summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--drm/nouveau/include/nvkm/core/device.h10
-rw-r--r--drm/nouveau/include/nvkm/core/secure_boot.h52
-rw-r--r--drm/nouveau/nvkm/core/Kbuild1
-rw-r--r--drm/nouveau/nvkm/core/secure_boot.c1737
-rw-r--r--drm/nouveau/nvkm/engine/device/base.c9
5 files changed, 1809 insertions, 0 deletions
diff --git a/drm/nouveau/include/nvkm/core/device.h b/drm/nouveau/include/nvkm/core/device.h
index 8f760002e..19e75bb0f 100644
--- a/drm/nouveau/include/nvkm/core/device.h
+++ b/drm/nouveau/include/nvkm/core/device.h
@@ -78,6 +78,9 @@ struct nvkm_device {
u64 disable_mask;
u32 debug;
+ /* secure boot state, to repeat the process when needed */
+ void *secure_boot_state;
+
const struct nvkm_device_chip *chip;
enum {
NV_04 = 0x04,
@@ -205,6 +208,13 @@ struct nvkm_device_chip {
int (*sw )(struct nvkm_device *, int idx, struct nvkm_sw **);
int (*vic )(struct nvkm_device *, int idx, struct nvkm_engine **);
int (*vp )(struct nvkm_device *, int idx, struct nvkm_engine **);
+
+ struct {
+ /* Bit-mask of IDs of managed falcons. 0 means no secure boot */
+ unsigned long managed_falcons;
+ /* ID of the falcon that will perform secure boot */
+ unsigned long boot_falcon;
+ } secure_boot;
};
struct nvkm_device *nvkm_device_find(u64 name);
diff --git a/drm/nouveau/include/nvkm/core/secure_boot.h b/drm/nouveau/include/nvkm/core/secure_boot.h
new file mode 100644
index 000000000..ddec92bb8
--- /dev/null
+++ b/drm/nouveau/include/nvkm/core/secure_boot.h
@@ -0,0 +1,52 @@
+/*
+ * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+#ifndef __NVKM_SECURE_BOOT_H__
+#define __NVKM_SECURE_BOOT_H__
+
+#include <core/device.h>
+
+#define LSF_FALCON_ID_PMU 0
+#define LSF_FALCON_ID_RESERVED 1
+#define LSF_FALCON_ID_FECS 2
+#define LSF_FALCON_ID_GPCCS 3
+#define LSF_FALCON_ID_END 4
+#define LSF_FALCON_ID_INVALID 0xffffffff
+
+int nvkm_secure_boot_init(struct nvkm_device *);
+void nvkm_secure_boot_fini(struct nvkm_device *);
+
+int nvkm_secure_boot(struct nvkm_device *);
+
+static inline bool
+nvkm_is_secure(struct nvkm_device *device, unsigned long falcon_id)
+{
+ return device->chip->secure_boot.managed_falcons & BIT(falcon_id);
+}
+
+static inline bool
+nvkm_need_secure_boot(struct nvkm_device *device)
+{
+ return device->chip->secure_boot.managed_falcons != 0;
+}
+
+#endif
diff --git a/drm/nouveau/nvkm/core/Kbuild b/drm/nouveau/nvkm/core/Kbuild
index 7f66963f3..9d2ecc0ef 100644
--- a/drm/nouveau/nvkm/core/Kbuild
+++ b/drm/nouveau/nvkm/core/Kbuild
@@ -11,4 +11,5 @@ nvkm-y += nvkm/core/object.o
nvkm-y += nvkm/core/oproxy.o
nvkm-y += nvkm/core/option.o
nvkm-y += nvkm/core/ramht.o
+nvkm-y += nvkm/core/secure_boot.o
nvkm-y += nvkm/core/subdev.o
diff --git a/drm/nouveau/nvkm/core/secure_boot.c b/drm/nouveau/nvkm/core/secure_boot.c
new file mode 100644
index 000000000..956c4cd03
--- /dev/null
+++ b/drm/nouveau/nvkm/core/secure_boot.c
@@ -0,0 +1,1737 @@
+/*
+ * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/*
+ * Secure boot is the process by which NVIDIA-signed firmware is loaded into
+ * some of the falcons of a GPU. For production devices this is the only way
+ * for the firmware to access useful (but sensitive) registers.
+ *
+ * A Falcon microprocessor supporting advanced security modes can run in one of
+ * three modes:
+ *
+ * - Non-secure (NS). In this mode, functionality is similar to Falcon
+ * architectures before security modes were introduced (pre-Maxwell), but
+ * capability is restricted. In particular, certain registers may be
+ * inaccessible for reads and/or writes, and physical memory access may be
+ * disabled (on certain Falcon instances). This is the only possible mode that
+ * can be used if you don't have microcode cryptographically signed by NVIDIA.
+ *
+ * - Heavy Secure (HS). In this mode, the microprocessor is a black box - it's
+ * not possible to read or write any Falcon internal state or Falcon registers
+ * from outside the Falcon (for example, from the host system). The only way
+ * to enable this mode is by loading microcode that has been signed by NVIDIA.
+ * (The loading process involves tagging the IMEM block as secure, writing the
+ * signature into a Falcon register, and starting execution. The hardware will
+ * validate the signature, and if valid, grant HS privileges.)
+ *
+ * - Light Secure (LS). In this mode, the microprocessor has more privileges
+ * than NS but fewer than HS. Some of the microprocessor state is visible to
+ * host software to ease debugging. The only way to enable this mode is by HS
+ * microcode enabling LS mode. Some privileges available to HS mode are not
+ * available here. LS mode is introduced in GM20x.
+ *
+ * Secure boot consists in temporarily switchin a HS-capable falcon (typically
+ * PMU) into HS mode in order to validate the LS firmware of managed falcons,
+ * load it, and switch managed falcons into LS mode. Once secure boot completes,
+ * no falcon remains in HS mode.
+ *
+ * Secure boot requires a write-protected memory region (WPR) which can only be
+ * written by the secure falcon. On dGPU, the driver sets up the WPR region in
+ * video memory. On Tegra, it is set up by the bootloader and its location and
+ * size written into memory controller registers.
+ *
+ * The secure boot process takes place as follows:
+ *
+ * 1) A LS blob is constructed that contains all the LS firmwares we want to
+ * load, along with their signatures and bootloaders.
+ *
+ * 2) A HS blob (also called ACR) is created that contains the signed HS
+ * firmware in charge of loading the LS firmwares into their respective
+ * falcons.
+ *
+ * 3) The HS blob is loaded (via its own bootloader) and executed on the
+ * HS-capable falcon. It authenticates itself, switches the secure falcon to
+ * HS mode and copies the LS blob into the WPR region.
+ *
+ * 4) The LS blob now being secure from all external tampering. The HS falcon
+ * checks the signatures of the LS firmwares and, if valid, switches the
+ * managed falcons to LS mode and makes them ready to run the LS firmware.
+ *
+ * 5) The managed falcons remain in LS mode and can be started.
+ *
+ */
+
+#include <core/secure_boot.h>
+#include <core/gpuobj.h>
+#include <subdev/mmu.h>
+#include <subdev/timer.h>
+#include <subdev/fb.h>
+
+#include <linux/mutex.h>
+
+enum {
+ FALCON_DMAIDX_UCODE = 0,
+ FALCON_DMAIDX_VIRT = 1,
+ FALCON_DMAIDX_PHYS_VID = 2,
+ FALCON_DMAIDX_PHYS_SYS_COH = 3,
+ FALCON_DMAIDX_PHYS_SYS_NCOH = 4,
+};
+
+/*
+ *
+ * LS blob structures
+ *
+ */
+
+/**
+ * struct lsf_ucode_desc - LS falcon signatures
+ * @prd_keys: signature to use when the GPU is in production mode
+ * @dgb_keys: signature to use when the GPU is in debug mode
+ * @b_prd_present: whether the production key is present
+ * @b_dgb_present: whether the debug key is present
+ * @falcon_id: ID of the falcon the ucode applies to
+ *
+ * Directly loaded from a signature file.
