summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/arcfour.c
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/lib/freebl/arcfour.c')
-rw-r--r--security/nss/lib/freebl/arcfour.c564
1 files changed, 0 insertions, 564 deletions
diff --git a/security/nss/lib/freebl/arcfour.c b/security/nss/lib/freebl/arcfour.c
deleted file mode 100644
index 9ee5b4f92..000000000
--- a/security/nss/lib/freebl/arcfour.c
+++ /dev/null
@@ -1,564 +0,0 @@
-/*
- * The contents of this file are subject to the Mozilla Public
- * License Version 1.1 (the "License"); you may not use this file
- * except in compliance with the License. You may obtain a copy of
- * the License at http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS
- * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
- * implied. See the License for the specific language governing
- * rights and limitations under the License.
- *
- * The Original Code is the Netscape security libraries.
- *
- * The Initial Developer of the Original Code is Netscape
- * Communications Corporation. Portions created by Netscape are
- * Copyright (C) 1994-2000 Netscape Communications Corporation. All
- * Rights Reserved.
- *
- * Contributor(s):
- *
- * Alternatively, the contents of this file may be used under the
- * terms of the GNU General Public License Version 2 or later (the
- * "GPL"), in which case the provisions of the GPL are applicable
- * instead of those above. If you wish to allow use of your
- * version of this file only under the terms of the GPL and not to
- * allow others to use your version of this file under the MPL,
- * indicate your decision by deleting the provisions above and
- * replace them with the notice and other provisions required by
- * the GPL. If you do not delete the provisions above, a recipient
- * may use your version of this file under either the MPL or the
- * GPL.
- */
-
-#include "prerr.h"
-#include "secerr.h"
-
-#include "prtypes.h"
-#include "blapi.h"
-
-/* Architecture-dependent defines */
-
-#if defined(SOLARIS) || defined(HPUX) || defined(i386) || defined(IRIX)
-/* Convert the byte-stream to a word-stream */
-#define CONVERT_TO_WORDS
-#endif
-
-#if defined(AIX) || defined(OSF1)
-/* Treat array variables as longs, not bytes */
-#define USE_LONG
-#endif
-
-#if defined(NSS_USE_HYBRID) && !defined(SOLARIS) && !defined(NSS_USE_64)
-typedef unsigned long long WORD;
-#else
-typedef unsigned long WORD;
-#endif
-#define WORDSIZE sizeof(WORD)
-
-#ifdef USE_LONG
-typedef unsigned long Stype;
-#else
-typedef PRUint8 Stype;
-#endif
-
-#define ARCFOUR_STATE_SIZE 256
-
-#define MASK1BYTE (WORD)(0xff)
-
-#define SWAP(a, b) \
- tmp = a; \
- a = b; \
- b = tmp;
-
-/*
- * State information for stream cipher.
- */
-struct RC4ContextStr
-{
- Stype S[ARCFOUR_STATE_SIZE];
- PRUint8 i;
- PRUint8 j;
-};
-
-/*
- * array indices [0..255] to initialize cx->S array (faster than loop).
- */
-static const Stype Kinit[256] = {
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
- 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
- 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
- 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
- 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
- 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
- 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
- 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
- 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
- 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
- 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
- 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
- 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
- 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
- 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
- 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
- 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
- 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
- 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
- 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
- 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
- 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
- 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
- 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
- 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
- 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
- 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
- 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
- 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
- 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
- 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
- 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
-};
-
-/*
- * Initialize a new generator.
- */
-RC4Context *
-RC4_CreateContext(unsigned char *key, int len)
-{
- int i;
- PRUint8 j, tmp;
- RC4Context *cx;
- PRUint8 K[256];
- PRUint8 *L;
- /* verify the key length. */
- PORT_Assert(len > 0 && len < ARCFOUR_STATE_SIZE);
- if (len < 0 || len >= ARCFOUR_STATE_SIZE) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return NULL;
- }
- /* Create space for the context. */
- cx = (RC4Context *)PORT_ZAlloc(sizeof(RC4Context));
- if (cx == NULL) {
- PORT_SetError(PR_OUT_OF_MEMORY_ERROR);
- return NULL;
- }
- /* Initialize the state using array indices. */
- memcpy(cx->S, Kinit, sizeof cx->S);
- /* Fill in K repeatedly with values from key. */
- L = K;
- for (i = sizeof K; i > len; i-= len) {
- memcpy(L, key, len);
- L += len;
- }
- memcpy(L, key, i);
- /* Stir the state of the generator. At this point it is assumed
- * that the key is the size of the state buffer. If this is not
- * the case, the key bytes are repeated to fill the buffer.
