summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/mpi/mpmontg.c
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/lib/freebl/mpi/mpmontg.c')
-rw-r--r--security/nss/lib/freebl/mpi/mpmontg.c584
1 files changed, 584 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/mpi/mpmontg.c b/security/nss/lib/freebl/mpi/mpmontg.c
new file mode 100644
index 000000000..7cd936956
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/mpmontg.c
@@ -0,0 +1,584 @@
+/*
+ * The contents of this file are subject to the Mozilla Public
+ * License Version 1.1 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.mozilla.org/MPL/
+ *
+ * Software distributed under the License is distributed on an "AS
+ * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
+ * implied. See the License for the specific language governing
+ * rights and limitations under the License.
+ *
+ * The Original Code is the Netscape security libraries.
+ *
+ * The Initial Developer of the Original Code is Netscape
+ * Communications Corporation. Portions created by Netscape are
+ * Copyright (C) 2000 Netscape Communications Corporation. All
+ * Rights Reserved.
+ *
+ * Portions created by Sun Microsystems, Inc. are Copyright (C) 2003
+ * Sun Microsystems, Inc. All Rights Reserved.
+ *
+ * Contributor(s):
+ * Sheueling Chang Shantz <sheueling.chang@sun.com>,
+ * Stephen Fung <stephen.fung@sun.com>, and
+ * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
+ *
+ * Alternatively, the contents of this file may be used under the
+ * terms of the GNU General Public License Version 2 or later (the
+ * "GPL"), in which case the provisions of the GPL are applicable
+ * instead of those above. If you wish to allow use of your
+ * version of this file only under the terms of the GPL and not to
+ * allow others to use your version of this file under the MPL,
+ * indicate your decision by deleting the provisions above and
+ * replace them with the notice and other provisions required by
+ * the GPL. If you do not delete the provisions above, a recipient
+ * may use your version of this file under either the MPL or the
+ * GPL.
+ * $Id$
+ */
+
+/* This file implements moduluar exponentiation using Montgomery's
+ * method for modular reduction. This file implements the method
+ * described as "Improvement 1" in the paper "A Cryptogrpahic Library for
+ * the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr.
+ * published in "Advances in Cryptology: Proceedings of EUROCRYPT '90"
+ * "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244,
+ * published by Springer Verlag.
+ */
+
+/* #define MP_USING_MONT_MULF 1 */
+#include <string.h>
+#include "mpi-priv.h"
+#include "mplogic.h"
+#include "mpprime.h"
+#ifdef MP_USING_MONT_MULF
+#include "montmulf.h"
+#endif
+
+#define STATIC
+/* #define DEBUG 1 */
+
+#define MAX_WINDOW_BITS 6
+#define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */
+
+#if defined(_WIN32_WCE)
+#define ABORT res = MP_UNDEF; goto CLEANUP
+#else
+#define ABORT abort()
+#endif
+
+/* computes T = REDC(T), 2^b == R */
+mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm)
+{
+ mp_err res;
+ mp_size i;
+
+ i = MP_USED(T) + MP_USED(&mmm->N) + 2;
+ MP_CHECKOK( s_mp_pad(T, i) );
+ for (i = 0; i < MP_USED(&mmm->N); ++i ) {
+ mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;
+ /* T += N * m_i * (MP_RADIX ** i); */
+ MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) );
