1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
|
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef SRC_STRING_SEARCH_H_
#define SRC_STRING_SEARCH_H_
#if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
#include "util.h"
#include <cstring>
#include <algorithm>
namespace node {
namespace stringsearch {
template <typename T>
class Vector {
public:
Vector(T* data, size_t length, bool isForward)
: start_(data), length_(length), is_forward_(isForward) {
CHECK(length > 0 && data != nullptr);
}
// Returns the start of the memory range.
// For vector v this is NOT necessarily &v[0], see forward().
const T* start() const { return start_; }
// Returns the length of the vector, in characters.
size_t length() const { return length_; }
// Returns true if the Vector is front-to-back, false if back-to-front.
// In the latter case, v[0] corresponds to the *end* of the memory range.
size_t forward() const { return is_forward_; }
// Access individual vector elements - checks bounds in debug mode.
T& operator[](size_t index) const {
DCHECK_LT(index, length_);
return start_[is_forward_ ? index : (length_ - index - 1)];
}
private:
T* start_;
size_t length_;
bool is_forward_;
};
//---------------------------------------------------------------------
// String Search object.
//---------------------------------------------------------------------
// Class holding constants and methods that apply to all string search variants,
// independently of subject and pattern char size.
class StringSearchBase {
protected:
// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
// limit, we can fix the size of tables. For a needle longer than this limit,
// search will not be optimal, since we only build tables for a suffix
// of the string, but it is a safe approximation.
static const int kBMMaxShift = 250;
// Reduce alphabet to this size.
// One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size
// proportional to the input alphabet. We reduce the alphabet size by
// equating input characters modulo a smaller alphabet size. This gives
// a potentially less efficient searching, but is a safe approximation.
// For needles using only characters in the same Unicode 256-code point page,
// there is no search speed degradation.
static const int kLatin1AlphabetSize = 256;
static const int kUC16AlphabetSize = 256;
// Bad-char shift table stored in the state. It's length is the alphabet size.
// For patterns below this length, the skip length of Boyer-Moore is too short
// to compensate for the algorithmic overhead compared to simple brute force.
static const int kBMMinPatternLength = 8;
// Store for the BoyerMoore(Horspool) bad char shift table.
int bad_char_shift_table_[kUC16AlphabetSize];
// Store for the BoyerMoore good suffix shift table.
int good_suffix_shift_table_[kBMMaxShift + 1];
// Table used temporarily while building the BoyerMoore good suffix
// shift table.
int suffix_table_[kBMMaxShift + 1];
};
template <typename Char>
class StringSearch : private StringSearchBase {
public:
typedef stringsearch::Vector<const Char> Vector;
explicit StringSearch(Vector pattern)
: pattern_(pattern), start_(0) {
if (pattern.length() >= kBMMaxShift) {
start_ = pattern.length() - kBMMaxShift;
}
size_t pattern_length = pattern_.length();
CHECK_GT(pattern_length, 0);
if (pattern_length < kBMMinPatternLength) {
if (pattern_length == 1) {
strategy_ = &StringSearch::SingleCharSearch;
return;
}
strategy_ = &StringSearch::LinearSearch;
return;
}
strategy_ = &StringSearch::InitialSearch;
}
size_t Search(Vector subject, size_t index) {
return (this->*strategy_)(subject, index);
}
static inline int AlphabetSize() {
if (sizeof(Char) == 1) {
// Latin1 needle.
return kLatin1AlphabetSize;
} else {
// UC16 needle.
return kUC16AlphabetSize;
}
static_assert(sizeof(Char) == sizeof(uint8_t) ||
sizeof(Char) == sizeof(uint16_t),
"sizeof(Char) == sizeof(uint16_t) || sizeof(uint8_t)");
}
private:
typedef size_t (StringSearch::*SearchFunction)(Vector, size_t);
size_t SingleCharSearch(Vector subject, size_t start_index);
size_t LinearSearch(Vector subject, size_t start_index);
size_t InitialSearch(Vector subject, size_t start_index);
size_t BoyerMooreHorspoolSearch(Vector subject, size_t start_index);
size_t BoyerMooreSearch(Vector subject, size_t start_index);
void PopulateBoyerMooreHorspoolTable();
void PopulateBoyerMooreTable();
static inline int CharOccurrence(int* bad_char_occurrence,
Char char_code) {
if (sizeof(Char) == 1) {
return bad_char_occurrence[static_cast<int>(char_code)];
}
// Both pattern and subject are UC16. Reduce character to equivalence class.
int equiv_class = char_code % kUC16AlphabetSize;
return bad_char_occurrence[equiv_class];
}
// The pattern to search for.
Vector pattern_;
// Pointer to implementation of the search.
