summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/rsa.c
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/lib/freebl/rsa.c')
-rw-r--r--security/nss/lib/freebl/rsa.c694
1 files changed, 0 insertions, 694 deletions
diff --git a/security/nss/lib/freebl/rsa.c b/security/nss/lib/freebl/rsa.c
deleted file mode 100644
index e91ed3c22..000000000
--- a/security/nss/lib/freebl/rsa.c
+++ /dev/null
@@ -1,694 +0,0 @@
-/*
- * The contents of this file are subject to the Mozilla Public
- * License Version 1.1 (the "License"); you may not use this file
- * except in compliance with the License. You may obtain a copy of
- * the License at http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS
- * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
- * implied. See the License for the specific language governing
- * rights and limitations under the License.
- *
- * The Original Code is the Netscape security libraries.
- *
- * The Initial Developer of the Original Code is Netscape
- * Communications Corporation. Portions created by Netscape are
- * Copyright (C) 1994-2000 Netscape Communications Corporation. All
- * Rights Reserved.
- *
- * Contributor(s):
- *
- * Alternatively, the contents of this file may be used under the
- * terms of the GNU General Public License Version 2 or later (the
- * "GPL"), in which case the provisions of the GPL are applicable
- * instead of those above. If you wish to allow use of your
- * version of this file only under the terms of the GPL and not to
- * allow others to use your version of this file under the MPL,
- * indicate your decision by deleting the provisions above and
- * replace them with the notice and other provisions required by
- * the GPL. If you do not delete the provisions above, a recipient
- * may use your version of this file under either the MPL or the
- * GPL.
- *
- */
-
-/*
- * RSA key generation, public key op, private key op.
- *
- * $Id$
- */
-
-#include "secerr.h"
-
-#include "prclist.h"
-#include "nssilock.h"
-#include "prinit.h"
-#include "blapi.h"
-#include "mpi.h"
-#include "mpprime.h"
-#include "mplogic.h"
-#include "secmpi.h"
-#include "secitem.h"
-
-/*
-** Number of times to attempt to generate a prime (p or q) from a random
-** seed (the seed changes for each iteration).
-*/
-#define MAX_PRIME_GEN_ATTEMPTS 10
-/*
-** Number of times to attempt to generate a key. The primes p and q change
-** for each attempt.
-*/
-#define MAX_KEY_GEN_ATTEMPTS 10
-
-/*
-** RSABlindingParamsStr
-**
-** For discussion of Paul Kocher's timing attack against an RSA private key
-** operation, see http://www.cryptography.com/timingattack/paper.html. The
-** countermeasure to this attack, known as blinding, is also discussed in
-** the Handbook of Applied Cryptography, 11.118-11.119.
-*/
-struct RSABlindingParamsStr
-{
- /* Blinding-specific parameters */
- PRCList link; /* link to list of structs */
- SECItem modulus; /* list element "key" */
- mp_int f, g; /* Blinding parameters */
- int counter; /* number of remaining uses of (f, g) */
-};
-
-/*
-** RSABlindingParamsListStr
-**
-** List of key-specific blinding params. The arena holds the volatile pool
-** of memory for each entry and the list itself. The lock is for list
-** operations, in this case insertions and iterations, as well as control
-** of the counter for each set of blinding parameters.
-*/
-struct RSABlindingParamsListStr
-{
- PZLock *lock; /* Lock for the list */
- PRCList head; /* Pointer to the list */
-};
-
-/*
-** The master blinding params list.
