summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/arcfour.c
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/lib/freebl/arcfour.c')
-rw-r--r--security/nss/lib/freebl/arcfour.c567
1 files changed, 567 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/arcfour.c b/security/nss/lib/freebl/arcfour.c
new file mode 100644
index 000000000..23205ba73
--- /dev/null
+++ b/security/nss/lib/freebl/arcfour.c
@@ -0,0 +1,567 @@
+/*
+ * The contents of this file are subject to the Mozilla Public
+ * License Version 1.1 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.mozilla.org/MPL/
+ *
+ * Software distributed under the License is distributed on an "AS
+ * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
+ * implied. See the License for the specific language governing
+ * rights and limitations under the License.
+ *
+ * The Original Code is the Netscape security libraries.
+ *
+ * The Initial Developer of the Original Code is Netscape
+ * Communications Corporation. Portions created by Netscape are
+ * Copyright (C) 1994-2000 Netscape Communications Corporation. All
+ * Rights Reserved.
+ *
+ * Contributor(s):
+ *
+ * Alternatively, the contents of this file may be used under the
+ * terms of the GNU General Public License Version 2 or later (the
+ * "GPL"), in which case the provisions of the GPL are applicable
+ * instead of those above. If you wish to allow use of your
+ * version of this file only under the terms of the GPL and not to
+ * allow others to use your version of this file under the MPL,
+ * indicate your decision by deleting the provisions above and
+ * replace them with the notice and other provisions required by
+ * the GPL. If you do not delete the provisions above, a recipient
+ * may use your version of this file under either the MPL or the
+ * GPL.
+ */
+
+#include "prerr.h"
+#include "secerr.h"
+
+#include "prtypes.h"
+#include "blapi.h"
+
+/* Architecture-dependent defines */
+
+#if defined(SOLARIS) || defined(HPUX) || defined(i386) || defined(IRIX)
+/* Convert the byte-stream to a word-stream */
+#define CONVERT_TO_WORDS
+#endif
+
+#if defined(AIX) || defined(OSF1)
+/* Treat array variables as longs, not bytes */
+#define USE_LONG
+#endif
+
+#if defined(_WIN32_WCE)
+#undef WORD
+#define WORD ARC4WORD
+#endif
+
+#if defined(NSS_USE_HYBRID) && !defined(SOLARIS) && !defined(NSS_USE_64)
+typedef unsigned long long WORD;
+#else
+typedef unsigned long WORD;
+#endif
+#define WORDSIZE sizeof(WORD)
+
+#ifdef USE_LONG
+typedef unsigned long Stype;
+#else
+typedef PRUint8 Stype;
+#endif
+
+#define ARCFOUR_STATE_SIZE 256
+
+#define MASK1BYTE (WORD)(0xff)
+
+#define SWAP(a, b) \
+ tmp = a; \
+ a = b; \
+ b = tmp;
+
+/*
+ * State information for stream cipher.
+ */
+struct RC4ContextStr
+{
+ Stype S[ARCFOUR_STATE_SIZE];
+ PRUint8 i;
+ PRUint8 j;
+};
+
+/*
+ * array indices [0..255] to initialize cx->S array (faster than loop).
+ */
+static const Stype Kinit[256] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
+ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
+ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
+ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
+ 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
+ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
+ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
+ 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
+ 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
+ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
+ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
+ 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
+ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
+ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
+ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
+ 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
+ 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
+ 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
+ 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
+ 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
+ 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
+ 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
+ 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
+ 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
+ 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
+ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
+ 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
+};
+
+/*
+ * Initialize a new generator.