SearchFunction strategy_;
// Cache value of Max(0, pattern_length() - kBMMaxShift)
size_t start_;
};
template <typename T, typename U>
inline T AlignDown(T value, U alignment) {
return reinterpret_cast<T>(
(reinterpret_cast<uintptr_t>(value) & ~(alignment - 1)));
}
inline uint8_t GetHighestValueByte(uint16_t character) {
return std::max(static_cast<uint8_t>(character & 0xFF),
static_cast<uint8_t>(character >> 8));
}
inline uint8_t GetHighestValueByte(uint8_t character) { return character; }
// Searches for a byte value in a memory buffer, back to front.
// Uses memrchr(3) on systems which support it, for speed.
// Falls back to a vanilla for loop on non-GNU systems such as Windows.
inline const void* MemrchrFill(const void* haystack, uint8_t needle,
size_t haystack_len) {
#ifdef _GNU_SOURCE
return memrchr(haystack, needle, haystack_len);
#else
const uint8_t* haystack8 = static_cast<const uint8_t*>(haystack);
for (size_t i = haystack_len - 1; i != static_cast<size_t>(-1); i--) {
if (haystack8[i] == needle) {
return haystack8 + i;
}
}
return nullptr;
#endif
}
// Finds the first occurrence of *two-byte* character pattern[0] in the string
// `subject`. Does not check that the whole pattern matches.
template <typename Char>
inline size_t FindFirstCharacter(Vector<const Char> pattern,
Vector<const Char> subject, size_t index) {
const Char pattern_first_char = pattern[0];
const size_t max_n = (subject.length() - pattern.length() + 1);
// For speed, search for the more `rare` of the two bytes in pattern[0]
// using memchr / memrchr (which are much faster than a simple for loop).
const uint8_t search_byte = GetHighestValueByte(pattern_first_char);
size_t pos = index;
do {
const size_t bytes_to_search = (max_n - pos) * sizeof(Char);
const void* void_pos;
if (subject.forward()) {
// Assert that bytes_to_search won't overflow
CHECK_LE(pos, max_n);
CHECK_LE(max_n - pos, SIZE_MAX / sizeof(Char));
void_pos = memchr(subject.start() + pos, search_byte, bytes_to_search);
} else {
CHECK_LE(pos, subject.length());
CHECK_LE(subject.length() - pos, SIZE_MAX / sizeof(Char));
void_pos = MemrchrFill(subject.start() + pattern.length() - 1,
search_byte,
bytes_to_search);
}
const Char* char_pos = static_cast<const Char*>(void_pos);
if (char_pos == nullptr)
return subject.length();
// Then, for each match, verify that the full two bytes match pattern[0].
char_pos = AlignDown(char_pos, sizeof(Char));
size_t raw_pos = static_cast<size_t>(char_pos - subject.start());
pos = subject.forward() ? raw_pos : (subject.length() - raw_pos - 1);
if (subject[pos] == pattern_first_char) {
// Match found, hooray.
return pos;
}
// Search byte matched, but the other byte of pattern[0] didn't. Keep going.
} while (++pos < max_n);
return subject.length();
}
// Finds the first occurrence of the byte pattern[0] in string `subject`.
// Does not verify that the whole pattern matches.
template <>
inline size_t FindFirstCharacter(Vector<const uint8_t> pattern,
Vector<const uint8_t> subject,
size_t index) {
const uint8_t pattern_first_char = pattern[0];
const size_t subj_len = subject.length();
const size_t max_n = (subject.length() - pattern.length() + 1);
const void* pos;
if (subject.forward()) {
pos = memchr(subject.start() + index, pattern_first_char, max_n - index);
} else {
pos = MemrchrFill(subject.start() + pattern.length() - 1,
pattern_first_char,
max_n - index);
}
const uint8_t* char_pos = static_cast<const uint8_t*>(pos);
if (char_pos == nullptr) {
return subj_len;
}
size_t raw_pos = static_cast<size_t>(char_pos - subject.start());
return subject.forward() ? raw_pos : (subj_len - raw_pos - 1);
}
//---------------------------------------------------------------------
// Single Character Pattern Search Strategy
//---------------------------------------------------------------------
template <typename Char>
size_t StringSearch<Char>::SingleCharSearch(
Vector subject,
size_t index) {
CHECK_EQ(1, pattern_.length());
return FindFirstCharacter(pattern_, subject, index);
}
//---------------------------------------------------------------------
// Linear Search Strategy
//---------------------------------------------------------------------
// Simple linear search for short patterns. Never bails out.
