding encoding = BUFFER;
  if (args.Length() >= 1) {
    encoding = ParseEncoding(env->isolate(), args[0], BUFFER);
  }

  unsigned char md_value[EVP_MAX_MD_SIZE];
  unsigned int md_len = 0;

  if (hmac->ctx_) {
    HMAC_Final(hmac->ctx_.get(), md_value, &md_len);
    hmac->ctx_.reset();
  }

  Local<Value> error;
  MaybeLocal<Value> rc =
      StringBytes::Encode(env->isolate(),
                          reinterpret_cast<const char*>(md_value),
                          md_len,
                          encoding,
                          &error);
  if (rc.IsEmpty()) {
    CHECK(!error.IsEmpty());
    env->isolate()->ThrowException(error);
    return;
  }
  args.GetReturnValue().Set(rc.ToLocalChecked());
}

Hash::Hash(Environment* env, Local<Object> wrap)
    : BaseObject(env, wrap),
      mdctx_(nullptr),
      has_md_(false),
      md_value_(nullptr) {
  MakeWeak();
}

void Hash::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);

  t->InstanceTemplate()->SetInternalFieldCount(
      Hash::kInternalFieldCount);

  env->SetProtoMethod(t, "update", HashUpdate);
  env->SetProtoMethod(t, "digest", HashDigest);

  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "Hash"),
              t->GetFunction(env->context()).ToLocalChecked()).Check();
}

Hash::~Hash() {
  if (md_value_ != nullptr)
    OPENSSL_clear_free(md_value_, md_len_);
}

void Hash::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  const Hash* orig = nullptr;
  const EVP_MD* md = nullptr;

  if (args[0]->IsObject()) {
    ASSIGN_OR_RETURN_UNWRAP(&orig, args[0].As<Object>());
    md = EVP_MD_CTX_md(orig->mdctx_.get());
  } else {
    const node::Utf8Value hash_type(env->isolate(), args[0]);
    md = EVP_get_digestbyname(*hash_type);
  }

  Maybe<unsigned int> xof_md_len = Nothing<unsigned int>();
  if (!args[1]->IsUndefined()) {
    CHECK(args[1]->IsUint32());
    xof_md_len = Just<unsigned int>(args[1].As<Uint32>()->Value());
  }

  Hash* hash = new Hash(env, args.This());
  if (md == nullptr || !hash->HashInit(md, xof_md_len)) {
    return ThrowCryptoError(env, ERR_get_error(),
                            "Digest method not supported");
  }

  if (orig != nullptr &&
      0 >= EVP_MD_CTX_copy(hash->mdctx_.get(), orig->mdctx_.get())) {
    return ThrowCryptoError(env, ERR_get_error(), "Digest copy error");
  }
}


bool Hash::HashInit(const EVP_MD* md, Maybe<unsigned int> xof_md_len) {
  mdctx_.reset(EVP_MD_CTX_new());
  if (!mdctx_ || EVP_DigestInit_ex(mdctx_.get(), md, nullptr) <= 0) {
    mdctx_.reset();
    return false;
  }

  md_len_ = EVP_MD_size(md);
  if (xof_md_len.IsJust() && xof_md_len.FromJust() != md_len_) {
    // This is a little hack to cause createHash to fail when an incorrect
    // hashSize option was passed for a non-XOF hash function.
    if ((EVP_MD_flags(md) & EVP_MD_FLAG_XOF) == 0) {
      EVPerr(EVP_F_EVP_DIGESTFINALXOF, EVP_R_NOT_XOF_OR_INVALID_LENGTH);
      return false;
    }
    md_len_ = xof_md_len.FromJust();
  }

  return true;
}


bool Hash::HashUpdate(const char* data, int len) {
  if (!mdctx_)
    return false;
  EVP_DigestUpdate(mdctx_.get(), data, len);
  return true;
}


void Hash::HashUpdate(const FunctionCallbackInfo<Value>& args) {
  Decode<Hash>(args, [](Hash* hash, const FunctionCallbackInfo<Value>& args,
                        const char* data, size_t size) {
    bool r = hash->HashUpdate(data, size);
    args.GetReturnValue().Set(r);
  });
}


void Hash::HashDigest(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  Hash* hash;
  ASSIGN_OR_RETURN_UNWRAP(&hash, args.Holder());

  enum encoding encoding = BUFFER;
  if (args.Length() >= 1) {
    encoding = ParseEncoding(env->isolate(), args[0], BUFFER);
  }

  // TODO(tniessen): SHA3_squeeze does not work for zero-length outputs on all
  // platforms and will cause a segmentation fault if called. This workaround
  // causes hash.digest() to correctly return an empty buffer / string.
  // See https://github.com/openssl/openssl/issues/9431.
  if (!hash->has_md_ && hash->md_len_ == 0) {
    hash->has_md_ = true;
  }

  if (!hash->has_md_) {
    // Some hash algorithms such as SHA3 do not support calling
    // EVP_DigestFinal_ex more than once, however, Hash._flush
    // and Hash.digest can both be used to retrieve the digest,
    // so we need to cache it.
    // See https://github.com/nodejs/node/issues/28245.

    hash->md_value_ = MallocOpenSSL<unsigned char>(hash->md_len_);

    size_t default_len = EVP_MD_CTX_size(hash->mdctx_.get());
    int ret;
    if (hash->md_len_ == default_len) {
      ret = EVP_DigestFinal_ex(hash->mdctx_.get(), hash->md_value_,
                               &hash->md_len_);
    } else {
      ret = EVP_DigestFinalXOF(hash->mdctx_.get(), hash->md_value_,
                               hash->md_len_);
    }

    if (ret != 1) {
      OPENSSL_free(hash->md_value_);
      hash->md_value_ = nullptr;
      return ThrowCryptoError(env, ERR_get_error());
    }

    hash->has_md_ = true;
  }

  Local<Value> error;
  MaybeLocal<Value> rc =
      StringBytes::Encode(env->isolate(),
                          reinterpret_cast<const char*>(hash->md_value_),
                          hash->md_len_,
                          encoding,
                          &error);
  if (rc.IsEmpty()) {
    CHECK(!error.IsEmpty());
    env->isolate()->ThrowException(error);
    return;
  }
  args.GetReturnValue().Set(rc.ToLocalChecked());
}


SignBase::Error SignBase::Init(const char* sign_type) {
  CHECK_NULL(mdctx_);
  // Historically, "dss1" and "DSS1" were DSA aliases for SHA-1
  // exposed through the public API.
  if (strcmp(sign_type, "dss1") == 0 ||
      strcmp(sign_type, "DSS1") == 0) {
    sign_type = "SHA1";
  }
  const EVP_MD* md = EVP_get_digestbyname(sign_type);
  if (md == nullptr)
    return kSignUnknownDigest;

  mdctx_.reset(EVP_MD_CTX_new());
  if (!mdctx_ || !EVP_DigestInit_ex(mdctx_.get(), md, nullptr)) {
    mdctx_.reset();
    return kSignInit;
  }

  return kSignOk;
}


SignBase::Error SignBase::Update(const char* data, int len) {
  if (mdctx_ == nullptr)
    return kSignNotInitialised;
  if (!EVP_DigestUpdate(mdctx_.get(), data, len))
    return kSignUpdate;
  return kSignOk;
}


void CheckThrow(Environment* env, SignBase::Error error) {
  HandleScope scope(env->isolate());

  switch (error) {
    case SignBase::Error::kSignUnknownDigest:
      return env->ThrowError("Unknown message digest");

    case SignBase::Error::kSignNotInitialised:
      return env->ThrowError("Not initialised");

    case SignBase::Error::kSignMalformedSignature:
      return env->ThrowError("Malformed signature");

    case SignBase::Error::kSignInit:
    case SignBase::Error::kSignUpdate:
    case SignBase::Error::kSignPrivateKey:
    case SignBase::Error::kSignPublicKey:
      {
        unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
        if (err)
          return ThrowCryptoError(env, err);
        switch (error) {
          case SignBase::Error::kSignInit:
            return env->ThrowError("EVP_SignInit_ex failed");
          case SignBase::Error::kSignUpdate:
            return env->ThrowError("EVP_SignUpdate failed");
          case SignBase::Error::kSignPrivateKey:
            return env->ThrowError("PEM_read_bio_PrivateKey failed");
          case SignBase::Error::kSignPublicKey:
            return env->ThrowError("PEM_read_bio_PUBKEY failed");
          default:
            ABORT();
        }
      }

    case SignBase::Error::kSignOk:
      return;
  }
}

SignBase::SignBase(Environment* env, Local<Object> wrap)
    : BaseObject(env, wrap) {
}

void SignBase::CheckThrow(SignBase::Error error) {
  node::crypto::CheckThrow(env(), error);
}

static bool ApplyRSAOptions(const ManagedEVPPKey& pkey,
                            EVP_PKEY_CTX* pkctx,
                            int padding,
                            const Maybe<int>& salt_len) {
  if (EVP_PKEY_id(pkey.get()) == EVP_PKEY_RSA ||
      EVP_PKEY_id(pkey.get()) == EVP_PKEY_RSA2 ||
      EVP_PKEY_id(pkey.get()) == EVP_PKEY_RSA_PSS) {
    if (EVP_PKEY_CTX_set_rsa_padding(pkctx, padding) <= 0)
      return false;
    if (padding == RSA_PKCS1_PSS_PADDING && salt_len.IsJust()) {
      if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, salt_len.FromJust()) <= 0)
        return false;
    }
  }

  return true;
}


Sign::Sign(Environment* env, Local<Object> wrap) : SignBase(env, wrap) {
  MakeWeak();
}

void Sign::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);

  t->InstanceTemplate()->SetInternalFieldCount(
      SignBase::kInternalFieldCount);

  env->SetProtoMethod(t, "init", SignInit);
  env->SetProtoMethod(t, "update", SignUpdate);
  env->SetProtoMethod(t, "sign", SignFinal);

  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "Sign"),
              t->GetFunction(env->context()).ToLocalChecked()).Check();
}


void Sign::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  new Sign(env, args.This());
}


void Sign::SignInit(const FunctionCallbackInfo<Value>& args) {
  Sign* sign;
  ASSIGN_OR_RETURN_UNWRAP(&sign, args.Holder());

  const node::Utf8Value sign_type(args.GetIsolate(), args[0]);
  sign->CheckThrow(sign->Init(*sign_type));
}


void Sign::SignUpdate(const FunctionCallbackInfo<Value>& args) {
  Decode<Sign>(args, [](Sign* sign, const FunctionCallbackInfo<Value>& args,
                        const char* data, size_t size) {
    Error err = sign->Update(data, size);
    sign->CheckThrow(err);
  });
}

static int GetDefaultSignPadding(const ManagedEVPPKey& key) {
  return EVP_PKEY_id(key.get()) == EVP_PKEY_RSA_PSS ? RSA_PKCS1_PSS_PADDING :
                                                      RSA_PKCS1_PADDING;
}

static const unsigned int kNoDsaSignature = static_cast<unsigned int>(-1);

// Returns the maximum size of each of the integers (r, s) of the DSA signature.
static unsigned int GetBytesOfRS(const ManagedEVPPKey& pkey) {
  int bits, base_id = EVP_PKEY_base_id(pkey.get());

  if (base_id == EVP_PKEY_DSA) {
    DSA* dsa_key = EVP_PKEY_get0_DSA(pkey.get());
    // Both r and s are computed mod q, so their width is limited by that of q.
    bits = BN_num_bits(DSA_get0_q(dsa_key));
  } else if (base_id == EVP_PKEY_EC) {
    EC_KEY* ec_key = EVP_PKEY_get0_EC_KEY(pkey.get());
    const EC_GROUP* ec_group = EC_KEY_get0_group(ec_key);
    bits = EC_GROUP_order_bits(ec_group);
  } else {
    return kNoDsaSignature;
  }

  return (bits + 7) / 8;
}

static AllocatedBuffer ConvertSignatureToP1363(Environment* env,
                                               const ManagedEVPPKey& pkey,
                                               AllocatedBuffer&& signature) {
  unsigned int n = GetBytesOfRS(pkey);
  if (n == kNoDsaSignature)
    return std::move(signature);

  const unsigned char* sig_data =
      reinterpret_cast<unsigned char*>(signature.data());

  ECDSASigPointer asn1_sig(d2i_ECDSA_SIG(nullptr, &sig_data, signature.size()));
  if (!asn1_sig)
    return AllocatedBuffer();

  AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, 2 * n);
  unsigned char* data = reinterpret_cast<unsigned char*>(buf.data());

  const BIGNUM* r = ECDSA_SIG_get0_r(asn1_sig.get());
  const BIGNUM* s = ECDSA_SIG_get0_s(asn1_sig.get());
  CHECK_EQ(n, static_cast<unsigned int>(BN_bn2binpad(r, data, n)));
  CHECK_EQ(n, static_cast<unsigned int>(BN_bn2binpad(s, data + n, n)));

  return buf;
}

static ByteSource ConvertSignatureToDER(
      const ManagedEVPPKey& pkey,
      const ArrayBufferViewContents<char>& signature) {
  unsigned int n = GetBytesOfRS(pkey);
  if (n == kNoDsaSignature)
    return ByteSource::Foreign(signature.data(), signature.length());

  const unsigned char* sig_data =
      reinterpret_cast<const  unsigned char*>(signature.data());

  if (signature.length() != 2 * n)
    return ByteSource();

  ECDSASigPointer asn1_sig(ECDSA_SIG_new());
  CHECK(asn1_sig);
  BIGNUM* r = BN_new();
  CHECK_NOT_NULL(r);
  BIGNUM* s = BN_new();
  CHECK_NOT_NULL(s);
  CHECK_EQ(r, BN_bin2bn(sig_data, n, r));
  CHECK_EQ(s, BN_bin2bn(sig_data + n, n, s));
  CHECK_EQ(1, ECDSA_SIG_set0(asn1_sig.get(), r, s));

  unsigned char* data = nullptr;
  int len = i2d_ECDSA_SIG(asn1_sig.get(), &data);

  if (len <= 0)
    return ByteSource();

  CHECK_NOT_NULL(data);

  return ByteSource::Allocated(reinterpret_cast<char*>(data), len);
}

static AllocatedBuffer Node_SignFinal(Environment* env,
                                      EVPMDPointer&& mdctx,
                                      const ManagedEVPPKey& pkey,
                                      int padding,
                                      Maybe<int> pss_salt_len) {
  unsigned char m[EVP_MAX_MD_SIZE];
  unsigned int m_len;

  if (!EVP_DigestFinal_ex(mdctx.get(), m, &m_len))
    return AllocatedBuffer();

  int signed_sig_len = EVP_PKEY_size(pkey.get());
  CHECK_GE(signed_sig_len, 0);
  size_t sig_len = static_cast<size_t>(signed_sig_len);
  AllocatedBuffer sig = AllocatedBuffer::AllocateManaged(env, sig_len);

  EVPKeyCtxPointer pkctx(EVP_PKEY_CTX_new(pkey.get(), nullptr));
  if (pkctx &&
      EVP_PKEY_sign_init(pkctx.get()) > 0 &&
      ApplyRSAOptions(pkey, pkctx.get(), padding, pss_salt_len) &&
      EVP_PKEY_CTX_set_signature_md(pkctx.get(),
                                    EVP_MD_CTX_md(mdctx.get())) > 0 &&
      EVP_PKEY_sign(pkctx.get(),
                    reinterpret_cast<unsigned char*>(sig.data()),
                    &sig_len,
                    m,
                    m_len) > 0) {
    sig.Resize(sig_len);
    return sig;
  }

  return AllocatedBuffer();
}

static inline bool ValidateDSAParameters(EVP_PKEY* key) {
#ifdef NODE_FIPS_MODE
  /* Validate DSA2 parameters from FIPS 186-4 */
  if (FIPS_mode() && EVP_PKEY_DSA == EVP_PKEY_base_id(key)) {
    DSA* dsa = EVP_PKEY_get0_DSA(key);
    const BIGNUM* p;
    DSA_get0_pqg(dsa, &p, nullptr, nullptr);
    size_t L = BN_num_bits(p);
    const BIGNUM* q;
    DSA_get0_pqg(dsa, nullptr, &q, nullptr);
    size_t N = BN_num_bits(q);

    return (L == 1024 && N == 160) ||
           (L == 2048 && N == 224) ||
           (L == 2048 && N == 256) ||
           (L == 3072 && N == 256);
  }
#endif  // NODE_FIPS_MODE

  return true;
}

Sign::SignResult Sign::SignFinal(
    const ManagedEVPPKey& pkey,
    int padding,
    const Maybe<int>& salt_len,
    DSASigEnc dsa_sig_enc) {
  if (!mdctx_)
    return SignResult(kSignNotInitialised);

  EVPMDPointer mdctx = std::move(mdctx_);

  if (!ValidateDSAParameters(pkey.get()))
    return SignResult(kSignPrivateKey);

  AllocatedBuffer buffer =
      Node_SignFinal(env(), std::move(mdctx), pkey, padding, salt_len);
  Error error = buffer.data() == nullptr ? kSignPrivateKey : kSignOk;
  if (error == kSignOk && dsa_sig_enc == kSigEncP1363) {
    buffer = ConvertSignatureToP1363(env(), pkey, std::move(buffer));
    CHECK_NOT_NULL(buffer.data());
  }
  return SignResult(error, std::move(buffer));
}


void Sign::SignFinal(const FunctionCallbackInfo<Value>& args) {
  Sign* sign;
  ASSIGN_OR_RETURN_UNWRAP(&sign, args.Holder());

  ClearErrorOnReturn clear_error_on_return;

  unsigned int offset = 0;
  ManagedEVPPKey key = GetPrivateKeyFromJs(args, &offset, true);
  if (!key)
    return;

  int padding = GetDefaultSignPadding(key);
  if (!args[offset]->IsUndefined()) {
    CHECK(args[offset]->IsInt32());
    padding = args[offset].As<Int32>()->Value();
  }

  Maybe<int> salt_len = Nothing<int>();
  if (!args[offset + 1]->IsUndefined()) {
    CHECK(args[offset + 1]->IsInt32());
    salt_len = Just<int>(args[offset + 1].As<Int32>()->Value());
  }

  CHECK(args[offset + 2]->IsInt32());
  DSASigEnc dsa_sig_enc =
      static_cast<DSASigEnc>(args[offset + 2].As<Int32>()->Value());

  SignResult ret = sign->SignFinal(
      key,
      padding,
      salt_len,
      dsa_sig_enc);

  if (ret.error != kSignOk)
    return sign->CheckThrow(ret.error);

  args.GetReturnValue().Set(ret.signature.ToBuffer().ToLocalChecked());
}

void SignOneShot(const FunctionCallbackInfo<Value>& args) {
  ClearErrorOnReturn clear_error_on_return;
  Environment* env = Environment::GetCurrent(args);

  unsigned int offset = 0;
  ManagedEVPPKey key = GetPrivateKeyFromJs(args, &offset, true);
  if (!key)
    return;

  if (!ValidateDSAParameters(key.get()))
    return CheckThrow(env, SignBase::Error::kSignPrivateKey);

  ArrayBufferViewContents<char> data(args[offset]);

  const EVP_MD* md;
  if (args[offset + 1]->IsNullOrUndefined()) {
    md = nullptr;
  } else {
    const node::Utf8Value sign_type(args.GetIsolate(), args[offset + 1]);
    md = EVP_get_digestbyname(*sign_type);
    if (md == nullptr)
      return CheckThrow(env, SignBase::Error::kSignUnknownDigest);
  }

  int rsa_padding = GetDefaultSignPadding(key);
  if (!args[offset + 2]->IsUndefined()) {
    CHECK(args[offset + 2]->IsInt32());
    rsa_padding = args[offset + 2].As<Int32>()->Value();
  }

  Maybe<int> rsa_salt_len = Nothing<int>();
  if (!args[offset + 3]->IsUndefined()) {
    CHECK(args[offset + 3]->IsInt32());
    rsa_salt_len = Just<int>(args[offset + 3].As<Int32>()->Value());
  }

  CHECK(args[offset + 4]->IsInt32());
  DSASigEnc dsa_sig_enc =
      static_cast<DSASigEnc>(args[offset + 4].As<Int32>()->Value());

  EVP_PKEY_CTX* pkctx = nullptr;
  EVPMDPointer mdctx(EVP_MD_CTX_new());
  if (!mdctx ||
      !EVP_DigestSignInit(mdctx.get(), &pkctx, md, nullptr, key.get())) {
    return CheckThrow(env, SignBase::Error::kSignInit);
  }

  if (!ApplyRSAOptions(key, pkctx, rsa_padding, rsa_salt_len))
    return CheckThrow(env, SignBase::Error::kSignPrivateKey);

  const unsigned char* input =
    reinterpret_cast<const unsigned char*>(data.data());
  size_t sig_len;
  if (!EVP_DigestSign(mdctx.get(), nullptr, &sig_len, input, data.length()))
    return CheckThrow(env, SignBase::Error::kSignPrivateKey);

  AllocatedBuffer signature = AllocatedBuffer::AllocateManaged(env, sig_len);
  if (!EVP_DigestSign(mdctx.get(),
                      reinterpret_cast<unsigned char*>(signature.data()),
                      &sig_len,
                      input,
                      data.length())) {
    return CheckThrow(env, SignBase::Error::kSignPrivateKey);
  }

  signature.Resize(sig_len);

  if (dsa_sig_enc == kSigEncP1363) {
    signature = ConvertSignatureToP1363(env, key, std::move(signature));
  }

  args.GetReturnValue().Set(signature.ToBuffer().ToLocalChecked());
}

Verify::Verify(Environment* env, Local<Object> wrap)
  : SignBase(env, wrap) {
  MakeWeak();
}

void Verify::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);

  t->InstanceTemplate()->SetInternalFieldCount(
      SignBase::kInternalFieldCount);

  env->SetProtoMethod(t, "init", VerifyInit);
  env->SetProtoMethod(t, "update", VerifyUpdate);
  env->SetProtoMethod(t, "verify", VerifyFinal);

  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "Verify"),
              t->GetFunction(env->context()).ToLocalChecked()).Check();
}


void Verify::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  new Verify(env, args.This());
}


void Verify::VerifyInit(const FunctionCallbackInfo<Value>& args) {
  Verify* verify;
  ASSIGN_OR_RETURN_UNWRAP(&verify, args.Holder());

  const node::Utf8Value verify_type(args.GetIsolate(), args[0]);
  verify->CheckThrow(verify->Init(*verify_type));
}


void Verify::VerifyUpdate(const FunctionCallbackInfo<Value>& args) {
  Decode<Verify>(args, [](Verify* verify,
                          const FunctionCallbackInfo<Value>& args,
                          const char* data, size_t size) {
    Error err = verify->Update(data, size);
    verify->CheckThrow(err);
  });
}


SignBase::Error Verify::VerifyFinal(const ManagedEVPPKey& pkey,
                                    const ByteSource& sig,
                                    int padding,
                                    const Maybe<int>& saltlen,
                                    bool* verify_result) {
  if (!mdctx_)
    return kSignNotInitialised;

  unsigned char m[EVP_MAX_MD_SIZE];
  unsigned int m_len;
  *verify_result = false;
  EVPMDPointer mdctx = std::move(mdctx_);

  if (!EVP_DigestFinal_ex(mdctx.get(), m, &m_len))
    return kSignPublicKey;

  EVPKeyCtxPointer pkctx(EVP_PKEY_CTX_new(pkey.get(), nullptr));
  if (pkctx &&
      EVP_PKEY_verify_init(pkctx.get()) > 0 &&
      ApplyRSAOptions(pkey, pkctx.get(), padding, saltlen) &&
      EVP_PKEY_CTX_set_signature_md(pkctx.get(),
                                    EVP_MD_CTX_md(mdctx.get())) > 0) {
    const unsigned char* s = reinterpret_cast<const unsigned char*>(sig.get());
    const int r = EVP_PKEY_verify(pkctx.get(), s, sig.size(), m, m_len);
    *verify_result = r == 1;
  }

  return kSignOk;
}


void Verify::VerifyFinal(const FunctionCallbackInfo<Value>& args) {
  ClearErrorOnReturn clear_error_on_return;

  Verify* verify;
  ASSIGN_OR_RETURN_UNWRAP(&verify, args.Holder());

  unsigned int offset = 0;
  ManagedEVPPKey pkey = GetPublicOrPrivateKeyFromJs(args, &offset);
  if (!pkey)
    return;

  ArrayBufferViewContents<char> hbuf(args[offset]);

  int padding = GetDefaultSignPadding(pkey);
  if (!args[offset + 1]->IsUndefined()) {
    CHECK(args[offset + 1]->IsInt32());
    padding = args[offset + 1].As<Int32>()->Value();
  }

