summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/GF2m_ecl.c
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/lib/freebl/GF2m_ecl.c')
-rw-r--r--security/nss/lib/freebl/GF2m_ecl.c539
1 files changed, 0 insertions, 539 deletions
diff --git a/security/nss/lib/freebl/GF2m_ecl.c b/security/nss/lib/freebl/GF2m_ecl.c
deleted file mode 100644
index 09fbf7979..000000000
--- a/security/nss/lib/freebl/GF2m_ecl.c
+++ /dev/null
@@ -1,539 +0,0 @@
-/*
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for binary polynomial
- * field curves.
- *
- * The Initial Developer of the Original Code is Sun Microsystems, Inc.
- * Portions created by Sun Microsystems, Inc. are Copyright (C) 2003
- * Sun Microsystems, Inc. All Rights Reserved.
- *
- * Contributor(s):
- * Douglas Stebila <douglas@stebila.ca>
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- */
-
-#ifdef NSS_ENABLE_ECC
-/*
- * GF2m_ecl.c: Contains an implementation of elliptic curve math library
- * for curves over GF2m.
- *
- * XXX Can be moved to a separate subdirectory later.
- *
- */
-
-#include "GF2m_ecl.h"
-#include "mpi/mplogic.h"
-#include "mpi/mp_gf2m.h"
-#include <stdlib.h>
-
-/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
-mp_err
-GF2m_ec_pt_is_inf_aff(const mp_int *px, const mp_int *py)
-{
-
- if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
- return MP_YES;
- } else {
- return MP_NO;
- }
-
-}
-
-/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
-mp_err
-GF2m_ec_pt_set_inf_aff(mp_int *px, mp_int *py)
-{
- mp_zero(px);
- mp_zero(py);
- return MP_OKAY;
-}
-
-/* Computes R = P + Q based on IEEE P1363 A.10.2.
- * Elliptic curve points P, Q, and R can all be identical.
- * Uses affine coordinates.
- */
-mp_err
-GF2m_ec_pt_add_aff(const mp_int *pp, const mp_int *a, const mp_int *px,
- const mp_int *py, const mp_int *qx, const mp_int *qy,
- mp_int *rx, mp_int *ry)
-{
- mp_err err = MP_OKAY;
- mp_int lambda, xtemp, ytemp;
- unsigned int *p;
- int p_size;
-
- p_size = mp_bpoly2arr(pp, p, 0) + 1;
- p = (unsigned int *) (malloc(sizeof(unsigned int) * p_size));
- if (p == NULL) goto cleanup;
- mp_bpoly2arr(pp, p, p_size);
-
- CHECK_MPI_OK( mp_init(&lambda) );
- CHECK_MPI_OK( mp_init(&xtemp) );
- CHECK_MPI_OK( mp_init(&ytemp) );
- /* if P = inf, then R = Q */
- if (GF2m_ec_pt_is_inf_aff(px, py) == 0) {
- CHECK_MPI_OK( mp_copy(qx, rx) );
- CHECK_MPI_OK( mp_copy(qy, ry) );
- err = MP_OKAY;
- goto cleanup;
- }
- /* if Q = inf, then R = P */
- if (GF2m_ec_pt_is_inf_aff(qx, qy) == 0) {
- CHECK_MPI_OK( mp_copy(px, rx) );
- CHECK_MPI_OK( mp_copy(py, ry) );
- err = MP_OKAY;
- goto cleanup;
- }
- /* if px != qx, then lambda = (py+qy) / (px+qx),
- * xtemp = a + lambda^2 + lambda + px + qx
- */
- if (mp_cmp(px, qx) != 0) {
- CHECK_MPI_OK( mp_badd(py, qy, &ytemp) );
- CHECK_MPI_OK( mp_badd(px, qx, &xtemp) );
- CHECK_MPI_OK( mp_bdivmod(&ytemp, &xtemp, pp, p, &lambda) );
- CHECK_MPI_OK( mp_bsqrmod(&lambda, p, &xtemp) );