-*/
-static struct RSABlindingParamsListStr blindingParamsList = { 0 };
-
-/* Number of times to reuse (f, g). Suggested by Paul Kocher */
-#define RSA_BLINDING_PARAMS_MAX_REUSE 50
-
-/* Global, allows optional use of blinding. On by default. */
-/* Cannot be changed at the moment, due to thread-safety issues. */
-static PRBool nssRSAUseBlinding = PR_TRUE;
-
-static SECStatus
-rsa_keygen_from_primes(mp_int *p, mp_int *q, mp_int *e, RSAPrivateKey *key,
- unsigned int keySizeInBits)
-{
- mp_int n, d, phi;
- mp_int psub1, qsub1, tmp;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- MP_DIGITS(&n) = 0;
- MP_DIGITS(&d) = 0;
- MP_DIGITS(&phi) = 0;
- MP_DIGITS(&psub1) = 0;
- MP_DIGITS(&qsub1) = 0;
- MP_DIGITS(&tmp) = 0;
- CHECK_MPI_OK( mp_init(&n) );
- CHECK_MPI_OK( mp_init(&d) );
- CHECK_MPI_OK( mp_init(&phi) );
- CHECK_MPI_OK( mp_init(&psub1) );
- CHECK_MPI_OK( mp_init(&qsub1) );
- CHECK_MPI_OK( mp_init(&tmp) );
- /* 1. Compute n = p*q */
- CHECK_MPI_OK( mp_mul(p, q, &n) );
- /* verify that the modulus has the desired number of bits */
- if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) {
- PORT_SetError(SEC_ERROR_NEED_RANDOM);
- rv = SECFailure;
- goto cleanup;
- }
- /* 2. Compute phi = (p-1)*(q-1) */
- CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) );
- CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) );
- CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) );
- /* 3. Compute d = e**-1 mod(phi) */
- err = mp_invmod(e, &phi, &d);
- /* Verify that phi(n) and e have no common divisors */
- if (err != MP_OKAY) {
- if (err == MP_UNDEF) {
- PORT_SetError(SEC_ERROR_NEED_RANDOM);
- err = MP_OKAY; /* to keep PORT_SetError from being called again */
- rv = SECFailure;
- }
- goto cleanup;
- }
- MPINT_TO_SECITEM(&n, &key->modulus, key->arena);
- MPINT_TO_SECITEM(&d, &key->privateExponent, key->arena);
- /* 4. Compute exponent1 = d mod (p-1) */
- CHECK_MPI_OK( mp_mod(&d, &psub1, &tmp) );
- MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena);
- /* 5. Compute exponent2 = d mod (q-1) */
- CHECK_MPI_OK( mp_mod(&d, &qsub1, &tmp) );
- MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena);
- /* 6. Compute coefficient = q**-1 mod p */
- CHECK_MPI_OK( mp_invmod(q, p, &tmp) );
- MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena);
-cleanup:
- mp_clear(&n);
- mp_clear(&d);
- mp_clear(&phi);
- mp_clear(&psub1);
- mp_clear(&qsub1);
- mp_clear(&tmp);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-static SECStatus
-generate_prime(mp_int *prime, int primeLen)
-{
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- unsigned long counter = 0;
- int piter;
- unsigned char *pb = NULL;
- pb = PORT_Alloc(primeLen);
- if (!pb) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- goto cleanup;
- }
- for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) {
- CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) );
- pb[0] |= 0xC0; /* set two high-order bits */
- pb[primeLen-1] |= 0x01; /* set low-order bit */
- CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) );
- err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter);
- if (err != MP_NO)
- goto cleanup;
- /* keep going while err == MP_NO */
- }
-cleanup:
- if (pb)
- PORT_ZFree(pb, primeLen);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-/*
-** Generate and return a new RSA public and private key.
-** Both keys are encoded in a single RSAPrivateKey structure.
-** "cx" is the random number generator context
-** "keySizeInBits" is the size of the key to be generated, in bits.
-** 512, 1024, etc.
-** "publicExponent" when not NULL is a pointer to some data that
-** represents the public exponent to use. The data is a byte
-** encoded integer, in "big endian" order.