+ */
+struct lsf_ucode_desc {
+ u8 prd_keys[2][16];
+ u8 dbg_keys[2][16];
+ u32 b_prd_present;
+ u32 b_dbg_present;
+ u32 falcon_id;
+};
+
+/**
+ * struct lsf_wpr_header - LS blob WPR Header
+ * @falcon_id: LS falcon ID
+ * @lsb_offset: offset of the lsb_lsf_header in the WPR region
+ * @bootstrap_owner: secure falcon reponsible for bootstrapping the LS falcon
+ * @lazy_bootstrap: skip bootstrapping by ACR
+ * @status: bootstrapping status
+ *
+ * An array of these is written at the beginning of the WPR region, one for
+ * each managed falcon. The array is terminated by an instance which falcon_id
+ * is LSF_FALCON_ID_INVALID.
+ */
+struct lsf_wpr_header {
+ u32 falcon_id;
+ u32 lsb_offset;
+ u32 bootstrap_owner;
+#define LSF_BOOTSTRAP_OWNER_DEFAULT LSF_FALCON_ID_PMU
+ u32 lazy_bootstrap;
+ u32 status;
+#define LSF_IMAGE_STATUS_NONE 0
+#define LSF_IMAGE_STATUS_COPY 1
+#define LSF_IMAGE_STATUS_VALIDATION_CODE_FAILED 2
+#define LSF_IMAGE_STATUS_VALIDATION_DATA_FAILED 3
+#define LSF_IMAGE_STATUS_VALIDATION_DONE 4
+#define LSF_IMAGE_STATUS_VALIDATION_SKIPPED 5
+#define LSF_IMAGE_STATUS_BOOTSTRAP_READY 6
+};
+
+/**
+ * struct lsf_lsb_header - LS firmware header
+ * @signature: signature to verify the firmware against
+ * @ucode_off: offset of the ucode blob in the WPR region. The ucode
+ * blob contains the bootloader, code and data of the
+ * LS falcon
+ * @ucode_size: size of the ucode blob, including bootloader
+ * @data_size: size of the ucode blob data
+ * @bl_code_size: size of the bootloader code
+ * @bl_imem_off: offset in imem of the bootloader
+ * @bl_data_off: offset of the bootloader data in WPR region
+ * @bl_data_size: size of the bootloader data
+ * @app_code_off: offset of the app code relative to ucode_off
+ * @app_code_size: size of the app code
+ * @app_data_off: offset of the app data relative to ucode_off
+ * @app_data_size: size of the app data
+ * @flags: flags for the secure bootloader
+ *
+ * This structure is written into the WPR region for each managed falcon. Each
+ * instance is referenced by the lsb_offset member of the corresponding
+ * lsf_wpr_header.
+ */
+struct lsf_lsb_header {
+ struct lsf_ucode_desc signature;
+ u32 ucode_off;
+ u32 ucode_size;
+ u32 data_size;
+ u32 bl_code_size;
+ u32 bl_imem_off;
+ u32 bl_data_off;
+ u32 bl_data_size;
+ u32 app_code_off;
+ u32 app_code_size;
+ u32 app_data_off;
+ u32 app_data_size;
+ u32 flags;
+#define NV_FLCN_ACR_LSF_FLAG_LOAD_CODE_AT_0_FALSE 0
+#define NV_FLCN_ACR_LSF_FLAG_LOAD_CODE_AT_0_TRUE 1
+#define NV_FLCN_ACR_LSF_FLAG_DMACTL_REQ_CTX_FALSE 0
+#define NV_FLCN_ACR_LSF_FLAG_DMACTL_REQ_CTX_TRUE 4
+};
+
+/**
+ * struct flcn_bl_dmem_desc - DMEM bootloader descriptor
+ * @signature: 16B signature for secure code. 0s if no secure code
+ * @ctx_dma: DMA context to be used by BL while loading code/data
+ * @code_dma_base: 256B-aligned Physical FB Address where code is located
+ * @non_sec_code_off: offset from code_dma_base where the non-secure code is
+ * located. The offset must be multiple of 256 to help perf
+ * @non_sec_code_size: the size of the nonSecure code part.
+ * @sec_code_off: offset from code_dma_base where the secure code is
+ * located. The offset must be multiple of 256 to help perf
+ * @sec_code_size: offset from code_dma_base where the secure code is
+ * located. The offset must be multiple of 256 to help perf
+ * @code_entry_point: code entry point which will be invoked by BL after
+ * code is loaded.
+ * @data_dma_base: 256B aligned Physical FB Address where data is located.
+ * @data_size: size of data block. Should be multiple of 256B
+ *
+ * Structure used by the bootloader to load the rest of the code. This has
+ * to be filled by host and copied into DMEM at offset provided in the
+ * hsflcn_bl_desc.bl_desc_dmem_load_off.
+ */
+struct flcn_bl_dmem_desc {
+ u32 reserved[4];
+ u32 signature[4];
+ u32 ctx_dma;
+ u32 code_dma_base;
+ u32 non_sec_code_off;
+ u32 non_sec_code_size;
+ u32 sec_code_off;
+ u32 sec_code_size;
+ u32 code_entry_point;
+ u32 data_dma_base;
+ u32 data_size;
+};
+
+/**
+ * struct ls_ucode_desc - descriptor of firmware image
+ * @descriptor_size: size of this descriptor
+ * @image_size: size of the whole image
+ * @bootloader_start_offset: start offset of the bootloader in ucode image
+ * @bootloader_size: size of the bootloader
+ * @bootloader_imem_offset: start off set of the bootloader in IMEM
+ * @bootloader_entry_point: entry point of the bootloader in IMEM
+ * @app_start_offset: start offset of the LS firmware
+ * @app_size: size of the LS firmware's code and data
+ * @app_imem_offset: offset of the app in IMEM
+ * @app_imem_entry: entry point of the app in IMEM
+ * @app_dmem_offset: offset of the data in DMEM
+ * @app_resident_code_offset: offset of app code from app_start_offset
+ * @app_resident_code_size: size of the code
+ * @app_resident_data_offset: offset of data from app_start_offset
+ * @app_resident_data_size: size of data
+ *
+ * A firmware image contains the code, data, and bootloader of a given LS
+ * falcon in a single blob. This structure describes where everything is.
+ *
+ * This can be generated from a (bootloader, code, data) set if they have
+ * been loaded separately, or come directly from a file. For the later case,
+ * we need to keep the fields that are unused by the code.
+ */
+struct ls_ucode_desc {
+ u32 descriptor_size;
+ u32 image_size;
+ u32 tools_version;
+ u32 app_version;
+ char date[64];
+ u32 bootloader_start_offset;
+ u32 bootloader_size;
+ u32 bootloader_imem_offset;
+ u32 bootloader_entry_point;
+ u32 app_start_offset;
+ u32 app_size;
+ u32 app_imem_offset;
+ u32 app_imem_entry;
+ u32 app_dmem_offset;
+ u32 app_resident_code_offset;
+ u32 app_resident_code_size;
+ u32 app_resident_data_offset;
+ u32 app_resident_data_size;
+ u32 nb_overlays;
+ struct {u32 start; u32 size; } load_ovl[32];
+ u32 compressed;
+};
+
+/**
+ * struct lsf_ucode_img - temporary storage for loaded LS firmwares
+ * @node: to link within lsf_ucode_mgr
+ * @falcon_id: ID of the falcon this LS firmware is for
+ * @ucode_desc: loaded or generated map of ucode_data
+ * @ucode_header: header of the firmware
+ * @ucode_data: firmware payload (code and data)
+ * @ucode_size: size in bytes of data in ucode_data
+ * @wpr_header: WPR header to be written to the LS blob
+ * @lsb_header: LSB header to be written to the LS blob
+ * @bl_dmem_desc: DMEM bootloader descriptor to be written to the LS blob
+ *
+ * Preparing the WPR LS blob requires information about all the LS firmwares
+ * (size, etc) to be known. This structure contains all the data of one LS
+ * firmware.