  Maybe<int> salt_len = Nothing<int>();
  if (!args[offset + 2]->IsUndefined()) {
    CHECK(args[offset + 2]->IsInt32());
    salt_len = Just<int>(args[offset + 2].As<Int32>()->Value());
  }

  CHECK(args[offset + 3]->IsInt32());
  DSASigEnc dsa_sig_enc =
      static_cast<DSASigEnc>(args[offset + 3].As<Int32>()->Value());

  ByteSource signature = ByteSource::Foreign(hbuf.data(), hbuf.length());
  if (dsa_sig_enc == kSigEncP1363) {
    signature = ConvertSignatureToDER(pkey, hbuf);
    if (signature.get() == nullptr)
      return verify->CheckThrow(Error::kSignMalformedSignature);
  }

  bool verify_result;
  Error err = verify->VerifyFinal(pkey, signature, padding,
                                  salt_len, &verify_result);
  if (err != kSignOk)
    return verify->CheckThrow(err);
  args.GetReturnValue().Set(verify_result);
}

void VerifyOneShot(const FunctionCallbackInfo<Value>& args) {
  ClearErrorOnReturn clear_error_on_return;
  Environment* env = Environment::GetCurrent(args);

  unsigned int offset = 0;
  ManagedEVPPKey key = GetPublicOrPrivateKeyFromJs(args, &offset);
  if (!key)
    return;

  ArrayBufferViewContents<char> sig(args[offset]);

  ArrayBufferViewContents<char> data(args[offset + 1]);

  const EVP_MD* md;
  if (args[offset + 2]->IsNullOrUndefined()) {
    md = nullptr;
  } else {
    const node::Utf8Value sign_type(args.GetIsolate(), args[offset + 2]);
    md = EVP_get_digestbyname(*sign_type);
    if (md == nullptr)
      return CheckThrow(env, SignBase::Error::kSignUnknownDigest);
  }

  int rsa_padding = GetDefaultSignPadding(key);
  if (!args[offset + 3]->IsUndefined()) {
    CHECK(args[offset + 3]->IsInt32());
    rsa_padding = args[offset + 3].As<Int32>()->Value();
  }

  Maybe<int> rsa_salt_len = Nothing<int>();
  if (!args[offset + 4]->IsUndefined()) {
    CHECK(args[offset + 4]->IsInt32());
    rsa_salt_len = Just<int>(args[offset + 4].As<Int32>()->Value());
  }

  CHECK(args[offset + 5]->IsInt32());
  DSASigEnc dsa_sig_enc =
      static_cast<DSASigEnc>(args[offset + 5].As<Int32>()->Value());

  EVP_PKEY_CTX* pkctx = nullptr;
  EVPMDPointer mdctx(EVP_MD_CTX_new());
  if (!mdctx ||
      !EVP_DigestVerifyInit(mdctx.get(), &pkctx, md, nullptr, key.get())) {
    return CheckThrow(env, SignBase::Error::kSignInit);
  }

  if (!ApplyRSAOptions(key, pkctx, rsa_padding, rsa_salt_len))
    return CheckThrow(env, SignBase::Error::kSignPublicKey);

  ByteSource sig_bytes = ByteSource::Foreign(sig.data(), sig.length());
  if (dsa_sig_enc == kSigEncP1363) {
    sig_bytes = ConvertSignatureToDER(key, sig);
    if (!sig_bytes)
      return CheckThrow(env, SignBase::Error::kSignMalformedSignature);
  }

  bool verify_result;
  const int r = EVP_DigestVerify(
    mdctx.get(),
    reinterpret_cast<const unsigned char*>(sig_bytes.get()),
    sig_bytes.size(),
    reinterpret_cast<const unsigned char*>(data.data()),
    data.length());
  switch (r) {
    case 1:
      verify_result = true;
      break;
    case 0:
      verify_result = false;
      break;
    default:
      return CheckThrow(env, SignBase::Error::kSignPublicKey);
  }

  args.GetReturnValue().Set(verify_result);
}

template <PublicKeyCipher::Operation operation,
          PublicKeyCipher::EVP_PKEY_cipher_init_t EVP_PKEY_cipher_init,
          PublicKeyCipher::EVP_PKEY_cipher_t EVP_PKEY_cipher>
bool PublicKeyCipher::Cipher(Environment* env,
                             const ManagedEVPPKey& pkey,
                             int padding,
                             const EVP_MD* digest,
                             const void* oaep_label,
                             size_t oaep_label_len,
                             const unsigned char* data,
                             int len,
                             AllocatedBuffer* out) {
  EVPKeyCtxPointer ctx(EVP_PKEY_CTX_new(pkey.get(), nullptr));
  if (!ctx)
    return false;
  if (EVP_PKEY_cipher_init(ctx.get()) <= 0)
    return false;
  if (EVP_PKEY_CTX_set_rsa_padding(ctx.get(), padding) <= 0)
    return false;

  if (digest != nullptr) {
    if (EVP_PKEY_CTX_set_rsa_oaep_md(ctx.get(), digest) <= 0)
      return false;
  }

  if (oaep_label_len != 0) {
    // OpenSSL takes ownership of the label, so we need to create a copy.
    void* label = OPENSSL_memdup(oaep_label, oaep_label_len);
    CHECK_NOT_NULL(label);
    if (0 >= EVP_PKEY_CTX_set0_rsa_oaep_label(ctx.get(),
                reinterpret_cast<unsigned char*>(label),
                                      oaep_label_len)) {
      OPENSSL_free(label);
      return false;
    }
  }

  size_t out_len = 0;
  if (EVP_PKEY_cipher(ctx.get(), nullptr, &out_len, data, len) <= 0)
    return false;

  *out = AllocatedBuffer::AllocateManaged(env, out_len);

  if (EVP_PKEY_cipher(ctx.get(),
                      reinterpret_cast<unsigned char*>(out->data()),
                      &out_len,
                      data,
                      len) <= 0) {
    return false;
  }

  out->Resize(out_len);
  return true;
}


template <PublicKeyCipher::Operation operation,
          PublicKeyCipher::EVP_PKEY_cipher_init_t EVP_PKEY_cipher_init,
          PublicKeyCipher::EVP_PKEY_cipher_t EVP_PKEY_cipher>
void PublicKeyCipher::Cipher(const FunctionCallbackInfo<Value>& args) {
  MarkPopErrorOnReturn mark_pop_error_on_return;
  Environment* env = Environment::GetCurrent(args);

  unsigned int offset = 0;
  ManagedEVPPKey pkey = GetPublicOrPrivateKeyFromJs(args, &offset);
  if (!pkey)
    return;

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[offset], "Data");
  ArrayBufferViewContents<unsigned char> buf(args[offset]);

  uint32_t padding;
  if (!args[offset + 1]->Uint32Value(env->context()).To(&padding)) return;

  const node::Utf8Value oaep_str(env->isolate(), args[offset + 2]);
  const char* oaep_hash = args[offset + 2]->IsString() ? *oaep_str : nullptr;
  const EVP_MD* digest = nullptr;
  if (oaep_hash != nullptr) {
    digest = EVP_get_digestbyname(oaep_hash);
    if (digest == nullptr)
      return THROW_ERR_OSSL_EVP_INVALID_DIGEST(env);
  }

  ArrayBufferViewContents<unsigned char> oaep_label;
  if (!args[offset + 3]->IsUndefined()) {
    CHECK(args[offset + 3]->IsArrayBufferView());
    oaep_label.Read(args[offset + 3].As<ArrayBufferView>());
  }

  AllocatedBuffer out;

  bool r = Cipher<operation, EVP_PKEY_cipher_init, EVP_PKEY_cipher>(
      env,
      pkey,
      padding,
      digest,
      oaep_label.data(),
      oaep_label.length(),
      buf.data(),
      buf.length(),
      &out);

  if (!r)
    return ThrowCryptoError(env, ERR_get_error());

  args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked());
}

DiffieHellman::DiffieHellman(Environment* env, Local<Object> wrap)
    : BaseObject(env, wrap), verifyError_(0) {
  MakeWeak();
}

void DiffieHellman::Initialize(Environment* env, Local<Object> target) {
  auto make = [&] (Local<String> name, FunctionCallback callback) {
    Local<FunctionTemplate> t = env->NewFunctionTemplate(callback);

    const PropertyAttribute attributes =
        static_cast<PropertyAttribute>(ReadOnly | DontDelete);

    t->InstanceTemplate()->SetInternalFieldCount(
        DiffieHellman::kInternalFieldCount);

    env->SetProtoMethod(t, "generateKeys", GenerateKeys);
    env->SetProtoMethod(t, "computeSecret", ComputeSecret);
    env->SetProtoMethodNoSideEffect(t, "getPrime", GetPrime);
    env->SetProtoMethodNoSideEffect(t, "getGenerator", GetGenerator);
    env->SetProtoMethodNoSideEffect(t, "getPublicKey", GetPublicKey);
    env->SetProtoMethodNoSideEffect(t, "getPrivateKey", GetPrivateKey);
    env->SetProtoMethod(t, "setPublicKey", SetPublicKey);
    env->SetProtoMethod(t, "setPrivateKey", SetPrivateKey);

    Local<FunctionTemplate> verify_error_getter_templ =
        FunctionTemplate::New(env->isolate(),
                              DiffieHellman::VerifyErrorGetter,
                              Local<Value>(),
                              Signature::New(env->isolate(), t),
                              /* length */ 0,
                              ConstructorBehavior::kThrow,
                              SideEffectType::kHasNoSideEffect);

    t->InstanceTemplate()->SetAccessorProperty(
        env->verify_error_string(),
        verify_error_getter_templ,
        Local<FunctionTemplate>(),
        attributes);

    target->Set(env->context(),
                name,
                t->GetFunction(env->context()).ToLocalChecked()).Check();
  };

  make(FIXED_ONE_BYTE_STRING(env->isolate(), "DiffieHellman"), New);
  make(FIXED_ONE_BYTE_STRING(env->isolate(), "DiffieHellmanGroup"),
       DiffieHellmanGroup);
}


bool DiffieHellman::Init(int primeLength, int g) {
  dh_.reset(DH_new());
  if (!DH_generate_parameters_ex(dh_.get(), primeLength, g, nullptr))
    return false;
  return VerifyContext();
}


bool DiffieHellman::Init(const char* p, int p_len, int g) {
  dh_.reset(DH_new());
  if (p_len <= 0) {
    BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
    return false;
  }
  if (g <= 1) {
    DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR);
    return false;
  }
  BIGNUM* bn_p =
      BN_bin2bn(reinterpret_cast<const unsigned char*>(p), p_len, nullptr);
  BIGNUM* bn_g = BN_new();
  if (!BN_set_word(bn_g, g) ||
      !DH_set0_pqg(dh_.get(), bn_p, nullptr, bn_g)) {
    BN_free(bn_p);
    BN_free(bn_g);
    return false;
  }
  return VerifyContext();
}


bool DiffieHellman::Init(const char* p, int p_len, const char* g, int g_len) {
  dh_.reset(DH_new());
  if (p_len <= 0) {
    BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
    return false;
  }
  if (g_len <= 0) {
    DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR);
    return false;
  }
  BIGNUM* bn_g =
      BN_bin2bn(reinterpret_cast<const unsigned char*>(g), g_len, nullptr);
  if (BN_is_zero(bn_g) || BN_is_one(bn_g)) {
    BN_free(bn_g);
    DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR);
    return false;
  }
  BIGNUM* bn_p =
      BN_bin2bn(reinterpret_cast<const unsigned char*>(p), p_len, nullptr);
  if (!DH_set0_pqg(dh_.get(), bn_p, nullptr, bn_g)) {
    BN_free(bn_p);
    BN_free(bn_g);
    return false;
  }
  return VerifyContext();
}

inline const modp_group* FindDiffieHellmanGroup(const char* name) {
  for (const modp_group& group : modp_groups) {
    if (StringEqualNoCase(name, group.name))
      return &group;
  }
  return nullptr;
}

void DiffieHellman::DiffieHellmanGroup(
    const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  DiffieHellman* diffieHellman = new DiffieHellman(env, args.This());

