summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorcvs2hg <devnull@localhost>2001-04-12 20:23:43 +0000
committercvs2hg <devnull@localhost>2001-04-12 20:23:43 +0000
commit276965998e7ea707570c06e5d1faeddc01a42ec8 (patch)
tree50394e8becefa80c1be428065a0f2b04b3fdbdd7
parent4991ba3e01ae8033f3bdd65a60bc48095194e7fe (diff)
downloadnss-hg-276965998e7ea707570c06e5d1faeddc01a42ec8.tar.gz
fixup commit for branch 'NSS_3_2_BRANCH'
-rw-r--r--security/nss/lib/freebl/rsa.c694
1 files changed, 694 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/rsa.c b/security/nss/lib/freebl/rsa.c
new file mode 100644
index 000000000..e91ed3c22
--- /dev/null
+++ b/security/nss/lib/freebl/rsa.c
@@ -0,0 +1,694 @@
+/*
+ * The contents of this file are subject to the Mozilla Public
+ * License Version 1.1 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.mozilla.org/MPL/
+ *
+ * Software distributed under the License is distributed on an "AS
+ * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
+ * implied. See the License for the specific language governing
+ * rights and limitations under the License.
+ *
+ * The Original Code is the Netscape security libraries.
+ *
+ * The Initial Developer of the Original Code is Netscape
+ * Communications Corporation. Portions created by Netscape are
+ * Copyright (C) 1994-2000 Netscape Communications Corporation. All
+ * Rights Reserved.
+ *
+ * Contributor(s):
+ *
+ * Alternatively, the contents of this file may be used under the
+ * terms of the GNU General Public License Version 2 or later (the
+ * "GPL"), in which case the provisions of the GPL are applicable
+ * instead of those above. If you wish to allow use of your
+ * version of this file only under the terms of the GPL and not to
+ * allow others to use your version of this file under the MPL,
+ * indicate your decision by deleting the provisions above and
+ * replace them with the notice and other provisions required by
+ * the GPL. If you do not delete the provisions above, a recipient
+ * may use your version of this file under either the MPL or the
+ * GPL.
+ *
+ */
+
+/*
+ * RSA key generation, public key op, private key op.
+ *
+ * $Id$
+ */
+
+#include "secerr.h"
+
+#include "prclist.h"
+#include "nssilock.h"
+#include "prinit.h"
+#include "blapi.h"
+#include "mpi.h"
+#include "mpprime.h"
+#include "mplogic.h"
+#include "secmpi.h"
+#include "secitem.h"
+
+/*
+** Number of times to attempt to generate a prime (p or q) from a random
+** seed (the seed changes for each iteration).
+*/
+#define MAX_PRIME_GEN_ATTEMPTS 10
+/*
+** Number of times to attempt to generate a key. The primes p and q change
+** for each attempt.
+*/
+#define MAX_KEY_GEN_ATTEMPTS 10
+
+/*
+** RSABlindingParamsStr
+**
+** For discussion of Paul Kocher's timing attack against an RSA private key
+** operation, see http://www.cryptography.com/timingattack/paper.html. The
+** countermeasure to this attack, known as blinding, is also discussed in
+** the Handbook of Applied Cryptography, 11.118-11.119.
+*/
+struct RSABlindingParamsStr
+{
+ /* Blinding-specific parameters */
+ PRCList link; /* link to list of structs */
+ SECItem modulus; /* list element "key" */
+ mp_int f, g; /* Blinding parameters */
+ int counter; /* number of remaining uses of (f, g) */
+};
+
+/*
+** RSABlindingParamsListStr
+**
+** List of key-specific blinding params. The arena holds the volatile pool
+** of memory for each entry and the list itself. The lock is for list
+** operations, in this case insertions and iterations, as well as control
+** of the counter for each set of blinding parameters.
+*/
+struct RSABlindingParamsListStr
+{
+ PZLock *lock; /* Lock for the list */
+ PRCList head; /* Pointer to the list */
+};
+
+/*
+** The master blinding params list.