+ */
+struct lsf_ucode_img {
+ struct list_head node;
+ u32 falcon_id;
+
+ struct ls_ucode_desc ucode_desc;
+ u32 *ucode_header;
+ u8 *ucode_data;
+ u32 ucode_size;
+
+ /* All members below to be copied into the WPR blob */
+ struct lsf_wpr_header wpr_header;
+ struct lsf_lsb_header lsb_header;
+ struct flcn_bl_dmem_desc bl_dmem_desc;
+};
+
+/**
+ * struct lsf_ucode_mgr - manager for all LS falcon firmwares
+ * @count: number of managed LS falcons
+ * @wpr_size: size of the required WPR region in bytes
+ * @img_list: linked list of lsf_ucode_img
+ */
+struct lsf_ucode_mgr {
+ u16 count;
+ u32 wpr_size;
+ struct list_head img_list;
+};
+
+/*
+ *
+ * HS blob structures
+ *
+ */
+
+/**
+ * struct hs_bin_hdr - header of HS firmware and bootloader files
+ * @bin_magic: always 0x10de
+ * @bin_ver: version of the bin format
+ * @bin_size: entire image size excluding this header
+ * @header_offset: offset of the firmware/bootloader header in the file
+ * @data_offset: offset of the firmware/bootloader payload in the file
+ * @data_size: size of the payload
+ *
+ * This header is located at the beginning of the HS firmware and HS bootloader
+ * files, to describe where the headers and data can be found.
+ */
+struct hs_bin_hdr {
+ u32 bin_magic;
+ u32 bin_ver;
+ u32 bin_size;
+ u32 header_offset;
+ u32 data_offset;
+ u32 data_size;
+};
+
+/**
+ * struct hsflcn_bl_desc - HS firmware bootloader descriptor
+ * @bl_start_tag: starting tag of bootloader
+ * @bl_desc_dmem_load_off: DMEM offset of flcn_bl_dmem_desc
+ * @bl_code_off: offset of code section
+ * @bl_code_size: size of code section
+ * @bl_data_off: offset of data section
+ * @bl_data_size: size of data section
+ *
+ * This structure is embedded in the HS bootloader firmware file at
+ * hs_bin_hdr.header_offset to describe the IMEM and DMEM layout expected by the
+ * HS bootloader.
+ */
+struct hsflcn_bl_desc {
+ u32 bl_start_tag;
+ u32 bl_desc_dmem_load_off;
+ u32 bl_code_off;
+ u32 bl_code_size;
+ u32 bl_data_off;
+ u32 bl_data_size;
+};
+
+/**
+ * struct acr_fw_header - HS firmware descriptor
+ * @sig_dbg_offset: offset of the debug signature
+ * @sig_dbg_size: size of the debug signature
+ * @sig_prod_offset: offset of the production signature
+ * @sig_prod_size: size of the production signature
+ * @patch_loc: offset of the offset (sic) of where the signature is
+ * @patch_sig: offset of the offset (sic) to add to sig_*_offset
+ * @hdr_offset: offset of the load header (see struct hs_load_header)
+ * @hdr_size: size of above header
+ *
+ * This structure is embedded in the HS firmware image at
+ * hs_bin_hdr.header_offset.
+ */
+struct acr_fw_header {
+ u32 sig_dbg_offset;
+ u32 sig_dbg_size;
+ u32 sig_prod_offset;
+ u32 sig_prod_size;
+ u32 patch_loc;
+ u32 patch_sig;
+ u32 hdr_offset;
+ u32 hdr_size;
+};
+
+/**
+ * struct acr_load_header - HS firmware loading header
+ *
+ * Data to be copied as-is into the struct flcn_bl_dmem_desc for the HS firmware
+ */
+struct acr_load_header {
+ u32 non_sec_code_off;
+ u32 non_sec_code_size;
+ u32 data_dma_base;
+ u32 data_size;
+ u32 reserved;
+ u32 sec_code_off;
+ u32 sec_code_size;
+};
+
+/**
+ * Contains the whole secure boot state, allowing it to be performed as needed
+ * @falcon_id: falcon that will perform secure boot
+ * @wpr_addr: physical address of the WPR region
+ * @wpr_size: size in bytes of the WPR region
+ * @ls_blob: LS blob of all the LS firmwares, signatures, bootloaders
+ * @ls_blob_size: size of the LS blob
+ * @ls_blob_nb_regions: number of LS firmwares that will be loaded
+ * @acr_blob: HS blob
+ * @acr_blob_vma: mapping of the HS blob into the secure falcon's VM
+ * @acr_bl_desc: bootloader descriptor of the HS blob
+ * @hsbl_blob: HS blob bootloader
+ * @inst: instance block for HS falcon
+ * @pgd: page directory for the HS falcon
+ * @vm: address space used by the HS falcon
+ */
+struct secure_boot {
+ u32 falcon_id;
+ u64 wpr_addr;
+ u32 wpr_size;
+ u32 base;
+
+ /* LS FWs, to be loaded by the HS ACR */
+ struct nvkm_gpuobj *ls_blob;
+ u32 ls_blob_size;
+ u16 ls_blob_nb_regions;
+
+ /* HS FW */
+ struct nvkm_gpuobj *acr_blob;
+ struct nvkm_vma acr_blob_vma;
+ struct flcn_bl_dmem_desc acr_bl_desc;
+
+ /* HS bootloader */
+ void *hsbl_blob;
+
+ /* Instance block & address space */
+ struct nvkm_gpuobj *inst;
+ struct nvkm_gpuobj *pgd;
+ struct nvkm_vm *vm;
+
+};
+
+/* TODO move to global place? */
+static void
+nvkm_gpuobj_memcpy(struct nvkm_gpuobj *dest, u32 dstoffset, void *src,
+ u32 length)
+{
+ int i;
+
+ for (i = 0; i < length; i += 4)
+ nvkm_wo32(dest, dstoffset + i, *(u32 *)(src + i));
+}
+
+/* TODO share with the GR FW loading routine? */
+static int
+sb_get_firmware(struct nvkm_device *device, const char *fwname,
+ const struct firmware **fw)
+{
+ char f[64];
+ char cname[16];
+ int i;
+
+ /* Convert device name to lowercase */
+ strncpy(cname, device->chip->name, sizeof(cname));
+ cname[sizeof(cname) - 1] = '\0';
+ i = strlen(cname);
+ while (i) {
+ --i;
+ cname[i] = tolower(cname[i]);
+ }
+
+ snprintf(f, sizeof(f), "nvidia/%s/%s.bin", cname, fwname);
+ return request_firmware(fw, f, device->dev);
+}
+
+/**
+ * Convenience function to duplicate a firmware file in memory and check that
+ * it has the required minimum size.
+ */
+static void *
+sb_load_firmware(struct nvkm_device *device, const char *name,
+ size_t min_size)
+{
+ const struct firmware *fw;
+ void *ret;
+ int err;
+
+ err = sb_get_firmware(device, name, &fw);
+ if (err)
+ return ERR_PTR(err);
+ if (fw->size < min_size) {
+ release_firmware(fw);
+ return ERR_PTR(-EINVAL);
+ }
+ ret = kmemdup(fw->data, fw->size, GFP_KERNEL);
+ release_firmware(fw);
+ if (!ret)
+ return ERR_PTR(-ENOMEM);
+
+ return ret;
+}
+
+/*
+ * Low-secure blob creation
+ */
+
+#define BL_DESC_BLK_SIZE 256
+/**
+ * Build a ucode image and descriptor from provided bootloader, code and data.
+ *
+ * @bl: bootloader image, including 16-bytes descriptor
+ * @code: LS firmware code segment
+ * @data: LS firmware data segment
+ * @desc: ucode descriptor to be written
+ *
+ * Return: allocated ucode image with corresponding descriptor information. desc
+ * is also updated to contain the right offsets within returned image.
+ */
+static void *
+lsf_ucode_img_build(const struct firmware *bl, const struct firmware *code,
+ const struct firmware *data, struct ls_ucode_desc *desc)
+{
+ struct {
+ u32 start_offset;
+ u32 size;
+ u32 imem_offset;
+ u32 entry_point;
+ } *bl_desc;
+ u32 *bl_image;
+ u32 pos = 0;
+ u8 *image;
+
+ bl_desc = (void *)bl->data;
+ bl_image = (void *)(bl_desc + 1);
+
+ desc->bootloader_start_offset = pos;
+ desc->bootloader_size = ALIGN(bl_desc->size, sizeof(u32));
+ desc->bootloader_imem_offset = bl_desc->imem_offset;
+ desc->bootloader_entry_point = bl_desc->entry_point;
+
+ pos = ALIGN(pos + desc->bootloader_size, BL_DESC_BLK_SIZE);
+ desc->app_start_offset = pos;
+ desc->app_size = ALIGN(code->size, BL_DESC_BLK_SIZE) +
+ ALIGN(data->size, BL_DESC_BLK_SIZE);
+ desc->app_imem_offset = 0;
+ desc->app_imem_entry = 0;
+ desc->app_dmem_offset = 0;
+ desc->app_resident_code_offset = 0;
+ desc->app_resident_code_size = code->size;
+
+ pos = ALIGN(pos + desc->app_resident_code_size, BL_DESC_BLK_SIZE);
+ desc->app_resident_data_offset = pos - desc->app_start_offset;
+ desc->app_resident_data_size = data->size;
+
+ desc->image_size = ALIGN(bl_desc->size, BL_DESC_BLK_SIZE) +
+ desc->app_size;
+
+ image = kzalloc(desc->image_size, GFP_KERNEL);
+ if (!image)
+ return ERR_PTR(-ENOMEM);
+
+ memcpy(image + desc->bootloader_start_offset, bl_image, bl_desc->size);
+ memcpy(image + desc->app_start_offset, code->data, code->size);
+ memcpy(image + desc->app_start_offset + desc->app_resident_data_offset,
+ data->data, data->size);
+
+ return image;
+}
+
+/**
+ * lsf_ucode_img_load_fecs() - load and prepare the LS FECS ucode image
+ *
+ * Load the FECS microcode, bootloader and signature and pack them into a single
+ * blob. Also generate the corresponding ucode descriptor.
