summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/rijndael.c
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/lib/freebl/rijndael.c')
-rw-r--r--security/nss/lib/freebl/rijndael.c787
1 files changed, 0 insertions, 787 deletions
diff --git a/security/nss/lib/freebl/rijndael.c b/security/nss/lib/freebl/rijndael.c
deleted file mode 100644
index ffdd2be3b..000000000
--- a/security/nss/lib/freebl/rijndael.c
+++ /dev/null
@@ -1,787 +0,0 @@
-/*
- * The contents of this file are subject to the Mozilla Public
- * License Version 1.1 (the "License"); you may not use this file
- * except in compliance with the License. You may obtain a copy of
- * the License at http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS
- * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
- * implied. See the License for the specific language governing
- * rights and limitations under the License.
- *
- * The Original Code is the Netscape security libraries.
- *
- * The Initial Developer of the Original Code is Netscape
- * Communications Corporation. Portions created by Netscape are
- * Copyright (C) 1994-2000 Netscape Communications Corporation. All
- * Rights Reserved.
- *
- * Contributor(s):
- *
- * Alternatively, the contents of this file may be used under the
- * terms of the GNU General Public License Version 2 or later (the
- * "GPL"), in which case the provisions of the GPL are applicable
- * instead of those above. If you wish to allow use of your
- * version of this file only under the terms of the GPL and not to
- * allow others to use your version of this file under the MPL,
- * indicate your decision by deleting the provisions above and
- * replace them with the notice and other provisions required by
- * the GPL. If you do not delete the provisions above, a recipient
- * may use your version of this file under either the MPL or the
- * GPL.
- *
- * $Id$
- */
-
-#include "prerr.h"
-#include "secerr.h"
-
-#include "prtypes.h"
-#include "blapi.h"
-#include "rijndael.h"
-
-#ifndef RIJNDAEL_NO_TABLES
-/* includes S**-1, Rcon, T0, T1, T2, T3, T0**-1, T1**-1, T2**-1, T3**-1 */
-#include "rijndael32.tab"
-#endif
-
-#ifdef IS_LITTLE_ENDIAN
-#define SBOX(b) ((PRUint8)_T3[b])
-#else
-#define SBOX(b) ((PRUint8)_T1[b])
-#endif
-#define SBOXINV(b) (_SInv[b])
-
-#ifndef RIJNDAEL_NO_TABLES
-/* index the tables directly */
-#define T0(i) _T0[i]
-#define T1(i) _T1[i]
-#define T2(i) _T2[i]
-#define T3(i) _T3[i]
-#define TInv0(i) _TInv0[i]
-#define TInv1(i) _TInv1[i]
-#define TInv2(i) _TInv2[i]
-#define TInv3(i) _TInv3[i]
-#define ME(i) _ME[i]
-#define M9(i) _M9[i]
-#define MB(i) _MB[i]
-#define MD(i) _MD[i]
-#define IMXC0(b) _IMXC0[b]
-#define IMXC1(b) _IMXC1[b]
-#define IMXC2(b) _IMXC2[b]
-#define IMXC3(b) _IMXC3[b]
-#else
-/* generate the tables on the fly */
-/* XXX not finished, just here for fun */
-#define XTIME(a) \
- ((a & 0x80) ? ((a << 1) ^ 0x1b) : (a << 1))
-#ifdef IS_LITTLE_ENDIAN
-#define WORD4(b0, b1, b2, b3) \
- (((b3) << 24) | ((b2) << 16) | ((b1) << 8) | (b0))
-#else
-#define WORD4(b0, b1, b2, b3) \
- (((b0) << 24) | ((b1) << 16) | ((b2) << 8) | (b3))
-#endif
-#define T0(i) \
- (WORD4( XTIME(SBOX(i)), SBOX(i), SBOX(i), XTIME(SBOX(i)) ^ SBOX(i) ))
-#define T1(i) \
- (WORD4( XTIME(SBOX(i)) ^ SBOX(i), XTIME(SBOX(i)), SBOX(i), SBOX(i) ))
-#define T2(i) \
- (WORD4( SBOX(i), XTIME(SBOX(i)) ^ SBOX(i), XTIME(SBOX(i)), SBOX(i) ))
-#define T3(i) \
- (WORD4( SBOX(i), SBOX(i), XTIME(SBOX(i)) ^ SBOX(i), XTIME(SBOX(i)) ))
-#endif
-
-/**************************************************************************
- *
- * Stuff related to the Rijndael key schedule
- *
- *************************************************************************/
-
-#define SUBBYTE(w) \
- ((SBOX((w >> 24) & 0xff) << 24) | \
- (SBOX((w >> 16) & 0xff) << 16) | \
- (SBOX((w >> 8) & 0xff) << 8) | \
- (SBOX((w ) & 0xff) ))
-
-#ifdef IS_LITTLE_ENDIAN
-#define ROTBYTE(b) \
- ((b >> 8) | (b << 24))
-#else
-#define ROTBYTE(b) \
- ((b << 8) | (b >> 24))
-#endif
-
-/* rijndael_key_expansion7
- *
- * Generate the expanded key from the key input by the user.