+*/
+static struct RSABlindingParamsListStr blindingParamsList = { 0 };
+
+/* Number of times to reuse (f, g). Suggested by Paul Kocher */
+#define RSA_BLINDING_PARAMS_MAX_REUSE 50
+
+/* Global, allows optional use of blinding. On by default. */
+/* Cannot be changed at the moment, due to thread-safety issues. */
+static PRBool nssRSAUseBlinding = PR_TRUE;
+
+static SECStatus
+rsa_keygen_from_primes(mp_int *p, mp_int *q, mp_int *e, RSAPrivateKey *key,
+ unsigned int keySizeInBits)
+{
+ mp_int n, d, phi;
+ mp_int psub1, qsub1, tmp;
+ mp_err err = MP_OKAY;
+ SECStatus rv = SECSuccess;
+ MP_DIGITS(&n) = 0;
+ MP_DIGITS(&d) = 0;
+ MP_DIGITS(&phi) = 0;
+ MP_DIGITS(&psub1) = 0;
+ MP_DIGITS(&qsub1) = 0;
+ MP_DIGITS(&tmp) = 0;
+ CHECK_MPI_OK( mp_init(&n) );
+ CHECK_MPI_OK( mp_init(&d) );
+ CHECK_MPI_OK( mp_init(&phi) );
+ CHECK_MPI_OK( mp_init(&psub1) );
+ CHECK_MPI_OK( mp_init(&qsub1) );
+ CHECK_MPI_OK( mp_init(&tmp) );
+ /* 1. Compute n = p*q */
+ CHECK_MPI_OK( mp_mul(p, q, &n) );
+ /* verify that the modulus has the desired number of bits */
+ if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) {
+ PORT_SetError(SEC_ERROR_NEED_RANDOM);
+ rv = SECFailure;
+ goto cleanup;
+ }
+ /* 2. Compute phi = (p-1)*(q-1) */
+ CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) );
+ CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) );
+ CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) );
+ /* 3. Compute d = e**-1 mod(phi) */
+ err = mp_invmod(e, &phi, &d);
+ /* Verify that phi(n) and e have no common divisors */
+ if (err != MP_OKAY) {
+ if (err == MP_UNDEF) {
+ PORT_SetError(SEC_ERROR_NEED_RANDOM);
+ err = MP_OKAY; /* to keep PORT_SetError from being called again */
+ rv = SECFailure;
+ }
+ goto cleanup;
+ }
+ MPINT_TO_SECITEM(&n, &key->modulus, key->arena);
+ MPINT_TO_SECITEM(&d, &key->privateExponent, key->arena);
+ /* 4. Compute exponent1 = d mod (p-1) */
+ CHECK_MPI_OK( mp_mod(&d, &psub1, &tmp) );
+ MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena);
+ /* 5. Compute exponent2 = d mod (q-1) */
+ CHECK_MPI_OK( mp_mod(&d, &qsub1, &tmp) );
+ MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena);
+ /* 6. Compute coefficient = q**-1 mod p */
+ CHECK_MPI_OK( mp_invmod(q, p, &tmp) );
+ MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena);
+cleanup:
+ mp_clear(&n);
+ mp_clear(&d);
+ mp_clear(&phi);
+ mp_clear(&psub1);
+ mp_clear(&qsub1);
+ mp_clear(&tmp);
+ if (err) {
+ MP_TO_SEC_ERROR(err);
+ rv = SECFailure;
+ }
+ return rv;
+}
+static SECStatus
+generate_prime(mp_int *prime, int primeLen)
+{
+ mp_err err = MP_OKAY;
+ SECStatus rv = SECSuccess;
+ unsigned long counter = 0;
+ int piter;
+ unsigned char *pb = NULL;
+ pb = PORT_Alloc(primeLen);
+ if (!pb) {
+ PORT_SetError(SEC_ERROR_NO_MEMORY);
+ goto cleanup;
+ }
+ for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) {
+ CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) );
+ pb[0] |= 0xC0; /* set two high-order bits */
+ pb[primeLen-1] |= 0x01; /* set low-order bit */
+ CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) );
+ err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter);
+ if (err != MP_NO)
+ goto cleanup;
+ /* keep going while err == MP_NO */
+ }
+cleanup:
+ if (pb)
+ PORT_ZFree(pb, primeLen);
+ if (err) {
+ MP_TO_SEC_ERROR(err);
+ rv = SECFailure;
+ }
+ return rv;
+}
+
+/*
+** Generate and return a new RSA public and private key.