+ */
+static int
+lsf_ucode_img_load_fecs(struct nvkm_device *device, struct lsf_ucode_img *img)
+{
+ const struct firmware *fecs_bl, *fecs_code, *fecs_data;
+ struct lsf_ucode_desc *lsf_desc;
+ int err;
+
+ img->ucode_header = NULL;
+
+ err = sb_get_firmware(device, "fecs_bl", &fecs_bl);
+ if (err)
+ goto error;
+
+ err = sb_get_firmware(device, "fecs_inst", &fecs_code);
+ if (err)
+ goto free_bl;
+
+ err = sb_get_firmware(device, "fecs_data", &fecs_data);
+ if (err)
+ goto free_inst;
+
+ img->ucode_data = lsf_ucode_img_build(fecs_bl, fecs_code, fecs_data,
+ &img->ucode_desc);
+ if (IS_ERR(img->ucode_data)) {
+ err = PTR_ERR(img->ucode_data);
+ goto free_data;
+ }
+ img->ucode_size = img->ucode_desc.image_size;
+
+ lsf_desc = sb_load_firmware(device, "fecs_sig", sizeof(*lsf_desc));
+ if (IS_ERR(lsf_desc)) {
+ err = PTR_ERR(lsf_desc);
+ goto free_image;
+ }
+ /* not needed? the signature should already have the right value */
+ lsf_desc->falcon_id = LSF_FALCON_ID_FECS;
+ memcpy(&img->lsb_header.signature, lsf_desc, sizeof(*lsf_desc));
+ img->falcon_id = lsf_desc->falcon_id;
+ kfree(lsf_desc);
+
+ /* success path - only free requested firmware files */
+ goto free_data;
+
+free_image:
+ kfree(img->ucode_data);
+free_data:
+ release_firmware(fecs_data);
+free_inst:
+ release_firmware(fecs_code);
+free_bl:
+ release_firmware(fecs_bl);
+error:
+ return err;
+}
+
+/**
+ * lsf_ucode_img_populate_bl_desc() - populate a DMEM BL descriptor for LS image
+ * @img: ucode image to generate against
+ * @desc: descriptor to populate
+ * @sb: secure boot state to use for base addresses
+ *
+ * Populate the DMEM BL descriptor with the information contained in a
+ * ls_ucode_desc.
+ *
+ */
+static void
+lsf_ucode_img_populate_bl_desc(struct lsf_ucode_img *img,
+ struct secure_boot *sb,
+ struct flcn_bl_dmem_desc *desc)
+{
+ struct ls_ucode_desc *pdesc = &img->ucode_desc;
+ u64 addr_base;
+
+ addr_base = sb->wpr_addr + img->lsb_header.ucode_off +
+ pdesc->app_start_offset;
+
+ memset(desc, 0, sizeof(*desc));
+ desc->ctx_dma = FALCON_DMAIDX_UCODE;
+ desc->code_dma_base = lower_32_bits(
+ (addr_base + pdesc->app_resident_code_offset) >> 8);
+ desc->non_sec_code_size = pdesc->app_resident_code_size;
+ desc->data_dma_base = lower_32_bits(
+ (addr_base + pdesc->app_resident_data_offset) >> 8);
+ desc->data_size = pdesc->app_resident_data_size;
+ desc->code_entry_point = pdesc->app_imem_entry;
+}
+
+typedef int (*lsf_load_func)(struct nvkm_device *, struct lsf_ucode_img *);
+
+/**
+ * lsf_ucode_img_load() - create a lsf_ucode_img and load it
+ */
+static struct lsf_ucode_img *
+lsf_ucode_img_load(struct nvkm_device *device, lsf_load_func load_func)
+{
+ struct lsf_ucode_img *img;
+ int err;
+
+ img = kzalloc(sizeof(*img), GFP_KERNEL);
+ if (!img)
+ return ERR_PTR(-ENOMEM);
+
+ err = load_func(device, img);
+ if (err) {
+ kfree(img);
+ return ERR_PTR(err);
+ }
+
+ return img;
+}
+
+static const lsf_load_func lsf_load_funcs[] = {
+ [LSF_FALCON_ID_END] = NULL, /* reserve enough space */
+ [LSF_FALCON_ID_FECS] = lsf_ucode_img_load_fecs,
+};
+
+
+#define LSF_LSB_HEADER_ALIGN 256
+#define LSF_BL_DATA_ALIGN 256
+#define LSF_BL_DATA_SIZE_ALIGN 256
+#define LSF_BL_CODE_SIZE_ALIGN 256
+#define LSF_UCODE_DATA_ALIGN 4096
+
+/**
+ * lsf_ucode_img_fill_headers - fill the WPR and LSB headers of an image
+ * @img: image to generate for
+ * @offset: offset in the WPR region where this image starts
+ *
+ * Allocate space in the WPR area from offset and write the WPR and LSB headers
+ * accordingly.
+ *
+ * Return: offset at the end of this image.
+ */
+static u32
+lsf_ucode_img_fill_headers(struct lsf_ucode_img *img, u32 offset, u32 falcon_id)
+{
+ struct lsf_wpr_header *whdr = &img->wpr_header;
+ struct lsf_lsb_header *lhdr = &img->lsb_header;
+ struct ls_ucode_desc *desc = &img->ucode_desc;
+
+ /* Fill WPR header */
+ whdr->falcon_id = img->falcon_id;
+ whdr->bootstrap_owner = LSF_BOOTSTRAP_OWNER_DEFAULT;
+ whdr->status = LSF_IMAGE_STATUS_COPY;
+
+ /* Align, save off, and include an LSB header size */
+ offset = ALIGN(offset, LSF_LSB_HEADER_ALIGN);
+ whdr->lsb_offset = offset;
+ offset += sizeof(struct lsf_lsb_header);
+
+ /*
+ * Align, save off, and include the original (static) ucode
+ * image size
+ */
+ offset = ALIGN(offset, LSF_UCODE_DATA_ALIGN);
+ lhdr->ucode_off = offset;
+ offset += img->ucode_size;
+
+ /*
+ * For falcons that use a boot loader (BL), we append a loader
+ * desc structure on the end of the ucode image and consider
+ * this the boot loader data. The host will then copy the loader
+ * desc args to this space within the WPR region (before locking
+ * down) and the HS bin will then copy them to DMEM 0 for the
+ * loader.
