/** * \file sha3_xkcp.c * \brief Implementation of the OQS SHA3 API using the XKCP low interface. * The high level keccak_absorb, squeezeblocks, etc. are based on fips202.c * from PQClean (https://github.com/PQClean/PQClean/tree/master/common) * * SPDX-License-Identifier: MIT */ #include "sha3.h" #include "xkcp_dispatch.h" #include #include #include #include #include #define KECCAK_CTX_ALIGNMENT 32 #define _KECCAK_CTX_BYTES (200+sizeof(uint64_t)) #define KECCAK_CTX_BYTES (KECCAK_CTX_ALIGNMENT * \ ((_KECCAK_CTX_BYTES + KECCAK_CTX_ALIGNMENT - 1)/KECCAK_CTX_ALIGNMENT)) /* The first call to Keccak_Initialize will be routed through dispatch, which * updates all of the function pointers used below. */ static KeccakInitFn Keccak_Dispatch; static KeccakInitFn *Keccak_Initialize_ptr = &Keccak_Dispatch; static KeccakAddByteFn *Keccak_AddByte_ptr = NULL; static KeccakAddBytesFn *Keccak_AddBytes_ptr = NULL; static KeccakPermuteFn *Keccak_Permute_ptr = NULL; static KeccakExtractBytesFn *Keccak_ExtractBytes_ptr = NULL; static KeccakFastLoopAbsorbFn *Keccak_FastLoopAbsorb_ptr = NULL; static void Keccak_Dispatch(void *state) { // TODO: Simplify this when we have a Windows-compatible AVX2 implementation of SHA3 #if defined(OQS_DIST_X86_64_BUILD) #if defined(OQS_ENABLE_SHA3_xkcp_low_avx2) if (OQS_CPU_has_extension(OQS_CPU_EXT_AVX2)) { Keccak_Initialize_ptr = &KeccakP1600_Initialize_avx2; Keccak_AddByte_ptr = &KeccakP1600_AddByte_avx2; Keccak_AddBytes_ptr = &KeccakP1600_AddBytes_avx2; Keccak_Permute_ptr = &KeccakP1600_Permute_24rounds_avx2; Keccak_ExtractBytes_ptr = &KeccakP1600_ExtractBytes_avx2; Keccak_FastLoopAbsorb_ptr = &KeccakF1600_FastLoop_Absorb_avx2; } else { Keccak_Initialize_ptr = &KeccakP1600_Initialize_plain64; Keccak_AddByte_ptr = &KeccakP1600_AddByte_plain64; Keccak_AddBytes_ptr = &KeccakP1600_AddBytes_plain64; Keccak_Permute_ptr = &KeccakP1600_Permute_24rounds_plain64; Keccak_ExtractBytes_ptr = &KeccakP1600_ExtractBytes_plain64; Keccak_FastLoopAbsorb_ptr = &KeccakF1600_FastLoop_Absorb_plain64; } #else // Windows Keccak_Initialize_ptr = &KeccakP1600_Initialize_plain64; Keccak_AddByte_ptr = &KeccakP1600_AddByte_plain64; Keccak_AddBytes_ptr = &KeccakP1600_AddBytes_plain64; Keccak_Permute_ptr = &KeccakP1600_Permute_24rounds_plain64; Keccak_ExtractBytes_ptr = &KeccakP1600_ExtractBytes_plain64; Keccak_FastLoopAbsorb_ptr = &KeccakF1600_FastLoop_Absorb_plain64; #endif #else Keccak_Initialize_ptr = &KeccakP1600_Initialize; Keccak_AddByte_ptr = &KeccakP1600_AddByte; Keccak_AddBytes_ptr = &KeccakP1600_AddBytes; Keccak_Permute_ptr = &KeccakP1600_Permute_24rounds; Keccak_ExtractBytes_ptr = &KeccakP1600_ExtractBytes; Keccak_FastLoopAbsorb_ptr = &KeccakF1600_FastLoop_Absorb; #endif (*Keccak_Initialize_ptr)(state); } /************************************************* * Name: keccak_inc_reset * * Description: Initializes the incremental Keccak state to zero. * * Arguments: - uint64_t *s: pointer to input/output incremental state * First 25 values represent Keccak state. * 26th value represents either the number of absorbed bytes * that have not been permuted, or not-yet-squeezed bytes. **************************************************/ static void keccak_inc_reset(uint64_t *s) { (*Keccak_Initialize_ptr)(s); s[25] = 0; } /************************************************* * Name: keccak_inc_absorb * * Description: Incremental keccak absorb * Preceded by keccak_inc_reset, succeeded by keccak_inc_finalize * * Arguments: - uint64_t *s: pointer to input/output incremental state * First 25 values represent Keccak state. * 26th value represents either the number of absorbed bytes * that have not been permuted, or not-yet-squeezed bytes. * - uint32_t r: rate in bytes (e.g., 168 for SHAKE128) * - const uint8_t *m: pointer to input to be absorbed into s * - size_t mlen: length of input in bytes **************************************************/ static void keccak_inc_absorb(uint64_t *s, uint32_t r, const uint8_t *m, size_t mlen) { uint64_t c = r - s[25]; if (s[25] && mlen >= c) { (*Keccak_AddBytes_ptr)(s, m, (unsigned int)s[25], (unsigned int)c); (*Keccak_Permute_ptr)(s); mlen -= c; m += c; s[25] = 0; } #ifdef KeccakF1600_FastLoop_supported if (mlen >= r) { c = (*Keccak_FastLoop_Absorb_ptr)(s, r / 8, m, mlen); mlen -= c; m += c; } #else while (mlen >= r) { (*Keccak_AddBytes_ptr)(s, m, 0, r); (*Keccak_Permute_ptr)(s); mlen -= r; m += r; } #endif (*Keccak_AddBytes_ptr)(s, m, (unsigned int)s[25], (unsigned int)mlen); s[25] += mlen; } /************************************************* * Name: keccak_inc_finalize * * Description: Finalizes Keccak absorb phase, prepares for squeezing * * Arguments: - uint64_t *s: pointer to input/output incremental state * First 25 values represent Keccak state. * 26th value represents either the number of absorbed bytes * that have not been permuted, or not-yet-squeezed bytes. * - uint32_t r: rate in bytes (e.g., 168 for SHAKE128) * - uint8_t p: domain-separation byte for different * Keccak-derived functions **************************************************/ static void keccak_inc_finalize(uint64_t *s, uint32_t r, uint8_t p) { /* After keccak_inc_absorb, we are guaranteed that s[25] < r, so we can always use one more byte for p in the current state. */ (*Keccak_AddByte_ptr)(s, p, (unsigned int)s[25]); (*Keccak_AddByte_ptr)(s, 0x80, (unsigned int)(r - 1)); s[25] = 0; } /************************************************* * Name: keccak_inc_squeeze * * Description: Incremental Keccak squeeze; can be called on byte-level * * Arguments: - uint8_t *h: pointer to output bytes * - size_t outlen: number of bytes to be squeezed * - uint64_t *s: pointer to input/output incremental state * First 25 values represent Keccak state. * 26th value represents either the number of absorbed bytes * that have not been permuted, or not-yet-squeezed bytes. * - uint32_t r: rate in bytes (e.g., 168 for SHAKE128) **************************************************/ static void keccak_inc_squeeze(uint8_t *h, size_t outlen, uint64_t *s, uint32_t r) { while (outlen > s[25]) { (*Keccak_ExtractBytes_ptr)(s, h, (unsigned int)(r - s[25]), (unsigned int)s[25]); (*Keccak_Permute_ptr)(s); h += s[25]; outlen -= s[25]; s[25] = r; } (*Keccak_ExtractBytes_ptr)(s, h, (unsigned int)(r - s[25]), (unsigned int)outlen); s[25] -= outlen; } /* SHA3-256 */ void OQS_SHA3_sha3_256(uint8_t *output, const uint8_t *input, size_t inlen) { OQS_SHA3_sha3_256_inc_ctx s; OQS_SHA3_sha3_256_inc_init(&s); OQS_SHA3_sha3_256_inc_absorb(&s, input, inlen); OQS_SHA3_sha3_256_inc_finalize(output, &s); OQS_SHA3_sha3_256_inc_ctx_release(&s); } void OQS_SHA3_sha3_256_inc_init(OQS_SHA3_sha3_256_inc_ctx *state) { state->ctx = OQS_MEM_aligned_alloc(KECCAK_CTX_ALIGNMENT, KECCAK_CTX_BYTES); if (state->ctx == NULL) { exit(111); } keccak_inc_reset((uint64_t *)state->ctx); } void OQS_SHA3_sha3_256_inc_absorb(OQS_SHA3_sha3_256_inc_ctx *state, const uint8_t *input, size_t inlen) { keccak_inc_absorb((uint64_t *)state->ctx, OQS_SHA3_SHA3_256_RATE, input, inlen); } void OQS_SHA3_sha3_256_inc_finalize(uint8_t *output, OQS_SHA3_sha3_256_inc_ctx *state) { keccak_inc_finalize((uint64_t *)state->ctx, OQS_SHA3_SHA3_256_RATE, 0x06); keccak_inc_squeeze(output, 32, (uint64_t *)state->ctx, OQS_SHA3_SHA3_256_RATE); } void OQS_SHA3_sha3_256_inc_ctx_release(OQS_SHA3_sha3_256_inc_ctx *state) { OQS_MEM_aligned_free(state->ctx); } void OQS_SHA3_sha3_256_inc_ctx_clone(OQS_SHA3_sha3_256_inc_ctx *dest, const OQS_SHA3_sha3_256_inc_ctx *src) { memcpy(dest->ctx, src->ctx, KECCAK_CTX_BYTES); } void OQS_SHA3_sha3_256_inc_ctx_reset(OQS_SHA3_sha3_256_inc_ctx *state) { keccak_inc_reset((uint64_t *)state->ctx); } /* SHA3-384 */ void OQS_SHA3_sha3_384(uint8_t *output, const uint8_t *input, size_t inlen) { OQS_SHA3_sha3_384_inc_ctx s; OQS_SHA3_sha3_384_inc_init(&s); OQS_SHA3_sha3_384_inc_absorb(&s, input, inlen); OQS_SHA3_sha3_384_inc_finalize(output, &s); OQS_SHA3_sha3_384_inc_ctx_release(&s); } void OQS_SHA3_sha3_384_inc_init(OQS_SHA3_sha3_384_inc_ctx *state) { state->ctx = OQS_MEM_aligned_alloc(KECCAK_CTX_ALIGNMENT, KECCAK_CTX_BYTES); if (state->ctx == NULL) { exit(111); } keccak_inc_reset((uint64_t *)state->ctx); } void OQS_SHA3_sha3_384_inc_absorb(OQS_SHA3_sha3_384_inc_ctx *state, const uint8_t *input, size_t inlen) { keccak_inc_absorb((uint64_t *)state->ctx, OQS_SHA3_SHA3_384_RATE, input, inlen); } void OQS_SHA3_sha3_384_inc_finalize(uint8_t *output, OQS_SHA3_sha3_384_inc_ctx *state) { keccak_inc_finalize((uint64_t *)state->ctx, OQS_SHA3_SHA3_384_RATE, 0x06); keccak_inc_squeeze(output, 48, (uint64_t *)state->ctx, OQS_SHA3_SHA3_384_RATE); } void OQS_SHA3_sha3_384_inc_ctx_release(OQS_SHA3_sha3_384_inc_ctx *state) { OQS_MEM_aligned_free(state->ctx); } void OQS_SHA3_sha3_384_inc_ctx_clone(OQS_SHA3_sha3_384_inc_ctx *dest, const OQS_SHA3_sha3_384_inc_ctx *src) { memcpy(dest->ctx, src->ctx, KECCAK_CTX_BYTES); } void OQS_SHA3_sha3_384_inc_ctx_reset(OQS_SHA3_sha3_384_inc_ctx *state) { keccak_inc_reset((uint64_t *)state->ctx); } /* SHA3-512 */ void OQS_SHA3_sha3_512(uint8_t *output, const uint8_t *input, size_t inlen) { OQS_SHA3_sha3_512_inc_ctx s; OQS_SHA3_sha3_512_inc_init(&s); OQS_SHA3_sha3_512_inc_absorb(&s, input, inlen); OQS_SHA3_sha3_512_inc_finalize(output, &s); OQS_SHA3_sha3_512_inc_ctx_release(&s); } void OQS_SHA3_sha3_512_inc_init(OQS_SHA3_sha3_512_inc_ctx *state) { state->ctx = OQS_MEM_aligned_alloc(KECCAK_CTX_ALIGNMENT, KECCAK_CTX_BYTES); if (state->ctx == NULL) { exit(111); } keccak_inc_reset((uint64_t *)state->ctx); } void OQS_SHA3_sha3_512_inc_absorb(OQS_SHA3_sha3_512_inc_ctx *state, const uint8_t *input, size_t inlen) { keccak_inc_absorb((uint64_t *)state->ctx, OQS_SHA3_SHA3_512_RATE, input, inlen); } void OQS_SHA3_sha3_512_inc_finalize(uint8_t *output, OQS_SHA3_sha3_512_inc_ctx *state) { keccak_inc_finalize((uint64_t *)state->ctx, OQS_SHA3_SHA3_512_RATE, 0x06); keccak_inc_squeeze(output, 64, (uint64_t *)state->ctx, OQS_SHA3_SHA3_512_RATE); } void OQS_SHA3_sha3_512_inc_ctx_release(OQS_SHA3_sha3_512_inc_ctx *state) { OQS_MEM_aligned_free(state->ctx); } void OQS_SHA3_sha3_512_inc_ctx_clone(OQS_SHA3_sha3_512_inc_ctx *dest, const OQS_SHA3_sha3_512_inc_ctx *src) { memcpy(dest->ctx, src->ctx, KECCAK_CTX_BYTES); } void OQS_SHA3_sha3_512_inc_ctx_reset(OQS_SHA3_sha3_512_inc_ctx *state) { keccak_inc_reset((uint64_t *)state->ctx); } /* SHAKE128 */ void OQS_SHA3_shake128(uint8_t *output, size_t outlen, const uint8_t *input, size_t inlen) { OQS_SHA3_shake128_inc_ctx s; OQS_SHA3_shake128_inc_init(&s); OQS_SHA3_shake128_inc_absorb(&s, input, inlen); OQS_SHA3_shake128_inc_finalize(&s); OQS_SHA3_shake128_inc_squeeze(output, outlen, &s); OQS_SHA3_shake128_inc_ctx_release(&s); } /* SHAKE128 incremental */ void OQS_SHA3_shake128_inc_init(OQS_SHA3_shake128_inc_ctx *state) { state->ctx = OQS_MEM_aligned_alloc(KECCAK_CTX_ALIGNMENT, KECCAK_CTX_BYTES); if (state->ctx == NULL) { exit(111); } keccak_inc_reset((uint64_t *)state->ctx); } void OQS_SHA3_shake128_inc_absorb(OQS_SHA3_shake128_inc_ctx *state, const uint8_t *input, size_t inlen) { keccak_inc_absorb((uint64_t *)state->ctx, OQS_SHA3_SHAKE128_RATE, input, inlen); } void OQS_SHA3_shake128_inc_finalize(OQS_SHA3_shake128_inc_ctx *state) { keccak_inc_finalize((uint64_t *)state->ctx, OQS_SHA3_SHAKE128_RATE, 0x1F); } void OQS_SHA3_shake128_inc_squeeze(uint8_t *output, size_t outlen, OQS_SHA3_shake128_inc_ctx *state) { keccak_inc_squeeze(output, outlen, (uint64_t *)state->ctx, OQS_SHA3_SHAKE128_RATE); } void OQS_SHA3_shake128_inc_ctx_clone(OQS_SHA3_shake128_inc_ctx *dest, const OQS_SHA3_shake128_inc_ctx *src) { memcpy(dest->ctx, src->ctx, KECCAK_CTX_BYTES); } void OQS_SHA3_shake128_inc_ctx_release(OQS_SHA3_shake128_inc_ctx *state) { OQS_MEM_aligned_free(state->ctx); } void OQS_SHA3_shake128_inc_ctx_reset(OQS_SHA3_shake128_inc_ctx *state) { keccak_inc_reset((uint64_t *)state->ctx); } /* SHAKE256 */ void OQS_SHA3_shake256(uint8_t *output, size_t outlen, const uint8_t *input, size_t inlen) { OQS_SHA3_shake256_inc_ctx s; OQS_SHA3_shake256_inc_init(&s); OQS_SHA3_shake256_inc_absorb(&s, input, inlen); OQS_SHA3_shake256_inc_finalize(&s); OQS_SHA3_shake256_inc_squeeze(output, outlen, &s); OQS_SHA3_shake256_inc_ctx_release(&s); } /* SHAKE256 incremental */ void OQS_SHA3_shake256_inc_init(OQS_SHA3_shake256_inc_ctx *state) { state->ctx = OQS_MEM_aligned_alloc(KECCAK_CTX_ALIGNMENT, KECCAK_CTX_BYTES); if (state->ctx == NULL) { exit(111); } keccak_inc_reset((uint64_t *)state->ctx); } void OQS_SHA3_shake256_inc_absorb(OQS_SHA3_shake256_inc_ctx *state, const uint8_t *input, size_t inlen) { keccak_inc_absorb((uint64_t *)state->ctx, OQS_SHA3_SHAKE256_RATE, input, inlen); } void OQS_SHA3_shake256_inc_finalize(OQS_SHA3_shake256_inc_ctx *state) { keccak_inc_finalize((uint64_t *)state->ctx, OQS_SHA3_SHAKE256_RATE, 0x1F); } void OQS_SHA3_shake256_inc_squeeze(uint8_t *output, size_t outlen, OQS_SHA3_shake256_inc_ctx *state) { keccak_inc_squeeze(output, outlen, state->ctx, OQS_SHA3_SHAKE256_RATE); } void OQS_SHA3_shake256_inc_ctx_release(OQS_SHA3_shake256_inc_ctx *state) { OQS_MEM_aligned_free(state->ctx); } void OQS_SHA3_shake256_inc_ctx_clone(OQS_SHA3_shake256_inc_ctx *dest, const OQS_SHA3_shake256_inc_ctx *src) { memcpy(dest->ctx, src->ctx, KECCAK_CTX_BYTES); } void OQS_SHA3_shake256_inc_ctx_reset(OQS_SHA3_shake256_inc_ctx *state) { keccak_inc_reset((uint64_t *)state->ctx); }