+** Both keys are encoded in a single RSAPrivateKey structure.
+** "cx" is the random number generator context
+** "keySizeInBits" is the size of the key to be generated, in bits.
+** 512, 1024, etc.
+** "publicExponent" when not NULL is a pointer to some data that
+** represents the public exponent to use. The data is a byte
+** encoded integer, in "big endian" order.
+*/
+RSAPrivateKey *
+RSA_NewKey(int keySizeInBits, SECItem *publicExponent)
+{
+ unsigned int primeLen;
+ mp_int p, q, e;
+ int kiter;
+ mp_err err = MP_OKAY;
+ SECStatus rv = SECSuccess;
+ int prerr = 0;
+ RSAPrivateKey *key = NULL;
+ PRArenaPool *arena = NULL;
+ /* Require key size to be a multiple of 16 bits. */
+ if (!publicExponent || keySizeInBits % 16 != 0) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return NULL;
+ }
+ /* 1. Allocate arena & key */
+ arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
+ if (!arena) {
+ PORT_SetError(SEC_ERROR_NO_MEMORY);
+ return NULL;
+ }
+ key = (RSAPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(RSAPrivateKey));
+ if (!key) {
+ PORT_SetError(SEC_ERROR_NO_MEMORY);
+ PORT_FreeArena(arena, PR_TRUE);
+ return NULL;
+ }
+ key->arena = arena;
+ /* length of primes p and q (in bytes) */
+ primeLen = keySizeInBits / (2 * BITS_PER_BYTE);
+ MP_DIGITS(&p) = 0;
+ MP_DIGITS(&q) = 0;
+ MP_DIGITS(&e) = 0;
+ CHECK_MPI_OK( mp_init(&p) );
+ CHECK_MPI_OK( mp_init(&q) );
+ CHECK_MPI_OK( mp_init(&e) );
+ /* 2. Set the version number (PKCS1 v1.5 says it should be zero) */
+ SECITEM_AllocItem(arena, &key->version, 1);
+ key->version.data[0] = 0;
+ /* 3. Set the public exponent */
+ SECITEM_CopyItem(arena, &key->publicExponent, publicExponent);
+ SECITEM_TO_MPINT(*publicExponent, &e);
+ kiter = 0;
+ do {
+ prerr = 0;
+ PORT_SetError(0);
+ CHECK_SEC_OK( generate_prime(&p, primeLen) );
+ CHECK_SEC_OK( generate_prime(&q, primeLen) );
+ /* Assure q < p */
+ if (mp_cmp(&p, &q) < 0)
+ mp_exch(&p, &q);
+ /* Attempt to use these primes to generate a key */
+ rv = rsa_keygen_from_primes(&p, &q, &e, key, keySizeInBits);
+ if (rv == SECSuccess)
+ break; /* generated two good primes */
+ prerr = PORT_GetError();
+ kiter++;
+ /* loop until have primes */
+ } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS);
+ if (prerr)
+ goto cleanup;
+ MPINT_TO_SECITEM(&p, &key->prime1, arena);
+ MPINT_TO_SECITEM(&q, &key->prime2, arena);
+cleanup:
+ mp_clear(&p);
+ mp_clear(&q);
+ mp_clear(&e);
+ if (err) {
+ MP_TO_SEC_ERROR(err);
+ rv = SECFailure;
+ }
+ if (rv && arena) {
+ PORT_FreeArena(arena, PR_TRUE);
+ key = NULL;
+ }
+ return key;
+}
+
+static unsigned int
+rsa_modulusLen(SECItem *modulus)
+{
+ unsigned char byteZero = modulus->data[0];
+ unsigned int modLen = modulus->len - !byteZero;
+ return modLen;
+}
+
+/*
+** Perform a raw public-key operation
+** Length of input and output buffers are equal to key's modulus len.