- CHECK_MPI_OK( mp_badd(&xtemp, &lambda, &xtemp) );
- CHECK_MPI_OK( mp_badd(&xtemp, a, &xtemp) );
- CHECK_MPI_OK( mp_badd(&xtemp, px, &xtemp) );
- CHECK_MPI_OK( mp_badd(&xtemp, qx, &xtemp) );
- } else {
- /* if py != qy or qx = 0, then R = inf */
- if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) {
- mp_zero(rx);
- mp_zero(ry);
- err = MP_OKAY;
- goto cleanup;
- }
- /* lambda = qx + qy / qx */
- CHECK_MPI_OK( mp_bdivmod(qy, qx, pp, p, &lambda) );
- CHECK_MPI_OK( mp_badd(&lambda, qx, &lambda) );
- /* xtemp = a + lambda^2 + lambda */
- CHECK_MPI_OK( mp_bsqrmod(&lambda, p, &xtemp) );
- CHECK_MPI_OK( mp_badd(&xtemp, &lambda, &xtemp) );
- CHECK_MPI_OK( mp_badd(&xtemp, a, &xtemp) );
- }
- /* ry = (qx + xtemp) * lambda + xtemp + qy */
- CHECK_MPI_OK( mp_badd(qx, &xtemp, &ytemp) );
- CHECK_MPI_OK( mp_bmulmod(&ytemp, &lambda, p, &ytemp) );
- CHECK_MPI_OK( mp_badd(&ytemp, &xtemp, &ytemp) );
- CHECK_MPI_OK( mp_badd(&ytemp, qy, ry) );
- /* rx = xtemp */
- CHECK_MPI_OK( mp_copy(&xtemp, rx) );
-
-cleanup:
- mp_clear(&lambda);
- mp_clear(&xtemp);
- mp_clear(&ytemp);
- free(p);
- return err;
-}
-
-/* Computes R = P - Q.
- * Elliptic curve points P, Q, and R can all be identical.
- * Uses affine coordinates.
- */
-mp_err
-GF2m_ec_pt_sub_aff(const mp_int *pp, const mp_int *a, const mp_int *px,
- const mp_int *py, const mp_int *qx, const mp_int *qy,
- mp_int *rx, mp_int *ry)
-{
- mp_err err = MP_OKAY;
- mp_int nqy;
- MP_DIGITS(&nqy) = 0;
- CHECK_MPI_OK( mp_init(&nqy) );
- /* nqy = qx+qy */
- CHECK_MPI_OK( mp_badd(qx, qy, &nqy) );
- err = GF2m_ec_pt_add_aff(pp, a, px, py, qx, &nqy, rx, ry);
-cleanup:
- mp_clear(&nqy);
- return err;
-}
-
-/* Computes R = 2P.
- * Elliptic curve points P and R can be identical.
- * Uses affine coordinates.
- */
-mp_err
-GF2m_ec_pt_dbl_aff(const mp_int *pp, const mp_int *a, const mp_int *px,
- const mp_int *py, mp_int *rx, mp_int *ry)
-{
- return GF2m_ec_pt_add_aff(pp, a, px, py, px, py, rx, ry);
-}
-
-/* Gets the i'th bit in the binary representation of a.
- * If i >= length(a), then return 0.
- * (The above behaviour differs from mpl_get_bit, which
- * causes an error if i >= length(a).)
- */
-#define MP_GET_BIT(a, i) \
- ((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i))
-
-/* Computes R = nP based on IEEE P1363 A.10.3.
- * Elliptic curve points P and R can be identical.
- * Uses affine coordinates.
- */
-mp_err
-GF2m_ec_pt_mul_aff(const mp_int *pp, const mp_int *a, const mp_int *b,
- const mp_int *px, const mp_int *py, const mp_int *n,
- mp_int *rx, mp_int *ry)
-{
- mp_err err = MP_OKAY;
- mp_int k, k3, qx, qy, sx, sy;
- int b1, b3, i, l;
- unsigned int *p;
- int p_size;
-
- MP_DIGITS(&k) = 0;
- MP_DIGITS(&k3) = 0;
- MP_DIGITS(&qx) = 0;
- MP_DIGITS(&qy) = 0;
- MP_DIGITS(&sx) = 0;
- MP_DIGITS(&sy) = 0;
- CHECK_MPI_OK( mp_init(&k) );
- CHECK_MPI_OK( mp_init(&k3) );
- CHECK_MPI_OK( mp_init(&qx) );
- CHECK_MPI_OK( mp_init(&qy) );
- CHECK_MPI_OK( mp_init(&sx) );
- CHECK_MPI_OK( mp_init(&sy) );
-