- */
- j = 0;
-#define ARCFOUR_STATE_STIR(ii) \
- j = j + cx->S[ii] + K[ii]; \
- SWAP(cx->S[ii], cx->S[j]);
- for (i=0; i<ARCFOUR_STATE_SIZE; i++) {
- ARCFOUR_STATE_STIR(i);
- }
- cx->i = 0;
- cx->j = 0;
- return cx;
-}
-
-void
-RC4_DestroyContext(RC4Context *cx, PRBool freeit)
-{
- if (freeit)
- PORT_ZFree(cx, sizeof(*cx));
-}
-
-/*
- * Generate the next byte in the stream.
- */
-#define ARCFOUR_NEXT_BYTE() \
- tmpSi = cx->S[++tmpi]; \
- tmpj += tmpSi; \
- tmpSj = cx->S[tmpj]; \
- cx->S[tmpi] = tmpSj; \
- cx->S[tmpj] = tmpSi; \
- t = tmpSi + tmpSj;
-
-#ifdef CONVERT_TO_WORDS
-/*
- * Straight RC4 op. No optimization.
- */
-static SECStatus
-rc4_no_opt(RC4Context *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- const unsigned char *input, unsigned int inputLen)
-{
- PRUint8 t;
- Stype tmpSi, tmpSj;
- register PRUint8 tmpi = cx->i;
- register PRUint8 tmpj = cx->j;
- unsigned int index;
- PORT_Assert(maxOutputLen >= inputLen);
- if (maxOutputLen < inputLen) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- for (index=0; index < inputLen; index++) {
- /* Generate next byte from stream. */
- ARCFOUR_NEXT_BYTE();
- /* output = next stream byte XOR next input byte */
- output[index] = cx->S[t] ^ input[index];
- }
- *outputLen = inputLen;
- cx->i = tmpi;
- cx->j = tmpj;
- return SECSuccess;
-}
-#endif
-
-#ifndef CONVERT_TO_WORDS
-/*
- * Byte-at-a-time RC4, unrolling the loop into 8 pieces.
- */
-static SECStatus
-rc4_unrolled(RC4Context *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- const unsigned char *input, unsigned int inputLen)
-{
- PRUint8 t;
- Stype tmpSi, tmpSj;
- register PRUint8 tmpi = cx->i;
- register PRUint8 tmpj = cx->j;
- int index;
- PORT_Assert(maxOutputLen >= inputLen);
- if (maxOutputLen < inputLen) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- for (index = inputLen / 8; index-- > 0; input += 8, output += 8) {
- ARCFOUR_NEXT_BYTE();
- output[0] = cx->S[t] ^ input[0];
- ARCFOUR_NEXT_BYTE();
- output[1] = cx->S[t] ^ input[1];
- ARCFOUR_NEXT_BYTE();
- output[2] = cx->S[t] ^ input[2];
- ARCFOUR_NEXT_BYTE();
- output[3] = cx->S[t] ^ input[3];
- ARCFOUR_NEXT_BYTE();
- output[4] = cx->S[t] ^ input[4];
- ARCFOUR_NEXT_BYTE();
- output[5] = cx->S[t] ^ input[5];
- ARCFOUR_NEXT_BYTE();
- output[6] = cx->S[t] ^ input[6];
- ARCFOUR_NEXT_BYTE();
- output[7] = cx->S[t] ^ input[7];
- }
- index = inputLen % 8;
- if (index) {
- input += index;
- output += index;
- switch (index) {
- case 7:
- ARCFOUR_NEXT_BYTE();
- output[-7] = cx->S[t] ^ input[-7]; /* FALLTHRU */
- case 6:
- ARCFOUR_NEXT_BYTE();
- output[-6] = cx->S[t] ^ input[-6]; /* FALLTHRU */
- case 5:
- ARCFOUR_NEXT_BYTE();
- output[-5] = cx->S[t] ^ input[-5]; /* FALLTHRU */
- case 4:
- ARCFOUR_NEXT_BYTE();
- output[-4] = cx->S[t] ^ input[-4]; /* FALLTHRU */
- case 3:
- ARCFOUR_NEXT_BYTE();
- output[-3] = cx->S[t] ^ input[-3]; /* FALLTHRU */
- case 2:
- ARCFOUR_NEXT_BYTE();
- output[-2] = cx->S[t] ^ input[-2]; /* FALLTHRU */
- case 1:
- ARCFOUR_NEXT_BYTE();
- output[-1] = cx->S[t] ^ input[-1]; /* FALLTHRU */
- default:
- /* FALLTHRU */
- ; /* hp-ux build breaks without this */
- }
- }
- cx->i = tmpi;
- cx->j = tmpj;
- *outputLen = inputLen;
- return SECSuccess;
-}
-#endif
-
-#ifdef IS_LITTLE_ENDIAN
-#define ARCFOUR_NEXT4BYTES_L(n) \
- ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n ); \
- ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 8); \
- ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 16); \
- ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 24);
-#else
-#define ARCFOUR_NEXT4BYTES_B(n) \
- ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 24); \
- ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 16); \
- ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 8); \
- ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n );
-#endif
-
-#if (defined(NSS_USE_HYBRID) && !defined(SOLARIS)) || defined(NSS_USE_64)
-/* 64-bit wordsize */
-#ifdef IS_LITTLE_ENDIAN
-#define ARCFOUR_NEXT_WORD() \
- { streamWord = 0; ARCFOUR_NEXT4BYTES_L(0); ARCFOUR_NEXT4BYTES_L(32); }
-#else
-#define ARCFOUR_NEXT_WORD() \
- { streamWord = 0; ARCFOUR_NEXT4BYTES_B(32); ARCFOUR_NEXT4BYTES_B(0); }
-#endif
-#else
-/* 32-bit wordsize */
-#ifdef IS_LITTLE_ENDIAN
-#define ARCFOUR_NEXT_WORD() \
- { streamWord = 0; ARCFOUR_NEXT4BYTES_L(0); }
-#else
-#define ARCFOUR_NEXT_WORD() \
- { streamWord = 0; ARCFOUR_NEXT4BYTES_B(0); }
-#endif
-#endif
-
-#ifdef IS_LITTLE_ENDIAN
-#define RSH <<
-#define LSH >>
-#else
-#define RSH >>
-#define LSH <<
-#endif
-
-#ifdef CONVERT_TO_WORDS
-/*
- * Convert input and output buffers to words before performing
- * RC4 operations.
- */
-static SECStatus
-rc4_wordconv(RC4Context *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- const unsigned char *input, unsigned int inputLen)
-{
- ptrdiff_t inOffset = (ptrdiff_t)input % WORDSIZE;
- ptrdiff_t outOffset = (ptrdiff_t)output % WORDSIZE;
- register WORD streamWord, mask;
- register WORD *pInWord, *pOutWord;
- register WORD inWord, nextInWord;
- PRUint8 t;
- register Stype tmpSi, tmpSj;
- register PRUint8 tmpi = cx->i;
- register PRUint8 tmpj = cx->j;
- unsigned int byteCount;
- unsigned int bufShift, invBufShift;
- int i;
-
- PORT_Assert(maxOutputLen >= inputLen);
- if (maxOutputLen < inputLen) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- if (inputLen < 2*WORDSIZE) {
- /* Ignore word conversion, do byte-at-a-time */
- return rc4_no_opt(cx, output, outputLen, maxOutputLen, input, inputLen);
- }
- *outputLen = inputLen;
- pInWord = (WORD *)(input - inOffset);
- if (inOffset < outOffset) {
- bufShift = 8*(outOffset - inOffset);
- invBufShift = 8*WORDSIZE - bufShift;
- } else {
- invBufShift = 8*(inOffset - outOffset);
- bufShift = 8*WORDSIZE - invBufShift;
- }
- /*****************************************************************/
- /* Step 1: */
- /* If the first output word is partial, consume the bytes in the */
- /* first partial output word by loading one or two words of */
- /* input and shifting them accordingly. Otherwise, just load */
- /* in the first word of input. At the end of this block, at */
- /* least one partial word of input should ALWAYS be loaded. */
- /*****************************************************************/
- if (outOffset) {
- /* Generate input and stream words aligned relative to the
- * partial output buffer.
- */
- byteCount = WORDSIZE - outOffset;
- pOutWord = (WORD *)(output - outOffset);
- mask = streamWord = 0;
-#ifdef IS_LITTLE_ENDIAN
- for (i = WORDSIZE - byteCount; i < WORDSIZE; i++) {
-#else
- for (i = byteCount - 1; i >= 0; --i) {
-#endif
- ARCFOUR_NEXT_BYTE();
- streamWord |= (WORD)(cx->S[t]) << 8*i;
- mask |= MASK1BYTE << 8*i;
- } /* } */
- inWord = *pInWord++;
- /* If buffers are relatively misaligned, shift the bytes in inWord
- * to be aligned to the output buffer.
- */
- if (inOffset < outOffset) {
- /* Have more bytes than needed, shift remainder into nextInWord */
- nextInWord = inWord LSH 8*(inOffset + byteCount);
- inWord = inWord RSH bufShift;
- } else if (inOffset > outOffset) {
- /* Didn't get enough bytes from current input word, load another
- * word and then shift remainder into nextInWord.