- * XXX
- * Nk == 7 (224 key bits) is a weird case. Since Nk > 6, an added SubByte
- * transformation is done periodically. The period is every 4 bytes, and
- * since 7%4 != 0 this happens at different times for each key word (unlike
- * Nk == 8 where it happens twice in every key word, in the same positions).
- * For now, I'm implementing this case "dumbly", w/o any unrolling.
- */
-static SECStatus
-rijndael_key_expansion7(AESContext *cx, unsigned char *key, unsigned int Nk)
-{
- unsigned int i;
- PRUint32 *W;
- PRUint32 *pW;
- PRUint32 tmp;
- W = cx->expandedKey;
- /* 1. the first Nk words contain the cipher key */
- memcpy(W, key, Nk * 4);
- i = Nk;
- /* 2. loop until full expanded key is obtained */
- pW = W + i - 1;
- for (; i < cx->Nb * (cx->Nr + 1); ++i) {
- tmp = *pW++;
- if (i % Nk == 0)
- tmp = SUBBYTE(ROTBYTE(tmp)) ^ Rcon[i / Nk - 1];
- else if (i % Nk == 4)
- tmp = SUBBYTE(tmp);
- *pW = W[i - Nk] ^ tmp;
- }
- return SECSuccess;
-}
-
-/* rijndael_key_expansion
- *
- * Generate the expanded key from the key input by the user.
- */
-static SECStatus
-rijndael_key_expansion(AESContext *cx, unsigned char *key, unsigned int Nk)
-{
- unsigned int i;
- PRUint32 *W;
- PRUint32 *pW;
- PRUint32 tmp;
- unsigned int round_key_words = cx->Nb * (cx->Nr + 1);
- if (Nk == 7)
- return rijndael_key_expansion7(cx, key, Nk);
- W = cx->expandedKey;
- /* The first Nk words contain the input cipher key */
- memcpy(W, key, Nk * 4);
- i = Nk;
- pW = W + i - 1;
- /* Loop over all sets of Nk words, except the last */
- while (i < round_key_words - Nk) {
- tmp = *pW++;
- tmp = SUBBYTE(ROTBYTE(tmp)) ^ Rcon[i / Nk - 1];
- *pW = W[i++ - Nk] ^ tmp;
- tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
- tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
- tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
- if (Nk == 4)
- continue;
- switch (Nk) {
- case 8: tmp = *pW++; tmp = SUBBYTE(tmp); *pW = W[i++ - Nk] ^ tmp;
- case 7: tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
- case 6: tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
- case 5: tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
- }
- }
- /* Generate the last word */
- tmp = *pW++;
- tmp = SUBBYTE(ROTBYTE(tmp)) ^ Rcon[i / Nk - 1];
- *pW = W[i++ - Nk] ^ tmp;
- /* There may be overflow here, if Nk % (Nb * (Nr + 1)) > 0. However,
- * since the above loop generated all but the last Nk key words, there
- * is no more need for the SubByte transformation.
