summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/mpi/hpma512.s
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/lib/freebl/mpi/hpma512.s')
-rw-r--r--security/nss/lib/freebl/mpi/hpma512.s640
1 files changed, 0 insertions, 640 deletions
diff --git a/security/nss/lib/freebl/mpi/hpma512.s b/security/nss/lib/freebl/mpi/hpma512.s
deleted file mode 100644
index f8241ac3e..000000000
--- a/security/nss/lib/freebl/mpi/hpma512.s
+++ /dev/null
@@ -1,640 +0,0 @@
-/*
- * The contents of this file are subject to the Mozilla Public
- * License Version 1.1 (the "License"); you may not use this file
- * except in compliance with the License. You may obtain a copy of
- * the License at http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS
- * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
- * implied. See the License for the specific language governing
- * rights and limitations under the License.
- *
- * The Original Code is multacc512 multiple-precision integer arithmetic.
- *
- * The Initial Developer of the Original Code is Hewlett-Packard Company.
- * Portions created by Hewlett-Packard Company are
- * Copyright (C) March 1999, Hewlett-Packard Company. All Rights Reserved.
- *
- * Contributor(s):
- * coded by: Bill Worley, Hewlett-Packard labs
- *
- * Alternatively, the contents of this file may be used under the
- * terms of the GNU General Public License Version 2 or later (the
- * "GPL"), in which case the provisions of the GPL are applicable
- * instead of those above. If you wish to allow use of your
- * version of this file only under the terms of the GPL and not to
- * allow others to use your version of this file under the MPL,
- * indicate your decision by deleting the provisions above and
- * replace them with the notice and other provisions required by
- * the GPL. If you do not delete the provisions above, a recipient
- * may use your version of this file under either the MPL or the
- * GPL.
- *
- * This PA-RISC 2.0 function computes the product of two unsigned integers,
- * and adds the result to a previously computed integer. The multiplicand
- * is a 512-bit (64-byte, eight doubleword) unsigned integer, stored in
- * memory in little-double-wordian order. The multiplier is an unsigned
- * 64-bit integer. The previously computed integer to which the product is
- * added is located in the result ("res") area, and is assumed to be a
- * 576-bit (72-byte, nine doubleword) unsigned integer, stored in memory
- * in little-double-wordian order. This value normally will be the result
- * of a previously computed nine doubleword result. It is not necessary
- * to pad the multiplicand with an additional 64-bit zero doubleword.
- *
- * Multiplicand, multiplier, and addend ideally should be aligned at
- * 16-byte boundaries for best performance. The code will function
- * correctly for alignment at eight-byte boundaries which are not 16-byte
- * boundaries, but the execution may be slightly slower due to even/odd
- * bank conflicts on PA-RISC 8000 processors.
- *
- * This function is designed to accept the same calling sequence as Bill
- * Ackerman's "maxpy_little" function. The carry from the ninth doubleword
- * of the result is written to the tenth word of the result, as is done by
- * Bill Ackerman's function. The final carry also is returned as an
- * integer, which may be ignored. The function prototype may be either
- * of the following:
- *
- * void multacc512( int l, chunk* m, const chunk* a, chunk* res );
- * or
- * int multacc512( int l, chunk* m, const chunk* a, chunk* res );
- *
- * where: "l" originally denoted vector lengths. This parameter is
- * ignored. This function always assumes a multiplicand length of
- * 512 bits (eight doublewords), and addend and result lengths of
- * 576 bits (nine doublewords).
- *
- * "m" is a pointer to the doubleword multiplier, ideally aligned
- * on a 16-byte boundary.
- *
- * "a" is a pointer to the eight-doubleword multiplicand, stored
- * in little-double-wordian order, and ideally aligned on a 16-byte
- * boundary.
- *
- * "res" is a pointer to the nine doubleword addend, and to the
- * nine-doubleword product computed by this function. The result
- * also is stored in little-double-wordian order, and ideally is
- * aligned on a 16-byte boundary. It is expected that the alignment
- * of the "res" area may alternate between even/odd doubleword
- * boundaries for successive calls for 512-bit x 512-bit
- * multiplications.
- *
- * The code for this function has been scheduled to use the parallelism
- * of the PA-RISC 8000 series microprocessors as well as the author was
- * able. Comments and/or suggestions for improvement are welcomed.
- *
- * The code is "64-bit safe". This means it may be called in either
- * the 32ILP context or the 64LP context. All 64-bits of registers are
- * saved and restored.