-*/
-RSAPrivateKey *
-RSA_NewKey(int keySizeInBits, SECItem *publicExponent)
-{
- unsigned int primeLen;
- mp_int p, q, e;
- int kiter;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- int prerr = 0;
- RSAPrivateKey *key = NULL;
- PRArenaPool *arena = NULL;
- /* Require key size to be a multiple of 16 bits. */
- if (!publicExponent || keySizeInBits % 16 != 0) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return NULL;
- }
- /* 1. Allocate arena & key */
- arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
- if (!arena) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- return NULL;
- }
- key = (RSAPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(RSAPrivateKey));
- if (!key) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- PORT_FreeArena(arena, PR_TRUE);
- return NULL;
- }
- key->arena = arena;
- /* length of primes p and q (in bytes) */
- primeLen = keySizeInBits / (2 * BITS_PER_BYTE);
- MP_DIGITS(&p) = 0;
- MP_DIGITS(&q) = 0;
- MP_DIGITS(&e) = 0;
- CHECK_MPI_OK( mp_init(&p) );
- CHECK_MPI_OK( mp_init(&q) );
- CHECK_MPI_OK( mp_init(&e) );
- /* 2. Set the version number (PKCS1 v1.5 says it should be zero) */
- SECITEM_AllocItem(arena, &key->version, 1);
- key->version.data[0] = 0;
- /* 3. Set the public exponent */
- SECITEM_CopyItem(arena, &key->publicExponent, publicExponent);
- SECITEM_TO_MPINT(*publicExponent, &e);
- kiter = 0;
- do {
- prerr = 0;
- PORT_SetError(0);
- CHECK_SEC_OK( generate_prime(&p, primeLen) );
- CHECK_SEC_OK( generate_prime(&q, primeLen) );
- /* Assure q < p */
- if (mp_cmp(&p, &q) < 0)
- mp_exch(&p, &q);
- /* Attempt to use these primes to generate a key */
- rv = rsa_keygen_from_primes(&p, &q, &e, key, keySizeInBits);
- if (rv == SECSuccess)
- break; /* generated two good primes */
- prerr = PORT_GetError();
- kiter++;
- /* loop until have primes */
- } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS);
- if (prerr)
- goto cleanup;
- MPINT_TO_SECITEM(&p, &key->prime1, arena);
- MPINT_TO_SECITEM(&q, &key->prime2, arena);
-cleanup:
- mp_clear(&p);
- mp_clear(&q);
- mp_clear(&e);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- if (rv && arena) {
- PORT_FreeArena(arena, PR_TRUE);
- key = NULL;
- }
- return key;
-}
-
-static unsigned int
-rsa_modulusLen(SECItem *modulus)
-{
- unsigned char byteZero = modulus->data[0];
- unsigned int modLen = modulus->len - !byteZero;
- return modLen;
-}
-
-/*
-** Perform a raw public-key operation
-** Length of input and output buffers are equal to key's modulus len.
-*/
-SECStatus
-RSA_PublicKeyOp(RSAPublicKey *key,
- unsigned char *output,
- const unsigned char *input)
-{
- unsigned int modLen;
- mp_int n, e, m, c;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- if (!key || !output || !input) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- MP_DIGITS(&n) = 0;
- MP_DIGITS(&e) = 0;
- MP_DIGITS(&m) = 0;
- MP_DIGITS(&c) = 0;
- CHECK_MPI_OK( mp_init(&n) );
- CHECK_MPI_OK( mp_init(&e) );
- CHECK_MPI_OK( mp_init(&m) );
- CHECK_MPI_OK( mp_init(&c) );
- modLen = rsa_modulusLen(&key->modulus);
- /* 1. Obtain public key (n, e) */
- SECITEM_TO_MPINT(key->modulus, &n);
- SECITEM_TO_MPINT(key->publicExponent, &e);
- /* 2. Represent message as integer in range [0..n-1] */
- CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) );
- /* 3. Compute c = m**e mod n */
-#ifdef USE_MPI_EXPT_D
- /* XXX see which is faster */
- if (MP_USED(&e) == 1) {
- CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) );
- } else
-#endif
- CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) );
- /* 4. result c is ciphertext */
- err = mp_to_fixlen_octets(&c, output, modLen);
- if (err >= 0) err = MP_OKAY;
-cleanup:
- mp_clear(&n);
- mp_clear(&e);
- mp_clear(&m);
- mp_clear(&c);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-/*
-** RSA Private key operation (no CRT).