  CHECK_EQ(args.Length(), 1);
  THROW_AND_RETURN_IF_NOT_STRING(env, args[0], "Group name");

  bool initialized = false;

  const node::Utf8Value group_name(env->isolate(), args[0]);
  const modp_group* group = FindDiffieHellmanGroup(*group_name);
  if (group == nullptr)
    return THROW_ERR_CRYPTO_UNKNOWN_DH_GROUP(env);

  initialized = diffieHellman->Init(group->prime,
                                    group->prime_size,
                                    group->gen);
  if (!initialized)
    env->ThrowError("Initialization failed");
}


void DiffieHellman::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  DiffieHellman* diffieHellman =
      new DiffieHellman(env, args.This());
  bool initialized = false;

  if (args.Length() == 2) {
    if (args[0]->IsInt32()) {
      if (args[1]->IsInt32()) {
        initialized = diffieHellman->Init(args[0].As<Int32>()->Value(),
                                          args[1].As<Int32>()->Value());
      }
    } else {
      ArrayBufferViewContents<char> arg0(args[0]);
      if (args[1]->IsInt32()) {
        initialized = diffieHellman->Init(arg0.data(),
                                          arg0.length(),
                                          args[1].As<Int32>()->Value());
      } else {
        ArrayBufferViewContents<char> arg1(args[1]);
        initialized = diffieHellman->Init(arg0.data(), arg0.length(),
                                          arg1.data(), arg1.length());
      }
    }
  }

  if (!initialized) {
    return ThrowCryptoError(env, ERR_get_error(), "Initialization failed");
  }
}


void DiffieHellman::GenerateKeys(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  DiffieHellman* diffieHellman;
  ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder());

  if (!DH_generate_key(diffieHellman->dh_.get())) {
    return ThrowCryptoError(env, ERR_get_error(), "Key generation failed");
  }

  const BIGNUM* pub_key;
  DH_get0_key(diffieHellman->dh_.get(), &pub_key, nullptr);
  const int size = BN_num_bytes(pub_key);
  CHECK_GE(size, 0);
  AllocatedBuffer data = AllocatedBuffer::AllocateManaged(env, size);
  CHECK_EQ(size,
           BN_bn2binpad(
               pub_key, reinterpret_cast<unsigned char*>(data.data()), size));
  args.GetReturnValue().Set(data.ToBuffer().ToLocalChecked());
}


void DiffieHellman::GetField(const FunctionCallbackInfo<Value>& args,
                             const BIGNUM* (*get_field)(const DH*),
                             const char* err_if_null) {
  Environment* env = Environment::GetCurrent(args);

  DiffieHellman* dh;
  ASSIGN_OR_RETURN_UNWRAP(&dh, args.Holder());

  const BIGNUM* num = get_field(dh->dh_.get());
  if (num == nullptr) return env->ThrowError(err_if_null);

  const int size = BN_num_bytes(num);
  CHECK_GE(size, 0);
  AllocatedBuffer data = AllocatedBuffer::AllocateManaged(env, size);
  CHECK_EQ(
      size,
      BN_bn2binpad(num, reinterpret_cast<unsigned char*>(data.data()), size));
  args.GetReturnValue().Set(data.ToBuffer().ToLocalChecked());
}

void DiffieHellman::GetPrime(const FunctionCallbackInfo<Value>& args) {
  GetField(args, [](const DH* dh) -> const BIGNUM* {
    const BIGNUM* p;
    DH_get0_pqg(dh, &p, nullptr, nullptr);
    return p;
  }, "p is null");
}


void DiffieHellman::GetGenerator(const FunctionCallbackInfo<Value>& args) {
  GetField(args, [](const DH* dh) -> const BIGNUM* {
    const BIGNUM* g;
    DH_get0_pqg(dh, nullptr, nullptr, &g);
    return g;
  }, "g is null");
}


void DiffieHellman::GetPublicKey(const FunctionCallbackInfo<Value>& args) {
  GetField(args, [](const DH* dh) -> const BIGNUM* {
    const BIGNUM* pub_key;
    DH_get0_key(dh, &pub_key, nullptr);
    return pub_key;
  }, "No public key - did you forget to generate one?");
}


void DiffieHellman::GetPrivateKey(const FunctionCallbackInfo<Value>& args) {
  GetField(args, [](const DH* dh) -> const BIGNUM* {
    const BIGNUM* priv_key;
    DH_get0_key(dh, nullptr, &priv_key);
    return priv_key;
  }, "No private key - did you forget to generate one?");
}

static void ZeroPadDiffieHellmanSecret(size_t remainder_size,
                                       AllocatedBuffer* ret) {
  // DH_size returns number of bytes in a prime number.
  // DH_compute_key returns number of bytes in a remainder of exponent, which
  // may have less bytes than a prime number. Therefore add 0-padding to the
  // allocated buffer.
  const size_t prime_size = ret->size();
  if (remainder_size != prime_size) {
    CHECK_LT(remainder_size, prime_size);
    const size_t padding = prime_size - remainder_size;
    memmove(ret->data() + padding, ret->data(), remainder_size);
    memset(ret->data(), 0, padding);
  }
}

void DiffieHellman::ComputeSecret(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  DiffieHellman* diffieHellman;
  ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder());

  ClearErrorOnReturn clear_error_on_return;

  CHECK_EQ(args.Length(), 1);
  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Other party's public key");
  ArrayBufferViewContents<unsigned char> key_buf(args[0].As<ArrayBufferView>());
  BignumPointer key(BN_bin2bn(key_buf.data(), key_buf.length(), nullptr));

  AllocatedBuffer ret =
      AllocatedBuffer::AllocateManaged(env, DH_size(diffieHellman->dh_.get()));

  int size = DH_compute_key(reinterpret_cast<unsigned char*>(ret.data()),
                            key.get(),
                            diffieHellman->dh_.get());

  if (size == -1) {
    int checkResult;
    int checked;

    checked = DH_check_pub_key(diffieHellman->dh_.get(),
                               key.get(),
                               &checkResult);

    if (!checked) {
      return ThrowCryptoError(env, ERR_get_error(), "Invalid Key");
    } else if (checkResult) {
      if (checkResult & DH_CHECK_PUBKEY_TOO_SMALL) {
        return env->ThrowError("Supplied key is too small");
      } else if (checkResult & DH_CHECK_PUBKEY_TOO_LARGE) {
        return env->ThrowError("Supplied key is too large");
      } else {
        return env->ThrowError("Invalid key");
      }
    } else {
      return env->ThrowError("Invalid key");
    }

    UNREACHABLE();
  }

  CHECK_GE(size, 0);
  ZeroPadDiffieHellmanSecret(static_cast<size_t>(size), &ret);

  args.GetReturnValue().Set(ret.ToBuffer().ToLocalChecked());
}

void DiffieHellman::SetKey(const FunctionCallbackInfo<Value>& args,
                           int (*set_field)(DH*, BIGNUM*), const char* what) {
  Environment* env = Environment::GetCurrent(args);

  DiffieHellman* dh;
  ASSIGN_OR_RETURN_UNWRAP(&dh, args.Holder());

  char errmsg[64];

  CHECK_EQ(args.Length(), 1);
  if (!Buffer::HasInstance(args[0])) {
    snprintf(errmsg, sizeof(errmsg), "%s must be a buffer", what);
    return THROW_ERR_INVALID_ARG_TYPE(env, errmsg);
  }

  ArrayBufferViewContents<unsigned char> buf(args[0].As<ArrayBufferView>());
  BIGNUM* num =
      BN_bin2bn(buf.data(), buf.length(), nullptr);
  CHECK_NOT_NULL(num);
  CHECK_EQ(1, set_field(dh->dh_.get(), num));
}


void DiffieHellman::SetPublicKey(const FunctionCallbackInfo<Value>& args) {
  SetKey(args,
         [](DH* dh, BIGNUM* num) { return DH_set0_key(dh, num, nullptr); },
         "Public key");
}

void DiffieHellman::SetPrivateKey(const FunctionCallbackInfo<Value>& args) {
  SetKey(args,
         [](DH* dh, BIGNUM* num) { return DH_set0_key(dh, nullptr, num); },
         "Private key");
}


void DiffieHellman::VerifyErrorGetter(const FunctionCallbackInfo<Value>& args) {
  HandleScope scope(args.GetIsolate());

  DiffieHellman* diffieHellman;
  ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder());

  args.GetReturnValue().Set(diffieHellman->verifyError_);
}


bool DiffieHellman::VerifyContext() {
  int codes;
  if (!DH_check(dh_.get(), &codes))
    return false;
  verifyError_ = codes;
  return true;
}


void ECDH::Initialize(Environment* env, Local<Object> target) {
  HandleScope scope(env->isolate());

  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);

  t->InstanceTemplate()->SetInternalFieldCount(ECDH::kInternalFieldCount);

  env->SetProtoMethod(t, "generateKeys", GenerateKeys);
  env->SetProtoMethod(t, "computeSecret", ComputeSecret);
  env->SetProtoMethodNoSideEffect(t, "getPublicKey", GetPublicKey);
  env->SetProtoMethodNoSideEffect(t, "getPrivateKey", GetPrivateKey);
  env->SetProtoMethod(t, "setPublicKey", SetPublicKey);
  env->SetProtoMethod(t, "setPrivateKey", SetPrivateKey);

  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "ECDH"),
              t->GetFunction(env->context()).ToLocalChecked()).Check();
}

ECDH::ECDH(Environment* env, Local<Object> wrap, ECKeyPointer&& key)
    : BaseObject(env, wrap),
    key_(std::move(key)),
    group_(EC_KEY_get0_group(key_.get())) {
  MakeWeak();
  CHECK_NOT_NULL(group_);
}

ECDH::~ECDH() {}

void ECDH::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  MarkPopErrorOnReturn mark_pop_error_on_return;

  // TODO(indutny): Support raw curves?
  CHECK(args[0]->IsString());
  node::Utf8Value curve(env->isolate(), args[0]);

  int nid = OBJ_sn2nid(*curve);
  if (nid == NID_undef)
    return THROW_ERR_INVALID_ARG_VALUE(env,
        "First argument should be a valid curve name");

  ECKeyPointer key(EC_KEY_new_by_curve_name(nid));
  if (!key)
    return env->ThrowError("Failed to create EC_KEY using curve name");

  new ECDH(env, args.This(), std::move(key));
}


void ECDH::GenerateKeys(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  ECDH* ecdh;
  ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder());

  if (!EC_KEY_generate_key(ecdh->key_.get()))
    return env->ThrowError("Failed to generate EC_KEY");
}


ECPointPointer ECDH::BufferToPoint(Environment* env,
                                   const EC_GROUP* group,
                                   Local<Value> buf) {
  int r;

  ECPointPointer pub(EC_POINT_new(group));
  if (!pub) {
    env->ThrowError("Failed to allocate EC_POINT for a public key");
    return pub;
  }

  ArrayBufferViewContents<unsigned char> input(buf);
  r = EC_POINT_oct2point(
      group,
      pub.get(),
      input.data(),
      input.length(),
      nullptr);
  if (!r)
    return ECPointPointer();

  return pub;
}


void ECDH::ComputeSecret(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Data");

  ECDH* ecdh;
  ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder());

  MarkPopErrorOnReturn mark_pop_error_on_return;

  if (!ecdh->IsKeyPairValid())
    return env->ThrowError("Invalid key pair");

  ECPointPointer pub(
      ECDH::BufferToPoint(env,
                          ecdh->group_,
                          args[0]));
  if (!pub) {
    args.GetReturnValue().Set(
        FIXED_ONE_BYTE_STRING(env->isolate(),
        "ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY"));
    return;
  }

  // NOTE: field_size is in bits
  int field_size = EC_GROUP_get_degree(ecdh->group_);
  size_t out_len = (field_size + 7) / 8;
  AllocatedBuffer out = AllocatedBuffer::AllocateManaged(env, out_len);

  int r = ECDH_compute_key(
      out.data(), out_len, pub.get(), ecdh->key_.get(), nullptr);
  if (!r)
    return env->ThrowError("Failed to compute ECDH key");

  Local<Object> buf = out.ToBuffer().ToLocalChecked();
  args.GetReturnValue().Set(buf);
}


void ECDH::GetPublicKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  // Conversion form
  CHECK_EQ(args.Length(), 1);

  ECDH* ecdh;
  ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder());

  const EC_GROUP* group = EC_KEY_get0_group(ecdh->key_.get());
  const EC_POINT* pub = EC_KEY_get0_public_key(ecdh->key_.get());
  if (pub == nullptr)
    return env->ThrowError("Failed to get ECDH public key");