- *
- * This code is self-contained. It requires no other header files in order
- * to compile and to be linkable on a PA-RISC 2.0 machine. Symbolic
- * definitions for registers and stack offsets are included within this
- * one source file.
- *
- * This is a leaf routine. As such, minimal use is made of the stack area.
- * Of the 192 bytes allocated, 64 bytes are used for saving/restoring eight
- * general registers, and 128 bytes are used to move intermediate products
- * from the floating-point registers to the general registers. Stack
- * protocols assure proper alignment of these areas.
- *
- */
-
-
-/* ====================================================================*/
-/* symbolic definitions for PA-RISC registers */
-/* in the MIPS style, avoids lots of case shifts */
-/* assigments (except t4) preserve register number parity */
-/* ====================================================================*/
-
-#define zero %r0 /* permanent zero */
-#define t5 %r1 /* temp register, altered by addil */
-
-#define rp %r2 /* return pointer */
-
-#define s1 %r3 /* callee saves register*/
-#define s0 %r4 /* callee saves register*/
-#define s3 %r5 /* callee saves register*/
-#define s2 %r6 /* callee saves register*/
-#define s5 %r7 /* callee saves register*/
-#define s4 %r8 /* callee saves register*/
-#define s7 %r9 /* callee saves register*/
-#define s6 %r10 /* callee saves register*/
-
-#define t1 %r19 /* caller saves register*/
-#define t0 %r20 /* caller saves register*/
-#define t3 %r21 /* caller saves register*/
-#define t2 %r22 /* caller saves register*/
-
-#define a3 %r23 /* fourth argument register, high word */
-#define a2 %r24 /* third argument register, low word*/
-#define a1 %r25 /* second argument register, high word*/
-#define a0 %r26 /* first argument register, low word*/
-
-#define v0 %r28 /* high order return value*/
-#define v1 %r29 /* low order return value*/
-
-#define sp %r30 /* stack pointer*/
-#define t4 %r31 /* temporary register */
-
-#define fa0 %fr4 /* first argument register*/
-#define fa1 %fr5 /* second argument register*/
-#define fa2 %fr6 /* third argument register*/
-#define fa3 %fr7 /* fourth argument register*/
-
-#define fa0r %fr4R /* first argument register*/
-#define fa1r %fr5R /* second argument register*/
-#define fa2r %fr6R /* third argument register*/
-#define fa3r %fr7R /* fourth argument register*/
-
-#define ft0 %fr8 /* caller saves register*/
-#define ft1 %fr9 /* caller saves register*/
-#define ft2 %fr10 /* caller saves register*/
-#define ft3 %fr11 /* caller saves register*/
-
-#define ft0r %fr8R /* caller saves register*/
-#define ft1r %fr9R /* caller saves register*/
-#define ft2r %fr10R /* caller saves register*/
-#define ft3r %fr11R /* caller saves register*/
-
-#define ft4 %fr22 /* caller saves register*/
-#define ft5 %fr23 /* caller saves register*/
-#define ft6 %fr24 /* caller saves register*/
-#define ft7 %fr25 /* caller saves register*/
-#define ft8 %fr26 /* caller saves register*/
-#define ft9 %fr27 /* caller saves register*/
-#define ft10 %fr28 /* caller saves register*/
-#define ft11 %fr29 /* caller saves register*/
-#define ft12 %fr30 /* caller saves register*/
-#define ft13 %fr31 /* caller saves register*/
-
-#define ft4r %fr22R /* caller saves register*/
