/* * Table enumerating all implemented cipher suites * Part of public API. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "ssl.h" #include "sslproto.h" /* * The ordering of cipher suites in this table must match the ordering in * the cipherSuites table in ssl3con.c. * * If new ECC cipher suites are added, also update the ssl3CipherSuite arrays * in ssl3ecc.c. * * Finally, update the ssl_V3_SUITES_IMPLEMENTED macro in sslimpl.h. * * The ordering is as follows: * * No-encryption cipher suites last * * Export/weak/obsolete cipher suites before no-encryption cipher suites * * Order by key exchange algorithm: ECDHE, then DHE, then ECDH, RSA. * * Within key agreement sections, prefer AEAD over non-AEAD cipher suites. * * Within AEAD sections, order by symmetric encryption algorithm which * integrates message authentication algorithm: AES-128-GCM, then * ChaCha20-Poly1305, then AES-256-GCM, * * Within non-AEAD sections, order by symmetric encryption algorithm: * AES-128, then Camellia-128, then AES-256, then Camellia-256, then SEED, * then FIPS-3DES, then 3DES, then RC4. AES is commonly accepted as a * strong cipher internationally, and is often hardware-accelerated. * Camellia also has wide international support across standards * organizations. SEED is only recommended by the Korean government. 3DES * only provides 112 bits of security. RC4 is now deprecated or forbidden * by many standards organizations. * * Within non-AEAD symmetric algorithm sections, order by message * authentication algorithm: HMAC-SHA256, then HMAC-SHA384, then HMAC-SHA1, * then HMAC-MD5. * * Within symmetric algorithm sections, order by message authentication * algorithm: GCM, then HMAC-SHA1, then HMAC-SHA256, then HMAC-MD5. * * Within message authentication algorithm sections, order by asymmetric * signature algorithm: ECDSA, then RSA, then DSS. * * As a special case, the PSK ciphers, which are only enabled when * TLS 1.3 PSK-resumption is in use, come first. * * Exception: Because some servers ignore the high-order byte of the cipher * suite ID, we must be careful about adding cipher suites with IDs larger * than 0x00ff; see bug 946147. For these broken servers, the first three * cipher suites, with the MSB zeroed, look like: * TLS_RSA_WITH_AES_128_CBC_SHA { 0x00,0x2F } * TLS_RSA_WITH_3DES_EDE_CBC_SHA { 0x00,0x0A } * TLS_RSA_WITH_DES_CBC_SHA { 0x00,0x09 } * The broken server only supports the third and fourth ones and will select * the third one. */ const PRUint16 SSL_ImplementedCiphers[] = { TLS_AES_128_GCM_SHA256, TLS_CHACHA20_POLY1305_SHA256, TLS_AES_256_GCM_SHA384, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, /* TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA must appear before * TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA to work around bug 946147. */ TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA, TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256, TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, TLS_DHE_DSS_WITH_AES_256_GCM_SHA384, TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_DSS_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, TLS_DHE_DSS_WITH_AES_128_CBC_SHA256, TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA, TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA, TLS_DHE_DSS_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, TLS_DHE_DSS_WITH_AES_256_CBC_SHA256, TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA, TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA, TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA, TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA, TLS_DHE_DSS_WITH_RC4_128_SHA, TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, TLS_ECDH_ECDSA_WITH_RC4_128_SHA, TLS_ECDH_RSA_WITH_RC4_128_SHA, TLS_RSA_WITH_AES_128_GCM_SHA256, TLS_RSA_WITH_AES_256_GCM_SHA384, TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_128_CBC_SHA256, TLS_RSA_WITH_CAMELLIA_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA256, TLS_RSA_WITH_CAMELLIA_256_CBC_SHA, TLS_RSA_WITH_SEED_CBC_SHA, TLS_RSA_WITH_3DES_EDE_CBC_SHA, TLS_RSA_WITH_RC4_128_SHA, TLS_RSA_WITH_RC4_128_MD5, /* 56-bit DES "domestic" cipher suites */ TLS_DHE_RSA_WITH_DES_CBC_SHA, TLS_DHE_DSS_WITH_DES_CBC_SHA, TLS_RSA_WITH_DES_CBC_SHA, /* ciphersuites with no encryption */ TLS_ECDHE_ECDSA_WITH_NULL_SHA, TLS_ECDHE_RSA_WITH_NULL_SHA, TLS_ECDH_RSA_WITH_NULL_SHA, TLS_ECDH_ECDSA_WITH_NULL_SHA, TLS_RSA_WITH_NULL_SHA, TLS_RSA_WITH_NULL_SHA256, TLS_RSA_WITH_NULL_MD5, 0 }; const PRUint16 SSL_NumImplementedCiphers = (sizeof SSL_ImplementedCiphers) / (sizeof SSL_ImplementedCiphers[0]) - 1; const PRUint16* SSL_GetImplementedCiphers(void) { return SSL_ImplementedCiphers; } PRUint16 SSL_GetNumImplementedCiphers(void) { return SSL_NumImplementedCiphers; }