+*/
+SECStatus
+RSA_PublicKeyOp(RSAPublicKey *key,
+ unsigned char *output,
+ const unsigned char *input)
+{
+ unsigned int modLen;
+ mp_int n, e, m, c;
+ mp_err err = MP_OKAY;
+ SECStatus rv = SECSuccess;
+ if (!key || !output || !input) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return SECFailure;
+ }
+ MP_DIGITS(&n) = 0;
+ MP_DIGITS(&e) = 0;
+ MP_DIGITS(&m) = 0;
+ MP_DIGITS(&c) = 0;
+ CHECK_MPI_OK( mp_init(&n) );
+ CHECK_MPI_OK( mp_init(&e) );
+ CHECK_MPI_OK( mp_init(&m) );
+ CHECK_MPI_OK( mp_init(&c) );
+ modLen = rsa_modulusLen(&key->modulus);
+ /* 1. Obtain public key (n, e) */
+ SECITEM_TO_MPINT(key->modulus, &n);
+ SECITEM_TO_MPINT(key->publicExponent, &e);
+ /* 2. Represent message as integer in range [0..n-1] */
+ CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) );
+ /* 3. Compute c = m**e mod n */
+#ifdef USE_MPI_EXPT_D
+ /* XXX see which is faster */
+ if (MP_USED(&e) == 1) {
+ CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) );
+ } else
+#endif
+ CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) );
+ /* 4. result c is ciphertext */
+ err = mp_to_fixlen_octets(&c, output, modLen);
+ if (err >= 0) err = MP_OKAY;
+cleanup:
+ mp_clear(&n);
+ mp_clear(&e);
+ mp_clear(&m);
+ mp_clear(&c);
+ if (err) {
+ MP_TO_SEC_ERROR(err);
+ rv = SECFailure;
+ }
+ return rv;
+}
+
+/*
+** RSA Private key operation (no CRT).
+*/
+static SECStatus
+rsa_PrivateKeyOp(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n,
+ unsigned int modLen)
+{
+ mp_int d;
+ mp_err err = MP_OKAY;
+ SECStatus rv = SECSuccess;
+ MP_DIGITS(&d) = 0;
+ CHECK_MPI_OK( mp_init(&d) );
+ SECITEM_TO_MPINT(key->privateExponent, &d);
+ /* 1. m = c**d mod n */
+ CHECK_MPI_OK( mp_exptmod(c, &d, n, m) );
+cleanup:
+ mp_clear(&d);
+ if (err) {
+ MP_TO_SEC_ERROR(err);
+ rv = SECFailure;
+ }
+ return rv;
+}
+
+/*
+** RSA Private key operation using CRT.