-#define ft5r %fr23R /* caller saves register*/
-#define ft6r %fr24R /* caller saves register*/
-#define ft7r %fr25R /* caller saves register*/
-#define ft8r %fr26R /* caller saves register*/
-#define ft9r %fr27R /* caller saves register*/
-#define ft10r %fr28R /* caller saves register*/
-#define ft11r %fr29R /* caller saves register*/
-#define ft12r %fr30R /* caller saves register*/
-#define ft13r %fr31R /* caller saves register*/
-
-
-
-/* ================================================================== */
-/* functional definitions for PA-RISC registers */
-/* ================================================================== */
-
-/* general registers */
-
-#define T1 a0 /* temp, (length parameter ignored) */
-
-#define pM a1 /* -> 64-bit multiplier */
-#define T2 a1 /* temp, (after fetching multiplier) */
-
-#define pA a2 /* -> multiplicand vector (8 64-bit words) */
-#define T3 a2 /* temp, (after fetching multiplicand) */
-
-#define pR a3 /* -> addend vector (8 64-bit doublewords,
- result vector (9 64-bit words) */
-
-#define S0 s0 /* callee saves summand registers */
-#define S1 s1
-#define S2 s2
-#define S3 s3
-#define S4 s4
-#define S5 s5
-#define S6 s6
-#define S7 s7
-
-#define S8 v0 /* caller saves summand registers */
-#define S9 v1
-#define S10 t0
-#define S11 t1
-#define S12 t2
-#define S13 t3
-#define S14 t4
-#define S15 t5
-
-
-
-/* floating-point registers */
-
-#define M fa0 /* multiplier double word */
-#define MR fa0r /* low order half of multiplier double word */
-#define ML fa0 /* high order half of multiplier double word */
-
-#define A0 fa2 /* multiplicand double word 0 */
-#define A0R fa2r /* low order half of multiplicand double word */
-#define A0L fa2 /* high order half of multiplicand double word */
-
-#define A1 fa3 /* multiplicand double word 1 */
-#define A1R fa3r /* low order half of multiplicand double word */
-#define A1L fa3 /* high order half of multiplicand double word */
-
-#define A2 ft0 /* multiplicand double word 2 */
-#define A2R ft0r /* low order half of multiplicand double word */
-#define A2L ft0 /* high order half of multiplicand double word */
-
-#define A3 ft1 /* multiplicand double word 3 */
-#define A3R ft1r /* low order half of multiplicand double word */
-#define A3L ft1 /* high order half of multiplicand double word */
-
-#define A4 ft2 /* multiplicand double word 4 */
-#define A4R ft2r /* low order half of multiplicand double word */
-#define A4L ft2 /* high order half of multiplicand double word */
-
-#define A5 ft3 /* multiplicand double word 5 */
-#define A5R ft3r /* low order half of multiplicand double word */
-#define A5L ft3 /* high order half of multiplicand double word */
-
-#define A6 ft4 /* multiplicand double word 6 */
-#define A6R ft4r /* low order half of multiplicand double word */
-#define A6L ft4 /* high order half of multiplicand double word */
-
-#define A7 ft5 /* multiplicand double word 7 */
-#define A7R ft5r /* low order half of multiplicand double word */
-#define A7L ft5 /* high order half of multiplicand double word */
-
-#define P0 ft6 /* product word 0 */
-#define P1 ft7 /* product word 0 */
-#define P2 ft8 /* product word 0 */
-#define P3 ft9 /* product word 0 */
-#define P4 ft10 /* product word 0 */
-#define P5 ft11 /* product word 0 */