+ */
+ if (!img->ucode_header) {
+ /* Use a loader */
+ lhdr->bl_code_size = ALIGN(desc->bootloader_size,
+ LSF_BL_CODE_SIZE_ALIGN);
+ lhdr->ucode_size = ALIGN(desc->app_resident_data_offset,
+ LSF_BL_CODE_SIZE_ALIGN) +
+ lhdr->bl_code_size;
+ lhdr->data_size = ALIGN(desc->app_size,
+ LSF_BL_CODE_SIZE_ALIGN) +
+ lhdr->bl_code_size -
+ lhdr->ucode_size;
+ /*
+ * Though the BL is located at 0th offset of the image, the VA
+ * is different to make sure that it doesn't collide the actual
+ * OS VA range
+ */
+ lhdr->bl_imem_off = desc->bootloader_imem_offset;
+ lhdr->app_code_off = desc->app_start_offset +
+ desc->app_resident_code_offset;
+ lhdr->app_code_size = desc->app_resident_code_size;
+ lhdr->app_data_off = desc->app_start_offset +
+ desc->app_resident_data_offset;
+ lhdr->app_data_size = desc->app_resident_data_size;
+
+ lhdr->flags = 0;
+ if (img->falcon_id == falcon_id)
+ lhdr->flags = NV_FLCN_ACR_LSF_FLAG_DMACTL_REQ_CTX_TRUE;
+
+ /* Align (size bloat) and save off BL descriptor size */
+ lhdr->bl_data_size = ALIGN(sizeof(img->bl_dmem_desc),
+ LSF_BL_DATA_SIZE_ALIGN);
+ /*
+ * Align, save off, and include the additional BL data
+ */
+ offset = ALIGN(offset, LSF_BL_DATA_ALIGN);
+ lhdr->bl_data_off = offset;
+ offset += lhdr->bl_data_size;
+ } else {
+ /* Do not use a loader */
+ lhdr->ucode_size = img->ucode_size;
+ lhdr->data_size = 0;
+ lhdr->bl_code_size = 0;
+ lhdr->bl_data_off = 0;
+ lhdr->bl_data_size = 0;
+
+ lhdr->flags = NV_FLCN_ACR_LSF_FLAG_LOAD_CODE_AT_0_TRUE |
+ NV_FLCN_ACR_LSF_FLAG_DMACTL_REQ_CTX_TRUE;
+
+ /* TODO Complete for dGPU */
+
+ /*
+ * bl_data_off is already assigned in static
+ * information. But that is from start of the image
+ */
+ img->lsb_header.bl_data_off += (offset - img->ucode_size);
+ }
+
+ return offset;
+}
+
+static void
+lsf_ucode_mgr_init(struct lsf_ucode_mgr *mgr)
+{
+ memset(mgr, 0, sizeof(*mgr));
+ INIT_LIST_HEAD(&mgr->img_list);
+}
+
+static void
+lsf_ucode_mgr_cleanup(struct lsf_ucode_mgr *mgr)
+{
+ struct lsf_ucode_img *img, *t;
+
+ list_for_each_entry_safe(img, t, &mgr->img_list, node) {
+ kfree(img->ucode_data);
+ kfree(img->ucode_header);
+ kfree(img);
+ }
+}
+
+static void
+lsf_ucode_mgr_add_img(struct lsf_ucode_mgr *mgr, struct lsf_ucode_img *img)
+{
+ mgr->count++;
+ list_add(&img->node, &mgr->img_list);
+}
+
+/**
+ * lsf_mgr_fill_headers - fill the WPR and LSB headers of all managed images
+ */
+static void
+lsf_ucode_mgr_fill_headers(struct secure_boot *sb, struct lsf_ucode_mgr *mgr)
+{
+ struct lsf_ucode_img *img;
+ u32 offset;
+
+ /*
+ * Start with an array of WPR headers at the base of the WPR.
+ * The expectation here is that the secure falcon will do a single DMA
+ * read of this array and cache it internally so it's ok to pack these.
+ * Also, we add 1 to the falcon count to indicate the end of the array.
+ */
+ offset = sizeof(struct lsf_wpr_header) * (mgr->count + 1);
+
+ /*
+ * Walk the managed falcons, accounting for the LSB structs
+ * as well as the ucode images.
+ */
+ list_for_each_entry(img, &mgr->img_list, node) {
+ offset = lsf_ucode_img_fill_headers(img, offset, sb->falcon_id);
+ }
+
+ mgr->wpr_size = offset;
+}
+
+/**
+ * lsf_ucode_mgr_write_wpr - write the WPR blob contents
+ */
+static void
+lsf_ucode_mgr_write_wpr(struct nvkm_device *device, struct lsf_ucode_mgr *mgr,
+ struct nvkm_gpuobj *wpr_blob)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ struct lsf_ucode_img *img;
+ u32 pos = 0;
+
+ nvkm_kmap(wpr_blob);
+
+ list_for_each_entry(img, &mgr->img_list, node) {
+ nvkm_gpuobj_memcpy(wpr_blob, pos, &img->wpr_header,
+ sizeof(img->wpr_header));
+
+ nvkm_gpuobj_memcpy(wpr_blob, img->wpr_header.lsb_offset,
+ &img->lsb_header, sizeof(img->lsb_header));
+
+ /* Generate and write BL descriptor */
+ if (!img->ucode_header) {
+ lsf_ucode_img_populate_bl_desc(img, sb,
+ &img->bl_dmem_desc);
+ nvkm_gpuobj_memcpy(wpr_blob,
+ img->lsb_header.bl_data_off,
+ &img->bl_dmem_desc,
+ sizeof(img->bl_dmem_desc));
+ }
+
+ /* Copy ucode */
+ nvkm_gpuobj_memcpy(wpr_blob, img->lsb_header.ucode_off,
+ img->ucode_data, img->ucode_size);
+
+ pos += sizeof(img->wpr_header);
+ }
+
+ nvkm_wo32(wpr_blob, pos, LSF_FALCON_ID_INVALID);
+
+ nvkm_done(wpr_blob);
+}
+
+/**
+ * sb_prepare_ls_blob() - prepare the LS blob to be written in the WPR region
+ *
+ * For each securely managed falcon, load the FW, signatures and bootloaders and
+ * prepare a ucode blob. Then, compute the offsets in the WPR region for each
+ * blob, and finally write the headers and ucode blobs into a GPU object that
+ * will be copied into the WPR region by the HS firmware.
+ */
+static int
+sb_prepare_ls_blob(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ struct lsf_ucode_mgr mgr;
+ int falcon_id;
+ int err;
+
+ lsf_ucode_mgr_init(&mgr);
+
+ sb->falcon_id = device->chip->secure_boot.boot_falcon;
+
+ /* Load all LS blobs */
+ for_each_set_bit(falcon_id, &device->chip->secure_boot.managed_falcons,
+ LSF_FALCON_ID_END) {
+ struct lsf_ucode_img *img;
+
+ img = lsf_ucode_img_load(device, lsf_load_funcs[falcon_id]);
+
+ if (IS_ERR(img)) {
+ err = PTR_ERR(img);
+ goto cleanup;
+ }
+ lsf_ucode_mgr_add_img(&mgr, img);
+ }
+
+ /*
+ * Fill the WPR and LSF headers with the right offsets and compute
+ * required WPR size
+ */
+ lsf_ucode_mgr_fill_headers(sb, &mgr);
+
+ if (mgr.wpr_size > sb->wpr_size) {
+ nvdev_error(device, "WPR region too small to host FW blob!\n");
+ nvdev_error(device, "required: %d bytes\n", sb->ls_blob_size);
+ nvdev_error(device, "WPR size: %d bytes\n", sb->wpr_size);
+ err = -ENOMEM;
+ goto cleanup;
+ }
+
+ err = nvkm_gpuobj_new(device, mgr.wpr_size, 0x1000, false, NULL,
+ &sb->ls_blob);
+ if (err)
+ goto cleanup;
+
+ nvdev_debug(device, "%d managed LS falcons, WPR size is %d bytes\n",
+ mgr.count, mgr.wpr_size);
+
+ /* write LS blob */
+ lsf_ucode_mgr_write_wpr(device, &mgr, sb->ls_blob);
+
+ sb->ls_blob_size = mgr.wpr_size;
+ sb->ls_blob_nb_regions = mgr.count;
+
+cleanup:
+ lsf_ucode_mgr_cleanup(&mgr);
+
+ return err;
+}
+
+static void
+sb_cleanup_ls_blob(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+
+ nvkm_gpuobj_del(&sb->ls_blob);
+}
+
+/*
+ * High-secure blob creation
+ */
+
+/**
+ * hsf_img_patch_signature() - patch the HS blob with the correct signature
+ */
+static void
+hsf_img_patch_signature(struct nvkm_device *device, void *acr_image)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ struct hs_bin_hdr *hsbin_hdr = acr_image;