+ }
+ s_mp_clamp(T);
+
+ /* T /= R */
+ s_mp_div_2d(T, mmm->b);
+
+ if ((res = s_mp_cmp(T, &mmm->N)) >= 0) {
+ /* T = T - N */
+ MP_CHECKOK( s_mp_sub(T, &mmm->N) );
+#ifdef DEBUG
+ if ((res = mp_cmp(T, &mmm->N)) >= 0) {
+ res = MP_UNDEF;
+ goto CLEANUP;
+ }
+#endif
+ }
+ res = MP_OKAY;
+CLEANUP:
+ return res;
+}
+
+#if !defined(MP_ASSEMBLY_MUL_MONT) && !defined(MP_MONT_USE_MP_MUL)
+mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
+ mp_mont_modulus *mmm)
+{
+ mp_digit *pb;
+ mp_digit m_i;
+ mp_err res;
+ mp_size ib;
+ mp_size useda, usedb;
+
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+ if (MP_USED(a) < MP_USED(b)) {
+ const mp_int *xch = b; /* switch a and b, to do fewer outer loops */
+ b = a;
+ a = xch;
+ }
+
+ MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
+ ib = MP_USED(a) + MP_MAX(MP_USED(b), MP_USED(&mmm->N)) + 2;
+ if((res = s_mp_pad(c, ib)) != MP_OKAY)
+ goto CLEANUP;
+
+ useda = MP_USED(a);
+ pb = MP_DIGITS(b);
+ s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));
+ s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));
+ m_i = MP_DIGIT(c, 0) * mmm->n0prime;
+ s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);
+
+ /* Outer loop: Digits of b */
+ usedb = MP_USED(b);
+ for (ib = 1; ib < usedb; ib++) {
+ mp_digit b_i = *pb++;
+
+ /* Inner product: Digits of a */
+ if (b_i)
+ s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
+ m_i = MP_DIGIT(c, ib) * mmm->n0prime;
+ s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
+ }
+ if (usedb < MP_USED(&mmm->N)) {
+ for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) {
+ m_i = MP_DIGIT(c, ib) * mmm->n0prime;
+ s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
+ }
+ }
+ s_mp_clamp(c);
+ s_mp_div_2d(c, mmm->b);
+ if (s_mp_cmp(c, &mmm->N) >= 0) {
+ MP_CHECKOK( s_mp_sub(c, &mmm->N) );
+ }
+ res = MP_OKAY;
+
+CLEANUP:
+ return res;
+}
+#endif
+
+STATIC
+mp_err s_mp_to_mont(const mp_int *x, mp_mont_modulus *mmm, mp_int *xMont)
+{
+ mp_err res;
+
+ /* xMont = x * R mod N where N is modulus */
+ MP_CHECKOK( mpl_lsh(x, xMont, mmm->b) ); /* xMont = x << b */
+ MP_CHECKOK( mp_div(xMont, &mmm->N, 0, xMont) ); /* mod N */
+CLEANUP:
+ return res;
+}
+
+#ifdef MP_USING_MONT_MULF
+
+unsigned int mp_using_mont_mulf = 1;
+
+/* computes montgomery square of the integer in mResult */
+#define SQR \
+ conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \
+ mont_mulf_noconv(mResult, dm1, d16Tmp, \
+ dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
+
+/* computes montgomery product of x and the integer in mResult */
+#define MUL(x) \
+ conv_i32_to_d32(dm1, mResult, nLen); \
+ mont_mulf_noconv(mResult, dm1, oddPowers[x], \
+ dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
+
+/* Do modular exponentiation using floating point multiply code. */
+mp_err mp_exptmod_f(const mp_int * montBase,
+ const mp_int * exponent,
+ const mp_int * modulus,
+ mp_int * result,
+ mp_mont_modulus *mmm,
+ int nLen,
+ mp_size bits_in_exponent,
+ mp_size window_bits,
+ mp_size odd_ints)
+{
+ mp_digit *mResult;
+ double *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp;
+ double dn0;
+ mp_size i;
+ mp_err res;
+ int expOff;
+ int dSize = 0, oddPowSize, dTmpSize;
+ mp_int accum1;
+ double *oddPowers[MAX_ODD_INTS];
+
+ /* function for computing n0prime only works if n0 is odd */
+
+ MP_DIGITS(&accum1) = 0;
+
+ for (i = 0; i < MAX_ODD_INTS; ++i)
+ oddPowers[i] = 0;
+
+ MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
+
+ mp_set(&accum1, 1);
+ MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
+ MP_CHECKOK( s_mp_pad(&accum1, nLen) );
+
+ oddPowSize = 2 * nLen + 1;
+ dTmpSize = 2 * oddPowSize;
+ dSize = sizeof(double) * (nLen * 4 + 1 +
+ ((odd_ints + 1) * oddPowSize) + dTmpSize);
+ dBuf = (double *)malloc(dSize);
+ dm1 = dBuf; /* array of d32 */
+ dn = dBuf + nLen; /* array of d32 */
+ dSqr = dn + nLen; /* array of d32 */
+ d16Tmp = dSqr + nLen; /* array of d16 */
+ dTmp = d16Tmp + oddPowSize;
+
+ for (i = 0; i < odd_ints; ++i) {
+ oddPowers[i] = dTmp;
+ dTmp += oddPowSize;
+ }
+ mResult = (mp_digit *)(dTmp + dTmpSize); /* size is nLen + 1 */
+
+ /* Make dn and dn0 */
+ conv_i32_to_d32(dn, MP_DIGITS(modulus), nLen);
+ dn0 = (double)(mmm->n0prime & 0xffff);
+
+ /* Make dSqr */
+ conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase), nLen);
+ mont_mulf_noconv(mResult, dm1, oddPowers[0],
+ dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
+ conv_i32_to_d32(dSqr, mResult, nLen);
+
+ for (i = 1; i < odd_ints; ++i) {
+ mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1],
+ dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
+ conv_i32_to_d16(oddPowers[i], mResult, nLen);
+ }
+
+ s_mp_copy(MP_DIGITS(&accum1), mResult, nLen); /* from, to, len */
+
+ for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
+ mp_size smallExp;
+ MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
+ smallExp = (mp_size)res;
+
+ if (window_bits == 1) {
+ if (!smallExp) {
+ SQR;
+ } else if (smallExp & 1) {
+ SQR; MUL(0);
+ } else {
+ ABORT;
+ }
+ } else if (window_bits == 4) {
+ if (!smallExp) {
+ SQR; SQR; SQR; SQR;
+ } else if (smallExp & 1) {
+ SQR; SQR; SQR; SQR; MUL(smallExp/2);
+ } else if (smallExp & 2) {
+ SQR; SQR; SQR; MUL(smallExp/4); SQR;
+ } else if (smallExp & 4) {
+ SQR; SQR; MUL(smallExp/8); SQR; SQR;
+ } else if (smallExp & 8) {
+ SQR; MUL(smallExp/16); SQR; SQR; SQR;
+ } else {
+ ABORT;
+ }
+ } else if (window_bits == 5) {
+ if (!smallExp) {
+ SQR; SQR; SQR; SQR; SQR;
+ } else if (smallExp & 1) {
+ SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
+ } else if (smallExp & 2) {
+ SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
+ } else if (smallExp & 4) {
+ SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
+ } else if (smallExp & 8) {
+ SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
+ } else if (smallExp & 0x10) {
+ SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
+ } else {
+ ABORT;
+ }
+ } else if (window_bits == 6) {
+ if (!smallExp) {
+ SQR; SQR; SQR; SQR; SQR; SQR;
+ } else if (smallExp & 1) {
+ SQR; SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
+ } else if (smallExp & 2) {
+ SQR; SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
+ } else if (smallExp & 4) {
+ SQR; SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
+ } else if (smallExp & 8) {
+ SQR; SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
+ } else if (smallExp & 0x10) {
+ SQR; SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
+ } else if (smallExp & 0x20) {
+ SQR; MUL(smallExp/64); SQR; SQR; SQR; SQR; SQR;
+ } else {
+ ABORT;
+ }
+ } else {
+ ABORT;
+ }
+ }
+
+ s_mp_copy(mResult, MP_DIGITS(&accum1), nLen); /* from, to, len */
+
+ res = s_mp_redc(&accum1, mmm);
+ mp_exch(&accum1, result);
+
+CLEANUP:
+ mp_clear(&accum1);
+ if (dBuf) {
+ if (dSize)
+ memset(dBuf, 0, dSize);
+ free(dBuf);