  CHECK(args[0]->IsUint32());
  uint32_t val = args[0].As<Uint32>()->Value();
  point_conversion_form_t form = static_cast<point_conversion_form_t>(val);

  const char* error;
  Local<Object> buf;
  if (!ECPointToBuffer(env, group, pub, form, &error).ToLocal(&buf))
    return env->ThrowError(error);
  args.GetReturnValue().Set(buf);
}


void ECDH::GetPrivateKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  ECDH* ecdh;
  ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder());

  const BIGNUM* b = EC_KEY_get0_private_key(ecdh->key_.get());
  if (b == nullptr)
    return env->ThrowError("Failed to get ECDH private key");

  const int size = BN_num_bytes(b);
  AllocatedBuffer out = AllocatedBuffer::AllocateManaged(env, size);
  CHECK_EQ(size, BN_bn2binpad(b,
                              reinterpret_cast<unsigned char*>(out.data()),
                              size));

  Local<Object> buf = out.ToBuffer().ToLocalChecked();
  args.GetReturnValue().Set(buf);
}


void ECDH::SetPrivateKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  ECDH* ecdh;
  ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder());

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Private key");
  ArrayBufferViewContents<unsigned char> priv_buffer(args[0]);

  BignumPointer priv(BN_bin2bn(
      priv_buffer.data(), priv_buffer.length(), nullptr));
  if (!priv)
    return env->ThrowError("Failed to convert Buffer to BN");

  if (!ecdh->IsKeyValidForCurve(priv)) {
    return env->ThrowError("Private key is not valid for specified curve.");
  }

  int result = EC_KEY_set_private_key(ecdh->key_.get(), priv.get());
  priv.reset();

  if (!result) {
    return env->ThrowError("Failed to convert BN to a private key");
  }

  // To avoid inconsistency, clear the current public key in-case computing
  // the new one fails for some reason.
  EC_KEY_set_public_key(ecdh->key_.get(), nullptr);

  MarkPopErrorOnReturn mark_pop_error_on_return;
  USE(&mark_pop_error_on_return);

  const BIGNUM* priv_key = EC_KEY_get0_private_key(ecdh->key_.get());
  CHECK_NOT_NULL(priv_key);

  ECPointPointer pub(EC_POINT_new(ecdh->group_));
  CHECK(pub);

  if (!EC_POINT_mul(ecdh->group_, pub.get(), priv_key,
                    nullptr, nullptr, nullptr)) {
    return env->ThrowError("Failed to generate ECDH public key");
  }

  if (!EC_KEY_set_public_key(ecdh->key_.get(), pub.get()))
    return env->ThrowError("Failed to set generated public key");
}


void ECDH::SetPublicKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  ECDH* ecdh;
  ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder());

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Public key");

  MarkPopErrorOnReturn mark_pop_error_on_return;

  ECPointPointer pub(
      ECDH::BufferToPoint(env,
                          ecdh->group_,
                          args[0]));
  if (!pub)
    return env->ThrowError("Failed to convert Buffer to EC_POINT");

  int r = EC_KEY_set_public_key(ecdh->key_.get(), pub.get());
  if (!r)
    return env->ThrowError("Failed to set EC_POINT as the public key");
}


bool ECDH::IsKeyValidForCurve(const BignumPointer& private_key) {
  CHECK(group_);
  CHECK(private_key);
  // Private keys must be in the range [1, n-1].
  // Ref: Section 3.2.1 - http://www.secg.org/sec1-v2.pdf
  if (BN_cmp(private_key.get(), BN_value_one()) < 0) {
    return false;
  }
  BignumPointer order(BN_new());
  CHECK(order);
  return EC_GROUP_get_order(group_, order.get(), nullptr) &&
         BN_cmp(private_key.get(), order.get()) < 0;
}


bool ECDH::IsKeyPairValid() {
  MarkPopErrorOnReturn mark_pop_error_on_return;
  USE(&mark_pop_error_on_return);
  return 1 == EC_KEY_check_key(key_.get());
}


// TODO(addaleax): If there is an `AsyncWrap`, it currently has no access to
// this object. This makes proper reporting of memory usage impossible.
struct CryptoJob : public ThreadPoolWork {
  std::unique_ptr<AsyncWrap> async_wrap;
  inline explicit CryptoJob(Environment* env) : ThreadPoolWork(env) {}
  inline void AfterThreadPoolWork(int status) final;
  virtual void AfterThreadPoolWork() = 0;
  static inline void Run(std::unique_ptr<CryptoJob> job, Local<Value> wrap);
};


void CryptoJob::AfterThreadPoolWork(int status) {
  CHECK(status == 0 || status == UV_ECANCELED);
  std::unique_ptr<CryptoJob> job(this);
  if (status == UV_ECANCELED) return;
  HandleScope handle_scope(env()->isolate());
  Context::Scope context_scope(env()->context());
  CHECK_EQ(false, async_wrap->persistent().IsWeak());
  AfterThreadPoolWork();
}


void CryptoJob::Run(std::unique_ptr<CryptoJob> job, Local<Value> wrap) {
  CHECK(wrap->IsObject());
  CHECK_NULL(job->async_wrap);
  job->async_wrap.reset(Unwrap<AsyncWrap>(wrap.As<Object>()));
  CHECK_EQ(false, job->async_wrap->persistent().IsWeak());
  job->ScheduleWork();
  job.release();  // Run free, little job!
}


inline void CopyBuffer(Local<Value> buf, std::vector<char>* vec) {
  CHECK(buf->IsArrayBufferView());
  vec->clear();
  vec->resize(buf.As<ArrayBufferView>()->ByteLength());
  buf.As<ArrayBufferView>()->CopyContents(vec->data(), vec->size());
}


struct RandomBytesJob : public CryptoJob {
  unsigned char* data;
  size_t size;
  CryptoErrorVector errors;
  Maybe<int> rc;

  inline explicit RandomBytesJob(Environment* env)
      : CryptoJob(env), rc(Nothing<int>()) {}

  inline void DoThreadPoolWork() override {
    CheckEntropy();  // Ensure that OpenSSL's PRNG is properly seeded.
    rc = Just(RAND_bytes(data, size));
    if (0 == rc.FromJust()) errors.Capture();
  }

  inline void AfterThreadPoolWork() override {
    Local<Value> arg = ToResult();
    async_wrap->MakeCallback(env()->ondone_string(), 1, &arg);
  }

  inline Local<Value> ToResult() const {
    if (errors.empty()) return Undefined(env()->isolate());
    return errors.ToException(env()).ToLocalChecked();
  }
};


void RandomBytes(const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsArrayBufferView());  // buffer; wrap object retains ref.
  CHECK(args[1]->IsUint32());  // offset
  CHECK(args[2]->IsUint32());  // size
  CHECK(args[3]->IsObject() || args[3]->IsUndefined());  // wrap object
  const uint32_t offset = args[1].As<Uint32>()->Value();
  const uint32_t size = args[2].As<Uint32>()->Value();
  CHECK_GE(offset + size, offset);  // Overflow check.
  CHECK_LE(offset + size, Buffer::Length(args[0]));  // Bounds check.
  Environment* env = Environment::GetCurrent(args);
  std::unique_ptr<RandomBytesJob> job(new RandomBytesJob(env));
  job->data = reinterpret_cast<unsigned char*>(Buffer::Data(args[0])) + offset;
  job->size = size;
  if (args[3]->IsObject()) return RandomBytesJob::Run(std::move(job), args[3]);
  env->PrintSyncTrace();
  job->DoThreadPoolWork();
  args.GetReturnValue().Set(job->ToResult());
}


struct PBKDF2Job : public CryptoJob {
  unsigned char* keybuf_data;
  size_t keybuf_size;
  std::vector<char> pass;
  std::vector<char> salt;
  uint32_t iteration_count;
  const EVP_MD* digest;
  Maybe<bool> success;

  inline explicit PBKDF2Job(Environment* env)
      : CryptoJob(env), success(Nothing<bool>()) {}

  inline ~PBKDF2Job() override {
    Cleanse();
  }

  inline void DoThreadPoolWork() override {
    auto salt_data = reinterpret_cast<const unsigned char*>(salt.data());
    const bool ok =
        PKCS5_PBKDF2_HMAC(pass.data(), pass.size(), salt_data, salt.size(),
                          iteration_count, digest, keybuf_size, keybuf_data);
    success = Just(ok);
    Cleanse();
  }

  inline void AfterThreadPoolWork() override {
    Local<Value> arg = ToResult();
    async_wrap->MakeCallback(env()->ondone_string(), 1, &arg);
  }

  inline Local<Value> ToResult() const {
    return Boolean::New(env()->isolate(), success.FromJust());
  }

  inline void Cleanse() {
    OPENSSL_cleanse(pass.data(), pass.size());
    OPENSSL_cleanse(salt.data(), salt.size());
    pass.clear();
    salt.clear();
  }
};


inline void PBKDF2(const FunctionCallbackInfo<Value>& args) {
  auto rv = args.GetReturnValue();
  Environment* env = Environment::GetCurrent(args);
  CHECK(args[0]->IsArrayBufferView());  // keybuf; wrap object retains ref.
  CHECK(args[1]->IsArrayBufferView());  // pass
  CHECK(args[2]->IsArrayBufferView());  // salt
  CHECK(args[3]->IsUint32());  // iteration_count
  CHECK(args[4]->IsString());  // digest_name
  CHECK(args[5]->IsObject() || args[5]->IsUndefined());  // wrap object
  std::unique_ptr<PBKDF2Job> job(new PBKDF2Job(env));
  job->keybuf_data = reinterpret_cast<unsigned char*>(Buffer::Data(args[0]));
  job->keybuf_size = Buffer::Length(args[0]);
  CopyBuffer(args[1], &job->pass);
  CopyBuffer(args[2], &job->salt);
  job->iteration_count = args[3].As<Uint32>()->Value();
  Utf8Value digest_name(args.GetIsolate(), args[4]);
  job->digest = EVP_get_digestbyname(*digest_name);
  if (job->digest == nullptr) return rv.Set(-1);
  if (args[5]->IsObject()) return PBKDF2Job::Run(std::move(job), args[5]);
  env->PrintSyncTrace();
  job->DoThreadPoolWork();
  rv.Set(job->ToResult());
}


#ifndef OPENSSL_NO_SCRYPT
struct ScryptJob : public CryptoJob {
  unsigned char* keybuf_data;
  size_t keybuf_size;
  std::vector<char> pass;
  std::vector<char> salt;
  uint32_t N;
  uint32_t r;
  uint32_t p;
  uint64_t maxmem;
  CryptoErrorVector errors;

  inline explicit ScryptJob(Environment* env) : CryptoJob(env) {}

  inline ~ScryptJob() override {
    Cleanse();
  }

  inline bool Validate() {
    if (1 == EVP_PBE_scrypt(nullptr, 0, nullptr, 0, N, r, p, maxmem,
                            nullptr, 0)) {
      return true;
    } else {
      // Note: EVP_PBE_scrypt() does not always put errors on the error stack.
      errors.Capture();
      return false;
    }
  }

  inline void DoThreadPoolWork() override {
    auto salt_data = reinterpret_cast<const unsigned char*>(salt.data());
    if (1 != EVP_PBE_scrypt(pass.data(), pass.size(), salt_data, salt.size(),
                            N, r, p, maxmem, keybuf_data, keybuf_size)) {
      errors.Capture();
    }
  }

  inline void AfterThreadPoolWork() override {
    Local<Value> arg = ToResult();
    async_wrap->MakeCallback(env()->ondone_string(), 1, &arg);
  }

  inline Local<Value> ToResult() const {
    if (errors.empty()) return Undefined(env()->isolate());
    return errors.ToException(env()).ToLocalChecked();
  }

  inline void Cleanse() {
    OPENSSL_cleanse(pass.data(), pass.size());
    OPENSSL_cleanse(salt.data(), salt.size());
    pass.clear();
    salt.clear();
  }
};


void Scrypt(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CHECK(args[0]->IsArrayBufferView());  // keybuf; wrap object retains ref.
  CHECK(args[1]->IsArrayBufferView());  // pass
  CHECK(args[2]->IsArrayBufferView());  // salt
  CHECK(args[3]->IsUint32());  // N
  CHECK(args[4]->IsUint32());  // r
  CHECK(args[5]->IsUint32());  // p
  CHECK(args[6]->IsNumber());  // maxmem
  CHECK(args[7]->IsObject() || args[7]->IsUndefined());  // wrap object
  std::unique_ptr<ScryptJob> job(new ScryptJob(env));
  job->keybuf_data = reinterpret_cast<unsigned char*>(Buffer::Data(args[0]));
  job->keybuf_size = Buffer::Length(args[0]);
  CopyBuffer(args[1], &job->pass);
  CopyBuffer(args[2], &job->salt);
  job->N = args[3].As<Uint32>()->Value();
  job->r = args[4].As<Uint32>()->Value();
  job->p = args[5].As<Uint32>()->Value();
  Local<Context> ctx = env->isolate()->GetCurrentContext();
  job->maxmem = static_cast<uint64_t>(args[6]->IntegerValue(ctx).ToChecked());
  if (!job->Validate()) {
    // EVP_PBE_scrypt() does not always put errors on the error stack
    // and therefore ToResult() may or may not return an exception
    // object.  Return a sentinel value to inform JS land it should
    // throw an ERR_CRYPTO_SCRYPT_INVALID_PARAMETER on our behalf.
    auto result = job->ToResult();
    if (result->IsUndefined()) result = Null(args.GetIsolate());
    return args.GetReturnValue().Set(result);
  }
  if (args[7]->IsObject()) return ScryptJob::Run(std::move(job), args[7]);
  env->PrintSyncTrace();
  job->DoThreadPoolWork();
  args.GetReturnValue().Set(job->ToResult());
}
#endif  // OPENSSL_NO_SCRYPT


class KeyPairGenerationConfig {
 public:
  virtual EVPKeyCtxPointer Setup() = 0;
  virtual bool Configure(const EVPKeyCtxPointer& ctx) {
    return true;
  }
  virtual ~KeyPairGenerationConfig() = default;
};

class RSAKeyPairGenerationConfig : public KeyPairGenerationConfig {
 public:
  RSAKeyPairGenerationConfig(unsigned int modulus_bits, unsigned int exponent)
    : modulus_bits_(modulus_bits), exponent_(exponent) {}