+ struct acr_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
+ void *hs_data = acr_image + hsbin_hdr->data_offset;
+ u32 patch_loc;
+ u32 patch_sig;
+ void *sig;
+ u32 sig_size;
+
+ patch_loc = *(u32 *)(acr_image + fw_hdr->patch_loc);
+ patch_sig = *(u32 *)(acr_image + fw_hdr->patch_sig);
+
+ /* Falcon in debug or production mode? */
+ if ((nvkm_rd32(device, sb->base + 0xc08) >> 20) & 0x1) {
+ sig = acr_image + fw_hdr->sig_dbg_offset;
+ sig_size = fw_hdr->sig_dbg_size;
+ } else {
+ sig = acr_image + fw_hdr->sig_prod_offset;
+ sig_size = fw_hdr->sig_prod_size;
+ }
+
+ /* Patch signature */
+ memcpy(hs_data + patch_loc, sig + patch_sig, sig_size);
+}
+
+/**
+ * struct hsflcn_acr_desc - data section of the HS firmware
+ * @signature: signature of ACR ucode
+ * @wpr_region_id: region ID holding the WPR header and its details
+ * @wpr_offset: offset from the WPR region holding the wpr header
+ * @regions: region descriptors
+ * @nonwpr_ucode_blob_size: size of LS blob
+ * @nonwpr_ucode_blob_start: FB location of LS blob is
+ */
+struct hsflcn_acr_desc {
+ union {
+ u8 reserved_dmem[0x200];
+ u32 signatures[4];
+ } ucode_reserved_space;
+ u32 wpr_region_id;
+ u32 wpr_offset;
+ u32 mmu_mem_range;
+#define FLCN_ACR_MAX_REGIONS 2
+ struct {
+ u32 no_regions;
+ struct {
+ u32 start_addr;
+ u32 end_addr;
+ u32 region_id;
+ u32 read_mask;
+ u32 write_mask;
+ u32 client_mask;
+ } region_props[FLCN_ACR_MAX_REGIONS];
+ } regions;
+ u32 nonwpr_ucode_blob_size;
+ u64 nonwpr_ucode_blob_start;
+};
+
+/**
+ * hsf_img_patch_desc() - patch the HS firmware with location of the LS blob
+ */
+static void
+hsf_img_patch_desc(struct secure_boot *sb, void *acr_image)
+{
+ struct hs_bin_hdr *hsbin_hdr = acr_image;
+ struct acr_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
+ struct acr_load_header *load_hdr = acr_image + fw_hdr->hdr_offset;
+ void *hs_data = acr_image + hsbin_hdr->data_offset;
+ struct hsflcn_acr_desc *desc = hs_data + load_hdr->data_dma_base;
+
+ desc->nonwpr_ucode_blob_start = sb->ls_blob->addr;
+ desc->nonwpr_ucode_blob_size = sb->ls_blob_size;
+ desc->regions.no_regions = sb->ls_blob_nb_regions;
+ desc->wpr_offset = 0;
+}
+
+/**
+ * hsf_img_populate_bl_desc() - populate a DMEM BL descriptor for HS image
+ */
+static void
+hsf_img_populate_bl_desc(void *acr_image, struct flcn_bl_dmem_desc *bl_desc)
+{
+ struct hs_bin_hdr *hsbin_hdr = acr_image;
+ struct acr_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
+ struct acr_load_header *load_hdr = acr_image + fw_hdr->hdr_offset;
+
+ /*
+ * Descriptor for the bootloader that will load the ACR image into
+ * IMEM/DMEM memory.
+ */
+ fw_hdr = acr_image + hsbin_hdr->header_offset;
+ load_hdr = acr_image + fw_hdr->hdr_offset;
+ memset(bl_desc, 0, sizeof(*bl_desc));
+ bl_desc->ctx_dma = FALCON_DMAIDX_VIRT;
+ bl_desc->non_sec_code_off = load_hdr->non_sec_code_off;
+ bl_desc->non_sec_code_size = load_hdr->non_sec_code_size;
+ bl_desc->sec_code_off = load_hdr->sec_code_off;
+ bl_desc->sec_code_size = load_hdr->sec_code_size;
+ bl_desc->code_entry_point = 0;
+ /*
+ * We need to set code_dma_base to the virtual address of the acr_blob,
+ * and add this address to data_dma_base before writing it into DMEM
+ */
+ bl_desc->code_dma_base = 0;
+ bl_desc->data_dma_base = load_hdr->data_dma_base >> 8;
+ bl_desc->data_size = load_hdr->data_size;
+}
+
+static int
+sb_prepare_hs_blob(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ void *acr_image;
+ struct hs_bin_hdr *hsbin_hdr;
+ u32 img_size;
+ int err;
+
+ acr_image = sb_load_firmware(device, "acr_ucode", 0);
+ if (IS_ERR(acr_image))
+ return PTR_ERR(acr_image);
+
+ /* Patch image */
+ hsf_img_patch_signature(device, acr_image);
+ hsf_img_patch_desc(sb, acr_image);
+
+ /* Generate HS BL descriptor */
+ hsf_img_populate_bl_desc(acr_image, &sb->acr_bl_desc);
+
+ /* Create ACR blob and copy HS data to it */
+ hsbin_hdr = acr_image;
+ img_size = ALIGN(hsbin_hdr->data_size, 256);
+ err = nvkm_gpuobj_new(device, img_size, 0x1000, false, NULL,
+ &sb->acr_blob);
+ if (err)
+ goto cleanup;
+
+ nvkm_kmap(sb->acr_blob);
+ nvkm_gpuobj_memcpy(sb->acr_blob, 0, acr_image + hsbin_hdr->data_offset,
+ img_size);
+ nvkm_done(sb->acr_blob);
+
+cleanup:
+ kfree(acr_image);
+
+ return err;
+}
+
+static void
+sb_cleanup_hs_blob(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+
+ nvkm_gpuobj_del(&sb->acr_blob);
+}
+
+/*
+ * High-secure bootloader blob creation
+ */
+
+static int
+sb_prepare_hsbl_blob(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+
+ if (!sb->hsbl_blob) {
+ sb->hsbl_blob = sb_load_firmware(device, "acr_bl", 0);
+ if (IS_ERR(sb->hsbl_blob)) {
+ int err = PTR_ERR(sb->hsbl_blob);
+
+ sb->hsbl_blob = NULL;
+ return err;
+ }
+ }
+
+ return 0;
+}
+
+static void
+sb_cleanup_hsbl_blob(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+
+ kfree(sb->hsbl_blob);
+ sb->hsbl_blob = NULL;
+}
+
+/*
+ * Falcon/PMU utility functions
+ */
+
+static int
+falcon_wait_clear_halt_interrupt(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ int err;
+
+ nvkm_mask(device, sb->base + 0x004, 0x10, 0x10);
+ err = nvkm_wait_usec(device, 10000, sb->base + 0x008, 0x10, 0x0);
+ if (err < 0)
+ return err;
+
+ return 0;
+}
+
+static int
+falcon_wait_for_halt(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ u32 data;
+ int err;
+
+ err = nvkm_wait_msec(device, 100, sb->base + 0x100, 0x10, 0x10);
+ if (err < 0)
+ return err;
+
+ data = nvkm_rd32(device, sb->base + 0x040);
+ if (data) {
+ nvdev_error(device, "ACR boot failed, err %x", data);
+ return -EAGAIN;
+ }
+
+ return 0;
+}
+
+static int
+falcon_wait_idle(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ int err;
+
+ err = nvkm_wait_msec(device, 10, sb->base + 0x04c, 0xffff, 0x0);
+ if (err < 0)
+ return err;
+
+ return 0;
+}
+
+/* TODO these functions are still PMU-specific... */
+
+static void
+pmu_enable_irq(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+
+ nvkm_wr32(device, sb->base + 0x010, 0xff);
+ nvkm_mask(device, 0x640, 0x1000000, 0x1000000);
+ nvkm_mask(device, 0x644, 0x1000000, 0x1000000);
+}
+
+static void
+pmu_disable_irq(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+
+ nvkm_mask(device, 0x644, 0x1000000, 0x0);
+ nvkm_mask(device, 0x640, 0x1000000, 0x0);
+ nvkm_wr32(device, sb->base + 0x014, 0xff);
+}
+
+
+static int
+pmu_enable(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ int err;
+
+ nvkm_mask(device, 0x200, 0x2000, 0x2000);
+ nvkm_rd32(device, 0x200);