+*/
+static SECStatus
+rsa_PrivateKeyOpCRT(RSAPrivateKey *key, mp_int *m, mp_int *c,
+ unsigned int modLen)
+{
+ mp_int p, q, d_p, d_q, qInv;
+ mp_int m1, m2, b2, h, ctmp;
+ mp_err err = MP_OKAY;
+ SECStatus rv = SECSuccess;
+ MP_DIGITS(&p) = 0;
+ MP_DIGITS(&q) = 0;
+ MP_DIGITS(&d_p) = 0;
+ MP_DIGITS(&d_q) = 0;
+ MP_DIGITS(&qInv) = 0;
+ MP_DIGITS(&m1) = 0;
+ MP_DIGITS(&m2) = 0;
+ MP_DIGITS(&b2) = 0;
+ MP_DIGITS(&h) = 0;
+ MP_DIGITS(&ctmp) = 0;
+ CHECK_MPI_OK( mp_init(&p) );
+ CHECK_MPI_OK( mp_init(&q) );
+ CHECK_MPI_OK( mp_init(&d_p) );
+ CHECK_MPI_OK( mp_init(&d_q) );
+ CHECK_MPI_OK( mp_init(&qInv) );
+ CHECK_MPI_OK( mp_init(&m1) );
+ CHECK_MPI_OK( mp_init(&m2) );
+ CHECK_MPI_OK( mp_init(&b2) );
+ CHECK_MPI_OK( mp_init(&h) );
+ CHECK_MPI_OK( mp_init(&ctmp) );
+ /* copy private key parameters into mp integers */
+ SECITEM_TO_MPINT(key->prime1, &p); /* p */
+ SECITEM_TO_MPINT(key->prime2, &q); /* q */
+ SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */
+ SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_p = d mod (q-1) */
+ SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */
+ /* 1. m1 = c**d_p mod p */
+ CHECK_MPI_OK( mp_mod(c, &p, &ctmp) );
+ CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) );
+ /* 2. m2 = c**d_q mod q */
+ CHECK_MPI_OK( mp_mod(c, &q, &ctmp) );
+ CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) );
+ /* 3. h = (m1 - m2) * qInv mod p */
+ CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) );
+ CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) );
+ /* 4. m = m2 + h * q */
+ CHECK_MPI_OK( mp_mul(&h, &q, m) );
+ CHECK_MPI_OK( mp_add(m, &m2, m) );
+cleanup:
+ mp_clear(&p);
+ mp_clear(&q);
+ mp_clear(&d_p);
+ mp_clear(&d_q);
+ mp_clear(&qInv);
+ mp_clear(&m1);
+ mp_clear(&m2);
+ mp_clear(&b2);
+ mp_clear(&h);
+ mp_clear(&ctmp);
+ if (err) {
+ MP_TO_SEC_ERROR(err);
+ rv = SECFailure;
+ }
+ return rv;
+}
+
+static PRCallOnceType coBPInit = { 0, 0, 0 };
+static PRStatus
+init_blinding_params_list(void)
+{
+ blindingParamsList.lock = PZ_NewLock(nssILockOther);
+ if (!blindingParamsList.lock) {
+ PORT_SetError(SEC_ERROR_NO_MEMORY);
+ return PR_FAILURE;
+ }
+ PR_INIT_CLIST(&blindingParamsList.head);
+ return PR_SUCCESS;
+}
+
+static SECStatus
+generate_blinding_params(struct RSABlindingParamsStr *rsabp,
+ RSAPrivateKey *key, mp_int *n, unsigned int modLen)
+{
+ SECStatus rv = SECSuccess;
+ mp_int e, k;
+ mp_err err = MP_OKAY;
+ unsigned char *kb = NULL;
+ MP_DIGITS(&e) = 0;
+ MP_DIGITS(&k) = 0;
+ CHECK_MPI_OK( mp_init(&e) );
+ CHECK_MPI_OK( mp_init(&k) );
+ SECITEM_TO_MPINT(key->publicExponent, &e);
+ /* generate random k < n */
+ kb = PORT_Alloc(modLen);
+ if (!kb) {
+ PORT_SetError(SEC_ERROR_NO_MEMORY);
+ goto cleanup;
+ }
+ CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) );
+ CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) );
+ /* k < n */
+ CHECK_MPI_OK( mp_mod(&k, n, &k) );
+ /* f = k**e mod n */
+ CHECK_MPI_OK( mp_exptmod(&k, &e, n, &rsabp->f) );
+ /* g = k**-1 mod n */
+ CHECK_MPI_OK( mp_invmod(&k, n, &rsabp->g) );
+ /* Initialize the counter for this (f, g) */
+ rsabp->counter = RSA_BLINDING_PARAMS_MAX_REUSE;