- */
- if (Nk < 8) {
- for (; i < round_key_words; ++i) {
- tmp = *pW++;
- *pW = W[i - Nk] ^ tmp;
- }
- } else {
- /* except in the case when Nk == 8. Then one more SubByte may have
- * to be performed, at i % Nk == 4.
- */
- for (; i < round_key_words; ++i) {
- tmp = *pW++;
- if (i % Nk == 4)
- tmp = SUBBYTE(tmp);
- *pW = W[i - Nk] ^ tmp;
- }
- }
- return SECSuccess;
-}
-
-/* rijndael_invkey_expansion
- *
- * Generate the expanded key for the inverse cipher from the key input by
- * the user.
- */
-static SECStatus
-rijndael_invkey_expansion(AESContext *cx, unsigned char *key, unsigned int Nk)
-{
- unsigned int r;
- PRUint32 *roundkeyw;
- PRUint8 *b;
- int Nb = cx->Nb;
- /* begins like usual key expansion ... */
- if (rijndael_key_expansion(cx, key, Nk) != SECSuccess)
- return SECFailure;
- /* ... but has the additional step of InvMixColumn,
- * excepting the first and last round keys.
- */
- roundkeyw = cx->expandedKey + cx->Nb;
- for (r=1; r<cx->Nr; ++r) {
- /* each key word, roundkeyw, represents a column in the key
- * matrix. Each column is multiplied by the InvMixColumn matrix.
- * [ 0E 0B 0D 09 ] [ b0 ]
- * [ 09 0E 0B 0D ] * [ b1 ]
- * [ 0D 09 0E 0B ] [ b2 ]
- * [ 0B 0D 09 0E ] [ b3 ]
- */
- b = (PRUint8 *)roundkeyw;
- *roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
- b = (PRUint8 *)roundkeyw;
- *roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
- b = (PRUint8 *)roundkeyw;
- *roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
- b = (PRUint8 *)roundkeyw;
- *roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
- if (Nb <= 4)
- continue;
- switch (Nb) {
- case 8: b = (PRUint8 *)roundkeyw;
- *roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^
- IMXC2(b[2]) ^ IMXC3(b[3]);
- case 7: b = (PRUint8 *)roundkeyw;
- *roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^
- IMXC2(b[2]) ^ IMXC3(b[3]);
- case 6: b = (PRUint8 *)roundkeyw;
- *roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^
- IMXC2(b[2]) ^ IMXC3(b[3]);
- case 5: b = (PRUint8 *)roundkeyw;
- *roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^
- IMXC2(b[2]) ^ IMXC3(b[3]);
- }
- }
- return SECSuccess;
-}
-/**************************************************************************
- *
- * Stuff related to Rijndael encryption/decryption, optimized for
- * a 128-bit blocksize.