-#define P6 ft12 /* product word 0 */
-#define P7 ft13 /* product word 0 */
-
-
-
-
-/* ====================================================================== */
-/* symbolic definitions for HP-UX stack offsets */
-/* symbolic definitions for memory NOPs */
-/* ====================================================================== */
-
-#define ST_SZ 192 /* stack area total size */
-
-#define SV0 -192(sp) /* general register save area */
-#define SV1 -184(sp)
-#define SV2 -176(sp)
-#define SV3 -168(sp)
-#define SV4 -160(sp)
-#define SV5 -152(sp)
-#define SV6 -144(sp)
-#define SV7 -136(sp)
-
-#define XF0 -128(sp) /* data transfer area */
-#define XF1 -120(sp) /* for floating-pt to integer regs */
-#define XF2 -112(sp)
-#define XF3 -104(sp)
-#define XF4 -96(sp)
-#define XF5 -88(sp)
-#define XF6 -80(sp)
-#define XF7 -72(sp)
-#define XF8 -64(sp)
-#define XF9 -56(sp)
-#define XF10 -48(sp)
-#define XF11 -40(sp)
-#define XF12 -32(sp)
-#define XF13 -24(sp)
-#define XF14 -16(sp)
-#define XF15 -8(sp)
-
-#define mnop proberi (sp),3,zero /* memory NOP */
-
-
-
-
-/* ====================================================================== */
-/* assembler formalities */
-/* ====================================================================== */
-
-#ifdef __LP64__
- .level 2.0W
-#else
- .level 2.0
-#endif
- .space $TEXT$
- .subspa $CODE$
- .align 16
-
-/* ====================================================================== */
-/* here to compute 64-bit x 512-bit product + 512-bit addend */
-/* ====================================================================== */
-
-multacc512
- .PROC
- .CALLINFO
- .ENTER
- fldd 0(pM),M ; multiplier double word
- ldo ST_SZ(sp),sp ; push stack
-
- fldd 0(pA),A0 ; multiplicand double word 0
- std S1,SV1 ; save s1
-
- fldd 16(pA),A2 ; multiplicand double word 2
- std S3,SV3 ; save s3
-
- fldd 32(pA),A4 ; multiplicand double word 4
- std S5,SV5 ; save s5
-
- fldd 48(pA),A6 ; multiplicand double word 6
- std S7,SV7 ; save s7
-
-
- std S0,SV0 ; save s0
- fldd 8(pA),A1 ; multiplicand double word 1
- xmpyu MR,A0L,P0 ; A0 cross 32-bit word products
- xmpyu ML,A0R,P2
-
- std S2,SV2 ; save s2
- fldd 24(pA),A3 ; multiplicand double word 3
- xmpyu MR,A2L,P4 ; A2 cross 32-bit word products
- xmpyu ML,A2R,P6
-
- std S4,SV4 ; save s4
- fldd 40(pA),A5 ; multiplicand double word 5
-
- std S6,SV6 ; save s6
- fldd 56(pA),A7 ; multiplicand double word 7
-
-
- fstd P0,XF0 ; MR * A0L
- xmpyu MR,A0R,P0 ; A0 right 32-bit word product
- xmpyu MR,A1L,P1 ; A1 cross 32-bit word product
-
- fstd P2,XF2 ; ML * A0R
- xmpyu ML,A0L,P2 ; A0 left 32-bit word product
- xmpyu ML,A1R,P3 ; A1 cross 32-bit word product
-
- fstd P4,XF4 ; MR * A2L
- xmpyu MR,A2R,P4 ; A2 right 32-bit word product
- xmpyu MR,A3L,P5 ; A3 cross 32-bit word product
-
- fstd P6,XF6 ; ML * A2R
- xmpyu ML,A2L,P6 ; A2 parallel 32-bit word product
- xmpyu ML,A3R,P7 ; A3 cross 32-bit word product
-
-
- ldd XF0,S0 ; MR * A0L
- fstd P1,XF1 ; MR * A1L
-
- ldd XF2,S2 ; ML * A0R
- fstd P3,XF3 ; ML * A1R
-
- ldd XF4,S4 ; MR * A2L
- fstd P5,XF5 ; MR * A3L
- xmpyu MR,A1R,P1 ; A1 parallel 32-bit word products
- xmpyu ML,A1L,P3
-
- ldd XF6,S6 ; ML * A2R
- fstd P7,XF7 ; ML * A3R
- xmpyu MR,A3R,P5 ; A3 parallel 32-bit word products
- xmpyu ML,A3L,P7
-
-
- fstd P0,XF0 ; MR * A0R
