/* * SSL3 Protocol * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the Netscape security libraries. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1994-2000 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Dr Stephen Henson * Dr Vipul Gupta and * Douglas Stebila , Sun Microsystems Laboratories * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* $Id$ */ #include "nssrenam.h" #include "cert.h" #include "ssl.h" #include "cryptohi.h" /* for DSAU_ stuff */ #include "keyhi.h" #include "secder.h" #include "secitem.h" #include "sslimpl.h" #include "sslproto.h" #include "sslerr.h" #include "prtime.h" #include "prinrval.h" #include "prerror.h" #include "pratom.h" #include "prthread.h" #include "pk11func.h" #include "secmod.h" #include "nsslocks.h" #include "ec.h" #include "blapi.h" #include #ifndef PK11_SETATTRS #define PK11_SETATTRS(x,id,v,l) (x)->type = (id); \ (x)->pValue=(v); (x)->ulValueLen = (l); #endif static void ssl3_CleanupPeerCerts(sslSocket *ss); static PK11SymKey *ssl3_GenerateRSAPMS(sslSocket *ss, ssl3CipherSpec *spec, PK11SlotInfo * serverKeySlot); static SECStatus ssl3_DeriveMasterSecret(sslSocket *ss, const PK11SymKey *pms); static SECStatus ssl3_DeriveConnectionKeysPKCS11(sslSocket *ss); static SECStatus ssl3_HandshakeFailure( sslSocket *ss); static SECStatus ssl3_InitState( sslSocket *ss); static sslSessionID *ssl3_NewSessionID( sslSocket *ss, PRBool is_server); static SECStatus ssl3_SendCertificate( sslSocket *ss); static SECStatus ssl3_SendEmptyCertificate( sslSocket *ss); static SECStatus ssl3_SendCertificateRequest(sslSocket *ss); static SECStatus ssl3_SendFinished( sslSocket *ss, PRInt32 flags); static SECStatus ssl3_SendServerHello( sslSocket *ss); static SECStatus ssl3_SendServerHelloDone( sslSocket *ss); static SECStatus ssl3_SendServerKeyExchange( sslSocket *ss); static SECStatus Null_Cipher(void *ctx, unsigned char *output, int *outputLen, int maxOutputLen, const unsigned char *input, int inputLen); #define MAX_SEND_BUF_LENGTH 32000 /* watch for 16-bit integer overflow */ #define MIN_SEND_BUF_LENGTH 4000 #define MAX_CIPHER_SUITES 20 /* This list of SSL3 cipher suites is sorted in descending order of * precedence (desirability). It only includes cipher suites we implement. * This table is modified by SSL3_SetPolicy(). The ordering of cipher suites * in this table must match the ordering in SSL_ImplementedCiphers (sslenum.c) */ static ssl3CipherSuiteCfg cipherSuites[ssl_V3_SUITES_IMPLEMENTED] = { /* cipher_suite policy enabled is_present*/ { TLS_DHE_RSA_WITH_AES_256_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { TLS_DHE_DSS_WITH_AES_256_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, #ifdef NSS_ENABLE_ECC { TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, #endif /* NSS_ENABLE_ECC */ { TLS_RSA_WITH_AES_256_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, #ifdef NSS_ENABLE_ECC { TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, #endif /* NSS_ENABLE_ECC */ { TLS_DHE_DSS_WITH_RC4_128_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { TLS_DHE_RSA_WITH_AES_128_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { TLS_DHE_DSS_WITH_AES_128_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, #ifdef NSS_ENABLE_ECC { TLS_ECDH_RSA_WITH_RC4_128_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { TLS_ECDH_ECDSA_WITH_RC4_128_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, #endif /* NSS_ENABLE_ECC */ { SSL_RSA_WITH_RC4_128_MD5, SSL_NOT_ALLOWED, PR_TRUE, PR_FALSE}, { SSL_RSA_WITH_RC4_128_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { TLS_RSA_WITH_AES_128_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, #ifdef NSS_ENABLE_ECC { TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, #endif /* NSS_ENABLE_ECC */ { SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA, SSL_NOT_ALLOWED, PR_TRUE, PR_FALSE}, { SSL_RSA_WITH_3DES_EDE_CBC_SHA, SSL_NOT_ALLOWED, PR_TRUE, PR_FALSE}, { SSL_DHE_RSA_WITH_DES_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { SSL_DHE_DSS_WITH_DES_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, #ifdef NSS_ENABLE_ECC { TLS_ECDH_RSA_WITH_DES_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { TLS_ECDH_ECDSA_WITH_DES_CBC_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, #endif /* NSS_ENABLE_ECC */ { SSL_RSA_FIPS_WITH_DES_CBC_SHA, SSL_NOT_ALLOWED, PR_TRUE, PR_FALSE}, { SSL_RSA_WITH_DES_CBC_SHA, SSL_NOT_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_RSA_EXPORT1024_WITH_RC4_56_SHA, SSL_NOT_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA, SSL_NOT_ALLOWED, PR_TRUE, PR_FALSE}, { SSL_RSA_EXPORT_WITH_RC4_40_MD5, SSL_NOT_ALLOWED, PR_TRUE, PR_FALSE}, { SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5, SSL_NOT_ALLOWED, PR_TRUE, PR_FALSE}, #ifdef NSS_ENABLE_ECC { TLS_ECDH_RSA_WITH_NULL_SHA, SSL_NOT_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDH_ECDSA_WITH_NULL_SHA, SSL_NOT_ALLOWED, PR_FALSE, PR_FALSE}, #endif /* NSS_ENABLE_ECC */ { SSL_RSA_WITH_NULL_SHA, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, { SSL_RSA_WITH_NULL_MD5, SSL_NOT_ALLOWED, PR_FALSE,PR_FALSE}, }; static const /*SSL3CompressionMethod*/ uint8 compressions [] = { compression_null }; static const int compressionMethodsCount = sizeof(compressions) / sizeof(compressions[0]); static const /*SSL3ClientCertificateType */ uint8 certificate_types [] = { ct_RSA_sign, ct_DSS_sign, #ifdef NSS_ENABLE_ECC ct_ECDSA_sign, #endif /* NSS_ENABLE_ECC */ }; /* * make sure there is room in the write buffer for padding and * other compression and cryptographic expansions */ #define SSL3_BUFFER_FUDGE 100 #define EXPORT_RSA_KEY_LENGTH 64 /* bytes */ /* This is a hack to make sure we don't do double handshakes for US policy */ PRBool ssl3_global_policy_some_restricted = PR_FALSE; /* This global item is used only in servers. It is is initialized by ** SSL_ConfigSecureServer(), and is used in ssl3_SendCertificateRequest(). */ CERTDistNames *ssl3_server_ca_list = NULL; static SSL3Statistics ssl3stats; /* indexed by SSL3BulkCipher */ static const ssl3BulkCipherDef