- *
- *************************************************************************/
-
-#ifdef IS_LITTLE_ENDIAN
-#define BYTE0WORD(w) ((w) & 0x000000ff)
-#define BYTE1WORD(w) ((w) & 0x0000ff00)
-#define BYTE2WORD(w) ((w) & 0x00ff0000)
-#define BYTE3WORD(w) ((w) & 0xff000000)
-#else
-#define BYTE0WORD(w) ((w) & 0xff000000)
-#define BYTE1WORD(w) ((w) & 0x00ff0000)
-#define BYTE2WORD(w) ((w) & 0x0000ff00)
-#define BYTE3WORD(w) ((w) & 0x000000ff)
-#endif
-
-#define COLUMN_0(array) *((PRUint32 *)(array ))
-#define COLUMN_1(array) *((PRUint32 *)(array + 4))
-#define COLUMN_2(array) *((PRUint32 *)(array + 8))
-#define COLUMN_3(array) *((PRUint32 *)(array + 12))
-#define COLUMN_4(array) *((PRUint32 *)(array + 16))
-#define COLUMN_5(array) *((PRUint32 *)(array + 20))
-#define COLUMN_6(array) *((PRUint32 *)(array + 24))
-#define COLUMN_7(array) *((PRUint32 *)(array + 28))
-
-#define STATE_BYTE(i) clone[i]
-
-static SECStatus
-rijndael_encryptBlock128(AESContext *cx,
- unsigned char *output,
- const unsigned char *input)
-{
- unsigned int r, extra_cols;
- PRUint32 *roundkeyw;
- PRUint8 clone[RIJNDAEL_MAX_STATE_SIZE];
- extra_cols = cx->Nb;
- roundkeyw = cx->expandedKey;
- /* Step 1: Add Round Key 0 to initial state */
- COLUMN_0(clone) = COLUMN_0(input) ^ *roundkeyw++;
- COLUMN_1(clone) = COLUMN_1(input) ^ *roundkeyw++;
- COLUMN_2(clone) = COLUMN_2(input) ^ *roundkeyw++;
- COLUMN_3(clone) = COLUMN_3(input) ^ *roundkeyw++;
- /* Step 2: Loop over rounds [1..NR-1] */
- for (r=1; r<cx->Nr; ++r) {
- /* Do ShiftRow, ByteSub, and MixColumn all at once */
- COLUMN_0(output) = T0(STATE_BYTE(0)) ^
- T1(STATE_BYTE(5)) ^
- T2(STATE_BYTE(10)) ^
- T3(STATE_BYTE(15));
- COLUMN_1(output) = T0(STATE_BYTE(4)) ^
- T1(STATE_BYTE(9)) ^
- T2(STATE_BYTE(14)) ^
- T3(STATE_BYTE(3));
- COLUMN_2(output) = T0(STATE_BYTE(8)) ^
- T1(STATE_BYTE(13)) ^
- T2(STATE_BYTE(2)) ^
- T3(STATE_BYTE(7));
- COLUMN_3(output) = T0(STATE_BYTE(12)) ^
- T1(STATE_BYTE(1)) ^
- T2(STATE_BYTE(6)) ^
- T3(STATE_BYTE(11));
- /* Round key addition */
- COLUMN_0(clone) = COLUMN_0(output) ^ *roundkeyw++;
- COLUMN_1(clone) = COLUMN_1(output) ^ *roundkeyw++;
- COLUMN_2(clone) = COLUMN_2(output) ^ *roundkeyw++;
- COLUMN_3(clone) = COLUMN_3(output) ^ *roundkeyw++;
- }
- /* Step 3: Do the last round */
- /* Final round does not employ MixColumn */
- COLUMN_0(output) = ((BYTE0WORD(T2(STATE_BYTE(0)))) |
- (BYTE1WORD(T3(STATE_BYTE(5)))) |
- (BYTE2WORD(T0(STATE_BYTE(10)))) |
- (BYTE3WORD(T1(STATE_BYTE(15))))) ^
- *roundkeyw++;
- COLUMN_1(output) = ((BYTE0WORD(T2(STATE_BYTE(4)))) |
- (BYTE1WORD(T3(STATE_BYTE(9)))) |
- (BYTE2WORD(T0(STATE_BYTE(14)))) |
- (BYTE3WORD(T1(STATE_BYTE(3))))) ^
- *roundkeyw++;
- COLUMN_2(output) = ((BYTE0WORD(T2(STATE_BYTE(8)))) |
- (BYTE1WORD(T3(STATE_BYTE(13)))) |
- (BYTE2WORD(T0(STATE_BYTE(2)))) |