- p_size = mp_bpoly2arr(pp, p, 0) + 1;
- p = (unsigned int *) (malloc(sizeof(unsigned int) * p_size));
- if (p == NULL) goto cleanup;
- mp_bpoly2arr(pp, p, p_size);
-
- /* if n = 0 then r = inf */
- if (mp_cmp_z(n) == 0) {
- mp_zero(rx);
- mp_zero(ry);
- err = MP_OKAY;
- goto cleanup;
- }
- /* Q = P, k = n */
- CHECK_MPI_OK( mp_copy(px, &qx) );
- CHECK_MPI_OK( mp_copy(py, &qy) );
- CHECK_MPI_OK( mp_copy(n, &k) );
- /* if n < 0 then Q = -Q, k = -k */
- if (mp_cmp_z(n) < 0) {
- CHECK_MPI_OK( mp_badd(&qx, &qy, &qy) );
- CHECK_MPI_OK( mp_neg(&k, &k) );
- }
-#ifdef EC_DEBUG /* basic double and add method */
- l = mpl_significant_bits(&k) - 1;
- mp_zero(&sx);
- mp_zero(&sy);
- for (i = l; i >= 0; i--) {
- /* if k_i = 1, then S = S + Q */
- if (mpl_get_bit(&k, i) != 0) {
- CHECK_MPI_OK( GF2m_ec_pt_add_aff(pp, a, &sx, &sy, &qx, &qy, &sx, &sy) );
- }
- if (i > 0) {
- /* S = 2S */
- CHECK_MPI_OK( GF2m_ec_pt_dbl_aff(pp, a, &sx, &sy, &sx, &sy) );
- }
- }
-#else /* double and add/subtract method from standard */
- /* k3 = 3 * k */
- mp_set(&k3, 0x3);
- CHECK_MPI_OK( mp_mul(&k, &k3, &k3) );
- /* S = Q */
- CHECK_MPI_OK( mp_copy(&qx, &sx) );
- CHECK_MPI_OK( mp_copy(&qy, &sy) );
- /* l = index of high order bit in binary representation of 3*k */
- l = mpl_significant_bits(&k3) - 1;
- /* for i = l-1 downto 1 */
- for (i = l - 1; i >= 1; i--) {
- /* S = 2S */
- CHECK_MPI_OK( GF2m_ec_pt_dbl_aff(pp, a, &sx, &sy, &sx, &sy) );
- b3 = MP_GET_BIT(&k3, i);
- b1 = MP_GET_BIT(&k, i);
- /* if k3_i = 1 and k_i = 0, then S = S + Q */
- if ((b3 == 1) && (b1 == 0)) {
- CHECK_MPI_OK( GF2m_ec_pt_add_aff(pp, a, &sx, &sy, &qx, &qy, &sx, &sy) );
- /* if k3_i = 0 and k_i = 1, then S = S - Q */
- } else if ((b3 == 0) && (b1 == 1)) {
- CHECK_MPI_OK( GF2m_ec_pt_sub_aff(pp, a, &sx, &sy, &qx, &qy, &sx, &sy) );
- }
- }
-#endif
- /* output S */
- CHECK_MPI_OK( mp_copy(&sx, rx) );
- CHECK_MPI_OK( mp_copy(&sy, ry) );
-
-cleanup:
- mp_clear(&k);
- mp_clear(&k3);
- mp_clear(&qx);
- mp_clear(&qy);
- mp_clear(&sx);
- mp_clear(&sy);
- free(p);
- return err;
-}
-
-/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
- * coordinates.
- * Uses algorithm Mdouble in appendix of
- * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
- * GF(2^m) without precomputation".
- * modified to not require precomputation of c=b^{2^{m-1}}.
- */
-static mp_err
-gf2m_Mdouble(const mp_int *pp, const unsigned int p[], const mp_int *a,
- const mp_int *b, mp_int *x, mp_int *z)
-{
- mp_err err = MP_OKAY;
- mp_int t1;
-
- MP_DIGITS(&t1) = 0;
- CHECK_MPI_OK( mp_init(&t1) );
-
- CHECK_MPI_OK( mp_bsqrmod(x, p, x) );
- CHECK_MPI_OK( mp_bsqrmod(z, p, &t1) );
- CHECK_MPI_OK( mp_bmulmod(x, &t1, p, z) );
- CHECK_MPI_OK( mp_bsqrmod(x, p, x) );
- CHECK_MPI_OK( mp_bsqrmod(&t1, p, &t1) );
- CHECK_MPI_OK( mp_bmulmod(b, &t1, p, &t1) );
- CHECK_MPI_OK( mp_badd(x, &t1, x) );
-
-cleanup:
- mp_clear(&t1);
- return err;
-}
-
-/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
- * projective coordinates.