bulk_cipher_defs[] = { /* cipher calg keySz secretSz type ivSz BlkSz keygen */ {cipher_null, calg_null, 0, 0, type_stream, 0, 0, kg_null}, {cipher_rc4, calg_rc4, 16, 16, type_stream, 0, 0, kg_strong}, {cipher_rc4_40, calg_rc4, 16, 5, type_stream, 0, 0, kg_export}, {cipher_rc4_56, calg_rc4, 16, 7, type_stream, 0, 0, kg_export}, {cipher_rc2, calg_rc2, 16, 16, type_block, 8, 8, kg_strong}, {cipher_rc2_40, calg_rc2, 16, 5, type_block, 8, 8, kg_export}, {cipher_des, calg_des, 8, 8, type_block, 8, 8, kg_strong}, {cipher_3des, calg_3des, 24, 24, type_block, 8, 8, kg_strong}, {cipher_des40, calg_des, 8, 5, type_block, 8, 8, kg_export}, {cipher_idea, calg_idea, 16, 16, type_block, 8, 8, kg_strong}, {cipher_aes_128, calg_aes, 16, 16, type_block, 16,16, kg_strong}, {cipher_aes_256, calg_aes, 32, 32, type_block, 16,16, kg_strong}, {cipher_missing, calg_null, 0, 0, type_stream, 0, 0, kg_null}, }; static const ssl3KEADef kea_defs[] = { /* indexed by SSL3KeyExchangeAlgorithm */ /* kea exchKeyType signKeyType is_limited limit tls_keygen */ {kea_null, kt_null, sign_null, PR_FALSE, 0, PR_FALSE}, {kea_rsa, kt_rsa, sign_rsa, PR_FALSE, 0, PR_FALSE}, {kea_rsa_export, kt_rsa, sign_rsa, PR_TRUE, 512, PR_FALSE}, {kea_rsa_export_1024,kt_rsa, sign_rsa, PR_TRUE, 1024, PR_FALSE}, {kea_dh_dss, kt_dh, sign_dsa, PR_FALSE, 0, PR_FALSE}, {kea_dh_dss_export, kt_dh, sign_dsa, PR_TRUE, 512, PR_FALSE}, {kea_dh_rsa, kt_dh, sign_rsa, PR_FALSE, 0, PR_FALSE}, {kea_dh_rsa_export, kt_dh, sign_rsa, PR_TRUE, 512, PR_FALSE}, {kea_dhe_dss, kt_dh, sign_dsa, PR_FALSE, 0, PR_FALSE}, {kea_dhe_dss_export, kt_dh, sign_dsa, PR_TRUE, 512, PR_FALSE}, {kea_dhe_rsa, kt_dh, sign_rsa, PR_FALSE, 0, PR_FALSE}, {kea_dhe_rsa_export, kt_dh, sign_rsa, PR_TRUE, 512, PR_FALSE}, {kea_dh_anon, kt_dh, sign_null, PR_FALSE, 0, PR_FALSE}, {kea_dh_anon_export, kt_dh, sign_null, PR_TRUE, 512, PR_FALSE}, {kea_rsa_fips, kt_rsa, sign_rsa, PR_FALSE, 0, PR_TRUE }, #ifdef NSS_ENABLE_ECC {kea_ecdh_ecdsa, kt_ecdh, sign_ecdsa, PR_FALSE, 0, PR_FALSE}, {kea_ecdhe_ecdsa, kt_ecdh, sign_ecdsa, PR_FALSE, 0, PR_FALSE}, {kea_ecdh_rsa, kt_ecdh, sign_rsa, PR_FALSE, 0, PR_FALSE}, {kea_ecdhe_rsa, kt_ecdh, sign_rsa, PR_FALSE, 0, PR_FALSE}, #endif /* NSS_ENABLE_ECC */ }; /* must use ssl_LookupCipherSuiteDef to access */ static const ssl3CipherSuiteDef cipher_suite_defs[] = { /* cipher_suite bulk_cipher_alg mac_alg key_exchange_alg */ {SSL_NULL_WITH_NULL_NULL, cipher_null, mac_null, kea_null}, {SSL_RSA_WITH_NULL_MD5, cipher_null, mac_md5, kea_rsa}, {SSL_RSA_WITH_NULL_SHA, cipher_null, mac_sha, kea_rsa}, {SSL_RSA_EXPORT_WITH_RC4_40_MD5,cipher_rc4_40, mac_md5, kea_rsa_export}, {SSL_RSA_WITH_RC4_128_MD5, cipher_rc4, mac_md5, kea_rsa}, {SSL_RSA_WITH_RC4_128_SHA, cipher_rc4, mac_sha, kea_rsa}, {SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5, cipher_rc2_40, mac_md5, kea_rsa_export}, #if 0 /* not implemented */ {SSL_RSA_WITH_IDEA_CBC_SHA, cipher_idea, mac_sha, kea_rsa}, {SSL_RSA_EXPORT_WITH_DES40_CBC_SHA, cipher_des40, mac_sha, kea_rsa_export}, #endif {SSL_RSA_WITH_DES_CBC_SHA, cipher_des, mac_sha, kea_rsa}, {SSL_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_rsa}, {SSL_DHE_DSS_WITH_DES_CBC_SHA, cipher_des, mac_sha, kea_dhe_dss}, {SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_dhe_dss}, {TLS_DHE_DSS_WITH_RC4_128_SHA, cipher_rc4, mac_sha, kea_dhe_dss}, #if 0 /* not implemented */ {SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA, cipher_des40, mac_sha, kea_dh_dss_export}, {SSL_DH_DSS_DES_CBC_SHA, cipher_des, mac_sha, kea_dh_dss}, {SSL_DH_DSS_3DES_CBC_SHA, cipher_3des, mac_sha, kea_dh_dss}, {SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA, cipher_des40, mac_sha, kea_dh_rsa_export}, {SSL_DH_RSA_DES_CBC_SHA, cipher_des, mac_sha, kea_dh_rsa}, {SSL_DH_RSA_3DES_CBC_SHA, cipher_3des, mac_sha, kea_dh_rsa}, {SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA, cipher_des40, mac_sha, kea_dh_dss_export}, {SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA, cipher_des40, mac_sha, kea_dh_rsa_export}, #endif {SSL_DHE_RSA_WITH_DES_CBC_SHA, cipher_des, mac_sha, kea_dhe_rsa}, {SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_dhe_rsa}, #if 0 {SSL_DH_ANON_EXPORT_RC4_40_MD5, cipher_rc4_40, mac_md5, kea_dh_anon_export}, {SSL_DH_ANON_EXPORT_RC4_40_MD5, cipher_rc4, mac_md5, kea_dh_anon_export}, {SSL_DH_ANON_EXPORT_WITH_DES40_CBC_SHA, cipher_des40, mac_sha, kea_dh_anon_export}, {SSL_DH_ANON_DES_CBC_SHA, cipher_des, mac_sha, kea_dh_anon}, {SSL_DH_ANON_3DES_CBC_SHA, cipher_3des, mac_sha, kea_dh_anon}, #endif /* New TLS cipher suites */ {TLS_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_rsa}, {TLS_DHE_DSS_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_dhe_dss}, {TLS_DHE_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_dhe_rsa}, {TLS_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_rsa}, {TLS_DHE_DSS_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_dhe_dss}, {TLS_DHE_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_dhe_rsa}, #if 0 {TLS_DH_DSS_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_dh_dss}, {TLS_DH_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_dh_rsa}, {TLS_DH_ANON_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_dh_anon}, {TLS_DH_DSS_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_dh_dss}, {TLS_DH_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_dh_rsa}, {TLS_DH_ANON_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_dh_anon}, #endif {TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA, cipher_des, mac_sha,kea_rsa_export_1024}, {TLS_RSA_EXPORT1024_WITH_RC4_56_SHA, cipher_rc4_56, mac_sha,kea_rsa_export_1024}, {SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_rsa_fips}, {SSL_RSA_FIPS_WITH_DES_CBC_SHA, cipher_des, mac_sha, kea_rsa_fips}, #ifdef NSS_ENABLE_ECC /* Experimental TLS cipher suites using Elliptic Curves */ {TLS_ECDH_ECDSA_WITH_NULL_SHA, cipher_null, mac_sha, kea_ecdh_ecdsa}, {TLS_ECDH_ECDSA_WITH_RC4_128_SHA, cipher_rc4, mac_sha, kea_ecdh_ecdsa}, {TLS_ECDH_ECDSA_WITH_DES_CBC_SHA, cipher_des, mac_sha, kea_ecdh_ecdsa}, {TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_ecdh_ecdsa}, {TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_ecdh_ecdsa}, {TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_ecdh_ecdsa}, {TLS_ECDH_RSA_WITH_NULL_SHA, cipher_null, mac_sha, kea_ecdh_rsa}, {TLS_ECDH_RSA_WITH_RC4_128_SHA, cipher_rc4, mac_sha, kea_ecdh_rsa}, {TLS_ECDH_RSA_WITH_DES_CBC_SHA, cipher_des, mac_sha, kea_ecdh_rsa}, {TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_ecdh_rsa}, {TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_ecdh_rsa}, {TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_ecdh_rsa}, {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_ecdhe_ecdsa}, {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_ecdhe_rsa}, #endif /* NSS_ENABLE_ECC */ }; static const CK_MECHANISM_TYPE kea_alg_defs[] = { 0x80000000L, CKM_RSA_PKCS, CKM_DH_PKCS_DERIVE, CKM_KEA_KEY_DERIVE, CKM_ECDH1_DERIVE }; typedef struct SSLCipher2MechStr { SSLCipherAlgorithm calg; CK_MECHANISM_TYPE cmech; } SSLCipher2Mech; /* indexed by type SSLCipherAlgorithm */ static const SSLCipher2Mech alg2Mech[] = { /* calg, cmech */ { calg_null , (CK_MECHANISM_TYPE)0x80000000L }, { calg_rc4 , CKM_RC4 }, { calg_rc2 , CKM_RC2_CBC }, { calg_des , CKM_DES_CBC }, { calg_3des , CKM_DES3_CBC }, { calg_idea , CKM_IDEA_CBC }, { calg_fortezza , CKM_SKIPJACK_CBC64 }, { calg_aes , CKM_AES_CBC }, /* { calg_init , (CK_MECHANISM_TYPE)0x7fffffffL } */ }; #define mmech_null (CK_MECHANISM_TYPE)0x80000000L #define mmech_md5 CKM_SSL3_MD5_MAC #define mmech_sha CKM_SSL3_SHA1_MAC #define mmech_md5_hmac CKM_MD5_HMAC #define mmech_sha_hmac CKM_SHA_1_HMAC static const ssl3MACDef mac_defs[] = { /* indexed by SSL3MACAlgorithm */ /* mac mmech pad_size mac_size */ { mac_null, mmech_null, 0, 0 }, { mac_md5, mmech_md5, 48, MD5_LENGTH }, { mac_sha, mmech_sha, 40, SHA1_LENGTH}, {hmac_md5, mmech_md5_hmac, 48, MD5_LENGTH }, {hmac_sha, mmech_sha_hmac, 40, SHA1_LENGTH}, }; /* indexed by SSL3BulkCipher */ const char * const ssl3_cipherName[] = { "NULL", "RC4", "RC4-40", "RC4-56", "RC2-CBC", "RC2-CBC-40", "DES-CBC", "3DES-EDE-CBC", "DES-CBC-40", "IDEA-CBC", "AES-128", "AES-256", "missing" }; #if defined(TRACE) static char * ssl3_DecodeHandshakeType(int msgType) { char * rv; static char line[40]; switch(msgType) { case hello_request: rv = "hello_request (0)"; break; case client_hello: rv = "client_hello (1)"; break; case server_hello: rv = "server_hello (2)"; break; case certificate: rv = "certificate (11)"; break; case server_key_exchange: rv = "server_key_exchange (12)"; break; case certificate_request: rv = "certificate_request (13)"; break; case server_hello_done: rv = "server_hello_done (14)"; break; case certificate_verify: rv = "certificate_verify (15)"; break; case client_key_exchange: rv = "client_key_exchange (16)"; break; case finished: rv = "finished (20)"; break; default: sprintf(line, "*UNKNOWN* handshake type! (%d)", msgType); rv = line; } return rv; } static char * ssl3_DecodeContentType(int msgType) { char * rv; static char line[40]; switch(msgType) { case content_change_cipher_spec: rv = "change_cipher_spec (20)"; break; case content_alert: rv = "alert (21)"; break; case content_handshake: rv = "handshake (22)"; break; case content_application_data: rv = "application_data (23)"; break; default: sprintf(line, "*UNKNOWN* record type! (%d)", msgType); rv = line; } return rv; } #endif SSL3Statistics * SSL_GetStatistics(void) { return &ssl3stats; } /* return pointer to ssl3CipherSuiteDef for suite, or NULL */ /* XXX This does a linear search. A binary search would be better. */ static const ssl3CipherSuiteDef * ssl_LookupCipherSuiteDef(ssl3CipherSuite suite) { int cipher_suite_def_len = sizeof(cipher_suite_defs) / sizeof(cipher_suite_defs[0]); int i; for (i = 0; i < cipher_suite_def_len; i++) { if (cipher_suite_defs[i].cipher_suite == suite) return &cipher_suite_defs[i]; } PORT_Assert(PR_FALSE); /* We should never get here. */ PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE); return NULL; } /* Find the cipher configuration struct associate with suite */ /* XXX This does a linear search. A binary search would be better. */ static ssl3CipherSuiteCfg * ssl_LookupCipherSuiteCfg(ssl3CipherSuite suite, ssl3CipherSuiteCfg *suites) { int i; for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) { if (suites[i].cipher_suite == suite) return &suites[i]; } /* return NULL and let the caller handle it. */ PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE); return NULL; } /* Initialize the suite->isPresent value for config_match * Returns count of enabled ciphers supported by extant tokens, * regardless of policy or user preference. * If this returns zero, the user cannot do SSL v3. */ int ssl3_config_match_init(sslSocket *ss) { ssl3CipherSuiteCfg * suite; const ssl3CipherSuiteDef *cipher_def; SSLCipherAlgorithm cipher_alg; CK_MECHANISM_TYPE cipher_mech; SSL3KEAType exchKeyType; int i; int numPresent = 0; int numEnabled = 0; PRBool isServer; sslServerCerts *svrAuth; if (!ss->opt.enableSSL3 && !ss->opt.enableTLS) { return 0; } isServer = (PRBool)( ss && ss->sec.isServer ); for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) { suite = &ss->cipherSuites[i]; if (suite->enabled) { ++numEnabled; /* We need the cipher defs to see if we have a token that can handle * this cipher. It isn't part of the static definition. */ cipher_def = ssl_LookupCipherSuiteDef(suite->cipher_suite); if (!cipher_def) { suite->isPresent = PR_FALSE; continue; } cipher_alg=bulk_cipher_defs[cipher_def->bulk_cipher_alg ].calg; PORT_Assert( alg2Mech[cipher_alg].calg == cipher_alg); cipher_mech = alg2Mech[cipher_alg].cmech; exchKeyType = kea_defs[cipher_def->key_exchange_alg].exchKeyType; #ifndef NSS_ENABLE_ECC svrAuth = ss->serverCerts + exchKeyType; #else /* XXX SSLKEAType isn't really a good choice for * indexing certificates. It doesn't work for * (EC)DHE-* ciphers. Here we use a hack to ensure * that the server uses an RSA cert for (EC)DHE-RSA. */ switch (cipher_def->key_exchange_alg) { case kea_ecdhe_rsa: case kea_dhe_rsa: svrAuth = ss->serverCerts + kt_rsa; break; case kea_ecdh_ecdsa: case kea_ecdh_rsa: /* * XXX We ought to have different indices for * ECDSA- and RSA-signed EC certificates so * we could support both key exchange mechanisms * simultaneously. For now, both of them use * whatever is in the certificate slot for kt_ecdh */ default: svrAuth = ss->serverCerts + exchKeyType; break; } #endif /* NSS_ENABLE_ECC */ /* Mark the suites that are backed by real tokens, certs and keys */ suite->isPresent = (PRBool) (((exchKeyType == kt_null) || ((!isServer || (svrAuth->serverKeyPair && svrAuth->SERVERKEY && svrAuth->serverCertChain)) && PK11_TokenExists(kea_alg_defs[exchKeyType]))) && ((cipher_alg == calg_null) || PK11_TokenExists(cipher_mech))); if (suite->isPresent) ++numPresent; } } PORT_Assert(numPresent > 0 || numEnabled == 0); if (numPresent <= 0) { PORT_SetError(SSL_ERROR_NO_CIPHERS_SUPPORTED); } return numPresent; } /* return PR_TRUE if suite matches policy and enabled state */ /* It would be a REALLY BAD THING (tm) if we ever permitted the use ** of a cipher that was NOT_ALLOWED. So, if this is ever called with ** policy == SSL_NOT_ALLOWED, report no match. */ /* adjust suite enabled to the availability of a token that can do the * cipher suite. */ static PRBool config_match(ssl3CipherSuiteCfg *suite, int policy, PRBool enabled) { PORT_Assert(policy != SSL_NOT_ALLOWED && enabled != PR_FALSE); if (policy == SSL_NOT_ALLOWED || !enabled) return PR_FALSE; return (PRBool)(suite->enabled && suite->isPresent && suite->policy != SSL_NOT_ALLOWED && suite->policy <= policy); } /* return number of cipher suites that match policy and enabled state */ /* called from ssl3_SendClientHello and ssl3_ConstructV2CipherSpecsHack */ static int count_cipher_suites(sslSocket *ss, int policy, PRBool enabled) { int i, count = 0; if (!ss->opt.enableSSL3 && !ss->opt.enableTLS) { return 0; } for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) { if (config_match(&ss->cipherSuites[i], policy, enabled)) count++; } if (count <= 0) { PORT_SetError(SSL_ERROR_SSL_DISABLED); } return count; } static PRBool anyRestrictedEnabled(sslSocket *ss) { int i; if (!ss->opt.enableSSL3 && !ss->opt.enableTLS) { return PR_FALSE; } for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) { ssl3CipherSuiteCfg *suite = &ss->cipherSuites[i]; if (suite->policy == SSL_RESTRICTED && suite->enabled && suite->isPresent) return PR_TRUE; } return PR_FALSE; } /* * Null compression, mac and encryption functions */ static SECStatus Null_Cipher(void *ctx, unsigned char *output, int *outputLen, int maxOutputLen, const unsigned char *input, int inputLen) { *outputLen = inputLen; if (input != output) PORT_Memcpy(output, input, inputLen); return SECSuccess; } /* * SSL3 Utility functions */ SECStatus ssl3_NegotiateVersion(sslSocket *ss, SSL3ProtocolVersion peerVersion) { SSL3ProtocolVersion version; SSL3ProtocolVersion maxVersion; if (ss->opt.enableTLS) { maxVersion = SSL_LIBRARY_VERSION_3_1_TLS; } else if (ss->opt.enableSSL3) { maxVersion = SSL_LIBRARY_VERSION_3_0; } else { /* what are we doing here? */ PORT_Assert(ss->opt.enableSSL3 || ss->opt.enableTLS); PORT_SetError(SSL_ERROR_SSL_DISABLED); return SECFailure; } ss->version = version = PR_MIN(maxVersion, peerVersion); if ((version == SSL_LIBRARY_VERSION_3_1_TLS && ss->opt.enableTLS) || (version == SSL_LIBRARY_VERSION_3_0 && ss->opt.enableSSL3)) { return SECSuccess; } PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP); return SECFailure; } static SECStatus ssl3_GetNewRandom(SSL3Random *random) { PRIntervalTime gmt = PR_IntervalToSeconds(PR_IntervalNow()); SECStatus rv; random->rand[0] = (unsigned char)(gmt >> 24); random->rand[1] = (unsigned char)(gmt >> 16); random->rand[2] = (unsigned char)(gmt >> 8); random->rand[3] = (unsigned char)(gmt); /* first 4 bytes are reserverd for time */ rv = PK11_GenerateRandom(&random->rand[4], SSL3_RANDOM_LENGTH - 4); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE); } return rv; } /* Called by ssl3_SendServerKeyExchange and ssl3_SendCertificateVerify */ SECStatus ssl3_SignHashes(SSL3Hashes *hash, SECKEYPrivateKey *key, SECItem *buf, PRBool isTLS) { SECStatus rv = SECFailure; PRBool doDerEncode = PR_FALSE; int signatureLen; SECItem hashItem; buf->data = NULL; signatureLen = PK11_SignatureLen(key); if (signatureLen <= 0) { PORT_SetError(SEC_ERROR_INVALID_KEY); goto done; } buf->len = (unsigned)signatureLen; buf->data = (unsigned char *)PORT_Alloc(signatureLen + 1); if (!buf->data) goto done; /* error code was set. */ switch (key->keyType) { case rsaKey: hashItem.data = hash->md5; hashItem.len = sizeof(SSL3Hashes); break; case dsaKey: doDerEncode = isTLS; hashItem.data = hash->sha; hashItem.len = sizeof(hash->sha); break; #ifdef NSS_ENABLE_ECC case ecKey: doDerEncode = PR_TRUE; hashItem.data = hash->sha; hashItem.len = sizeof(hash->sha); break; #endif /* NSS_ENABLE_ECC */ default: PORT_SetError(SEC_ERROR_INVALID_KEY); goto done; } PRINT_BUF(60, (NULL, "hash(es) to be signed", hashItem.data, hashItem.len)); rv = PK11_Sign(key, buf, &hashItem); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SIGN_HASHES_FAILURE); } else if (doDerEncode) { SECItem derSig = {siBuffer, NULL, 0}; /* This also works for an ECDSA signature */ rv = DSAU_EncodeDerSigWithLen(&derSig, buf, (unsigned) signatureLen); if (rv == SECSuccess) { PORT_Free(buf->data); /* discard unencoded signature. */ *buf = derSig; /* give caller encoded signature. */ } else if (derSig.data) { PORT_Free(derSig.data); } } PRINT_BUF(60, (NULL, "signed hashes", (unsigned char*)buf->data, buf->len)); done: if (rv != SECSuccess && buf->data) { PORT_Free(buf->data); buf->data = NULL; } return rv; } /* Called from ssl3_HandleServerKeyExchange, ssl3_HandleCertificateVerify */ SECStatus ssl3_VerifySignedHashes(SSL3Hashes *hash, CERTCertificate *cert, SECItem *buf, PRBool isTLS, void *pwArg) { SECKEYPublicKey * key; SECItem * signature = NULL; SECStatus rv; SECItem hashItem; #ifdef NSS_ENABLE_ECC unsigned int len; #endif /* NSS_ENABLE_ECC */ PRINT_BUF(60, (NULL, "check signed