  EVPKeyCtxPointer Setup() override {
    return EVPKeyCtxPointer(EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, nullptr));
  }

  bool Configure(const EVPKeyCtxPointer& ctx) override {
    if (EVP_PKEY_CTX_set_rsa_keygen_bits(ctx.get(), modulus_bits_) <= 0)
      return false;

    // 0x10001 is the default RSA exponent.
    if (exponent_ != 0x10001) {
      BignumPointer bn(BN_new());
      CHECK_NOT_NULL(bn.get());
      CHECK(BN_set_word(bn.get(), exponent_));
      // EVP_CTX acceps ownership of bn on success.
      if (EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx.get(), bn.get()) <= 0)
        return false;
      bn.release();
    }

    return true;
  }

 private:
  const unsigned int modulus_bits_;
  const unsigned int exponent_;
};

class RSAPSSKeyPairGenerationConfig : public RSAKeyPairGenerationConfig {
 public:
  RSAPSSKeyPairGenerationConfig(unsigned int modulus_bits,
                                unsigned int exponent,
                                const EVP_MD* md,
                                const EVP_MD* mgf1_md,
                                int saltlen)
    : RSAKeyPairGenerationConfig(modulus_bits, exponent),
      md_(md), mgf1_md_(mgf1_md), saltlen_(saltlen) {}

  EVPKeyCtxPointer Setup() override {
    return EVPKeyCtxPointer(EVP_PKEY_CTX_new_id(EVP_PKEY_RSA_PSS, nullptr));
  }

  bool Configure(const EVPKeyCtxPointer& ctx) override {
    if (!RSAKeyPairGenerationConfig::Configure(ctx))
      return false;

    if (md_ != nullptr) {
      if (EVP_PKEY_CTX_set_rsa_pss_keygen_md(ctx.get(), md_) <= 0)
        return false;
    }

    if (mgf1_md_ != nullptr) {
     if (EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(ctx.get(), mgf1_md_) <= 0)
       return false;
    }

    if (saltlen_ >= 0) {
      if (EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(ctx.get(), saltlen_) <= 0)
        return false;
    }

    return true;
  }

 private:
  const EVP_MD* md_;
  const EVP_MD* mgf1_md_;
  const int saltlen_;
};

class DSAKeyPairGenerationConfig : public KeyPairGenerationConfig {
 public:
  DSAKeyPairGenerationConfig(unsigned int modulus_bits, int divisor_bits)
    : modulus_bits_(modulus_bits), divisor_bits_(divisor_bits) {}

  EVPKeyCtxPointer Setup() override {
    EVPKeyCtxPointer param_ctx(EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, nullptr));
    if (!param_ctx)
      return nullptr;

    if (EVP_PKEY_paramgen_init(param_ctx.get()) <= 0)
      return nullptr;

    if (EVP_PKEY_CTX_set_dsa_paramgen_bits(param_ctx.get(), modulus_bits_) <= 0)
      return nullptr;

    if (divisor_bits_ != -1) {
      if (EVP_PKEY_CTX_ctrl(param_ctx.get(), EVP_PKEY_DSA, EVP_PKEY_OP_PARAMGEN,
                            EVP_PKEY_CTRL_DSA_PARAMGEN_Q_BITS, divisor_bits_,
                            nullptr) <= 0) {
        return nullptr;
      }
    }

    EVP_PKEY* raw_params = nullptr;
    if (EVP_PKEY_paramgen(param_ctx.get(), &raw_params) <= 0)
      return nullptr;
    EVPKeyPointer params(raw_params);
    param_ctx.reset();

    EVPKeyCtxPointer key_ctx(EVP_PKEY_CTX_new(params.get(), nullptr));
    return key_ctx;
  }

 private:
  const unsigned int modulus_bits_;
  const int divisor_bits_;
};

class ECKeyPairGenerationConfig : public KeyPairGenerationConfig {
 public:
  ECKeyPairGenerationConfig(int curve_nid, int param_encoding)
    : curve_nid_(curve_nid), param_encoding_(param_encoding) {}

  EVPKeyCtxPointer Setup() override {
    EVPKeyCtxPointer param_ctx(EVP_PKEY_CTX_new_id(EVP_PKEY_EC, nullptr));
    if (!param_ctx)
      return nullptr;

    if (EVP_PKEY_paramgen_init(param_ctx.get()) <= 0)
      return nullptr;

    if (EVP_PKEY_CTX_set_ec_paramgen_curve_nid(param_ctx.get(),
                                               curve_nid_) <= 0)
      return nullptr;

    if (EVP_PKEY_CTX_set_ec_param_enc(param_ctx.get(), param_encoding_) <= 0)
      return nullptr;

    EVP_PKEY* raw_params = nullptr;
    if (EVP_PKEY_paramgen(param_ctx.get(), &raw_params) <= 0)
      return nullptr;
    EVPKeyPointer params(raw_params);
    param_ctx.reset();

    EVPKeyCtxPointer key_ctx(EVP_PKEY_CTX_new(params.get(), nullptr));
    return key_ctx;
  }

 private:
  const int curve_nid_;
  const int param_encoding_;
};

class NidKeyPairGenerationConfig : public KeyPairGenerationConfig {
 public:
  explicit NidKeyPairGenerationConfig(int id) : id_(id) {}

  EVPKeyCtxPointer Setup() override {
    return EVPKeyCtxPointer(EVP_PKEY_CTX_new_id(id_, nullptr));
  }

 private:
  const int id_;
};

// TODO(tniessen): Use std::variant instead.
// Diffie-Hellman can either generate keys using a fixed prime, or by first
// generating a random prime of a given size (in bits). Only one of both options
// may be specified.
struct PrimeInfo {
  BignumPointer fixed_value_;
  unsigned int prime_size_;
};

class DHKeyPairGenerationConfig : public KeyPairGenerationConfig {
 public:
  explicit DHKeyPairGenerationConfig(PrimeInfo&& prime_info,
                                     unsigned int generator)
      : prime_info_(std::move(prime_info)),
        generator_(generator) {}

  EVPKeyCtxPointer Setup() override {
    EVPKeyPointer params;
    if (prime_info_.fixed_value_) {
      DHPointer dh(DH_new());
      if (!dh)
        return nullptr;

      BIGNUM* prime = prime_info_.fixed_value_.get();
      BignumPointer bn_g(BN_new());
      if (!BN_set_word(bn_g.get(), generator_) ||
          !DH_set0_pqg(dh.get(), prime, nullptr, bn_g.get()))
        return nullptr;

      prime_info_.fixed_value_.release();
      bn_g.release();

      params = EVPKeyPointer(EVP_PKEY_new());
      CHECK(params);
      EVP_PKEY_assign_DH(params.get(), dh.release());
    } else {
      EVPKeyCtxPointer param_ctx(EVP_PKEY_CTX_new_id(EVP_PKEY_DH, nullptr));
      if (!param_ctx)
        return nullptr;

      if (EVP_PKEY_paramgen_init(param_ctx.get()) <= 0)
        return nullptr;

      if (EVP_PKEY_CTX_set_dh_paramgen_prime_len(param_ctx.get(),
                                                 prime_info_.prime_size_) <= 0)
        return nullptr;

      if (EVP_PKEY_CTX_set_dh_paramgen_generator(param_ctx.get(),
                                                 generator_) <= 0)
        return nullptr;

      EVP_PKEY* raw_params = nullptr;
      if (EVP_PKEY_paramgen(param_ctx.get(), &raw_params) <= 0)
        return nullptr;
      params = EVPKeyPointer(raw_params);
    }

    return EVPKeyCtxPointer(EVP_PKEY_CTX_new(params.get(), nullptr));
  }

 private:
  PrimeInfo prime_info_;
  unsigned int generator_;
};

class GenerateKeyPairJob : public CryptoJob {
 public:
  GenerateKeyPairJob(Environment* env,
                     std::unique_ptr<KeyPairGenerationConfig> config,
                     PublicKeyEncodingConfig public_key_encoding,
                     PrivateKeyEncodingConfig&& private_key_encoding)
    : CryptoJob(env),
    config_(std::move(config)),
    public_key_encoding_(public_key_encoding),
    private_key_encoding_(std::forward<PrivateKeyEncodingConfig>(
        private_key_encoding)),
    pkey_(nullptr) {}

  inline void DoThreadPoolWork() override {
    if (!GenerateKey())
      errors_.Capture();
  }

  inline bool GenerateKey() {
    // Make sure that the CSPRNG is properly seeded so the results are secure.
    CheckEntropy();

    // Create the key generation context.
    EVPKeyCtxPointer ctx = config_->Setup();
    if (!ctx)
      return false;

    // Initialize key generation.
    if (EVP_PKEY_keygen_init(ctx.get()) <= 0)
      return false;

    // Configure key generation.
    if (!config_->Configure(ctx))
      return false;

    // Generate the key.
    EVP_PKEY* pkey = nullptr;
    if (EVP_PKEY_keygen(ctx.get(), &pkey) != 1)
      return false;
    pkey_ = ManagedEVPPKey(EVPKeyPointer(pkey));
    return true;
  }

  inline void AfterThreadPoolWork() override {
    Local<Value> args[3];
    ToResult(&args[0], &args[1], &args[2]);
    async_wrap->MakeCallback(env()->ondone_string(), 3, args);
  }

  inline void ToResult(Local<Value>* err,
                       Local<Value>* pubkey,
                       Local<Value>* privkey) {
    if (pkey_ && EncodeKeys(pubkey, privkey)) {
      CHECK(errors_.empty());
      *err = Undefined(env()->isolate());
    } else {
      if (errors_.empty())
        errors_.Capture();
      CHECK(!errors_.empty());
      *err = errors_.ToException(env()).ToLocalChecked();
      *pubkey = Undefined(env()->isolate());
      *privkey = Undefined(env()->isolate());
    }
  }

  inline bool EncodeKeys(Local<Value>* pubkey, Local<Value>* privkey) {
    // Encode the public key.
    if (public_key_encoding_.output_key_object_) {
      // Note that this has the downside of containing sensitive data of the
      // private key.
      if (!KeyObject::Create(env(), kKeyTypePublic, pkey_).ToLocal(pubkey))
        return false;
    } else {
      if (!WritePublicKey(env(), pkey_.get(), public_key_encoding_)
               .ToLocal(pubkey))
        return false;
    }

    // Now do the same for the private key.
    if (private_key_encoding_.output_key_object_) {
      if (!KeyObject::Create(env(), kKeyTypePrivate, pkey_)
              .ToLocal(privkey))
        return false;
    } else {
      if (!WritePrivateKey(env(), pkey_.get(), private_key_encoding_)
               .ToLocal(privkey))
        return false;
    }

    return true;
  }

 private:
  CryptoErrorVector errors_;
  std::unique_ptr<KeyPairGenerationConfig> config_;
  PublicKeyEncodingConfig public_key_encoding_;
  PrivateKeyEncodingConfig private_key_encoding_;
  ManagedEVPPKey pkey_;
};

void GenerateKeyPair(const FunctionCallbackInfo<Value>& args,
                     unsigned int offset,
                     std::unique_ptr<KeyPairGenerationConfig> config) {
  Environment* env = Environment::GetCurrent(args);