template <typename Char>
size_t StringSearch<Char>::LinearSearch(
Vector subject,
size_t index) {
CHECK_GT(pattern_.length(), 1);
const size_t n = subject.length() - pattern_.length();
for (size_t i = index; i <= n; i++) {
i = FindFirstCharacter(pattern_, subject, i);
if (i == subject.length())
return subject.length();
CHECK_LE(i, n);
bool matches = true;
for (size_t j = 1; j < pattern_.length(); j++) {
if (pattern_[j] != subject[i + j]) {
matches = false;
break;
}
}
if (matches) {
return i;
}
}
return subject.length();
}
//---------------------------------------------------------------------
// Boyer-Moore string search
//---------------------------------------------------------------------
template <typename Char>
size_t StringSearch<Char>::BoyerMooreSearch(
Vector subject,
size_t start_index) {
const size_t subject_length = subject.length();
const size_t pattern_length = pattern_.length();
// Only preprocess at most kBMMaxShift last characters of pattern.
size_t start = start_;
int* bad_char_occurrence = bad_char_shift_table_;
int* good_suffix_shift = good_suffix_shift_table_ - start_;
Char last_char = pattern_[pattern_length - 1];
size_t index = start_index;
// Continue search from i.
while (index <= subject_length - pattern_length) {
size_t j = pattern_length - 1;
int c;
while (last_char != (c = subject[index + j])) {
int shift = j - CharOccurrence(bad_char_occurrence, c);
index += shift;
if (index > subject_length - pattern_length) {
return subject.length();
}
}
while (pattern_[j] == (c = subject[index + j])) {
if (j == 0) {
return index;
}
j--;
}
if (j < start) {
// we have matched more than our tables allow us to be smart about.
// Fall back on BMH shift.
index += pattern_length - 1 -
CharOccurrence(bad_char_occurrence, last_char);
} else {
int gs_shift = good_suffix_shift[j + 1];
int bc_occ = CharOccurrence(bad_char_occurrence, c);
int shift = j - bc_occ;
if (gs_shift > shift) {
shift = gs_shift;
}
index += shift;
}
}
return subject.length();
}
template <typename Char>
void StringSearch<Char>::PopulateBoyerMooreTable() {
const size_t pattern_length = pattern_.length();
// Only look at the last kBMMaxShift characters of pattern (from start_
// to pattern_length).
const size_t start = start_;
const size_t length = pattern_length - start;
// Biased tables so that we can use pattern indices as table indices,
// even if we only cover the part of the pattern from offset start.
int* shift_table = good_suffix_shift_table_ - start_;
int* suffix_table = suffix_table_ - start_;
// Initialize table.
for (size_t i = start; i < pattern_length; i++) {
shift_table[i] = length;
}
shift_table[pattern_length] = 1;
suffix_table[pattern_length] = pattern_length + 1;
if (pattern_length <= start) {
return;
}
// Find suffixes.
Char last_char = pattern_[pattern_length - 1];
size_t suffix = pattern_length + 1;
{
size_t i = pattern_length;
while (i > start) {
Char c = pattern_[i - 1];
while (suffix <= pattern_length && c != pattern_[suffix - 1]) {
if (static_cast<size_t>(shift_table[suffix]) == length) {
shift_table[suffix] = suffix - i;
}
suffix = suffix_table[suffix];
}
suffix_table[--i] = --suffix;
if (suffix == pattern_length) {
// No suffix to extend, so we check against last_char only.
while ((i > start) && (pattern_[i - 1] != last_char)) {
if (static_cast<size_t>(shift_table[pattern_length]) == length) {
shift_table[pattern_length] = pattern_length - i;
}
suffix_table[--i] = pattern_length;
}
if (i > start) {
suffix_table[--i] = --suffix;
}
}
}
}
// Build shift table using suffixes.
if (suffix < pattern_length) {
for (size_t i = start; i <= pattern_length; i++) {
if (static_cast<size_t>(shift_table[i]) == length) {
shift_table[i] = suffix - start;
}
if (i == suffix) {
suffix = suffix_table[suffix];
}
}
}
}
//---------------------------------------------------------------------
// Boyer-Moore-Horspool string search.
//---------------------------------------------------------------------
template <typename Char>
size_t StringSearch<Char>::BoyerMooreHorspoolSearch(
Vector subject,
size_t start_index) {
const size_t subject_length = subject.length();
const size_t pattern_length = pattern_.length();
int* char_occurrences = bad_char_shift_table_;
int64_t badness = -pattern_length;
// How bad we are doing without a good-suffix table.