- (BYTE3WORD(T1(STATE_BYTE(7))))) ^
- *roundkeyw++;
- COLUMN_3(output) = ((BYTE0WORD(T2(STATE_BYTE(12)))) |
- (BYTE1WORD(T3(STATE_BYTE(1)))) |
- (BYTE2WORD(T0(STATE_BYTE(6)))) |
- (BYTE3WORD(T1(STATE_BYTE(11))))) ^
- *roundkeyw++;
- return SECSuccess;
-}
-
-static SECStatus
-rijndael_decryptBlock128(AESContext *cx,
- unsigned char *output,
- const unsigned char *input)
-{
- int r, extra_cols;
- PRUint32 *roundkeyw;
- PRUint8 clone[RIJNDAEL_MAX_STATE_SIZE];
- extra_cols = cx->Nb;
- roundkeyw = cx->expandedKey + cx->Nb * cx->Nr + 3;
- /* reverse the final key addition */
- COLUMN_3(clone) = COLUMN_3(input) ^ *roundkeyw--;
- COLUMN_2(clone) = COLUMN_2(input) ^ *roundkeyw--;
- COLUMN_1(clone) = COLUMN_1(input) ^ *roundkeyw--;
- COLUMN_0(clone) = COLUMN_0(input) ^ *roundkeyw--;
- /* Loop over rounds in reverse [NR..1] */
- for (r=cx->Nr; r>1; --r) {
- /* Invert the (InvByteSub*InvMixColumn)(InvShiftRow(state)) */
- COLUMN_0(output) = TInv0(STATE_BYTE(0)) ^
- TInv1(STATE_BYTE(13)) ^
- TInv2(STATE_BYTE(10)) ^
- TInv3(STATE_BYTE(7));
- COLUMN_1(output) = TInv0(STATE_BYTE(4)) ^
- TInv1(STATE_BYTE(1)) ^
- TInv2(STATE_BYTE(14)) ^
- TInv3(STATE_BYTE(11));
- COLUMN_2(output) = TInv0(STATE_BYTE(8)) ^
- TInv1(STATE_BYTE(5)) ^
- TInv2(STATE_BYTE(2)) ^
- TInv3(STATE_BYTE(15));
- COLUMN_3(output) = TInv0(STATE_BYTE(12)) ^
- TInv1(STATE_BYTE(9)) ^
- TInv2(STATE_BYTE(6)) ^
- TInv3(STATE_BYTE(3));
- /* Invert the key addition step */
- COLUMN_3(clone) = COLUMN_3(output) ^ *roundkeyw--;
- COLUMN_2(clone) = COLUMN_2(output) ^ *roundkeyw--;
- COLUMN_1(clone) = COLUMN_1(output) ^ *roundkeyw--;
- COLUMN_0(clone) = COLUMN_0(output) ^ *roundkeyw--;
- }
- /* inverse sub */
- output[ 0] = SBOXINV(clone[ 0]);
- output[ 1] = SBOXINV(clone[13]);
- output[ 2] = SBOXINV(clone[10]);
- output[ 3] = SBOXINV(clone[ 7]);
- output[ 4] = SBOXINV(clone[ 4]);
- output[ 5] = SBOXINV(clone[ 1]);
- output[ 6] = SBOXINV(clone[14]);
- output[ 7] = SBOXINV(clone[11]);
- output[ 8] = SBOXINV(clone[ 8]);
- output[ 9] = SBOXINV(clone[ 5]);
- output[10] = SBOXINV(clone[ 2]);
- output[11] = SBOXINV(clone[15]);
- output[12] = SBOXINV(clone[12]);
- output[13] = SBOXINV(clone[ 9]);
- output[14] = SBOXINV(clone[ 6]);
- output[15] = SBOXINV(clone[ 3]);
- /* final key addition */
- COLUMN_3(output) ^= *roundkeyw--;
- COLUMN_2(output) ^= *roundkeyw--;
- COLUMN_1(output) ^= *roundkeyw--;
- COLUMN_0(output) ^= *roundkeyw--;
- return SECSuccess;
-}
-
-/**************************************************************************
- *
- * Stuff related to general Rijndael encryption/decryption, for blocksizes
- * greater than 128 bits.
- *
- * XXX This code is currently untested! So far, AES specs have only been
- * released for 128 bit blocksizes. This will be tested, but for now
- * only the code above has been tested using known values.