  PublicKeyEncodingConfig public_key_encoding =
      GetPublicKeyEncodingFromJs(args, &offset, kKeyContextGenerate);
  NonCopyableMaybe<PrivateKeyEncodingConfig> private_key_encoding =
      GetPrivateKeyEncodingFromJs(args, &offset, kKeyContextGenerate);

  if (private_key_encoding.IsEmpty())
    return;

  std::unique_ptr<GenerateKeyPairJob> job(
      new GenerateKeyPairJob(env, std::move(config), public_key_encoding,
                             private_key_encoding.Release()));
  if (args[offset]->IsObject())
    return GenerateKeyPairJob::Run(std::move(job), args[offset]);
  env->PrintSyncTrace();
  job->DoThreadPoolWork();
  Local<Value> err, pubkey, privkey;
  job->ToResult(&err, &pubkey, &privkey);

  Local<Value> ret[] = { err, pubkey, privkey };
  args.GetReturnValue().Set(Array::New(env->isolate(), ret, arraysize(ret)));
}

void GenerateKeyPairRSA(const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsUint32());
  const uint32_t modulus_bits = args[0].As<Uint32>()->Value();
  CHECK(args[1]->IsUint32());
  const uint32_t exponent = args[1].As<Uint32>()->Value();
  std::unique_ptr<KeyPairGenerationConfig> config(
      new RSAKeyPairGenerationConfig(modulus_bits, exponent));
  GenerateKeyPair(args, 2, std::move(config));
}

void GenerateKeyPairRSAPSS(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  CHECK(args[0]->IsUint32());
  const uint32_t modulus_bits = args[0].As<Uint32>()->Value();
  CHECK(args[1]->IsUint32());
  const uint32_t exponent = args[1].As<Uint32>()->Value();

  const EVP_MD* md = nullptr;
  if (!args[2]->IsUndefined()) {
    CHECK(args[2]->IsString());
    String::Utf8Value md_name(env->isolate(), args[2].As<String>());
    md = EVP_get_digestbyname(*md_name);
    if (md == nullptr)
      return env->ThrowTypeError("Digest method not supported");
  }

  const EVP_MD* mgf1_md = nullptr;
  if (!args[3]->IsUndefined()) {
    CHECK(args[3]->IsString());
    String::Utf8Value mgf1_md_name(env->isolate(), args[3].As<String>());
    mgf1_md = EVP_get_digestbyname(*mgf1_md_name);
    if (mgf1_md == nullptr)
      return env->ThrowTypeError("Digest method not supported");
  }

  int saltlen = -1;
  if (!args[4]->IsUndefined()) {
    CHECK(args[4]->IsInt32());
    saltlen = args[4].As<Int32>()->Value();
  }

  std::unique_ptr<KeyPairGenerationConfig> config(
      new RSAPSSKeyPairGenerationConfig(modulus_bits, exponent,
                                        md, mgf1_md, saltlen));
  GenerateKeyPair(args, 5, std::move(config));
}

void GenerateKeyPairDSA(const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsUint32());
  const uint32_t modulus_bits = args[0].As<Uint32>()->Value();
  CHECK(args[1]->IsInt32());
  const int32_t divisor_bits = args[1].As<Int32>()->Value();
  std::unique_ptr<KeyPairGenerationConfig> config(
      new DSAKeyPairGenerationConfig(modulus_bits, divisor_bits));
  GenerateKeyPair(args, 2, std::move(config));
}

void GenerateKeyPairEC(const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsString());
  String::Utf8Value curve_name(args.GetIsolate(), args[0].As<String>());
  int curve_nid = EC_curve_nist2nid(*curve_name);
  if (curve_nid == NID_undef)
    curve_nid = OBJ_sn2nid(*curve_name);
  // TODO(tniessen): Should we also support OBJ_ln2nid? (Other APIs don't.)
  if (curve_nid == NID_undef) {
    Environment* env = Environment::GetCurrent(args);
    return env->ThrowTypeError("Invalid ECDH curve name");
  }
  CHECK(args[1]->IsUint32());
  const uint32_t param_encoding = args[1].As<Int32>()->Value();
  CHECK(param_encoding == OPENSSL_EC_NAMED_CURVE ||
        param_encoding == OPENSSL_EC_EXPLICIT_CURVE);
  std::unique_ptr<KeyPairGenerationConfig> config(
      new ECKeyPairGenerationConfig(curve_nid, param_encoding));
  GenerateKeyPair(args, 2, std::move(config));
}

void GenerateKeyPairNid(const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsInt32());
  const int id = args[0].As<Int32>()->Value();
  std::unique_ptr<KeyPairGenerationConfig> config(
      new NidKeyPairGenerationConfig(id));
  GenerateKeyPair(args, 1, std::move(config));
}

void GenerateKeyPairDH(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  PrimeInfo prime_info = {};
  unsigned int generator;
  if (args[0]->IsString()) {
    String::Utf8Value group_name(args.GetIsolate(), args[0].As<String>());
    const modp_group* group = FindDiffieHellmanGroup(*group_name);
    if (group == nullptr)
      return THROW_ERR_CRYPTO_UNKNOWN_DH_GROUP(env);

    prime_info.fixed_value_ = BignumPointer(
        BN_bin2bn(reinterpret_cast<const unsigned char*>(group->prime),
                  group->prime_size, nullptr));
    generator = group->gen;
  } else {
    if (args[0]->IsInt32()) {
      prime_info.prime_size_ = args[0].As<Int32>()->Value();
    } else {
      ArrayBufferViewContents<unsigned char> input(args[0]);
      prime_info.fixed_value_ = BignumPointer(
          BN_bin2bn(input.data(), input.length(), nullptr));
    }

    CHECK(args[1]->IsInt32());
    generator = args[1].As<Int32>()->Value();
  }

  std::unique_ptr<KeyPairGenerationConfig> config(
      new DHKeyPairGenerationConfig(std::move(prime_info), generator));
  GenerateKeyPair(args, 2, std::move(config));
}


void GetSSLCiphers(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  SSLCtxPointer ctx(SSL_CTX_new(TLS_method()));
  CHECK(ctx);

  SSLPointer ssl(SSL_new(ctx.get()));
  CHECK(ssl);

  STACK_OF(SSL_CIPHER)* ciphers = SSL_get_ciphers(ssl.get());
  // TLSv1.3 ciphers aren't listed by EVP. There are only 5, we could just
  // document them, but since there are only 5, easier to just add them manually
  // and not have to explain their absence in the API docs. They are lower-cased
  // because the docs say they will be.
  static const char* TLS13_CIPHERS[] = {
    "tls_aes_256_gcm_sha384",
    "tls_chacha20_poly1305_sha256",
    "tls_aes_128_gcm_sha256",
    "tls_aes_128_ccm_8_sha256",
    "tls_aes_128_ccm_sha256"
  };

  const int n = sk_SSL_CIPHER_num(ciphers);
  std::vector<Local<Value>> arr(n + arraysize(TLS13_CIPHERS));

  for (int i = 0; i < n; ++i) {
    const SSL_CIPHER* cipher = sk_SSL_CIPHER_value(ciphers, i);
    arr[i] = OneByteString(env->isolate(), SSL_CIPHER_get_name(cipher));
  }

  for (unsigned i = 0; i < arraysize(TLS13_CIPHERS); ++i) {
    const char* name = TLS13_CIPHERS[i];
    arr[n + i] = OneByteString(env->isolate(), name);
  }

  args.GetReturnValue().Set(Array::New(env->isolate(), arr.data(), arr.size()));
}


class CipherPushContext {
 public:
  explicit CipherPushContext(Environment* env)
      : arr(Array::New(env->isolate())),
        env_(env) {
  }

  inline Environment* env() const { return env_; }

  Local<Array> arr;

 private:
  Environment* env_;
};


template <class TypeName>
static void array_push_back(const TypeName* md,
                            const char* from,
                            const char* to,
                            void* arg) {
  CipherPushContext* ctx = static_cast<CipherPushContext*>(arg);
  ctx->arr->Set(ctx->env()->context(),
                ctx->arr->Length(),
                OneByteString(ctx->env()->isolate(), from)).Check();
}


void GetCiphers(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CipherPushContext ctx(env);
  EVP_CIPHER_do_all_sorted(array_push_back<EVP_CIPHER>, &ctx);
  args.GetReturnValue().Set(ctx.arr);
}


void GetHashes(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CipherPushContext ctx(env);
  EVP_MD_do_all_sorted(array_push_back<EVP_MD>, &ctx);
  args.GetReturnValue().Set(ctx.arr);
}


void GetCurves(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  const size_t num_curves = EC_get_builtin_curves(nullptr, 0);

  if (num_curves) {
    std::vector<EC_builtin_curve> curves(num_curves);

    if (EC_get_builtin_curves(curves.data(), num_curves)) {
      std::vector<Local<Value>> arr(num_curves);

      for (size_t i = 0; i < num_curves; i++)
        arr[i] = OneByteString(env->isolate(), OBJ_nid2sn(curves[i].nid));

      args.GetReturnValue().Set(
          Array::New(env->isolate(), arr.data(), arr.size()));
      return;
    }
  }

  args.GetReturnValue().Set(Array::New(env->isolate()));
}


bool VerifySpkac(const char* data, unsigned int len) {
  NetscapeSPKIPointer spki(NETSCAPE_SPKI_b64_decode(data, len));
  if (!spki)
    return false;

  EVPKeyPointer pkey(X509_PUBKEY_get(spki->spkac->pubkey));
  if (!pkey)
    return false;

  return NETSCAPE_SPKI_verify(spki.get(), pkey.get()) > 0;
}


void VerifySpkac(const FunctionCallbackInfo<Value>& args) {
  bool verify_result = false;

  ArrayBufferViewContents<char> input(args[0]);
  if (input.length() == 0)
    return args.GetReturnValue().SetEmptyString();

  CHECK_NOT_NULL(input.data());

  verify_result = VerifySpkac(input.data(), input.length());

  args.GetReturnValue().Set(verify_result);
}

AllocatedBuffer ExportPublicKey(Environment* env,
                                const char* data,
                                int len,
                                size_t* size) {
  BIOPointer bio(BIO_new(BIO_s_mem()));
  if (!bio) return AllocatedBuffer();

  NetscapeSPKIPointer spki(NETSCAPE_SPKI_b64_decode(data, len));
  if (!spki) return AllocatedBuffer();

  EVPKeyPointer pkey(NETSCAPE_SPKI_get_pubkey(spki.get()));
  if (!pkey) return AllocatedBuffer();

  if (PEM_write_bio_PUBKEY(bio.get(), pkey.get()) <= 0)
    return AllocatedBuffer();

  BUF_MEM* ptr;
  BIO_get_mem_ptr(bio.get(), &ptr);

  *size = ptr->length;
  AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, *size);
  memcpy(buf.data(), ptr->data, *size);

  return buf;
}


void ExportPublicKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  ArrayBufferViewContents<char> input(args[0]);
  if (input.length() == 0)
    return args.GetReturnValue().SetEmptyString();

  CHECK_NOT_NULL(input.data());

  size_t pkey_size;
  AllocatedBuffer pkey =
      ExportPublicKey(env, input.data(), input.length(), &pkey_size);
  if (pkey.data() == nullptr)
    return args.GetReturnValue().SetEmptyString();

  args.GetReturnValue().Set(pkey.ToBuffer().ToLocalChecked());
}


OpenSSLBuffer ExportChallenge(const char* data, int len) {
  NetscapeSPKIPointer sp(NETSCAPE_SPKI_b64_decode(data, len));
  if (!sp)
    return nullptr;

  unsigned char* buf = nullptr;
  ASN1_STRING_to_UTF8(&buf, sp->spkac->challenge);

  return OpenSSLBuffer(reinterpret_cast<char*>(buf));
}


void ExportChallenge(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  ArrayBufferViewContents<char> input(args[0]);
  if (input.length() == 0)
    return args.GetReturnValue().SetEmptyString();

  OpenSSLBuffer cert = ExportChallenge(input.data(), input.length());
  if (!cert)
    return args.GetReturnValue().SetEmptyString();

  Local<Value> outString =
      Encode(env->isolate(), cert.get(), strlen(cert.get()), BUFFER);

  args.GetReturnValue().Set(outString);
}


// Convert the input public key to compressed, uncompressed, or hybrid formats.
void ConvertKey(const FunctionCallbackInfo<Value>& args) {
  MarkPopErrorOnReturn mark_pop_error_on_return;
  Environment* env = Environment::GetCurrent(args);