Char last_char = pattern_[pattern_length - 1];
int last_char_shift =
pattern_length - 1 -
CharOccurrence(char_occurrences, last_char);
// Perform search
size_t index = start_index; // No matches found prior to this index.
while (index <= subject_length - pattern_length) {
size_t j = pattern_length - 1;
int subject_char;
while (last_char != (subject_char = subject[index + j])) {
int bc_occ = CharOccurrence(char_occurrences, subject_char);
int shift = j - bc_occ;
index += shift;
badness += 1 - shift; // at most zero, so badness cannot increase.
if (index > subject_length - pattern_length) {
return subject_length;
}
}
j--;
while (pattern_[j] == (subject[index + j])) {
if (j == 0) {
return index;
}
j--;
}
index += last_char_shift;
// Badness increases by the number of characters we have
// checked, and decreases by the number of characters we
// can skip by shifting. It's a measure of how we are doing
// compared to reading each character exactly once.
badness += (pattern_length - j) - last_char_shift;
if (badness > 0) {
PopulateBoyerMooreTable();
strategy_ = &StringSearch::BoyerMooreSearch;
return BoyerMooreSearch(subject, index);
}
}
return subject.length();
}
template <typename Char>
void StringSearch<Char>::PopulateBoyerMooreHorspoolTable() {
const size_t pattern_length = pattern_.length();
int* bad_char_occurrence = bad_char_shift_table_;
// Only preprocess at most kBMMaxShift last characters of pattern.
const size_t start = start_;
// Run forwards to populate bad_char_table, so that *last* instance
// of character equivalence class is the one registered.
// Notice: Doesn't include the last character.
const size_t table_size = AlphabetSize();
if (start == 0) {
// All patterns less than kBMMaxShift in length.
memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence));
} else {
for (size_t i = 0; i < table_size; i++) {
bad_char_occurrence[i] = start - 1;
}
}
for (size_t i = start; i < pattern_length - 1; i++) {
Char c = pattern_[i];
int bucket = (sizeof(Char) == 1) ? c : c % AlphabetSize();
bad_char_occurrence[bucket] = i;
}
}
//---------------------------------------------------------------------
// Linear string search with bailout to BMH.
//---------------------------------------------------------------------
// Simple linear search for short patterns, which bails out if the string
// isn't found very early in the subject. Upgrades to BoyerMooreHorspool.
template <typename Char>
size_t StringSearch<Char>::InitialSearch(
Vector subject,
size_t index) {
const size_t pattern_length = pattern_.length();
// Badness is a count of how much work we have done. When we have
// done enough work we decide it's probably worth switching to a better
// algorithm.
int64_t badness = -10 - (pattern_length << 2);
// We know our pattern is at least 2 characters, we cache the first so
// the common case of the first character not matching is faster.
for (size_t i = index, n = subject.length() - pattern_length; i <= n; i++) {
badness++;
if (badness <= 0) {
i = FindFirstCharacter(pattern_, subject, i);
if (i == subject.length())
return subject.length();
CHECK_LE(i, n);
size_t j = 1;
do {
if (pattern_[j] != subject[i + j]) {
break;
}
j++;
} while (j < pattern_length);
if (j == pattern_length) {
return i;
}
badness += j;
} else {
PopulateBoyerMooreHorspoolTable();
strategy_ = &StringSearch::BoyerMooreHorspoolSearch;
return BoyerMooreHorspoolSearch(subject, i);
}
}
return subject.length();
}
// Perform a single stand-alone search.
// If searching multiple times for the same pattern, a search
// object should be constructed once and the Search function then called
// for each search.
template <typename Char>
size_t SearchString(Vector<const Char> subject,
Vector<const Char> pattern,
size_t start_index) {
StringSearch<Char> search(pattern);
return search.Search(subject, start_index);
}
} // namespace stringsearch
} // namespace node
namespace node {
template <typename Char>
size_t SearchString(const Char* haystack,
size_t haystack_length,
const Char* needle,
size_t needle_length,
size_t start_index,
bool is_forward) {
if (haystack_length < needle_length) return haystack_length;
// To do a reverse search (lastIndexOf instead of indexOf) without redundant
// code, create two vectors that are reversed views into the input strings.
// For example, v_needle[0] would return the *last* character of the needle.
// So we're searching for the first instance of rev(needle) in rev(haystack)
stringsearch::Vector<const Char> v_needle(needle, needle_length, is_forward);
stringsearch::Vector<const Char> v_haystack(
haystack, haystack_length, is_forward);
size_t diff = haystack_length - needle_length;
size_t relative_start_index;
if (is_forward) {
relative_start_index = start_index;
} else if (diff < start_index) {
relative_start_index = 0;
} else {
relative_start_index = diff - start_index;
}
size_t pos = node::stringsearch::SearchString(
v_haystack, v_needle, relative_start_index);
if (pos == haystack_length) {
// not found
return pos;
}
return is_forward ? pos : (haystack_length - needle_length - pos);
}
template <size_t N>
size_t SearchString(const char* haystack, size_t haystack_length,
const char (&needle)[N]) {
return SearchString(
reinterpret_cast<const uint8_t*>(haystack), haystack_length,
reinterpret_cast<const uint8_t*>(needle), N - 1, 0, true);
}
} // namespace node
#endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
#endif // SRC_STRING_SEARCH_H_
|