- *
- *************************************************************************/
-
-#define COLUMN(array, j) *((PRUint32 *)(array + j))
-
-SECStatus
-rijndael_encryptBlock(AESContext *cx,
- unsigned char *output,
- const unsigned char *input)
-{
- unsigned int j, r, Nb;
- unsigned int c2, c3;
- PRUint32 *roundkeyw;
- PRUint8 clone[RIJNDAEL_MAX_STATE_SIZE];
- Nb = cx->Nb;
- roundkeyw = cx->expandedKey;
- /* Step 1: Add Round Key 0 to initial state */
- for (j=0; j<4*Nb; j+=4) {
- COLUMN(clone, j) = COLUMN(input, j) ^ *roundkeyw++;
- }
- /* Step 2: Loop over rounds [1..NR-1] */
- for (r=1; r<cx->Nr; ++r) {
- for (j=0; j<Nb; ++j) {
- COLUMN(output, j) = T0(STATE_BYTE(4* j )) ^
- T1(STATE_BYTE(4*((j+ 1)%Nb)+1)) ^
- T2(STATE_BYTE(4*((j+c2)%Nb)+2)) ^
- T3(STATE_BYTE(4*((j+c3)%Nb)+3));
- }
- for (j=0; j<4*Nb; j+=4) {
- COLUMN(clone, j) = COLUMN(output, j) ^ *roundkeyw++;
- }
- }
- /* Step 3: Do the last round */
- /* Final round does not employ MixColumn */
- for (j=0; j<Nb; ++j) {
- COLUMN(output, j) = ((BYTE0WORD(T2(STATE_BYTE(4* j )))) |
- (BYTE1WORD(T3(STATE_BYTE(4*(j+ 1)%Nb)+1))) |
- (BYTE2WORD(T0(STATE_BYTE(4*(j+c2)%Nb)+2))) |
- (BYTE3WORD(T1(STATE_BYTE(4*(j+c3)%Nb)+3)))) ^
- *roundkeyw++;
- }
- return SECSuccess;
-}
-
-SECStatus
-rijndael_decryptBlock(AESContext *cx,
- unsigned char *output,
- const unsigned char *input)
-{
- int j, r, Nb;
- int c2, c3;
- PRUint32 *roundkeyw;
- PRUint8 clone[RIJNDAEL_MAX_STATE_SIZE];
- Nb = cx->Nb;
- roundkeyw = cx->expandedKey + cx->Nb * cx->Nr + 3;
- /* reverse key addition */
- for (j=4*Nb; j>=0; j-=4) {
- COLUMN(clone, j) = COLUMN(input, j) ^ *roundkeyw--;
- }
- /* Loop over rounds in reverse [NR..1] */
- for (r=cx->Nr; r>1; --r) {
- /* Invert the (InvByteSub*InvMixColumn)(InvShiftRow(state)) */
- for (j=0; j<Nb; ++j) {
- COLUMN(output, 4*j) = TInv0(STATE_BYTE(4* j )) ^
- TInv1(STATE_BYTE(4*(j+Nb- 1)%Nb)+1) ^
- TInv2(STATE_BYTE(4*(j+Nb-c2)%Nb)+2) ^
- TInv3(STATE_BYTE(4*(j+Nb-c3)%Nb)+3);
- }
- /* Invert the key addition step */
- for (j=4*Nb; j>=0; j-=4) {
- COLUMN(clone, j) = COLUMN(output, j) ^ *roundkeyw--;
- }
- }
- /* inverse sub */
- for (j=0; j<4*Nb; ++j) {
- output[j] = SBOXINV(clone[j]);
- }
- /* final key addition */
- for (j=4*Nb; j>=0; j-=4) {
- COLUMN(output, j) ^= *roundkeyw--;
- }
- return SECSuccess;
-}
-
-/**************************************************************************
- *
- * Rijndael modes of operation (ECB and CBC)
- *
- *************************************************************************/
-
-static SECStatus
-rijndael_encryptECB(AESContext *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- const unsigned char *input, unsigned int inputLen,
- int blocksize)
-{
- SECStatus rv;
- AESBlockFunc *encryptor;
- encryptor = (blocksize == 16) ? &rijndael_encryptBlock128 :
- &rijndael_encryptBlock;
- while (inputLen > 0) {
- rv = (*encryptor)(cx, output, input);
- if (rv != SECSuccess)
- return rv;
- output += blocksize;