-*/
-static SECStatus
-rsa_PrivateKeyOp(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n,
- unsigned int modLen)
-{
- mp_int d;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- MP_DIGITS(&d) = 0;
- CHECK_MPI_OK( mp_init(&d) );
- SECITEM_TO_MPINT(key->privateExponent, &d);
- /* 1. m = c**d mod n */
- CHECK_MPI_OK( mp_exptmod(c, &d, n, m) );
-cleanup:
- mp_clear(&d);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-/*
-** RSA Private key operation using CRT.
-*/
-static SECStatus
-rsa_PrivateKeyOpCRT(RSAPrivateKey *key, mp_int *m, mp_int *c,
- unsigned int modLen)
-{
- mp_int p, q, d_p, d_q, qInv;
- mp_int m1, m2, b2, h, ctmp;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- MP_DIGITS(&p) = 0;
- MP_DIGITS(&q) = 0;
- MP_DIGITS(&d_p) = 0;
- MP_DIGITS(&d_q) = 0;
- MP_DIGITS(&qInv) = 0;
- MP_DIGITS(&m1) = 0;
- MP_DIGITS(&m2) = 0;
- MP_DIGITS(&b2) = 0;
- MP_DIGITS(&h) = 0;
- MP_DIGITS(&ctmp) = 0;
- CHECK_MPI_OK( mp_init(&p) );
- CHECK_MPI_OK( mp_init(&q) );
- CHECK_MPI_OK( mp_init(&d_p) );
- CHECK_MPI_OK( mp_init(&d_q) );
- CHECK_MPI_OK( mp_init(&qInv) );
- CHECK_MPI_OK( mp_init(&m1) );
- CHECK_MPI_OK( mp_init(&m2) );
- CHECK_MPI_OK( mp_init(&b2) );
- CHECK_MPI_OK( mp_init(&h) );
- CHECK_MPI_OK( mp_init(&ctmp) );
- /* copy private key parameters into mp integers */
- SECITEM_TO_MPINT(key->prime1, &p); /* p */
- SECITEM_TO_MPINT(key->prime2, &q); /* q */
- SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */
- SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_p = d mod (q-1) */
- SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */
- /* 1. m1 = c**d_p mod p */
- CHECK_MPI_OK( mp_mod(c, &p, &ctmp) );
- CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) );
- /* 2. m2 = c**d_q mod q */
- CHECK_MPI_OK( mp_mod(c, &q, &ctmp) );
- CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) );
- /* 3. h = (m1 - m2) * qInv mod p */
- CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) );
- CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) );
- /* 4. m = m2 + h * q */
- CHECK_MPI_OK( mp_mul(&h, &q, m) );
- CHECK_MPI_OK( mp_add(m, &m2, m) );
-cleanup:
- mp_clear(&p);
- mp_clear(&q);
- mp_clear(&d_p);
- mp_clear(&d_q);
- mp_clear(&qInv);
- mp_clear(&m1);
- mp_clear(&m2);
- mp_clear(&b2);
- mp_clear(&h);
- mp_clear(&ctmp);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-static PRCallOnceType coBPInit = { 0, 0, 0 };
-static PRStatus
-init_blinding_params_list(void)
-{
- blindingParamsList.lock = PZ_NewLock(nssILockOther);
- if (!blindingParamsList.lock) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- return PR_FAILURE;
- }
- PR_INIT_CLIST(&blindingParamsList.head);
- return PR_SUCCESS;
-}
-
-static SECStatus
-generate_blinding_params(struct RSABlindingParamsStr *rsabp,
- RSAPrivateKey *key, mp_int *n, unsigned int modLen)
-{
- SECStatus rv = SECSuccess;
- mp_int e, k;
- mp_err err = MP_OKAY;
- unsigned char *kb = NULL;
- MP_DIGITS(&e) = 0;
- MP_DIGITS(&k) = 0;
- CHECK_MPI_OK( mp_init(&e) );
- CHECK_MPI_OK( mp_init(&k) );