  CHECK_EQ(args.Length(), 3);
  CHECK(args[0]->IsArrayBufferView());

  size_t len = args[0].As<ArrayBufferView>()->ByteLength();
  if (len == 0)
    return args.GetReturnValue().SetEmptyString();

  node::Utf8Value curve(env->isolate(), args[1]);

  int nid = OBJ_sn2nid(*curve);
  if (nid == NID_undef)
    return env->ThrowTypeError("Invalid ECDH curve name");

  ECGroupPointer group(
      EC_GROUP_new_by_curve_name(nid));
  if (group == nullptr)
    return env->ThrowError("Failed to get EC_GROUP");

  ECPointPointer pub(
      ECDH::BufferToPoint(env,
                          group.get(),
                          args[0]));

  if (pub == nullptr)
    return env->ThrowError("Failed to convert Buffer to EC_POINT");

  CHECK(args[2]->IsUint32());
  uint32_t val = args[2].As<Uint32>()->Value();
  point_conversion_form_t form = static_cast<point_conversion_form_t>(val);

  const char* error;
  Local<Object> buf;
  if (!ECPointToBuffer(env, group.get(), pub.get(), form, &error).ToLocal(&buf))
    return env->ThrowError(error);
  args.GetReturnValue().Set(buf);
}

AllocatedBuffer StatelessDiffieHellman(Environment* env, ManagedEVPPKey our_key,
                                       ManagedEVPPKey their_key) {
  size_t out_size;

  EVPKeyCtxPointer ctx(EVP_PKEY_CTX_new(our_key.get(), nullptr));
  if (!ctx ||
      EVP_PKEY_derive_init(ctx.get()) <= 0 ||
      EVP_PKEY_derive_set_peer(ctx.get(), their_key.get()) <= 0 ||
      EVP_PKEY_derive(ctx.get(), nullptr, &out_size) <= 0)
    return AllocatedBuffer();

  AllocatedBuffer result = AllocatedBuffer::AllocateManaged(env, out_size);
  CHECK_NOT_NULL(result.data());

  unsigned char* data = reinterpret_cast<unsigned char*>(result.data());
  if (EVP_PKEY_derive(ctx.get(), data, &out_size) <= 0)
    return AllocatedBuffer();

  ZeroPadDiffieHellmanSecret(out_size, &result);
  return result;
}

void StatelessDiffieHellman(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  CHECK(args[0]->IsObject() && args[1]->IsObject());
  KeyObject* our_key_object;
  ASSIGN_OR_RETURN_UNWRAP(&our_key_object, args[0].As<Object>());
  CHECK_EQ(our_key_object->GetKeyType(), kKeyTypePrivate);
  KeyObject* their_key_object;
  ASSIGN_OR_RETURN_UNWRAP(&their_key_object, args[1].As<Object>());
  CHECK_NE(their_key_object->GetKeyType(), kKeyTypeSecret);

  ManagedEVPPKey our_key = our_key_object->GetAsymmetricKey();
  ManagedEVPPKey their_key = their_key_object->GetAsymmetricKey();

  AllocatedBuffer out = StatelessDiffieHellman(env, our_key, their_key);
  if (out.size() == 0)
    return ThrowCryptoError(env, ERR_get_error(), "diffieHellman failed");

  args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked());
}


void TimingSafeEqual(const FunctionCallbackInfo<Value>& args) {
  ArrayBufferViewContents<char> buf1(args[0]);
  ArrayBufferViewContents<char> buf2(args[1]);

  CHECK_EQ(buf1.length(), buf2.length());

  return args.GetReturnValue().Set(
      CRYPTO_memcmp(buf1.data(), buf2.data(), buf1.length()) == 0);
}

void InitCryptoOnce() {
#ifndef OPENSSL_IS_BORINGSSL
  OPENSSL_INIT_SETTINGS* settings = OPENSSL_INIT_new();

  // --openssl-config=...
  if (!per_process::cli_options->openssl_config.empty()) {
    const char* conf = per_process::cli_options->openssl_config.c_str();
    OPENSSL_INIT_set_config_filename(settings, conf);
  }

  OPENSSL_init_ssl(0, settings);
  OPENSSL_INIT_free(settings);
  settings = nullptr;
#endif

#ifdef NODE_FIPS_MODE
  /* Override FIPS settings in cnf file, if needed. */
  unsigned long err = 0;  // NOLINT(runtime/int)
  if (per_process::cli_options->enable_fips_crypto ||
      per_process::cli_options->force_fips_crypto) {
    if (0 == FIPS_mode() && !FIPS_mode_set(1)) {
      err = ERR_get_error();
    }
  }
  if (0 != err) {
    fprintf(stderr,
            "openssl fips failed: %s\n",
            ERR_error_string(err, nullptr));
    UNREACHABLE();
  }
#endif  // NODE_FIPS_MODE


  // Turn off compression. Saves memory and protects against CRIME attacks.
  // No-op with OPENSSL_NO_COMP builds of OpenSSL.
  sk_SSL_COMP_zero(SSL_COMP_get_compression_methods());

#ifndef OPENSSL_NO_ENGINE
  ERR_load_ENGINE_strings();
  ENGINE_load_builtin_engines();
#endif  // !OPENSSL_NO_ENGINE

  NodeBIO::GetMethod();
}


#ifndef OPENSSL_NO_ENGINE
void SetEngine(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CHECK(args.Length() >= 2 && args[0]->IsString());
  uint32_t flags;
  if (!args[1]->Uint32Value(env->context()).To(&flags)) return;

  ClearErrorOnReturn clear_error_on_return;

  // Load engine.
  const node::Utf8Value engine_id(env->isolate(), args[0]);
  char errmsg[1024];
  ENGINE* engine = LoadEngineById(*engine_id, &errmsg);

  if (engine == nullptr) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    if (err == 0)
      return args.GetReturnValue().Set(false);
    return ThrowCryptoError(env, err);
  }

  int r = ENGINE_set_default(engine, flags);
  ENGINE_free(engine);
  if (r == 0)
    return ThrowCryptoError(env, ERR_get_error());

  args.GetReturnValue().Set(true);
}
#endif  // !OPENSSL_NO_ENGINE

#ifdef NODE_FIPS_MODE
void GetFipsCrypto(const FunctionCallbackInfo<Value>& args) {
  args.GetReturnValue().Set(FIPS_mode() ? 1 : 0);
}

void SetFipsCrypto(const FunctionCallbackInfo<Value>& args) {
  CHECK(!per_process::cli_options->force_fips_crypto);
  Environment* env = Environment::GetCurrent(args);
  const bool enabled = FIPS_mode();
  bool enable = args[0]->BooleanValue(env->isolate());

  if (enable == enabled)
    return;  // No action needed.
  if (!FIPS_mode_set(enable)) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    return ThrowCryptoError(env, err);
  }
}
#endif /* NODE_FIPS_MODE */


void Initialize(Local<Object> target,
                Local<Value> unused,
                Local<Context> context,
                void* priv) {
  static uv_once_t init_once = UV_ONCE_INIT;
  uv_once(&init_once, InitCryptoOnce);

  Environment* env = Environment::GetCurrent(context);
  SecureContext::Initialize(env, target);
  env->set_crypto_key_object_constructor(KeyObject::Initialize(env, target));
  CipherBase::Initialize(env, target);
  DiffieHellman::Initialize(env, target);
  ECDH::Initialize(env, target);
  Hmac::Initialize(env, target);
  Hash::Initialize(env, target);
  Sign::Initialize(env, target);
  Verify::Initialize(env, target);

  env->SetMethodNoSideEffect(target, "certVerifySpkac", VerifySpkac);
  env->SetMethodNoSideEffect(target, "certExportPublicKey", ExportPublicKey);
  env->SetMethodNoSideEffect(target, "certExportChallenge", ExportChallenge);
  env->SetMethodNoSideEffect(target, "getRootCertificates",
                             GetRootCertificates);
  // Exposed for testing purposes only.
  env->SetMethodNoSideEffect(target, "isExtraRootCertsFileLoaded",
                             IsExtraRootCertsFileLoaded);

  env->SetMethodNoSideEffect(target, "ECDHConvertKey", ConvertKey);
#ifndef OPENSSL_NO_ENGINE
  env->SetMethod(target, "setEngine", SetEngine);
#endif  // !OPENSSL_NO_ENGINE

#ifdef NODE_FIPS_MODE
  env->SetMethodNoSideEffect(target, "getFipsCrypto", GetFipsCrypto);
  env->SetMethod(target, "setFipsCrypto", SetFipsCrypto);
#endif

  env->SetMethod(target, "pbkdf2", PBKDF2);
  env->SetMethod(target, "generateKeyPairRSA", GenerateKeyPairRSA);
  env->SetMethod(target, "generateKeyPairRSAPSS", GenerateKeyPairRSAPSS);
  env->SetMethod(target, "generateKeyPairDSA", GenerateKeyPairDSA);
  env->SetMethod(target, "generateKeyPairEC", GenerateKeyPairEC);
  env->SetMethod(target, "generateKeyPairNid", GenerateKeyPairNid);
  env->SetMethod(target, "generateKeyPairDH", GenerateKeyPairDH);
  NODE_DEFINE_CONSTANT(target, EVP_PKEY_ED25519);
  NODE_DEFINE_CONSTANT(target, EVP_PKEY_ED448);
  NODE_DEFINE_CONSTANT(target, EVP_PKEY_X25519);
  NODE_DEFINE_CONSTANT(target, EVP_PKEY_X448);
  NODE_DEFINE_CONSTANT(target, OPENSSL_EC_NAMED_CURVE);
  NODE_DEFINE_CONSTANT(target, OPENSSL_EC_EXPLICIT_CURVE);
  NODE_DEFINE_CONSTANT(target, kKeyEncodingPKCS1);
  NODE_DEFINE_CONSTANT(target, kKeyEncodingPKCS8);
  NODE_DEFINE_CONSTANT(target, kKeyEncodingSPKI);
  NODE_DEFINE_CONSTANT(target, kKeyEncodingSEC1);
  NODE_DEFINE_CONSTANT(target, kKeyFormatDER);
  NODE_DEFINE_CONSTANT(target, kKeyFormatPEM);
  NODE_DEFINE_CONSTANT(target, kKeyTypeSecret);
  NODE_DEFINE_CONSTANT(target, kKeyTypePublic);
  NODE_DEFINE_CONSTANT(target, kKeyTypePrivate);
  NODE_DEFINE_CONSTANT(target, kSigEncDER);
  NODE_DEFINE_CONSTANT(target, kSigEncP1363);
  env->SetMethodNoSideEffect(target, "statelessDH", StatelessDiffieHellman);
  env->SetMethod(target, "randomBytes", RandomBytes);
  env->SetMethod(target, "signOneShot", SignOneShot);
  env->SetMethod(target, "verifyOneShot", VerifyOneShot);
  env->SetMethodNoSideEffect(target, "timingSafeEqual", TimingSafeEqual);
  env->SetMethodNoSideEffect(target, "getSSLCiphers", GetSSLCiphers);
  env->SetMethodNoSideEffect(target, "getCiphers", GetCiphers);
  env->SetMethodNoSideEffect(target, "getHashes", GetHashes);
  env->SetMethodNoSideEffect(target, "getCurves", GetCurves);
  env->SetMethod(target, "publicEncrypt",
                 PublicKeyCipher::Cipher<PublicKeyCipher::kPublic,
                                         EVP_PKEY_encrypt_init,
                                         EVP_PKEY_encrypt>);
  env->SetMethod(target, "privateDecrypt",
                 PublicKeyCipher::Cipher<PublicKeyCipher::kPrivate,
                                         EVP_PKEY_decrypt_init,
                                         EVP_PKEY_decrypt>);
  env->SetMethod(target, "privateEncrypt",
                 PublicKeyCipher::Cipher<PublicKeyCipher::kPrivate,
                                         EVP_PKEY_sign_init,
                                         EVP_PKEY_sign>);
  env->SetMethod(target, "publicDecrypt",
                 PublicKeyCipher::Cipher<PublicKeyCipher::kPublic,
                                         EVP_PKEY_verify_recover_init,
                                         EVP_PKEY_verify_recover>);
#ifndef OPENSSL_NO_SCRYPT
  env->SetMethod(target, "scrypt", Scrypt);
#endif  // OPENSSL_NO_SCRYPT
}

}  // namespace crypto
}  // namespace node

NODE_MODULE_CONTEXT_AWARE_INTERNAL(crypto, node::crypto::Initialize)