- * Uses algorithm Madd in appendix of
- * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
- * GF(2^m) without precomputation".
- */
-static mp_err
-gf2m_Madd(const mp_int *pp, const unsigned int p[], const mp_int *a,
- const mp_int *b, const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2,
- mp_int *z2)
-{
- mp_err err = MP_OKAY;
- mp_int t1, t2;
-
- MP_DIGITS(&t1) = 0;
- MP_DIGITS(&t2) = 0;
- CHECK_MPI_OK( mp_init(&t1) );
- CHECK_MPI_OK( mp_init(&t2) );
-
- CHECK_MPI_OK( mp_copy(x, &t1) );
- CHECK_MPI_OK( mp_bmulmod(x1, z2, p, x1) );
- CHECK_MPI_OK( mp_bmulmod(z1, x2, p, z1) );
- CHECK_MPI_OK( mp_bmulmod(x1, z1, p, &t2) );
- CHECK_MPI_OK( mp_badd(z1, x1, z1) );
- CHECK_MPI_OK( mp_bsqrmod(z1, p, z1) );
- CHECK_MPI_OK( mp_bmulmod(z1, &t1, p, x1) );
- CHECK_MPI_OK( mp_badd(x1, &t2, x1) );
-
-cleanup:
- mp_clear(&t1);
- mp_clear(&t2);
- return err;
-}
-
-/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
- * using Montgomery point multiplication algorithm Mxy() in appendix of
- * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
- * GF(2^m) without precomputation".
- * Returns:
- * 0 on error
- * 1 if return value should be the point at infinity
- * 2 otherwise
- */
-static int
-gf2m_Mxy(const mp_int *pp, const unsigned int p[], const mp_int *a,
- const mp_int *b, const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
- mp_int *x2, mp_int *z2)
-{
- mp_err err = MP_OKAY;
- int ret;
- mp_int t3, t4, t5;
-
- MP_DIGITS(&t3) = 0;
- MP_DIGITS(&t4) = 0;
- MP_DIGITS(&t5) = 0;
- CHECK_MPI_OK( mp_init(&t3) );
- CHECK_MPI_OK( mp_init(&t4) );
- CHECK_MPI_OK( mp_init(&t5) );
-
- if (mp_cmp_z(z1) == 0) {
- mp_zero(x2);
- mp_zero(z2);
- ret = 1;
- goto cleanup;
- }
-
- if (mp_cmp_z(z2) == 0) {
- CHECK_MPI_OK( mp_copy(x, x2) );
- CHECK_MPI_OK( mp_badd(x, y, z2) );
- ret = 2;
- goto cleanup;
- }
-
- mp_set(&t5, 0x1);
-
- CHECK_MPI_OK( mp_bmulmod(z1, z2, p, &t3) );
-
- CHECK_MPI_OK( mp_bmulmod(z1, x, p, z1) );
- CHECK_MPI_OK( mp_badd(z1, x1, z1) );
- CHECK_MPI_OK( mp_bmulmod(z2, x, p, z2) );
- CHECK_MPI_OK( mp_bmulmod(z2, x1, p, x1) );
- CHECK_MPI_OK( mp_badd(z2, x2, z2) );
-
- CHECK_MPI_OK( mp_bmulmod(z2, z1, p, z2) );
- CHECK_MPI_OK( mp_bsqrmod(x, p, &t4) );
- CHECK_MPI_OK( mp_badd(&t4, y, &t4) );
- CHECK_MPI_OK( mp_bmulmod(&t4, &t3, p, &t4) );
- CHECK_MPI_OK( mp_badd(&t4, z2, &t4) );
-
- CHECK_MPI_OK( mp_bmulmod(&t3, x, p, &t3) );
- CHECK_MPI_OK( mp_bdivmod(&t5, &t3, pp, p, &t3) );
- CHECK_MPI_OK( mp_bmulmod(&t3, &t4, p, &t4) );
- CHECK_MPI_OK( mp_bmulmod(x1, &t3, p, x2) );
- CHECK_MPI_OK( mp_badd(x2, x, z2) );
-
- CHECK_MPI_OK( mp_bmulmod(z2, &t4, p, z2) );
- CHECK_MPI_OK( mp_badd(z2, y, z2) );
-
- ret = 2;
-
-cleanup:
- mp_clear(&t3);
- mp_clear(&t4);
- mp_clear(&t5);
- if (err == MP_OKAY) {
- return ret;
- } else {
- return 0;
- }
-}
-
-/* Computes R = nP based on algorithm 2P of
- * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
- * GF(2^m) without precomputation".