+cleanup:
+ if (kb)
+ PORT_ZFree(kb, modLen);
+ mp_clear(&k);
+ mp_clear(&e);
+ if (err) {
+ MP_TO_SEC_ERROR(err);
+ rv = SECFailure;
+ }
+ return rv;
+}
+
+static SECStatus
+init_blinding_params(struct RSABlindingParamsStr *rsabp, RSAPrivateKey *key,
+ mp_int *n, unsigned int modLen)
+{
+ SECStatus rv = SECSuccess;
+ mp_err err = MP_OKAY;
+ MP_DIGITS(&rsabp->f) = 0;
+ MP_DIGITS(&rsabp->g) = 0;
+ /* initialize blinding parameters */
+ CHECK_MPI_OK( mp_init(&rsabp->f) );
+ CHECK_MPI_OK( mp_init(&rsabp->g) );
+ /* List elements are keyed using the modulus */
+ SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus);
+ CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) );
+ return SECSuccess;
+cleanup:
+ mp_clear(&rsabp->f);
+ mp_clear(&rsabp->g);
+ if (err) {
+ MP_TO_SEC_ERROR(err);
+ rv = SECFailure;
+ }
+ return rv;
+}
+
+static SECStatus
+get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen,
+ mp_int *f, mp_int *g)
+{
+ SECStatus rv = SECSuccess;
+ mp_err err = MP_OKAY;
+ int cmp;
+ PRCList *el;
+ struct RSABlindingParamsStr *rsabp = NULL;
+ /* Init the list if neccessary (the init function is only called once!) */
+ if (blindingParamsList.lock == NULL) {
+ if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) {
+ PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
+ return SECFailure;
+ }
+ }
+ /* Acquire the list lock */
+ PZ_Lock(blindingParamsList.lock);
+ /* Walk the list looking for the private key */
+ for (el = PR_NEXT_LINK(&blindingParamsList.head);
+ el != &blindingParamsList.head;
+ el = PR_NEXT_LINK(el)) {
+ rsabp = (struct RSABlindingParamsStr *)el;
+ cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus);
+ if (cmp == 0) {
+ /* Check the usage counter for the parameters */
+ if (--rsabp->counter <= 0) {
+ /* Regenerate the blinding parameters */
+ CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) );
+ }
+ /* Return the parameters */
+ CHECK_MPI_OK( mp_copy(&rsabp->f, f) );
+ CHECK_MPI_OK( mp_copy(&rsabp->g, g) );
+ /* Now that the params are located, release the list lock. */
+ PZ_Unlock(blindingParamsList.lock); /* XXX when fails? */
+ return SECSuccess;
+ } else if (cmp > 0) {
+ /* The key is not in the list. Break to param creation. */
+ break;
+ }
+ }
+ /* At this point, the key is not in the list. el should point to the
+ ** list element that this key should be inserted before. NOTE: the list
+ ** lock is still held, so there cannot be a race condition here.
+ */
+ rsabp = (struct RSABlindingParamsStr *)
+ PORT_ZAlloc(sizeof(struct RSABlindingParamsStr));
+ if (!rsabp) {
+ PORT_SetError(SEC_ERROR_NO_MEMORY);
+ goto cleanup;
+ }
+ /* Initialize the list pointer for the element */
+ PR_INIT_CLIST(&rsabp->link);
+ /* Initialize the blinding parameters
+ ** This ties up the list lock while doing some heavy, element-specific
+ ** operations, but we don't want to insert the element until it is valid,
+ ** which requires computing the blinding params. If this proves costly,
+ ** it could be done after the list lock is released, and then if it fails
+ ** the lock would have to be reobtained and the invalid element removed.