+ */
+RC4Context *
+RC4_CreateContext(unsigned char *key, int len)
+{
+ int i;
+ PRUint8 j, tmp;
+ RC4Context *cx;
+ PRUint8 K[256];
+ PRUint8 *L;
+ /* verify the key length. */
+ PORT_Assert(len > 0 && len < ARCFOUR_STATE_SIZE);
+ if (len < 0 || len >= ARCFOUR_STATE_SIZE) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return NULL;
+ }
+ /* Create space for the context. */
+ cx = (RC4Context *)PORT_ZAlloc(sizeof(RC4Context));
+ if (cx == NULL) {
+ PORT_SetError(PR_OUT_OF_MEMORY_ERROR);
+ return NULL;
+ }
+ /* Initialize the state using array indices. */
+ memcpy(cx->S, Kinit, sizeof cx->S);
+ /* Fill in K repeatedly with values from key. */
+ L = K;
+ for (i = sizeof K; i > len; i-= len) {
+ memcpy(L, key, len);
+ L += len;
+ }
+ memcpy(L, key, i);
+ /* Stir the state of the generator. At this point it is assumed
+ * that the key is the size of the state buffer. If this is not
+ * the case, the key bytes are repeated to fill the buffer.
+ */
+ j = 0;
+#define ARCFOUR_STATE_STIR(ii) \
+ j = j + cx->S[ii] + K[ii]; \
+ SWAP(cx->S[ii], cx->S[j]);
+ for (i=0; i<ARCFOUR_STATE_SIZE; i++) {
+ ARCFOUR_STATE_STIR(i);
+ }
+ cx->i = 0;
+ cx->j = 0;
+ return cx;
+}
+
+void
+RC4_DestroyContext(RC4Context *cx, PRBool freeit)
+{
+ if (freeit)
+ PORT_ZFree(cx, sizeof(*cx));
+}
+
+/*
+ * Generate the next byte in the stream.
+ */
+#define ARCFOUR_NEXT_BYTE() \
+ tmpSi = cx->S[++tmpi]; \
+ tmpj += tmpSi; \
+ tmpSj = cx->S[tmpj]; \
+ cx->S[tmpi] = tmpSj; \
+ cx->S[tmpj] = tmpSi; \
+ t = tmpSi + tmpSj;
+
+#ifdef CONVERT_TO_WORDS
+/*
+ * Straight RC4 op. No optimization.
+ */
+static SECStatus
+rc4_no_opt(RC4Context *cx, unsigned char *output,
+ unsigned int *outputLen, unsigned int maxOutputLen,
+ const unsigned char *input, unsigned int inputLen)
+{
+ PRUint8 t;
+ Stype tmpSi, tmpSj;
+ register PRUint8 tmpi = cx->i;
+ register PRUint8 tmpj = cx->j;
+ unsigned int index;
+ PORT_Assert(maxOutputLen >= inputLen);
+ if (maxOutputLen < inputLen) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return SECFailure;
+ }
+ for (index=0; index < inputLen; index++) {
+ /* Generate next byte from stream. */
+ ARCFOUR_NEXT_BYTE();
+ /* output = next stream byte XOR next input byte */
+ output[index] = cx->S[t] ^ input[index];
+ }
+ *outputLen = inputLen;
+ cx->i = tmpi;
+ cx->j = tmpj;
+ return SECSuccess;
+}
+#endif
+
+#ifndef CONVERT_TO_WORDS
+/*
+ * Byte-at-a-time RC4, unrolling the loop into 8 pieces.
