/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifdef USE_HW_SHA2 #ifndef __ARM_FEATURE_CRYPTO #error "Compiler option is invalid" #endif #ifdef FREEBL_NO_DEPEND #include "stubs.h" #endif #include "prcpucfg.h" #include "prtypes.h" /* for PRUintXX */ #include "prlong.h" #include "blapi.h" #include "sha256.h" #include /* SHA-256 constants, K256. */ static const PRUint32 __attribute__((aligned(16))) K256[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; #define ROUND(n, a, b, c, d) \ { \ uint32x4_t t = vaddq_u32(a, k##n); \ uint32x4_t wt = w0; \ w0 = vsha256hq_u32(w0, w1, t); \ w1 = vsha256h2q_u32(w1, wt, t); \ if (n < 12) { \ a = vsha256su0q_u32(a, b); \ a = vsha256su1q_u32(a, c, d); \ } \ } void SHA256_Compress_Native(SHA256Context *ctx) { const uint32x4_t k0 = vld1q_u32(K256); const uint32x4_t k1 = vld1q_u32(K256 + 4); const uint32x4_t k2 = vld1q_u32(K256 + 8); const uint32x4_t k3 = vld1q_u32(K256 + 12); const uint32x4_t k4 = vld1q_u32(K256 + 16); const uint32x4_t k5 = vld1q_u32(K256 + 20); const uint32x4_t k6 = vld1q_u32(K256 + 24); const uint32x4_t k7 = vld1q_u32(K256 + 28); const uint32x4_t k8 = vld1q_u32(K256 + 32); const uint32x4_t k9 = vld1q_u32(K256 + 36); const uint32x4_t k10 = vld1q_u32(K256 + 40); const uint32x4_t k11 = vld1q_u32(K256 + 44); const uint32x4_t k12 = vld1q_u32(K256 + 48); const uint32x4_t k13 = vld1q_u32(K256 + 52); const uint32x4_t k14 = vld1q_u32(K256 + 56); const uint32x4_t k15 = vld1q_u32(K256 + 60); uint32x4_t h0 = vld1q_u32(ctx->h); uint32x4_t h1 = vld1q_u32(ctx->h + 4); unsigned char *input = ctx->u.b; uint32x4_t a = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input))); uint32x4_t b = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 16))); uint32x4_t c = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 32))); uint32x4_t d = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 48))); uint32x4_t w0 = h0; uint32x4_t w1 = h1; ROUND(0, a, b, c, d) ROUND(1, b, c, d, a) ROUND(2, c, d, a, b) ROUND(3, d, a, b, c) ROUND(4, a, b, c, d) ROUND(5, b, c, d, a) ROUND(6, c, d, a, b) ROUND(7, d, a, b, c) ROUND(8, a, b, c, d) ROUND(9, b, c, d, a) ROUND(10, c, d, a, b) ROUND(11, d, a, b, c) ROUND(12, a, b, c, d) ROUND(13, b, c, d, a) ROUND(14, c, d, a, b) ROUND(15, d, a, b, c) h0 = vaddq_u32(h0, w0); h1 = vaddq_u32(h1, w1); vst1q_u32(ctx->h, h0); vst1q_u32(ctx->h + 4, h1); } void SHA256_Update_Native(SHA256Context *ctx, const unsigned char *input, unsigned int inputLen) { const uint32x4_t k0 = vld1q_u32(K256); const uint32x4_t k1 = vld1q_u32(K256 + 4); const uint32x4_t k2 = vld1q_u32(K256 + 8); const uint32x4_t k3 = vld1q_u32(K256 + 12); const uint32x4_t k4 = vld1q_u32(K256 + 16); const uint32x4_t k5 = vld1q_u32(K256 + 20); const uint32x4_t k6 = vld1q_u32(K256 + 24); const uint32x4_t k7 = vld1q_u32(K256 + 28); const uint32x4_t k8 = vld1q_u32(K256 + 32); const uint32x4_t k9 = vld1q_u32(K256 + 36); const uint32x4_t k10 = vld1q_u32(K256 + 40); const uint32x4_t k11 = vld1q_u32(K256 + 44); const uint32x4_t k12 = vld1q_u32(K256 + 48); const uint32x4_t k13 = vld1q_u32(K256 + 52); const uint32x4_t k14 = vld1q_u32(K256 + 56); const uint32x4_t k15 = vld1q_u32(K256 + 60); unsigned int inBuf = ctx->sizeLo & 0x3f; if (!inputLen) { return; } /* Add inputLen into the count of bytes processed, before processing */ if ((ctx->sizeLo += inputLen) < inputLen) { ctx->sizeHi++; } /* if data already in buffer, attemp to fill rest of buffer */ if (inBuf) { unsigned int todo = SHA256_BLOCK_LENGTH - inBuf; if (inputLen < todo) { todo = inputLen; } memcpy(ctx->u.b + inBuf, input, todo); input += todo; inputLen -= todo; if (inBuf + todo == SHA256_BLOCK_LENGTH) { SHA256_Compress_Native(ctx); } } uint32x4_t h0 = vld1q_u32(ctx->h); uint32x4_t h1 = vld1q_u32(ctx->h + 4); /* if enough data to fill one or more whole buffers, process them. */ while (inputLen >= SHA256_BLOCK_LENGTH) { uint32x4_t a, b, c, d; a = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input))); b = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 16))); c = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 32))); d = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 48))); input += SHA256_BLOCK_LENGTH; inputLen -= SHA256_BLOCK_LENGTH; uint32x4_t w0 = h0; uint32x4_t w1 = h1; ROUND(0, a, b, c, d) ROUND(1, b, c, d, a) ROUND(2, c, d, a, b) ROUND(3, d, a, b, c) ROUND(4, a, b, c, d) ROUND(5, b, c, d, a) ROUND(6, c, d, a, b) ROUND(7, d, a, b, c) ROUND(8, a, b, c, d) ROUND(9, b, c, d, a) ROUND(10, c, d, a, b) ROUND(11, d, a, b, c) ROUND(12, a, b, c, d) ROUND(13, b, c, d, a) ROUND(14, c, d, a, b) ROUND(15, d, a, b, c) h0 = vaddq_u32(h0, w0); h1 = vaddq_u32(h1, w1); } vst1q_u32(ctx->h, h0); vst1q_u32(ctx->h + 4, h1); /* if data left over, fill it into buffer */ if (inputLen) { memcpy(ctx->u.b, input, inputLen); } } #endif /* USE_HW_SHA2 */