- ldd XF1,S1 ; MR * A1L
- nop
- add S0,S2,T1 ; A0 cross product sum
-
- fstd P2,XF2 ; ML * A0L
- ldd XF3,S3 ; ML * A1R
- add,dc zero,zero,S0 ; A0 cross product sum carry
- depd,z T1,31,32,S2 ; A0 cross product sum << 32
-
- fstd P4,XF4 ; MR * A2R
- ldd XF5,S5 ; MR * A3L
- shrpd S0,T1,32,S0 ; A0 carry | cross product sum >> 32
- add S4,S6,T3 ; A2 cross product sum
-
- fstd P6,XF6 ; ML * A2L
- ldd XF7,S7 ; ML * A3R
- add,dc zero,zero,S4 ; A2 cross product sum carry
- depd,z T3,31,32,S6 ; A2 cross product sum << 32
-
-
- ldd XF0,S8 ; MR * A0R
- fstd P1,XF1 ; MR * A1R
- xmpyu MR,A4L,P0 ; A4 cross 32-bit word product
- xmpyu MR,A5L,P1 ; A5 cross 32-bit word product
-
- ldd XF2,S10 ; ML * A0L
- fstd P3,XF3 ; ML * A1L
- xmpyu ML,A4R,P2 ; A4 cross 32-bit word product
- xmpyu ML,A5R,P3 ; A5 cross 32-bit word product
-
- ldd XF4,S12 ; MR * A2R
- fstd P5,XF5 ; MR * A3L
- xmpyu MR,A6L,P4 ; A6 cross 32-bit word product
- xmpyu MR,A7L,P5 ; A7 cross 32-bit word product
-
- ldd XF6,S14 ; ML * A2L
- fstd P7,XF7 ; ML * A3L
- xmpyu ML,A6R,P6 ; A6 cross 32-bit word product
- xmpyu ML,A7R,P7 ; A7 cross 32-bit word product
-
-
- fstd P0,XF0 ; MR * A4L
- ldd XF1,S9 ; MR * A1R
- shrpd S4,T3,32,S4 ; A2 carry | cross product sum >> 32
- add S1,S3,T1 ; A1 cross product sum
-
- fstd P2,XF2 ; ML * A4R
- ldd XF3,S11 ; ML * A1L
- add,dc zero,zero,S1 ; A1 cross product sum carry
- depd,z T1,31,32,S3 ; A1 cross product sum << 32
-
- fstd P4,XF4 ; MR * A6L
- ldd XF5,S13 ; MR * A3R
- shrpd S1,T1,32,S1 ; A1 carry | cross product sum >> 32
- add S5,S7,T3 ; A3 cross product sum
-
- fstd P6,XF6 ; ML * A6R
- ldd XF7,S15 ; ML * A3L
- add,dc zero,zero,S5 ; A3 cross product sum carry
- depd,z T3,31,32,S7 ; A3 cross product sum << 32
-
-
- shrpd S5,T3,32,S5 ; A3 carry | cross product sum >> 32
- add S2,S8,S8 ; M * A0 right doubleword, P0 doubleword
-
- add,dc S0,S10,S10 ; M * A0 left doubleword
- add S3,S9,S9 ; M * A1 right doubleword
-
- add,dc S1,S11,S11 ; M * A1 left doubleword
- add S6,S12,S12 ; M * A2 right doubleword
-
-
- ldd 24(pR),S3 ; Addend word 3
- fstd P1,XF1 ; MR * A5L
- add,dc S4,S14,S14 ; M * A2 left doubleword
- xmpyu MR,A5R,P1 ; A5 right 32-bit word product
-
- ldd 8(pR),S1 ; Addend word 1
- fstd P3,XF3 ; ML * A5R
- add S7,S13,S13 ; M * A3 right doubleword
- xmpyu ML,A5L,P3 ; A5 left 32-bit word product
-
- ldd 0(pR),S7 ; Addend word 0
- fstd P5,XF5 ; MR * A7L
- add,dc S5,S15,S15 ; M * A3 left doubleword
- xmpyu MR,A7R,P5 ; A7 right 32-bit word product
-
- ldd 16(pR),S5 ; Addend word 2
- fstd P7,XF7 ; ML * A7R
- add S10,S9,S9 ; P1 doubleword
- xmpyu ML,A7L,P7 ; A7 left 32-bit word products
-
-
- ldd XF0,S0 ; MR * A4L
- fstd P1,XF9 ; MR * A5R
- add,dc S11,S12,S12 ; P2 doubleword
- xmpyu MR,A4R,P0 ; A4 right 32-bit word product
-
- ldd XF2,S2 ; ML * A4R
- fstd P3,XF11 ; ML * A5L
- add,dc S14,S13,S13 ; P3 doubleword
- xmpyu ML,A4L,P2 ; A4 left 32-bit word product
-
- ldd XF6,S6 ; ML * A6R
- fstd P5,XF13 ; MR * A7R
- add,dc zero,S15,T2 ; P4 partial doubleword
- xmpyu MR,A6R,P4 ; A6 right 32-bit word product
-
- ldd XF4,S4 ; MR * A6L
- fstd P7,XF15 ; ML * A7L
- add S7,S8,S8 ; R0 + P0, new R0 doubleword
- xmpyu ML,A6L,P6 ; A6 left 32-bit word product
-
-
- fstd P0,XF0 ; MR * A4R
- ldd XF7,S7 ; ML * A7R
- add,dc S1,S9,S9 ; c + R1 + P1, new R1 doubleword