+ err = nvkm_wait_msec(device, 10, sb->base + 0x10c, 0x6, 0x0);
+ if (err < 0) {
+ nvkm_mask(device, 0x200, 0x2000, 0x0);
+ nvdev_error(device, "Falcon mem scrubbing timeout\n");
+ return err;
+ }
+
+ err = falcon_wait_idle(device);
+ if (err)
+ return err;
+
+ pmu_enable_irq(device);
+
+ return 0;
+}
+
+static void
+pmu_disable(struct nvkm_device *device)
+{
+ if ((nvkm_rd32(device, 0x200) & 0x2000) != 0) {
+ pmu_disable_irq(device);
+ nvkm_mask(device, 0x200, 0x2000, 0x0);
+ }
+}
+
+static int
+pmu_reset(struct nvkm_device *device)
+{
+ int err;
+
+ err = falcon_wait_idle(device);
+ if (err)
+ return err;
+
+ pmu_disable(device);
+
+ return pmu_enable(device);
+}
+
+#define FALCON_DMEM_ADDR_MASK 0xfffc
+static int
+falcon_copy_to_dmem(struct nvkm_device *device, const u32 base, u32 dst,
+ void *src, u32 size, u8 port)
+{
+ /* Number of full words */
+ u32 w_size = size / sizeof(u32);
+ /* Number of extra bytes */
+ u32 b_size = size % sizeof(u32);
+ int i;
+
+ if (size == 0)
+ return 0;
+
+ if (dst & 0x3) {
+ nvdev_error(device, "destination offset not aligned\n");
+ return -EINVAL;
+ }
+
+ dst &= FALCON_DMEM_ADDR_MASK;
+
+ mutex_lock(&device->mutex);
+
+ nvkm_wr32(device, base + (0x1c0 + (port * 8)), (dst | (0x1 << 24)));
+
+ for (i = 0; i < w_size; i++)
+ nvkm_wr32(device, base + (0x1c4 + (port * 8)), ((u32 *)src)[i]);
+
+ if (b_size != 0) {
+ u32 data = 0;
+
+ memcpy(&data, ((u32 *)src) + w_size, b_size);
+ nvkm_wr32(device, base + (0x1c4 + (port * 8)), data);
+ }
+
+ mutex_unlock(&device->mutex);
+
+ return 0;
+}
+
+/*
+ * Hardware setup functions
+ */
+
+/**
+ * sb_setup_falcon() - set up the secure falcon for secure boot
+ */
+static int
+sb_setup_falcon(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ const u32 reg_base = sb->base + 0xe00;
+ int err;
+
+ err = falcon_wait_clear_halt_interrupt(device);
+ if (err)
+ return err;
+
+ err = pmu_reset(device);
+ if (err)
+ return err;
+ /* disable irqs for hs falcon booting as we will poll for halt */
+ pmu_disable_irq(device);
+
+ /* setup apertures - virtual */
+ nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_UCODE), 0x4);
+ nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_VIRT), 0x0);
+ /* setup apertures - physical */
+ nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_VID), 0x4);
+ nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_SYS_COH),
+ 0x4 | 0x1);
+ nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_SYS_NCOH),
+ 0x4 | 0x2);
+
+ /* Set context */
+ nvkm_mask(device, sb->base + 0x048, 0x1, 0x1);
+ nvkm_wr32(device, sb->base + 0x480, ((sb->inst->addr >> 12) & 0xfffffff)
+ | (1 << 29) | (1 << 30));
+
+ return 0;
+}
+
+/**
+ * sb_load_hs_bl() - load HS bootloader into DMEM and IMEM
+ */
+static void
+sb_load_hs_bl(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ struct hs_bin_hdr *hdr = sb->hsbl_blob;
+ struct hsflcn_bl_desc *hsbl_desc = sb->hsbl_blob + hdr->header_offset;
+ u32 acr_blob_vma_base = lower_32_bits(sb->acr_blob_vma.offset >> 8);
+ void *hsbl_code = sb->hsbl_blob + hdr->data_offset;
+ u32 code_size = ALIGN(hsbl_desc->bl_code_size, 256);
+ u32 dst_blk;
+ u32 tag;
+ int i;
+
+ /*
+ * Copy HS bootloader interface structure where the HS descriptor
+ * expects it to be, after updating virtual address of DMA bases
+ */
+ sb->acr_bl_desc.code_dma_base += acr_blob_vma_base;
+ sb->acr_bl_desc.data_dma_base += acr_blob_vma_base;
+ falcon_copy_to_dmem(device, sb->base, hsbl_desc->bl_desc_dmem_load_off,
+ &sb->acr_bl_desc, sizeof(sb->acr_bl_desc), 0);
+ sb->acr_bl_desc.code_dma_base -= acr_blob_vma_base;
+ sb->acr_bl_desc.data_dma_base -= acr_blob_vma_base;
+
+ /* Copy HS bootloader code to IMEM */
+ dst_blk = (nvkm_rd32(device, sb->base + 0x108) & 0x1ff) -
+ (code_size >> 8);
+ tag = hsbl_desc->bl_start_tag;
+ nvkm_wr32(device, sb->base + 0x180,
+ ((dst_blk & 0xff) << 8) | (0x1 << 24));
+ for (i = 0; i < code_size; i += 4) {
+ /* write new tag every 256B */
+ if ((i % 0x100) == 0) {
+ nvkm_wr32(device, sb->base + 0x188, tag & 0xffff);
+ tag++;
+ }
+ nvkm_wr32(device, sb->base + 0x184, *(u32 *)(hsbl_code + i));
+ }
+ nvkm_wr32(device, sb->base + 0x188, 0);
+}
+
+/**
+ * sb_start() - start the falcon to perform secure boot
+ */
+static int
+sb_start(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ struct hs_bin_hdr *hdr = sb->hsbl_blob;
+ struct hsflcn_bl_desc *hsbl_desc = sb->hsbl_blob + hdr->header_offset;
+ /* virtual start address for boot vector */
+ u32 virt_addr = hsbl_desc->bl_start_tag << 8;
+
+ /* Set boot vector to code's starting virtual address */
+ nvkm_wr32(device, sb->base + 0x104, virt_addr);
+ /* Start falcon */
+ nvkm_wr32(device, sb->base + 0x100, 0x2);
+
+ return 0;
+}
+
+/*
+ * sb_execute() - execute secure boot from the prepared state
+ *
+ * Load the HS bootloader and ask the falcon to run it. This will in turn
+ * load the HS firmware and run it, so once the falcon stops all the managed
+ * falcons should have their LS firmware loaded and be ready to run.
+ */
+static int
+sb_execute(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ int err;
+
+ /* Map the HS firmware so the HS bootloader can see it */
+ err = nvkm_gpuobj_map(sb->acr_blob, sb->vm, NV_MEM_ACCESS_RW,
+ &sb->acr_blob_vma);
+ if (err)
+ return err;
+
+ /* Reset the falcon and make it ready to run the HS bootloader */
+ err = sb_setup_falcon(device);
+ if (err)
+ goto done;
+
+ /* Load the HS bootloader into the falcon's IMEM/DMEM */
+ sb_load_hs_bl(device);
+
+ /* Start the HS bootloader */
+ err = sb_start(device);
+ if (err)
+ goto done;
+
+ /* Wait until secure boot completes */
+ err = falcon_wait_for_halt(device);
+ if (err)
+ goto done;
+
+ err = falcon_wait_clear_halt_interrupt(device);
+
+done:
+ /* We don't need the ACR firmware anymore */
+ nvkm_gpuobj_unmap(&sb->acr_blob_vma);
+
+ return err;
+}
+
+const char *managed_falcons_names[] = {
+ [LSF_FALCON_ID_PMU] = "PMU",
+ [LSF_FALCON_ID_RESERVED] = "<invalid>",
+ [LSF_FALCON_ID_FECS] = "FECS",
+ [LSF_FALCON_ID_GPCCS] = "GPCCS",
+ [LSF_FALCON_ID_END] = "<invalid>",
+};
+
+/**
+ * nvkm_secure_boot() - perform secure boot
+ *
+ * Perform secure boot after loading all the required firmwares and preparing
+ * the WPR blob. After this function returns, all the managed falcons should
+ * have their LS firmware loaded and be ready to run.
+ *
+ * The various firmware blobs are kept in memory, so subsequent calls to this
+ * function will directly run the cached state instead of rebuilding it every
+ * time.