- SECITEM_TO_MPINT(key->publicExponent, &e);
- /* generate random k < n */
- kb = PORT_Alloc(modLen);
- if (!kb) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- goto cleanup;
- }
- CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) );
- CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) );
- /* k < n */
- CHECK_MPI_OK( mp_mod(&k, n, &k) );
- /* f = k**e mod n */
- CHECK_MPI_OK( mp_exptmod(&k, &e, n, &rsabp->f) );
- /* g = k**-1 mod n */
- CHECK_MPI_OK( mp_invmod(&k, n, &rsabp->g) );
- /* Initialize the counter for this (f, g) */
- rsabp->counter = RSA_BLINDING_PARAMS_MAX_REUSE;
-cleanup:
- if (kb)
- PORT_ZFree(kb, modLen);
- mp_clear(&k);
- mp_clear(&e);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-static SECStatus
-init_blinding_params(struct RSABlindingParamsStr *rsabp, RSAPrivateKey *key,
- mp_int *n, unsigned int modLen)
-{
- SECStatus rv = SECSuccess;
- mp_err err = MP_OKAY;
- MP_DIGITS(&rsabp->f) = 0;
- MP_DIGITS(&rsabp->g) = 0;
- /* initialize blinding parameters */
- CHECK_MPI_OK( mp_init(&rsabp->f) );
- CHECK_MPI_OK( mp_init(&rsabp->g) );
- /* List elements are keyed using the modulus */
- SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus);
- CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) );
- return SECSuccess;
-cleanup:
- mp_clear(&rsabp->f);
- mp_clear(&rsabp->g);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-static SECStatus
-get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen,
- mp_int *f, mp_int *g)
-{
- SECStatus rv = SECSuccess;
- mp_err err = MP_OKAY;
- int cmp;
- PRCList *el;
- struct RSABlindingParamsStr *rsabp = NULL;
- /* Init the list if neccessary (the init function is only called once!) */
- if (blindingParamsList.lock == NULL) {
- if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) {
- PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
- return SECFailure;
- }
- }
- /* Acquire the list lock */
- PZ_Lock(blindingParamsList.lock);
- /* Walk the list looking for the private key */
- for (el = PR_NEXT_LINK(&blindingParamsList.head);
- el != &blindingParamsList.head;
- el = PR_NEXT_LINK(el)) {
- rsabp = (struct RSABlindingParamsStr *)el;
- cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus);
- if (cmp == 0) {
- /* Check the usage counter for the parameters */
- if (--rsabp->counter <= 0) {
- /* Regenerate the blinding parameters */
- CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) );
- }
- /* Return the parameters */
- CHECK_MPI_OK( mp_copy(&rsabp->f, f) );
- CHECK_MPI_OK( mp_copy(&rsabp->g, g) );
- /* Now that the params are located, release the list lock. */
- PZ_Unlock(blindingParamsList.lock); /* XXX when fails? */
- return SECSuccess;
- } else if (cmp > 0) {
- /* The key is not in the list. Break to param creation. */
- break;
- }
- }
- /* At this point, the key is not in the list. el should point to the
- ** list element that this key should be inserted before. NOTE: the list
- ** lock is still held, so there cannot be a race condition here.