-
- fstd P2,XF2 ; ML * A4L
- ldd XF1,S1 ; MR * A5L
- add,dc S5,S12,S12 ; c + R2 + P2, new R2 doubleword
-
- fstd P4,XF4 ; MR * A6R
- ldd XF5,S5 ; MR * A7L
- add,dc S3,S13,S13 ; c + R3 + P3, new R3 doubleword
-
- fstd P6,XF6 ; ML * A6L
- ldd XF3,S3 ; ML * A5R
- add,dc zero,T2,T2 ; c + partial P4
- add S0,S2,T1 ; A4 cross product sum
-
-
- std S8,0(pR) ; save R0
- add,dc zero,zero,S0 ; A4 cross product sum carry
- depd,z T1,31,32,S2 ; A4 cross product sum << 32
-
- std S9,8(pR) ; save R1
- shrpd S0,T1,32,S0 ; A4 carry | cross product sum >> 32
- add S4,S6,T3 ; A6 cross product sum
-
- std S12,16(pR) ; save R2
- add,dc zero,zero,S4 ; A6 cross product sum carry
- depd,z T3,31,32,S6 ; A6 cross product sum << 32
-
-
- std S13,24(pR) ; save R3
- shrpd S4,T3,32,S4 ; A6 carry | cross product sum >> 32
- add S1,S3,T1 ; A5 cross product sum
-
- ldd XF0,S8 ; MR * A4R
- add,dc zero,zero,S1 ; A5 cross product sum carry
- depd,z T1,31,32,S3 ; A5 cross product sum << 32
-
- ldd XF2,S10 ; ML * A4L
- ldd XF9,S9 ; MR * A5R
- shrpd S1,T1,32,S1 ; A5 carry | cross product sum >> 32
- add S5,S7,T3 ; A7 cross product sum
-
- ldd XF4,S12 ; MR * A6R
- ldd XF11,S11 ; ML * A5L
- add,dc zero,zero,S5 ; A7 cross product sum carry
- depd,z T3,31,32,S7 ; A7 cross product sum << 32
-
- ldd XF6,S14 ; ML * A6L
- ldd XF13,S13 ; MR * A7R
- shrpd S5,T3,32,S5 ; A7 carry | cross product sum >> 32
- add S2,S8,S8 ; M * A4 right doubleword
-
-
- ldd XF15,S15 ; ML * A7L
- add,dc S0,S10,S10 ; M * A4 left doubleword
- add S3,S9,S9 ; M * A5 right doubleword
-
- add,dc S1,S11,S11 ; M * A5 left doubleword
- add S6,S12,S12 ; M * A6 right doubleword
-
- ldd 32(pR),S0 ; Addend word 4
- ldd 40(pR),S1 ; Addend word 5
- add,dc S4,S14,S14 ; M * A6 left doubleword
- add S7,S13,S13 ; M * A7 right doubleword
-
- ldd 48(pR),S2 ; Addend word 6
- ldd 56(pR),S3 ; Addend word 7
- add,dc S5,S15,S15 ; M * A7 left doubleword
- add S8,T2,S8 ; P4 doubleword
-
- ldd 64(pR),S4 ; Addend word 8
- ldd SV5,s5 ; restore s5
- add,dc S10,S9,S9 ; P5 doubleword
- add,dc S11,S12,S12 ; P6 doubleword
-
-
- ldd SV6,s6 ; restore s6
- ldd SV7,s7 ; restore s7
- add,dc S14,S13,S13 ; P7 doubleword
- add,dc zero,S15,S15 ; P8 doubleword
-
- add S0,S8,S8 ; new R4 doubleword
-
- ldd SV0,s0 ; restore s0
- std S8,32(pR) ; save R4
- add,dc S1,S9,S9 ; new R5 doubleword
-
- ldd SV1,s1 ; restore s1
- std S9,40(pR) ; save R5
- add,dc S2,S12,S12 ; new R6 doubleword
-
- ldd SV2,s2 ; restore s2
- std S12,48(pR) ; save R6
- add,dc S3,S13,S13 ; new R7 doubleword
-
- ldd SV3,s3 ; restore s3
- std S13,56(pR) ; save R7
- add,dc S4,S15,S15 ; new R8 doubleword
-
- ldd SV4,s4 ; restore s4
- std S15,64(pR) ; save result[8]
- add,dc zero,zero,v0 ; return carry from R8
-
- CMPIB,*= 0,v0,$L0 ; if no overflow, exit
- LDO 8(pR),pR
-
-$FINAL1 ; Final carry propagation
- LDD 64(pR),v0
- LDO 8(pR),pR
- ADDI 1,v0,v0
- CMPIB,*= 0,v0,$FINAL1 ; Keep looping if there is a carry.
- STD v0,56(pR)
-$L0
- bv zero(rp) ; -> caller
- ldo -ST_SZ(sp),sp ; pop stack
-
-/* ====================================================================== */
-/* end of module */
-/* ====================================================================== */
-
- .LEAVE
-
- .PROCEND
- .SPACE $TEXT$
- .SUBSPA $CODE$
- .EXPORT multacc512,ENTRY
-
- .end