+ */
+int
+nvkm_secure_boot(struct nvkm_device *device)
+{
+ struct secure_boot *sb;
+ unsigned long falcon_id;
+ int err;
+
+ sb = device->secure_boot_state;
+
+ nvdev_debug(device, "performing secure boot of:\n");
+ for_each_set_bit(falcon_id, &device->chip->secure_boot.managed_falcons,
+ LSF_FALCON_ID_END)
+ nvdev_debug(device, "- %s\n", managed_falcons_names[falcon_id]);
+
+ /* Load all the LS firmwares and prepare the blob */
+ if (!sb->ls_blob) {
+ err = sb_prepare_ls_blob(device);
+ if (err)
+ return err;
+ }
+
+ /* Load the HS firmware for the performing falcon */
+ if (!sb->acr_blob) {
+ err = sb_prepare_hs_blob(device);
+ if (err)
+ return err;
+ }
+
+ /* Load the HS firmware bootloader */
+ if (!sb->hsbl_blob) {
+ err = sb_prepare_hsbl_blob(device);
+ if (err)
+ return err;
+ }
+
+ /*
+ * Run the HS bootloader. It will load the HS firmware and then run it.
+ * Once this returns, the LS firmwares will be loaded into the managed
+ * falcons.
+ */
+ err = sb_execute(device);
+
+ return err;
+}
+
+/**
+ * sb_init_vm() - prepare the VM required for doing secure boot.
+ */
+static int
+sb_init_vm(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ struct nvkm_vm *vm;
+ int err;
+
+ const u64 vm_area_len = 600 * 1024;
+
+ err = nvkm_gpuobj_new(device, 0x1000, 0, true, NULL, &sb->inst);
+ if (err)
+ return err;
+
+ err = nvkm_gpuobj_new(device, 0x8000, 0, true, NULL, &sb->pgd);
+ if (err)
+ return err;
+
+ err = nvkm_vm_new(device, 0, vm_area_len, 0, NULL, &vm);
+ if (err)
+ return err;
+
+ atomic_inc(&vm->engref[NVKM_SUBDEV_PMU]);
+
+ err = nvkm_vm_ref(vm, &sb->vm, sb->pgd);
+ nvkm_vm_ref(NULL, &vm, NULL);
+ if (err)
+ return err;
+
+ nvkm_kmap(sb->inst);
+ nvkm_wo32(sb->inst, 0x200, lower_32_bits(sb->pgd->addr));
+ nvkm_wo32(sb->inst, 0x204, upper_32_bits(sb->pgd->addr));
+ nvkm_wo32(sb->inst, 0x208, lower_32_bits(vm_area_len - 1));
+ nvkm_wo32(sb->inst, 0x20c, upper_32_bits(vm_area_len - 1));
+ nvkm_done(sb->inst);
+
+ return 0;
+}
+
+static void
+sb_cleanup_vm(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+
+ nvkm_vm_ref(NULL, &sb->vm, sb->pgd);
+ nvkm_gpuobj_del(&sb->pgd);
+ nvkm_gpuobj_del(&sb->inst);
+}
+
+#ifdef CONFIG_ARCH_TEGRA
+/* TODO Should this be handled by the Tegra MC driver? */
+#define TEGRA_MC_BASE 0x70019000
+#define MC_SECURITY_CARVEOUT2_CFG0 0xc58
+#define MC_SECURITY_CARVEOUT2_BOM_0 0xc5c
+#define MC_SECURITY_CARVEOUT2_BOM_HI_0 0xc60
+#define MC_SECURITY_CARVEOUT2_SIZE_128K 0xc64
+#define TEGRA_MC_SECURITY_CARVEOUT_CFG_LOCKED (1 << 1)
+/**
+ * sb_tegra_read_wpr() - read the WPR registers on Tegra
+ *
+ * On dGPU, we can manage the WPR region ourselves, but on Tegra the WPR region
+ * is reserved from system memory by the bootloader and irreversibly locked.
+ * This function reads the address and size of the pre-configured WPR region.
+ */
+static int
+sb_tegra_read_wpr(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+ void __iomem *mc;
+ u32 cfg;
+
+ mc = ioremap(TEGRA_MC_BASE, 0xd00);
+ if (!mc) {
+ nvdev_error(device, "Cannot map Tegra MC registers\n");
+ return PTR_ERR(mc);
+ }
+ sb->wpr_addr = ioread32_native(mc + MC_SECURITY_CARVEOUT2_BOM_0) |
+ ((u64)ioread32_native(mc + MC_SECURITY_CARVEOUT2_BOM_HI_0) << 32);
+ sb->wpr_size = ioread32_native(mc + MC_SECURITY_CARVEOUT2_SIZE_128K)
+ << 17;
+ cfg = ioread32_native(mc + MC_SECURITY_CARVEOUT2_CFG0);
+ iounmap(mc);
+
+ /* Check that WPR settings are valid */
+ if (sb->wpr_size == 0) {
+ nvdev_error(device, "WPR region is empty\n");
+ return -EINVAL;
+ }
+
+ if (!(cfg & TEGRA_MC_SECURITY_CARVEOUT_CFG_LOCKED)) {
+ nvdev_error(device, "WPR region not locked\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+#else
+static int
+sb_tegra_read_wpr(struct nvkm_device *device)
+{
+ nvdev_error(device, "Tegra support not compiled in\n");
+ return -EINVAL;
+}
+#endif
+
+/**
+ * nvkm_secure_boot_init() - initialize secure boot for a device
+ *
+ * Prepare secure boot for a device. This will not load the firmwares yet,
+ * firmwares are loaded and cached upon the first call to nvkm_secure_boot().
+ */
+int
+nvkm_secure_boot_init(struct nvkm_device *device)
+{
+ struct secure_boot *sb;
+ int err;
+
+ sb = kzalloc(sizeof(*sb), GFP_KERNEL);
+ if (!sb) {
+ err = -ENOMEM;
+ goto error;
+ }
+ device->secure_boot_state = sb;
+
+ if (device->type == NVKM_DEVICE_TEGRA) {
+ err = sb_tegra_read_wpr(device);
+ if (err)
+ goto error;
+ }
+
+ err = sb_init_vm(device);
+ if (err) {
+ kfree(sb);
+ device->secure_boot_state = NULL;
+ goto error;
+ }
+
+ switch (device->chip->secure_boot.boot_falcon) {
+ case LSF_FALCON_ID_PMU:
+ sb->base = 0x10a000;
+ break;
+ default:
+ nvdev_error(device, "invalid secure boot falcon\n");
+ err = -EINVAL;
+ goto error;
+ };
+
+ return 0;
+
+error:
+ nvdev_error(device, "Secure Boot initialization failed: %d\n", err);
+ return err;
+}
+
+/**
+ * nvkm_secure_boot_fini() - cleanup secure boot state for a device
+ *
+ * Frees all the memory used by secure boot.
+ */
+void
+nvkm_secure_boot_fini(struct nvkm_device *device)
+{
+ struct secure_boot *sb = device->secure_boot_state;
+
+ if (!sb)
+ return;
+
+ if (sb->hsbl_blob)
+ sb_cleanup_hsbl_blob(device);
+
+ if (sb->acr_blob)
+ sb_cleanup_hs_blob(device);
+
+ if (sb->ls_blob)
+ sb_cleanup_ls_blob(device);
+
+ sb_cleanup_vm(device);
+
+ kfree(sb);
+ device->secure_boot_state = NULL;
+}
diff --git a/drm/nouveau/nvkm/engine/device/base.c b/drm/nouveau/nvkm/engine/device/base.c
index 7476ac271..3e26fc543 100644
--- a/drm/nouveau/nvkm/engine/device/base.c
+++ b/drm/nouveau/nvkm/engine/device/base.c
@@ -26,6 +26,7 @@
#include <core/notify.h>
#include <core/option.h>
+#include <core/secure_boot.h>
#include <subdev/bios.h>
@@ -2273,6 +2274,10 @@ nvkm_device_del(struct nvkm_device **pdevice)
if (device) {
mutex_lock(&nv_devices_mutex);
device->disable_mask = 0;
+
+ if (nvkm_need_secure_boot(device))
+ nvkm_secure_boot_fini(device);
+
for (i = NVKM_SUBDEV_NR - 1; i >= 0; i--) {
struct nvkm_subdev *subdev =
nvkm_device_subdev(device, i);
@@ -2567,6 +2572,10 @@ nvkm_device_ctor(const struct nvkm_device_func *func,
}
ret = 0;
+
+ if (nvkm_need_secure_boot(device))
+ ret = nvkm_secure_boot_init(device);
+
done:
mutex_unlock(&nv_devices_mutex);
return ret;