- */
- nextInWord = *pInWord++;
- inWord = (inWord LSH invBufShift) |
- (nextInWord RSH bufShift);
- nextInWord = nextInWord LSH invBufShift;
- }
- /* Store output of first partial word */
- *pOutWord = (*pOutWord & ~mask) | ((inWord ^ streamWord) & mask);
- /* Consumed byteCount bytes of input */
- inputLen -= byteCount;
- /* move to next word of output */
- pOutWord++;
- /* inWord has been consumed, but there may be bytes in nextInWord */
- if (inOffset == outOffset)
- inWord = 0;
- else
- inWord = nextInWord;
- } else {
- /* output is word-aligned */
- pOutWord = (WORD *)output;
- if (inOffset) {
- /* Input is not word-aligned. The first word load of input
- * will not produce a full word of input bytes, so one word
- * must be pre-loaded. The main loop below will load in the
- * next input word and shift some of its bytes into inWord
- * in order to create a full input word. Note that the main
- * loop must execute at least once because the input must
- * be at least two words.
- */
- inWord = *pInWord++;
- inWord = inWord LSH invBufShift;
- } else {
- /* Input is word-aligned. The first word load of input
- * will produce a full word of input bytes, so nothing
- * needs to be loaded here.
- */
- inWord = 0;
- }
- }
- /* Output buffer is aligned, inOffset is now measured relative to
- * outOffset (and not a word boundary).
- */
- inOffset = (inOffset + WORDSIZE - outOffset) % WORDSIZE;
- /*****************************************************************/
- /* Step 2: main loop */
- /* At this point the output buffer is word-aligned. Any unused */
- /* bytes from above will be in inWord (shifted correctly). If */
- /* the input buffer is unaligned relative to the output buffer, */
- /* shifting has to be done. */
- /*****************************************************************/
- if (inOffset) {
- for (; inputLen >= WORDSIZE; inputLen -= WORDSIZE) {
- nextInWord = *pInWord++;
- inWord |= nextInWord RSH bufShift;
- nextInWord = nextInWord LSH invBufShift;
- ARCFOUR_NEXT_WORD();
- *pOutWord++ = inWord ^ streamWord;
- inWord = nextInWord;
- }
- if (inputLen == 0) {
- /* Nothing left to do. */
- cx->i = tmpi;
- cx->j = tmpj;
- return SECSuccess;
- }
- /* If the amount of remaining input is greater than the amount
- * bytes pulled from the current input word, need to do another
- * word load. What's left in inWord will be consumed in step 3.
- */
- if (inputLen > WORDSIZE - inOffset)
- inWord |= *pInWord RSH bufShift;
- } else {
- for (; inputLen >= WORDSIZE; inputLen -= WORDSIZE) {
- inWord = *pInWord++;
- ARCFOUR_NEXT_WORD();
- *pOutWord++ = inWord ^ streamWord;
- }
- if (inputLen == 0) {
- /* Nothing left to do. */
- cx->i = tmpi;
- cx->j = tmpj;
- return SECSuccess;
- } else {
- /* A partial input word remains at the tail. Load it. The
- * relevant bytes will be consumed in step 3.
- */
- inWord = *pInWord;
- }
- }
- /*****************************************************************/
- /* Step 3: */
- /* A partial word of input remains, and it is already loaded */
- /* into nextInWord. Shift appropriately and consume the bytes */
- /* used in the partial word. */
- /*****************************************************************/
- mask = streamWord = 0;
-#ifdef IS_LITTLE_ENDIAN
- for (i = 0; i < inputLen; ++i) {
-#else
- for (i = WORDSIZE - 1; i >= WORDSIZE - inputLen; --i) {
-#endif
- ARCFOUR_NEXT_BYTE();
- streamWord |= (WORD)(cx->S[t]) << 8*i;
- mask |= MASK1BYTE << 8*i;
- } /* } */
- *pOutWord = (*pOutWord & ~mask) | ((inWord ^ streamWord) & mask);
- cx->i = tmpi;
- cx->j = tmpj;
- return SECSuccess;
-}
-#endif
-
-SECStatus
-RC4_Encrypt(RC4Context *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- const unsigned char *input, unsigned int inputLen)
-{
- PORT_Assert(maxOutputLen >= inputLen);
- if (maxOutputLen < inputLen) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
-#ifdef CONVERT_TO_WORDS
- /* Convert the byte-stream to a word-stream */
- return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen);
-#else
- /* Operate on bytes, but unroll the main loop */
- return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen);
-#endif
-}
-
-SECStatus RC4_Decrypt(RC4Context *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- const unsigned char *input, unsigned int inputLen)
-{
- PORT_Assert(maxOutputLen >= inputLen);
- if (maxOutputLen < inputLen) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- /* decrypt and encrypt are same operation. */
-#ifdef CONVERT_TO_WORDS
- /* Convert the byte-stream to a word-stream */
- return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen);
-#else
- /* Operate on bytes, but unroll the main loop */
- return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen);
-#endif
-}
-
-#undef CONVERT_TO_WORDS
-#undef USE_LONG