- * Elliptic curve points P and R can be identical.
- * Uses Montgomery projective coordinates.
- */
-mp_err
-GF2m_ec_pt_mul_mont(const mp_int *pp, const mp_int *a, const mp_int *b,
- const mp_int *px, const mp_int *py, const mp_int *n,
- mp_int *rx, mp_int *ry)
-{
- mp_err err = MP_OKAY;
- mp_int x1, x2, z1, z2;
- int i, j;
- mp_digit top_bit, mask;
- unsigned int *p;
- int p_size;
-
- MP_DIGITS(&x1) = 0;
- MP_DIGITS(&x2) = 0;
- MP_DIGITS(&z1) = 0;
- MP_DIGITS(&z2) = 0;
- CHECK_MPI_OK( mp_init(&x1) );
- CHECK_MPI_OK( mp_init(&x2) );
- CHECK_MPI_OK( mp_init(&z1) );
- CHECK_MPI_OK( mp_init(&z2) );
-
- p_size = mp_bpoly2arr(pp, p, 0) + 1;
- p = (unsigned int *) (malloc(sizeof(unsigned int) * p_size));
- if (p == NULL) goto cleanup;
- mp_bpoly2arr(pp, p, p_size);
-
- /* if result should be point at infinity */
- if ((mp_cmp_z(n) == 0) || (GF2m_ec_pt_is_inf_aff(px, py) == MP_YES)) {
- CHECK_MPI_OK( GF2m_ec_pt_set_inf_aff(rx, ry) );
- goto cleanup;
- }
-
- CHECK_MPI_OK( mp_copy(rx, &x2) ); /* x2 = rx */
- CHECK_MPI_OK( mp_copy(ry, &z2) ); /* z2 = ry */
-
- CHECK_MPI_OK( mp_copy(px, &x1) ); /* x1 = px */
- mp_set(&z1, 0x1); /* z1 = 1 */
- CHECK_MPI_OK( mp_bsqrmod(&x1, p, &z2) ); /* z2 = x1^2 = x2^2 */
- CHECK_MPI_OK( mp_bsqrmod(&z2, p, &x2) );
- CHECK_MPI_OK( mp_badd(&x2, b, &x2) ); /* x2 = px^4 + b */
-
- /* find top-most bit and go one past it */
- i = MP_USED(n) - 1;
- j = MP_DIGIT_BIT - 1;
- top_bit = 1;
- top_bit <<= MP_DIGIT_BIT - 1;
- mask = top_bit;
- while (!(MP_DIGITS(n)[i] & mask)) {
- mask >>= 1;
- j--;
- }
- mask >>= 1; j--;
-
- /* if top most bit was at word break, go to next word */
- if (!mask) {
- i--;
- j = MP_DIGIT_BIT - 1;
- mask = top_bit;
- }
-
- for (; i >= 0; i--) {
- for (; j >= 0; j--) {
- if (MP_DIGITS(n)[i] & mask) {
- CHECK_MPI_OK( gf2m_Madd(pp, p, a, b, px, &x1, &z1, &x2, &z2) );
- CHECK_MPI_OK( gf2m_Mdouble(pp, p, a, b, &x2, &z2) );
- } else {
- CHECK_MPI_OK( gf2m_Madd(pp, p, a, b, px, &x2, &z2, &x1, &z1) );
- CHECK_MPI_OK( gf2m_Mdouble(pp, p, a, b, &x1, &z1) );
- }
- mask >>= 1;
- }
- j = MP_DIGIT_BIT - 1;
- mask = top_bit;
- }
-
- /* convert out of "projective" coordinates */
- i = gf2m_Mxy(pp, p, a, b, px, py, &x1, &z1, &x2, &z2);
- if (i == 0) {
- err = MP_BADARG;
- goto cleanup;
- } else if (i == 1) {
- CHECK_MPI_OK( GF2m_ec_pt_set_inf_aff(rx, ry) );
- } else {
- CHECK_MPI_OK( mp_copy(&x2, rx) );
- CHECK_MPI_OK( mp_copy(&z2, ry) );
- }
-
-cleanup:
- mp_clear(&x1);
- mp_clear(&x2);
- mp_clear(&z1);
- mp_clear(&z2);
- free(p);
- return err;
-}
-
-#endif /* NSS_ENABLE_ECC */