+ }
+
+ return res;
+}
+#undef SQR
+#undef MUL
+#endif
+
+#define SQR(a,b) \
+ MP_CHECKOK( mp_sqr(a, b) );\
+ MP_CHECKOK( s_mp_redc(b, mmm) )
+
+#if defined(MP_MONT_USE_MP_MUL)
+#define MUL(x,a,b) \
+ MP_CHECKOK( mp_mul(a, oddPowers + (x), b) ); \
+ MP_CHECKOK( s_mp_redc(b, mmm) )
+#else
+#define MUL(x,a,b) \
+ MP_CHECKOK( s_mp_mul_mont(a, oddPowers + (x), b, mmm) )
+#endif
+
+#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
+
+/* Do modular exponentiation using integer multiply code. */
+mp_err mp_exptmod_i(const mp_int * montBase,
+ const mp_int * exponent,
+ const mp_int * modulus,
+ mp_int * result,
+ mp_mont_modulus *mmm,
+ int nLen,
+ mp_size bits_in_exponent,
+ mp_size window_bits,
+ mp_size odd_ints)
+{
+ mp_int *pa1, *pa2, *ptmp;
+ mp_size i;
+ mp_err res;
+ int expOff;
+ mp_int accum1, accum2, power2, oddPowers[MAX_ODD_INTS];
+
+ /* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */
+ /* oddPowers[i] = base ** (2*i + 1); */
+
+ MP_DIGITS(&accum1) = 0;
+ MP_DIGITS(&accum2) = 0;
+ MP_DIGITS(&power2) = 0;
+ for (i = 0; i < MAX_ODD_INTS; ++i) {
+ MP_DIGITS(oddPowers + i) = 0;
+ }
+
+ MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
+ MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
+
+ MP_CHECKOK( mp_init_copy(&oddPowers[0], montBase) );
+
+ mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2);
+ MP_CHECKOK( mp_sqr(montBase, &power2) ); /* power2 = montBase ** 2 */
+ MP_CHECKOK( s_mp_redc(&power2, mmm) );
+
+ for (i = 1; i < odd_ints; ++i) {
+ mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2);
+ MP_CHECKOK( mp_mul(oddPowers + (i - 1), &power2, oddPowers + i) );
+ MP_CHECKOK( s_mp_redc(oddPowers + i, mmm) );
+ }
+
+ /* set accumulator to montgomery residue of 1 */
+ mp_set(&accum1, 1);
+ MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
+ pa1 = &accum1;
+ pa2 = &accum2;
+
+ for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
+ mp_size smallExp;
+ MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
+ smallExp = (mp_size)res;
+
+ if (window_bits == 1) {
+ if (!smallExp) {
+ SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 1) {
+ SQR(pa1,pa2); MUL(0,pa2,pa1);
+ } else {
+ ABORT;
+ }
+ } else if (window_bits == 4) {
+ if (!smallExp) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ } else if (smallExp & 1) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ MUL(smallExp/2, pa1,pa2); SWAPPA;
+ } else if (smallExp & 2) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
+ MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 4) {
+ SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/8,pa1,pa2);
+ SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 8) {
+ SQR(pa1,pa2); MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2);
+ SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else {
+ ABORT;
+ }
+ } else if (window_bits == 5) {
+ if (!smallExp) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 1) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); MUL(smallExp/2,pa2,pa1);
+ } else if (smallExp & 2) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ MUL(smallExp/4,pa1,pa2); SQR(pa2,pa1);
+ } else if (smallExp & 4) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
+ MUL(smallExp/8,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ } else if (smallExp & 8) {
+ SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/16,pa1,pa2);
+ SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ } else if (smallExp & 0x10) {
+ SQR(pa1,pa2); MUL(smallExp/32,pa2,pa1); SQR(pa1,pa2);
+ SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ } else {
+ ABORT;
+ }
+ } else if (window_bits == 6) {
+ if (!smallExp) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); SQR(pa2,pa1);
+ } else if (smallExp & 1) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/2,pa1,pa2); SWAPPA;
+ } else if (smallExp & 2) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 4) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ MUL(smallExp/8,pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 8) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
+ MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 0x10) {
+ SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/32,pa1,pa2);
+ SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 0x20) {
+ SQR(pa1,pa2); MUL(smallExp/64,pa2,pa1); SQR(pa1,pa2);
+ SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else {
+ ABORT;
+ }
+ } else {
+ ABORT;
+ }
+ }
+
+ res = s_mp_redc(pa1, mmm);
+ mp_exch(pa1, result);
+
+CLEANUP:
+ mp_clear(&accum1);
+ mp_clear(&accum2);
+ mp_clear(&power2);
+ for (i = 0; i < odd_ints; ++i) {
+ mp_clear(oddPowers + i);
+ }
+ return res;
+}
+#undef SQR
+#undef MUL
+
+
+mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
+ const mp_int *modulus, mp_int *result)
+{
+ const mp_int *base;
+ mp_size bits_in_exponent, i, window_bits, odd_ints;
+ mp_err res;
+ int nLen;
+ mp_int montBase, goodBase;
+ mp_mont_modulus mmm;
+
+ /* function for computing n0prime only works if n0 is odd */
+ if (!mp_isodd(modulus))
+ return s_mp_exptmod(inBase, exponent, modulus, result);
+
+ MP_DIGITS(&montBase) = 0;
+ MP_DIGITS(&goodBase) = 0;
+
+ if (mp_cmp(inBase, modulus) < 0) {
+ base = inBase;
+ } else {
+ MP_CHECKOK( mp_init(&goodBase) );
+ base = &goodBase;
+ MP_CHECKOK( mp_mod(inBase, modulus, &goodBase) );
+ }
+
+ nLen = MP_USED(modulus);
+ MP_CHECKOK( mp_init_size(&montBase, 2 * nLen + 2) );
+
+ mmm.N = *modulus; /* a copy of the mp_int struct */
+ i = mpl_significant_bits(modulus);
+ i += MP_DIGIT_BIT - 1;
+ mmm.b = i - i % MP_DIGIT_BIT;
+
+ /* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX
+ ** where n0 = least significant mp_digit of N, the modulus.
+ */
+ mmm.n0prime = 0 - s_mp_invmod_radix( MP_DIGIT(modulus, 0) );
+
+ MP_CHECKOK( s_mp_to_mont(base, &mmm, &montBase) );
+
+ bits_in_exponent = mpl_significant_bits(exponent);
+ if (bits_in_exponent > 480)
+ window_bits = 6;
+ else if (bits_in_exponent > 160)
+ window_bits = 5;
+ else if (bits_in_exponent > 20)
+ window_bits = 4;
+ /* RSA public key exponents are typically under 20 bits (common values
+ * are: 3, 17, 65537) and a 4-bit window is inefficient
+ */
+ else
+ window_bits = 1;
+ odd_ints = 1 << (window_bits - 1);
+ i = bits_in_exponent % window_bits;
+ if (i != 0) {
+ bits_in_exponent += window_bits - i;
+ }
+
+#ifdef MP_USING_MONT_MULF
+ if (mp_using_mont_mulf) {
+ MP_CHECKOK( s_mp_pad(&montBase, nLen) );
+ res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen,
+ bits_in_exponent, window_bits, odd_ints);
+ } else
+#endif
+ res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen,
+ bits_in_exponent, window_bits, odd_ints);
+
+CLEANUP:
+ mp_clear(&montBase);
+ mp_clear(&goodBase);
+ /* Don't mp_clear mmm.N because it is merely a copy of modulus.
+ ** Just zap it.
+ */
+ memset(&mmm, 0, sizeof mmm);
+ return res;
+}