- input += blocksize;
- inputLen -= blocksize;
- }
- return SECSuccess;
-}
-
-static SECStatus
-rijndael_encryptCBC(AESContext *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- const unsigned char *input, unsigned int inputLen,
- int blocksize)
-{
- int j;
- SECStatus rv;
- AESBlockFunc *encryptor;
- unsigned char *lastblock;
- unsigned char inblock[RIJNDAEL_MAX_STATE_SIZE * 8];
- lastblock = cx->iv;
- encryptor = (blocksize == 16) ? &rijndael_encryptBlock128 :
- &rijndael_encryptBlock;
- while (inputLen > 0) {
- /* XOR with the last block (IV if first block) */
- for (j=0; j<blocksize; ++j)
- inblock[j] = input[j] ^ lastblock[j];
- /* encrypt */
- rv = (*encryptor)(cx, output, inblock);
- if (rv != SECSuccess)
- return rv;
- /* move to the next block */
- lastblock = output;
- output += blocksize;
- input += blocksize;
- inputLen -= blocksize;
- }
- return SECSuccess;
-}
-
-static SECStatus
-rijndael_decryptECB(AESContext *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- const unsigned char *input, unsigned int inputLen,
- int blocksize)
-{
- SECStatus rv;
- AESBlockFunc *decryptor;
- *outputLen = inputLen;
- decryptor = (blocksize == 16) ? &rijndael_decryptBlock128 :
- &rijndael_decryptBlock;
- while (inputLen > 0) {
- rv = (*decryptor)(cx, output, input);
- if (rv != SECSuccess)
- return rv;
- output += blocksize;
- input += blocksize;
- inputLen -= blocksize;
- }
- return SECSuccess;
-}
-
-static SECStatus
-rijndael_decryptCBC(AESContext *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- const unsigned char *input, unsigned int inputLen,
- int blocksize)
-{
- SECStatus rv;
- AESBlockFunc *decryptor;
- unsigned char *in, *out;
- int j;
- decryptor = (blocksize == 16) ? &rijndael_decryptBlock128 :
- &rijndael_decryptBlock;
- in = input + (inputLen - blocksize);
- out = output + (inputLen - blocksize);
- while (inputLen > 0) {
- rv = (*decryptor)(cx, out, in);
- if (rv != SECSuccess)
- return rv;
- if (in == input) {
- for (j=0; j<blocksize; ++j)
- out[j] ^= cx->iv[j];
- } else {
- for (j=0; j<blocksize; ++j)
- out[j] ^= in[j - blocksize];
- }
- out -= blocksize;
- in -= blocksize;
- inputLen -= blocksize;
- }
- return SECSuccess;
-}
-
-/************************************************************************
- *
- * BLAPI Interface functions
- *
- * The following functions implement the encryption routines defined in
- * BLAPI for the AES cipher, Rijndael.
- *
- ***********************************************************************/
-
-/* AES_CreateContext
- *
- * create a new context for Rijndael operations
- */
-AESContext *
-AES_CreateContext(unsigned char *key, unsigned char *iv, int mode, int encrypt,
- unsigned int keysize, unsigned int blocksize)
-{
- AESContext *cx;
- unsigned int Nk;
- /* According to Rijndael AES Proposal, section 12.1, block and key
- * lengths between 128 and 256 bits are supported, as long as the
- * length in bytes is divisible by 4.