+ */
+static SECStatus
+rc4_unrolled(RC4Context *cx, unsigned char *output,
+ unsigned int *outputLen, unsigned int maxOutputLen,
+ const unsigned char *input, unsigned int inputLen)
+{
+ PRUint8 t;
+ Stype tmpSi, tmpSj;
+ register PRUint8 tmpi = cx->i;
+ register PRUint8 tmpj = cx->j;
+ int index;
+ PORT_Assert(maxOutputLen >= inputLen);
+ if (maxOutputLen < inputLen) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return SECFailure;
+ }
+ for (index = inputLen / 8; index-- > 0; input += 8, output += 8) {
+ ARCFOUR_NEXT_BYTE();
+ output[0] = cx->S[t] ^ input[0];
+ ARCFOUR_NEXT_BYTE();
+ output[1] = cx->S[t] ^ input[1];
+ ARCFOUR_NEXT_BYTE();
+ output[2] = cx->S[t] ^ input[2];
+ ARCFOUR_NEXT_BYTE();
+ output[3] = cx->S[t] ^ input[3];
+ ARCFOUR_NEXT_BYTE();
+ output[4] = cx->S[t] ^ input[4];
+ ARCFOUR_NEXT_BYTE();
+ output[5] = cx->S[t] ^ input[5];
+ ARCFOUR_NEXT_BYTE();
+ output[6] = cx->S[t] ^ input[6];
+ ARCFOUR_NEXT_BYTE();
+ output[7] = cx->S[t] ^ input[7];
+ }
+ index = inputLen % 8;
+ if (index) {
+ input += index;
+ output += index;
+ switch (index) {
+ case 7:
+ ARCFOUR_NEXT_BYTE();
+ output[-7] = cx->S[t] ^ input[-7]; /* FALLTHRU */
+ case 6:
+ ARCFOUR_NEXT_BYTE();
+ output[-6] = cx->S[t] ^ input[-6]; /* FALLTHRU */
+ case 5:
+ ARCFOUR_NEXT_BYTE();
+ output[-5] = cx->S[t] ^ input[-5]; /* FALLTHRU */
+ case 4:
+ ARCFOUR_NEXT_BYTE();
+ output[-4] = cx->S[t] ^ input[-4]; /* FALLTHRU */
+ case 3:
+ ARCFOUR_NEXT_BYTE();
+ output[-3] = cx->S[t] ^ input[-3]; /* FALLTHRU */
+ case 2:
+ ARCFOUR_NEXT_BYTE();
+ output[-2] = cx->S[t] ^ input[-2]; /* FALLTHRU */
+ case 1:
+ ARCFOUR_NEXT_BYTE();
+ output[-1] = cx->S[t] ^ input[-1]; /* FALLTHRU */
+ default:
+ /* FALLTHRU */
+ ; /* hp-ux build breaks without this */
+ }
+ }
+ cx->i = tmpi;
+ cx->j = tmpj;
+ *outputLen = inputLen;
+ return SECSuccess;
+}
+#endif
+
+#ifdef IS_LITTLE_ENDIAN
+#define ARCFOUR_NEXT4BYTES_L(n) \
+ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n ); \
+ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 8); \
+ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 16); \
+ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 24);
+#else
+#define ARCFOUR_NEXT4BYTES_B(n) \
+ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 24); \
+ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 16); \
+ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 8); \
+ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n );
+#endif
+
+#if (defined(NSS_USE_HYBRID) && !defined(SOLARIS)) || defined(NSS_USE_64)
+/* 64-bit wordsize */
+#ifdef IS_LITTLE_ENDIAN
+#define ARCFOUR_NEXT_WORD() \
+ { streamWord = 0; ARCFOUR_NEXT4BYTES_L(0); ARCFOUR_NEXT4BYTES_L(32); }
+#else
+#define ARCFOUR_NEXT_WORD() \
+ { streamWord = 0; ARCFOUR_NEXT4BYTES_B(32); ARCFOUR_NEXT4BYTES_B(0); }
+#endif
+#else
+/* 32-bit wordsize */
+#ifdef IS_LITTLE_ENDIAN
+#define ARCFOUR_NEXT_WORD() \
+ { streamWord = 0; ARCFOUR_NEXT4BYTES_L(0); }
+#else
+#define ARCFOUR_NEXT_WORD() \
+ { streamWord = 0; ARCFOUR_NEXT4BYTES_B(0); }
+#endif
+#endif
+
+#ifdef IS_LITTLE_ENDIAN
+#define RSH <<
+#define LSH >>
+#else
+#define RSH >>
+#define LSH <<
+#endif
+
+#ifdef CONVERT_TO_WORDS
+/*
+ * Convert input and output buffers to words before performing
+ * RC4 operations.