- */
- rsabp = (struct RSABlindingParamsStr *)
- PORT_ZAlloc(sizeof(struct RSABlindingParamsStr));
- if (!rsabp) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- goto cleanup;
- }
- /* Initialize the list pointer for the element */
- PR_INIT_CLIST(&rsabp->link);
- /* Initialize the blinding parameters
- ** This ties up the list lock while doing some heavy, element-specific
- ** operations, but we don't want to insert the element until it is valid,
- ** which requires computing the blinding params. If this proves costly,
- ** it could be done after the list lock is released, and then if it fails
- ** the lock would have to be reobtained and the invalid element removed.
- */
- rv = init_blinding_params(rsabp, key, n, modLen);
- if (rv != SECSuccess) {
- PORT_ZFree(rsabp, sizeof(struct RSABlindingParamsStr));
- goto cleanup;
- }
- /* Insert the new element into the list
- ** If inserting in the middle of the list, el points to the link
- ** to insert before. Otherwise, the link needs to be appended to
- ** the end of the list, which is the same as inserting before the
- ** head (since el would have looped back to the head).
- */
- PR_INSERT_BEFORE(&rsabp->link, el);
- /* Return the parameters */
- CHECK_MPI_OK( mp_copy(&rsabp->f, f) );
- CHECK_MPI_OK( mp_copy(&rsabp->g, g) );
- /* Release the list lock */
- PZ_Unlock(blindingParamsList.lock); /* XXX when fails? */
- return SECSuccess;
-cleanup:
- /* It is possible to reach this after the lock is already released.
- ** Ignore the error in that case.
- */
- PZ_Unlock(blindingParamsList.lock);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return SECFailure;
-}
-
-/*
-** Perform a raw private-key operation
-** Length of input and output buffers are equal to key's modulus len.
-*/
-SECStatus
-RSA_PrivateKeyOp(RSAPrivateKey *key,
- unsigned char *output,
- const unsigned char *input)
-{
- unsigned int modLen;
- unsigned int offset;
- SECStatus rv;
- mp_err err;
- mp_int n, c, m;
- mp_int f, g;
- if (!key || !output || !input) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- /* check input out of range (needs to be in range [0..n-1]) */
- modLen = rsa_modulusLen(&key->modulus);
- offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
- if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- MP_DIGITS(&n) = 0;
- MP_DIGITS(&c) = 0;
- MP_DIGITS(&m) = 0;
- MP_DIGITS(&f) = 0;
- MP_DIGITS(&g) = 0;
- CHECK_MPI_OK( mp_init(&n) );
- CHECK_MPI_OK( mp_init(&c) );
- CHECK_MPI_OK( mp_init(&m) );
- CHECK_MPI_OK( mp_init(&f) );
- CHECK_MPI_OK( mp_init(&g) );
- SECITEM_TO_MPINT(key->modulus, &n);
- OCTETS_TO_MPINT(input, &c, modLen);
- /* If blinding, compute pre-image of ciphertext by multiplying by
- ** blinding factor
- */
- if (nssRSAUseBlinding) {
- CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) );
- /* c' = c*f mod n */
- CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) );
- }
- /* Do the private key operation m = c**d mod n */
- if ( key->prime1.len == 0 ||
- key->prime2.len == 0 ||
- key->exponent1.len == 0 ||
- key->exponent2.len == 0 ||
- key->coefficient.len == 0) {
- CHECK_SEC_OK( rsa_PrivateKeyOp(key, &m, &c, &n, modLen) );
- } else {
- CHECK_SEC_OK( rsa_PrivateKeyOpCRT(key, &m, &c, modLen) );
- }
- /* If blinding, compute post-image of plaintext by multiplying by
- ** blinding factor
- */
- if (nssRSAUseBlinding) {
- /* m = m'*g mod n */
- CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) );
- }
- err = mp_to_fixlen_octets(&m, output, modLen);
- if (err >= 0) err = MP_OKAY;
-cleanup:
- mp_clear(&n);
- mp_clear(&c);
- mp_clear(&m);
- mp_clear(&f);
- mp_clear(&g);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}