+ */
+ rv = init_blinding_params(rsabp, key, n, modLen);
+ if (rv != SECSuccess) {
+ PORT_ZFree(rsabp, sizeof(struct RSABlindingParamsStr));
+ goto cleanup;
+ }
+ /* Insert the new element into the list
+ ** If inserting in the middle of the list, el points to the link
+ ** to insert before. Otherwise, the link needs to be appended to
+ ** the end of the list, which is the same as inserting before the
+ ** head (since el would have looped back to the head).
+ */
+ PR_INSERT_BEFORE(&rsabp->link, el);
+ /* Return the parameters */
+ CHECK_MPI_OK( mp_copy(&rsabp->f, f) );
+ CHECK_MPI_OK( mp_copy(&rsabp->g, g) );
+ /* Release the list lock */
+ PZ_Unlock(blindingParamsList.lock); /* XXX when fails? */
+ return SECSuccess;
+cleanup:
+ /* It is possible to reach this after the lock is already released.
+ ** Ignore the error in that case.
+ */
+ PZ_Unlock(blindingParamsList.lock);
+ if (err) {
+ MP_TO_SEC_ERROR(err);
+ rv = SECFailure;
+ }
+ return SECFailure;
+}
+
+/*
+** Perform a raw private-key operation
+** Length of input and output buffers are equal to key's modulus len.
+*/
+SECStatus
+RSA_PrivateKeyOp(RSAPrivateKey *key,
+ unsigned char *output,
+ const unsigned char *input)
+{
+ unsigned int modLen;
+ unsigned int offset;
+ SECStatus rv;
+ mp_err err;
+ mp_int n, c, m;
+ mp_int f, g;
+ if (!key || !output || !input) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return SECFailure;
+ }
+ /* check input out of range (needs to be in range [0..n-1]) */
+ modLen = rsa_modulusLen(&key->modulus);
+ offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
+ if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return SECFailure;
+ }
+ MP_DIGITS(&n) = 0;
+ MP_DIGITS(&c) = 0;
+ MP_DIGITS(&m) = 0;
+ MP_DIGITS(&f) = 0;
+ MP_DIGITS(&g) = 0;
+ CHECK_MPI_OK( mp_init(&n) );
+ CHECK_MPI_OK( mp_init(&c) );
+ CHECK_MPI_OK( mp_init(&m) );
+ CHECK_MPI_OK( mp_init(&f) );
+ CHECK_MPI_OK( mp_init(&g) );
+ SECITEM_TO_MPINT(key->modulus, &n);
+ OCTETS_TO_MPINT(input, &c, modLen);
+ /* If blinding, compute pre-image of ciphertext by multiplying by
+ ** blinding factor
+ */
+ if (nssRSAUseBlinding) {
+ CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) );
+ /* c' = c*f mod n */
+ CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) );
+ }
+ /* Do the private key operation m = c**d mod n */
+ if ( key->prime1.len == 0 ||
+ key->prime2.len == 0 ||
+ key->exponent1.len == 0 ||
+ key->exponent2.len == 0 ||
+ key->coefficient.len == 0) {
+ CHECK_SEC_OK( rsa_PrivateKeyOp(key, &m, &c, &n, modLen) );
+ } else {
+ CHECK_SEC_OK( rsa_PrivateKeyOpCRT(key, &m, &c, modLen) );
+ }
+ /* If blinding, compute post-image of plaintext by multiplying by
+ ** blinding factor
+ */
+ if (nssRSAUseBlinding) {
+ /* m = m'*g mod n */
+ CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) );
+ }
+ err = mp_to_fixlen_octets(&m, output, modLen);
+ if (err >= 0) err = MP_OKAY;
+cleanup:
+ mp_clear(&n);
+ mp_clear(&c);
+ mp_clear(&m);
+ mp_clear(&f);
+ mp_clear(&g);
+ if (err) {
+ MP_TO_SEC_ERROR(err);
+ rv = SECFailure;
+ }
+ return rv;
+}