+ */
+static SECStatus
+rc4_wordconv(RC4Context *cx, unsigned char *output,
+ unsigned int *outputLen, unsigned int maxOutputLen,
+ const unsigned char *input, unsigned int inputLen)
+{
+ ptrdiff_t inOffset = (ptrdiff_t)input % WORDSIZE;
+ ptrdiff_t outOffset = (ptrdiff_t)output % WORDSIZE;
+ register WORD streamWord, mask;
+ register WORD *pInWord, *pOutWord;
+ register WORD inWord, nextInWord;
+ PRUint8 t;
+ register Stype tmpSi, tmpSj;
+ register PRUint8 tmpi = cx->i;
+ register PRUint8 tmpj = cx->j;
+ unsigned int byteCount;
+ unsigned int bufShift, invBufShift;
+ int i;
+
+ PORT_Assert(maxOutputLen >= inputLen);
+ if (maxOutputLen < inputLen) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return SECFailure;
+ }
+ if (inputLen < 2*WORDSIZE) {
+ /* Ignore word conversion, do byte-at-a-time */
+ return rc4_no_opt(cx, output, outputLen, maxOutputLen, input, inputLen);
+ }
+ *outputLen = inputLen;
+ pInWord = (WORD *)(input - inOffset);
+ if (inOffset < outOffset) {
+ bufShift = 8*(outOffset - inOffset);
+ invBufShift = 8*WORDSIZE - bufShift;
+ } else {
+ invBufShift = 8*(inOffset - outOffset);
+ bufShift = 8*WORDSIZE - invBufShift;
+ }
+ /*****************************************************************/
+ /* Step 1: */
+ /* If the first output word is partial, consume the bytes in the */
+ /* first partial output word by loading one or two words of */
+ /* input and shifting them accordingly. Otherwise, just load */
+ /* in the first word of input. At the end of this block, at */
+ /* least one partial word of input should ALWAYS be loaded. */
+ /*****************************************************************/
+ if (outOffset) {
+ /* Generate input and stream words aligned relative to the
+ * partial output buffer.
+ */
+ byteCount = WORDSIZE - outOffset;
+ pOutWord = (WORD *)(output - outOffset);
+ mask = streamWord = 0;
+#ifdef IS_LITTLE_ENDIAN
+ for (i = WORDSIZE - byteCount; i < WORDSIZE; i++) {
+#else
+ for (i = byteCount - 1; i >= 0; --i) {
+#endif
+ ARCFOUR_NEXT_BYTE();
+ streamWord |= (WORD)(cx->S[t]) << 8*i;
+ mask |= MASK1BYTE << 8*i;
+ } /* } */
+ inWord = *pInWord++;
+ /* If buffers are relatively misaligned, shift the bytes in inWord
+ * to be aligned to the output buffer.
+ */
+ nextInWord = 0;
+ if (inOffset < outOffset) {
+ /* Have more bytes than needed, shift remainder into nextInWord */
+ nextInWord = inWord LSH 8*(inOffset + byteCount);
+ inWord = inWord RSH bufShift;
+ } else if (inOffset > outOffset) {
+ /* Didn't get enough bytes from current input word, load another
+ * word and then shift remainder into nextInWord.
+ */
+ nextInWord = *pInWord++;
+ inWord = (inWord LSH invBufShift) |
+ (nextInWord RSH bufShift);
+ nextInWord = nextInWord LSH invBufShift;
+ }
+ /* Store output of first partial word */
+ *pOutWord = (*pOutWord & ~mask) | ((inWord ^ streamWord) & mask);
+ /* Consumed byteCount bytes of input */
+ inputLen -= byteCount;
+ /* move to next word of output */
+ pOutWord++;
+ /* inWord has been consumed, but there may be bytes in nextInWord */
+ inWord = nextInWord;
+ } else {
+ /* output is word-aligned */
+ pOutWord = (WORD *)output;
+ if (inOffset) {
+ /* Input is not word-aligned. The first word load of input
+ * will not produce a full word of input bytes, so one word
+ * must be pre-loaded. The main loop below will load in the
+ * next input word and shift some of its bytes into inWord
+ * in order to create a full input word. Note that the main
+ * loop must execute at least once because the input must
+ * be at least two words.
+ */
+ inWord = *pInWord++;
+ inWord = inWord LSH invBufShift;
+ } else {
+ /* Input is word-aligned. The first word load of input
+ * will produce a full word of input bytes, so nothing
+ * needs to be loaded here.
+ */
+ inWord = 0;
+ }
+ }
+ /* Output buffer is aligned, inOffset is now measured relative to
+ * outOffset (and not a word boundary).