- */
- if (key == NULL ||
- keysize < 16 || keysize > 32 || keysize % 4 != 0 ||
- blocksize < 16 || blocksize > 32 || blocksize % 4 != 0) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return NULL;
- }
- if (mode != NSS_AES && mode != NSS_AES_CBC) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return NULL;
- }
- if (mode == NSS_AES_CBC && iv == NULL) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return NULL;
- }
- cx = PORT_ZNew(AESContext);
- if (!cx) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- return NULL;
- }
- /* Nb = (block size in bits) / 32 */
- cx->Nb = blocksize / 4;
- /* Nk = (key size in bits) / 32 */
- Nk = keysize / 4;
- /* Obtain number of rounds from "table" */
- cx->Nr = RIJNDAEL_NUM_ROUNDS(Nk, cx->Nb);
- /* copy in the iv, if neccessary */
- if (mode == NSS_AES_CBC) {
- cx->iv = PORT_ZAlloc(blocksize);
- if (!cx->iv) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- goto cleanup;
- }
- memcpy(cx->iv, iv, blocksize);
- cx->worker = (encrypt) ? &rijndael_encryptCBC : &rijndael_decryptCBC;
- } else {
- cx->worker = (encrypt) ? &rijndael_encryptECB : &rijndael_decryptECB;
- }
- /* Allocate memory for the expanded key */
- cx->expandedKey = PORT_ZNewArray(PRUint32, cx->Nb * (cx->Nr + 1));
- if (!cx->expandedKey) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- goto cleanup;
- }
- /* Generate expanded key */
- if (encrypt) {
- if (rijndael_key_expansion(cx, key, Nk) != SECSuccess)
- goto cleanup;
- } else {
- if (rijndael_invkey_expansion(cx, key, Nk) != SECSuccess)
- goto cleanup;
- }
- return cx;
-cleanup:
- if (cx->expandedKey)
- PORT_ZFree(cx->expandedKey, cx->Nb * (cx->Nr + 1));
- PORT_ZFree(cx, sizeof *cx);
- return NULL;
-}
-
-/*
- * AES_DestroyContext
- *
- * Zero an AES cipher context. If freeit is true, also free the pointer
- * to the context.
- */
-void
-AES_DestroyContext(AESContext *cx, PRBool freeit)
-{
- PORT_ZFree(cx->expandedKey, cx->Nb * (cx->Nr + 1));
- memset(cx, 0, sizeof *cx);
- if (freeit)
- PORT_Free(cx);
-}
-
-/*
- * AES_Encrypt
- *
- * Encrypt an arbitrary-length buffer. The output buffer must already be
- * allocated to at least inputLen.
- */
-SECStatus
-AES_Encrypt(AESContext *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- const unsigned char *input, unsigned int inputLen)
-{
- int blocksize;
- /* Check args */
- if (cx == NULL || output == NULL || input == NULL) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- blocksize = 4 * cx->Nb;
- if (inputLen % blocksize != 0) {
- PORT_SetError(SEC_ERROR_INPUT_LEN);
- return SECFailure;
- }
- if (maxOutputLen < inputLen) {
- PORT_SetError(SEC_ERROR_OUTPUT_LEN);
- return SECFailure;
- }
- *outputLen = inputLen;
- return (*cx->worker)(cx, output, outputLen, maxOutputLen,
- input, inputLen, blocksize);
-}
-
-/*
- * AES_Decrypt
- *
- * Decrypt and arbitrary-length buffer. The output buffer must already be
- * allocated to at least inputLen.
- */
-SECStatus
-AES_Decrypt(AESContext *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- const unsigned char *input, unsigned int inputLen)
-{
- int blocksize;
- /* Check args */
- if (cx == NULL || output == NULL || input == NULL) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- blocksize = 4 * cx->Nb;
- if (inputLen % blocksize != 0) {
- PORT_SetError(SEC_ERROR_INPUT_LEN);
- return SECFailure;
- }
- if (maxOutputLen < inputLen) {
- PORT_SetError(SEC_ERROR_OUTPUT_LEN);
- return SECFailure;
- }
- *outputLen = inputLen;
- return (*cx->worker)(cx, output, outputLen, maxOutputLen,
- input, inputLen, blocksize);
-}