+ */
+ inOffset = (inOffset + WORDSIZE - outOffset) % WORDSIZE;
+ /*****************************************************************/
+ /* Step 2: main loop */
+ /* At this point the output buffer is word-aligned. Any unused */
+ /* bytes from above will be in inWord (shifted correctly). If */
+ /* the input buffer is unaligned relative to the output buffer, */
+ /* shifting has to be done. */
+ /*****************************************************************/
+ if (inOffset) {
+ for (; inputLen >= WORDSIZE; inputLen -= WORDSIZE) {
+ nextInWord = *pInWord++;
+ inWord |= nextInWord RSH bufShift;
+ nextInWord = nextInWord LSH invBufShift;
+ ARCFOUR_NEXT_WORD();
+ *pOutWord++ = inWord ^ streamWord;
+ inWord = nextInWord;
+ }
+ if (inputLen == 0) {
+ /* Nothing left to do. */
+ cx->i = tmpi;
+ cx->j = tmpj;
+ return SECSuccess;
+ }
+ /* If the amount of remaining input is greater than the amount
+ * bytes pulled from the current input word, need to do another
+ * word load. What's left in inWord will be consumed in step 3.
+ */
+ if (inputLen > WORDSIZE - inOffset)
+ inWord |= *pInWord RSH bufShift;
+ } else {
+ for (; inputLen >= WORDSIZE; inputLen -= WORDSIZE) {
+ inWord = *pInWord++;
+ ARCFOUR_NEXT_WORD();
+ *pOutWord++ = inWord ^ streamWord;
+ }
+ if (inputLen == 0) {
+ /* Nothing left to do. */
+ cx->i = tmpi;
+ cx->j = tmpj;
+ return SECSuccess;
+ } else {
+ /* A partial input word remains at the tail. Load it. The
+ * relevant bytes will be consumed in step 3.
+ */
+ inWord = *pInWord;
+ }
+ }
+ /*****************************************************************/
+ /* Step 3: */
+ /* A partial word of input remains, and it is already loaded */
+ /* into nextInWord. Shift appropriately and consume the bytes */
+ /* used in the partial word. */
+ /*****************************************************************/
+ mask = streamWord = 0;
+#ifdef IS_LITTLE_ENDIAN
+ for (i = 0; i < inputLen; ++i) {
+#else
+ for (i = WORDSIZE - 1; i >= WORDSIZE - inputLen; --i) {
+#endif
+ ARCFOUR_NEXT_BYTE();
+ streamWord |= (WORD)(cx->S[t]) << 8*i;
+ mask |= MASK1BYTE << 8*i;
+ } /* } */
+ *pOutWord = (*pOutWord & ~mask) | ((inWord ^ streamWord) & mask);
+ cx->i = tmpi;
+ cx->j = tmpj;
+ return SECSuccess;
+}
+#endif
+
+SECStatus
+RC4_Encrypt(RC4Context *cx, unsigned char *output,
+ unsigned int *outputLen, unsigned int maxOutputLen,
+ const unsigned char *input, unsigned int inputLen)
+{
+ PORT_Assert(maxOutputLen >= inputLen);
+ if (maxOutputLen < inputLen) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return SECFailure;
+ }
+#ifdef CONVERT_TO_WORDS
+ /* Convert the byte-stream to a word-stream */
+ return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen);
+#else
+ /* Operate on bytes, but unroll the main loop */
+ return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen);
+#endif
+}
+
+SECStatus RC4_Decrypt(RC4Context *cx, unsigned char *output,
+ unsigned int *outputLen, unsigned int maxOutputLen,
+ const unsigned char *input, unsigned int inputLen)
+{
+ PORT_Assert(maxOutputLen >= inputLen);
+ if (maxOutputLen < inputLen) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return SECFailure;
+ }
+ /* decrypt and encrypt are same operation. */
+#ifdef CONVERT_TO_WORDS
+ /* Convert the byte-stream to a word-stream */
+ return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen);
+#else
+ /* Operate on bytes, but unroll the main loop */
+ return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen);
+#endif
+}
+
+#undef CONVERT_TO_WORDS
+#undef USE_LONG