hashes", buf->data, buf->len)); key = CERT_ExtractPublicKey(cert); if (key == NULL) { /* CERT_ExtractPublicKey doesn't set error code */ PORT_SetError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE); return SECFailure; } switch (key->keyType) { case rsaKey: hashItem.data = hash->md5; hashItem.len = sizeof(SSL3Hashes); break; case dsaKey: hashItem.data = hash->sha; hashItem.len = sizeof(hash->sha); if (isTLS) { signature = DSAU_DecodeDerSig(buf); if (!signature) { PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE); return SECFailure; } buf = signature; } break; #ifdef NSS_ENABLE_ECC case ecKey: hashItem.data = hash->sha; hashItem.len = sizeof(hash->sha); /* * ECDSA signatures always encode the integers r and s * using ASN (unlike DSA where ASN encoding is used * with TLS but not with SSL3) */ len = SECKEY_PublicKeyStrength(key) * 2; if (len == 0) { SECKEY_DestroyPublicKey(key); PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE); return SECFailure; } signature = DSAU_DecodeDerSigToLen(buf, len); if (!signature) { PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE); return SECFailure; } buf = signature; break; #endif /* NSS_ENABLE_ECC */ default: SECKEY_DestroyPublicKey(key); PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); return SECFailure; } PRINT_BUF(60, (NULL, "hash(es) to be verified", hashItem.data, hashItem.len)); rv = PK11_Verify(key, buf, &hashItem, pwArg); SECKEY_DestroyPublicKey(key); if (signature) { SECITEM_FreeItem(signature, PR_TRUE); } if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE); } return rv; } /* Caller must set hiLevel error code. */ /* Called from ssl3_ComputeExportRSAKeyHash * ssl3_ComputeDHKeyHash * which are called from ssl3_HandleServerKeyExchange. */ SECStatus ssl3_ComputeCommonKeyHash(PRUint8 * hashBuf, unsigned int bufLen, SSL3Hashes *hashes, PRBool bypassPKCS11) { SECStatus rv = SECSuccess; if (bypassPKCS11) { MD5_HashBuf (hashes->md5, hashBuf, bufLen); SHA1_HashBuf(hashes->sha, hashBuf, bufLen); } else { rv = PK11_HashBuf(SEC_OID_MD5, hashes->md5, hashBuf, bufLen); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); rv = SECFailure; goto done; } rv = PK11_HashBuf(SEC_OID_SHA1, hashes->sha, hashBuf, bufLen); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); rv = SECFailure; } } done: return rv; } /* Caller must set hiLevel error code. ** Called from ssl3_SendServerKeyExchange and ** ssl3_HandleServerKeyExchange. */ static SECStatus ssl3_ComputeExportRSAKeyHash(SECItem modulus, SECItem publicExponent, SSL3Random *client_rand, SSL3Random *server_rand, SSL3Hashes *hashes, PRBool bypassPKCS11) { PRUint8 * hashBuf; PRUint8 * pBuf; SECStatus rv = SECSuccess; unsigned int bufLen; PRUint8 buf[2*SSL3_RANDOM_LENGTH + 2 + 4096/8 + 2 + 4096/8]; bufLen = 2*SSL3_RANDOM_LENGTH + 2 + modulus.len + 2 + publicExponent.len; if (bufLen <= sizeof buf) { hashBuf = buf; } else { hashBuf = PORT_Alloc(bufLen); if (!hashBuf) { return SECFailure; } } memcpy(hashBuf, client_rand, SSL3_RANDOM_LENGTH); pBuf = hashBuf + SSL3_RANDOM_LENGTH; memcpy(pBuf, server_rand, SSL3_RANDOM_LENGTH); pBuf += SSL3_RANDOM_LENGTH; pBuf[0] = (PRUint8)(modulus.len >> 8); pBuf[1] = (PRUint8)(modulus.len); pBuf += 2; memcpy(pBuf, modulus.data, modulus.len); pBuf += modulus.len; pBuf[0] = (PRUint8)(publicExponent.len >> 8); pBuf[1] = (PRUint8)(publicExponent.len); pBuf += 2; memcpy(pBuf, publicExponent.data, publicExponent.len); pBuf += publicExponent.len; PORT_Assert((unsigned int)(pBuf - hashBuf) == bufLen); rv = ssl3_ComputeCommonKeyHash(hashBuf, bufLen, hashes, bypassPKCS11); PRINT_BUF(95, (NULL, "RSAkey hash: ", hashBuf, bufLen)); PRINT_BUF(95, (NULL, "RSAkey hash: MD5 result", hashes->md5, MD5_LENGTH)); PRINT_BUF(95, (NULL, "RSAkey hash: SHA1 result", hashes->sha, SHA1_LENGTH)); if (hashBuf != buf && hashBuf != NULL) PORT_Free(hashBuf); return rv; } /* Caller must set hiLevel error code. */ /* Called from ssl3_HandleServerKeyExchange. */ static SECStatus ssl3_ComputeDHKeyHash(SECItem dh_p, SECItem dh_g, SECItem dh_Ys, SSL3Random *client_rand, SSL3Random *server_rand, SSL3Hashes *hashes, PRBool bypassPKCS11) { PRUint8 * hashBuf; PRUint8 * pBuf; SECStatus rv = SECSuccess; unsigned int bufLen; PRUint8 buf[2*SSL3_RANDOM_LENGTH + 2 + 4096/8 + 2 + 4096/8]; bufLen = 2*SSL3_RANDOM_LENGTH + 2 + dh_p.len + 2 + dh_g.len + 2 + dh_Ys.len; if (bufLen <= sizeof buf) { hashBuf = buf; } else { hashBuf = PORT_Alloc(bufLen); if (!hashBuf) { return SECFailure; } } memcpy(hashBuf, client_rand, SSL3_RANDOM_LENGTH); pBuf = hashBuf + SSL3_RANDOM_LENGTH; memcpy(pBuf, server_rand, SSL3_RANDOM_LENGTH); pBuf += SSL3_RANDOM_LENGTH; pBuf[0] = (PRUint8)(dh_p.len >> 8); pBuf[1] = (PRUint8)(dh_p.len); pBuf += 2; memcpy(pBuf, dh_p.data, dh_p.len); pBuf += dh_p.len; pBuf[0] = (PRUint8)(dh_g.len >> 8); pBuf[1] = (PRUint8)(dh_g.len); pBuf += 2; memcpy(pBuf, dh_g.data, dh_g.len); pBuf += dh_g.len; pBuf[0] = (PRUint8)(dh_Ys.len >> 8); pBuf[1] = (PRUint8)(dh_Ys.len); pBuf += 2; memcpy(pBuf, dh_Ys.data, dh_Ys.len); pBuf += dh_Ys.len; PORT_Assert((unsigned int)(pBuf - hashBuf) == bufLen); rv = ssl3_ComputeCommonKeyHash(hashBuf, bufLen, hashes, bypassPKCS11); PRINT_BUF(95, (NULL, "DHkey hash: ", hashBuf, bufLen)); PRINT_BUF(95, (NULL, "DHkey hash: MD5 result", hashes->md5, MD5_LENGTH)); PRINT_BUF(95, (NULL, "DHkey hash: SHA1 result", hashes->sha, SHA1_LENGTH)); if (hashBuf != buf && hashBuf != NULL) PORT_Free(hashBuf); return rv; } static void ssl3_BumpSequenceNumber(SSL3SequenceNumber *num) { num->low++; if (num->low == 0) num->high++; } /* Called twice, only from ssl3_DestroyCipherSpec (immediately below). */ static void ssl3_CleanupKeyMaterial(ssl3KeyMaterial *mat) { if (mat->write_key != NULL) { PK11_FreeSymKey(mat->write_key); mat->write_key = NULL; } if (mat->write_mac_key != NULL) { PK11_FreeSymKey(mat->write_mac_key); mat->write_mac_key = NULL; } if (mat->write_mac_context != NULL) { PK11_DestroyContext(mat->write_mac_context, PR_TRUE); mat->write_mac_context = NULL; } } /* Called from ssl3_SendChangeCipherSpecs() and ** ssl3_HandleChangeCipherSpecs() ** ssl3_DestroySSL3Info ** Caller must hold SpecWriteLock. */ static void ssl3_DestroyCipherSpec(ssl3CipherSpec *spec) { PRBool freeit = (PRBool)(!spec->bypassCiphers); /* PORT_Assert( ss->opt.noLocks || ssl_HaveSpecWriteLock(ss)); Don't have ss! */ if (spec->destroy) { spec->destroy(spec->encodeContext, freeit); spec->destroy(spec->decodeContext, freeit); spec->encodeContext = NULL; /* paranoia */ spec->decodeContext = NULL; } if (spec->master_secret != NULL) { PK11_FreeSymKey(spec->master_secret); spec->master_secret = NULL; } spec->msItem.data = NULL; spec->msItem.len = 0; ssl3_CleanupKeyMaterial(&spec->client); ssl3_CleanupKeyMaterial(&spec->server); spec->bypassCiphers = PR_FALSE; spec->destroy=NULL; } /* Fill in the pending cipher spec with info from the selected ciphersuite. ** This is as much initialization as we can do without having key material. ** Called from ssl3_HandleServerHello(), ssl3_SendServerHello() ** Caller must hold the ssl3 handshake lock. ** Acquires & releases SpecWriteLock. */ static SECStatus ssl3_SetupPendingCipherSpec(sslSocket *ss) { ssl3CipherSpec * pwSpec; ssl3CipherSpec * cwSpec; ssl3CipherSuite suite = ss->ssl3.hs.cipher_suite; SSL3MACAlgorithm mac; SSL3BulkCipher cipher; SSL3KeyExchangeAlgorithm kea; const ssl3CipherSuiteDef *suite_def; PRBool isTLS; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); ssl_GetSpecWriteLock(ss); /*******************************/ pwSpec = ss->ssl3.pwSpec; PORT_Assert(pwSpec == ss->ssl3.prSpec); /* This hack provides maximal interoperability with SSL 3 servers. */ cwSpec = ss->ssl3.cwSpec; if (cwSpec->mac_def->mac == mac_null) { /* SSL records are not being MACed. */ cwSpec->version = ss->version; } pwSpec->version = ss->version; isTLS = (PRBool)(pwSpec->version > SSL_LIBRARY_VERSION_3_0); SSL_TRC(3, ("%d: SSL3[%d]: Set XXX Pending Cipher Suite to 0x%04x", SSL_GETPID(), ss->fd, suite)); suite_def = ssl_LookupCipherSuiteDef(suite); if (suite_def == NULL) { ssl_ReleaseSpecWriteLock(ss); return SECFailure; /* error code set by ssl_LookupCipherSuiteDef */ } cipher = suite_def->bulk_cipher_alg; kea = suite_def->key_exchange_alg; mac = suite_def->mac_alg; if (isTLS) mac += 2; ss->ssl3.hs.suite_def = suite_def; ss->ssl3.hs.kea_def = &kea_defs[kea]; PORT_Assert(ss->ssl3.hs.kea_def->kea == kea); pwSpec->cipher_def = &bulk_cipher_defs[cipher]; PORT_Assert(pwSpec->cipher_def->cipher == cipher); pwSpec->mac_def = &mac_defs[mac]; PORT_Assert(pwSpec->mac_def->mac == mac); ss->sec.keyBits = pwSpec->cipher_def->key_size * BPB; ss->sec.secretKeyBits = pwSpec->cipher_def->secret_key_size * BPB; ss->sec.cipherType = cipher; pwSpec->encodeContext = NULL; pwSpec->decodeContext = NULL; pwSpec->mac_size = pwSpec->mac_def->mac_size; ssl_ReleaseSpecWriteLock(ss); /*******************************/ return SECSuccess; } /* Initialize encryption and MAC contexts for pending spec. * Master Secret already is derived in spec->msItem * Caller holds Spec write lock. */ static SECStatus ssl3_InitPendingContextsBypass(sslSocket *ss) { ssl3CipherSpec * pwSpec; const ssl3BulkCipherDef *cipher_def; void * serverContext = NULL; void * clientContext = NULL; BLapiInitContextFunc initFn = (BLapiInitContextFunc)NULL; int mode = 0; unsigned int optArg1 = 0; unsigned int optArg2 = 0; PRBool server_encrypts = ss->sec.isServer; CK_ULONG macLength; SSLCipherAlgorithm calg; SECStatus rv; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec); pwSpec = ss->ssl3.pwSpec; cipher_def = pwSpec->cipher_def; macLength = pwSpec->mac_size; /* MAC setup is done when computing the mac, not here. * Now setup the crypto contexts. */ calg = cipher_def->calg; serverContext = pwSpec->server.cipher_context; clientContext = pwSpec->client.cipher_context; switch (calg) { case ssl_calg_null: pwSpec->encode = Null_Cipher; pwSpec->decode = Null_Cipher; pwSpec->destroy = NULL; goto success; case ssl_calg_rc4: initFn = (BLapiInitContextFunc)RC4_InitContext; pwSpec->encode = (SSLCipher) RC4_Encrypt; pwSpec->decode = (SSLCipher) RC4_Decrypt; pwSpec->destroy = (SSLDestroy) RC4_DestroyContext; break; case ssl_calg_rc2: initFn = (BLapiInitContextFunc)RC2_InitContext; mode = NSS_RC2_CBC; optArg1 = cipher_def->key_size; pwSpec->encode = (SSLCipher) RC2_Encrypt; pwSpec->decode = (SSLCipher) RC2_Decrypt; pwSpec->destroy = (SSLDestroy) RC2_DestroyContext; break; case ssl_calg_des: initFn = (BLapiInitContextFunc)DES_InitContext; mode = NSS_DES_CBC; optArg1 = server_encrypts; pwSpec->encode = (SSLCipher) DES_Encrypt; pwSpec->decode = (SSLCipher) DES_Decrypt; pwSpec->destroy = (SSLDestroy) DES_DestroyContext; break; case ssl_calg_3des: initFn = (BLapiInitContextFunc)DES_InitContext; mode = NSS_DES_EDE3_CBC; optArg1 = server_encrypts; pwSpec->encode = (SSLCipher) DES_Encrypt; pwSpec->decode = (SSLCipher) DES_Decrypt; pwSpec->destroy = (SSLDestroy) DES_DestroyContext; break; case ssl_calg_aes: initFn = (BLapiInitContextFunc)AES_InitContext; mode = NSS_AES_CBC; optArg1 = server_encrypts; optArg2 = AES_BLOCK_SIZE; pwSpec->encode = (SSLCipher) AES_Encrypt; pwSpec->decode = (SSLCipher) AES_Decrypt; pwSpec->destroy = (SSLDestroy) AES_DestroyContext; break; case ssl_calg_idea: case ssl_calg_fortezza : default: PORT_Assert(0); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); goto bail_out; } rv = (*initFn)(serverContext, pwSpec->server.write_key_item.data, pwSpec->server.write_key_item.len, pwSpec->server.write_iv_item.data, mode, optArg1, optArg2); if (rv != SECSuccess) { PORT_Assert(0); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); goto bail_out; } if (calg == ssl_calg_des || calg == ssl_calg_3des || calg == ssl_calg_aes) { /* For block ciphers, if the server is encrypting, then the client * is decrypting, and vice versa. */ optArg1 = !optArg1; } rv = (*initFn)(clientContext, pwSpec->client.write_key_item.data, pwSpec->client.write_key_item.len, pwSpec->client.write_iv_item.data, mode, optArg1, optArg2); if (rv != SECSuccess) { PORT_Assert(0); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); goto bail_out; } pwSpec->encodeContext = (ss->sec.isServer) ? serverContext : clientContext; pwSpec->decodeContext = (ss->sec.isServer) ? clientContext : serverContext; success: return SECSuccess; bail_out: return SECFailure; } /* This function should probably be moved to pk11wrap and be named * PK11_ParamFromIVAndEffectiveKeyBits */ static SECItem * ssl3_ParamFromIV(CK_MECHANISM_TYPE mtype, SECItem *iv, CK_ULONG ulEffectiveBits) { SECItem * param = PK11_ParamFromIV(mtype, iv); if (param && param->data && param->len >= sizeof(CK_RC2_PARAMS)) { switch (mtype) { case CKM_RC2_KEY_GEN: case CKM_RC2_ECB: case CKM_RC2_CBC: case CKM_RC2_MAC: case CKM_RC2_MAC_GENERAL: case CKM_RC2_CBC_PAD: *(CK_RC2_PARAMS *)param->data = ulEffectiveBits; default: break; } } return param; } /* Initialize encryption and MAC contexts for pending spec. * Master Secret already is derived. * Caller holds Spec write lock. */ static SECStatus ssl3_InitPendingContextsPKCS11(sslSocket *ss) { ssl3CipherSpec * pwSpec; const ssl3BulkCipherDef *cipher_def; PK11Context * serverContext = NULL; PK11Context * clientContext = NULL; SECItem * param; CK_MECHANISM_TYPE mechanism; CK_MECHANISM_TYPE mac_mech; CK_ULONG macLength; CK_ULONG effKeyBits; SECItem iv; SECItem mac_param; SSLCipherAlgorithm calg; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec); pwSpec = ss->ssl3.pwSpec; cipher_def = pwSpec->cipher_def; macLength = pwSpec->mac_size; /* ** Now setup the MAC contexts, ** crypto contexts are setup below. */ pwSpec->client.write_mac_context = NULL; pwSpec->server.write_mac_context = NULL; mac_mech = pwSpec->mac_def->mmech; mac_param.data = (unsigned char *)&macLength; mac_param.len = sizeof(macLength); mac_param.type = 0; pwSpec->client.write_mac_context = PK11_CreateContextBySymKey( mac_mech, CKA_SIGN, pwSpec->client.write_mac_key, &mac_param); if (pwSpec->client.write_mac_context == NULL) { ssl_MapLowLevelError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE); goto fail; } pwSpec->server.write_mac_context = PK11_CreateContextBySymKey( mac_mech, CKA_SIGN, pwSpec->server.write_mac_key, &mac_param); if (pwSpec->server.write_mac_context == NULL) { ssl_MapLowLevelError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE); goto fail; } /* ** Now setup the crypto contexts. */ calg = cipher_def->calg; PORT_Assert(alg2Mech[calg].calg == calg); if (calg == calg_null) { pwSpec->encode = Null_Cipher; pwSpec->decode = Null_Cipher; pwSpec->destroy = NULL; return SECSuccess; } mechanism = alg2Mech[calg].cmech; effKeyBits = cipher_def->key_size * BPB; /* * build the server context */ iv.data = pwSpec->server.write_iv; iv.len = cipher_def->iv_size; param = ssl3_ParamFromIV(mechanism, &iv, effKeyBits); if (param == NULL) { ssl_MapLowLevelError(SSL_ERROR_IV_PARAM_FAILURE); goto fail; } serverContext = PK11_CreateContextBySymKey(mechanism, (ss->sec.isServer ? CKA_ENCRYPT : CKA_DECRYPT), pwSpec->server.write_key, param); iv.data = PK11_IVFromParam(mechanism, param, (int *)&iv.len); if (iv.data) PORT_Memcpy(pwSpec->server.write_iv, iv.data, iv.len); SECITEM_FreeItem(param, PR_TRUE); if (serverContext == NULL) { ssl_MapLowLevelError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE); goto fail; } /* * build the client context */ iv.data = pwSpec->client.write_iv; iv.len = cipher_def->iv_size; param = ssl3_ParamFromIV(mechanism, &iv, effKeyBits); if (param == NULL) { ssl_MapLowLevelError(SSL_ERROR_IV_PARAM_FAILURE); goto fail; } clientContext = PK11_CreateContextBySymKey(mechanism, (ss->sec.isServer ? CKA_DECRYPT : CKA_ENCRYPT), pwSpec->client.write_key, param); iv.data = PK11_IVFromParam(mechanism, param, (int *)&iv.len); if (iv.data) PORT_Memcpy(pwSpec->client.write_iv, iv.data, iv.len); SECITEM_FreeItem(param,PR_TRUE); if (clientContext == NULL) { ssl_MapLowLevelError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE); goto fail; } pwSpec->encode = (SSLCipher) PK11_CipherOp; pwSpec->decode = (SSLCipher) PK11_CipherOp; pwSpec->destroy = (SSLDestroy) PK11_DestroyContext; pwSpec->encodeContext = (ss->sec.isServer) ? serverContext : clientContext; pwSpec->decodeContext = (ss->sec.isServer) ? clientContext : serverContext; serverContext = NULL; clientContext = NULL; return SECSuccess; fail: if (serverContext != NULL) PK11_DestroyContext(serverContext, PR_TRUE); if (clientContext != NULL) PK11_DestroyContext(clientContext, PR_TRUE); if (pwSpec->client.write_mac_context != NULL) { PK11_DestroyContext(pwSpec->client.write_mac_context,PR_TRUE); pwSpec->client.write_mac_context = NULL; } if (pwSpec->server.write_mac_context != NULL) { PK11_DestroyContext(pwSpec->server.write_mac_context,PR_TRUE); pwSpec->server.write_mac_context = NULL; } return SECFailure; } /* Complete the initialization of all keys, ciphers, MACs and their contexts * for the pending Cipher Spec. * Called from: ssl3_SendClientKeyExchange (for Full handshake) * ssl3_HandleRSAClientKeyExchange (for Full handshake) * ssl3_HandleServerHello (for session restart) * ssl3_HandleClientHello (for session restart) * Sets error code, but caller probably should override to disambiguate. * NULL pms means re-use old master_secret. * * This code is common to the bypass and PKCS11 execution paths. * For the bypass case, pms is NULL. */ SECStatus ssl3_InitPendingCipherSpec(sslSocket *ss, PK11SymKey *pms) { ssl3CipherSpec * pwSpec; SECStatus rv; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); ssl_GetSpecWriteLock(ss); /**************************************/ PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec); pwSpec = ss->ssl3.pwSpec; if (pms || (!pwSpec->msItem.len && !pwSpec->master_secret)) { rv = ssl3_DeriveMasterSecret(ss, pms); if (rv != SECSuccess) { goto done; /* err code set by ssl3_DeriveMasterSecret */ } } if (pwSpec->msItem.len && pwSpec->msItem.data) { /* Double Bypass */ const ssl3KEADef * kea_def = ss->ssl3.hs.kea_def; PRBool isTLS = (PRBool)(kea_def->tls_keygen || (pwSpec->version > SSL_LIBRARY_VERSION_3_0)); pwSpec->bypassCiphers = PR_TRUE; rv = ssl3_KeyAndMacDeriveBypass( pwSpec, (const unsigned char *)&ss->ssl3.hs.client_random, (const unsigned char *)&ss->ssl3.hs.server_random, isTLS, (PRBool)(kea_def->is_limited)); if (rv == SECSuccess) { rv = ssl3_InitPendingContextsBypass(ss); } } else if (pwSpec->master_secret) { rv = ssl3_DeriveConnectionKeysPKCS11(ss); if (rv == SECSuccess) { rv = ssl3_InitPendingContextsPKCS11(ss); } } else { PORT_Assert(pwSpec->master_secret); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); rv = SECFailure; } done: ssl_ReleaseSpecWriteLock(ss); /******************************/ if (rv != SECSuccess) ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE); return rv; } /* * 60 bytes is 3 times the maximum length MAC size that is supported. */ static const unsigned char mac_pad_1 [60] = { 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 }; static const unsigned char mac_pad_2 [60] = { 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c }; /* Called from: ssl3_SendRecord() ** ssl3_HandleRecord() ** Caller must already hold the SpecReadLock. (wish we could assert that!) */ static SECStatus ssl3_ComputeRecordMAC( ssl3CipherSpec * spec, PRBool useServerMacKey, SSL3ContentType type, SSL3ProtocolVersion version, SSL3SequenceNumber seq_num, const SSL3Opaque * input, int inputLength, unsigned char * outbuf, unsigned int * outLength) { const ssl3MACDef * mac_def; SECStatus rv; PRBool isTLS; unsigned int tempLen; unsigned char temp[MAX_MAC_LENGTH]; temp[0] = (unsigned char)(seq_num.high >> 24); temp[1] = (unsigned char)(seq_num.high >> 16); temp[2] = (unsigned char)(seq_num.high >> 8); temp[3] = (unsigned char)(seq_num.high >> 0); temp[4] = (unsigned char)(seq_num.low >> 24); temp[5] = (unsigned char)(seq_num.low >> 16); temp[6] = (unsigned char)(seq_num.low >> 8); temp[7] = (unsigned char)(seq_num.low >> 0); temp[8] = type; /* TLS MAC includes the record's version field, SSL's doesn't. ** We decide which MAC defintiion to use based on the version of ** the protocol that was negotiated when the spec became current, ** NOT based on the version value in the record itself. ** But, we use the record'v version value in the computation. */ if (spec->version <= SSL_LIBRARY_VERSION_3_0) { temp[9] = MSB(inputLength); temp[10] = LSB(inputLength); tempLen = 11; isTLS = PR_FALSE; } else { /* New TLS hash includes version. */ temp[9] = MSB(version); temp[10] = LSB(version); temp[11] = MSB(inputLength); temp[12] = LSB(inputLength); tempLen = 13; isTLS = PR_TRUE; } PRINT_BUF(95, (NULL, "frag hash1: temp", temp, tempLen)); PRINT_BUF(95, (NULL, "frag hash1: input", input, inputLength)); mac_def = spec->mac_def; if (mac_def->mac == mac_null) { *outLength = 0; return SECSuccess; } if (! spec->bypassCiphers) { PK11Context *mac_context = (useServerMacKey ? spec->server.write_mac_context : spec->client.write_mac_context); rv = PK11_DigestBegin(mac_context); rv |= PK11_DigestOp(mac_context, temp, tempLen); rv |= PK11_DigestOp(mac_context, input, inputLength); rv |= PK11_DigestFinal(mac_context, outbuf, outLength, spec->mac_size); } else { /* bypass version */ const SECHashObject *hashObj = NULL; unsigned int pad_bytes; PRUint64 write_mac_context[MAX_MAC_CONTEXT_LLONGS]; switch (mac_def->mac) { case ssl_mac_null: *outLength = 0; return SECSuccess; case ssl_mac_md5: pad_bytes = 48; hashObj = HASH_GetRawHashObject(HASH_AlgMD5); break; case ssl_mac_sha: pad_bytes = 40; hashObj = HASH_GetRawHashObject(HASH_AlgSHA1); break; case ssl_hmac_md5: /* used with TLS */ hashObj = HASH_GetRawHashObject(HASH_AlgMD5); break; case ssl_hmac_sha: /* used with TLS */ hashObj = HASH_GetRawHashObject(HASH_AlgSHA1); break; default: break; } if (!hashObj) { PORT_Assert(0); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (!isTLS) { /* compute "inner" part of SSL3 MAC */ hashObj->begin(write_mac_context); if (useServerMacKey) hashObj->update(write_mac_context, spec->server.write_mac_key_item.data, spec->server.write_mac_key_item.len); else hashObj->update(write_mac_context, spec->client.write_mac_key_item.data, spec->client.write_mac_key_item.len); hashObj->update(write_mac_context, mac_pad_1, pad_bytes); hashObj->update(write_mac_context, temp, tempLen); hashObj->update(write_mac_context, input, inputLength); hashObj->end(write_mac_context, temp, &tempLen, sizeof temp); /* compute "outer" part of SSL3 MAC */ hashObj->begin(write_mac_context); if (useServerMacKey) hashObj->update(write_mac_context, spec->server.write_mac_key_item.data, spec->server.write_mac_key_item.len); else hashObj->update(write_mac_context, spec->client.write_mac_key_item.data, spec->client.write_mac_key_item.len); hashObj->update(write_mac_context, mac_pad_2, pad_bytes); hashObj->update(write_mac_context, temp, tempLen); hashObj->end(write_mac_context, outbuf, outLength, spec->mac_size); rv = SECSuccess; } else { /* is TLS */ #define cx ((HMACContext *)write_mac_context) if (useServerMacKey) { rv = HMAC_Init(cx, hashObj, spec->server.write_mac_key_item.data, spec->server.write_mac_key_item.len, PR_FALSE); } else { rv = HMAC_Init(cx, hashObj, spec->client.write_mac_key_item.data, spec->client.write_mac_key_item.len, PR_FALSE); } if (rv == SECSuccess) { HMAC_Begin(cx); HMAC_Update(cx, temp, tempLen); HMAC_Update(cx, input, inputLength); rv = HMAC_Finish(cx, outbuf, outLength, spec->mac_size); HMAC_Destroy(cx, PR_FALSE); } #undef cx } } PORT_Assert(rv != SECSuccess || *outLength == (unsigned)spec->mac_size); PRINT_BUF(95, (NULL, "frag hash2: result", outbuf, *outLength)); if (rv != SECSuccess) { rv = SECFailure; ssl_MapLowLevelError(SSL_ERROR_MAC_COMPUTATION_FAILURE); } return rv; } static PRBool ssl3_ClientAuthTokenPresent(sslSessionID *sid) { PK11SlotInfo *slot = NULL; PRBool isPresent = PR_TRUE; /* we only care if we are doing client auth */ if (!sid || !sid->u.ssl3.clAuthValid) { return PR_TRUE; } /* get the slot */ slot = SECMOD_LookupSlot(sid->u.ssl3.clAuthModuleID, sid->u.ssl3.clAuthSlotID); if (slot == NULL || !PK11_IsPresent(slot) || sid->u.ssl3.clAuthSeries != PK11_GetSlotSeries(slot) || sid->u.ssl3.clAuthSlotID != PK11_GetSlotID(slot) || sid->u.ssl3.clAuthModuleID != PK11_GetModuleID(slot) || (PK11_NeedLogin(slot) && !PK11_IsLoggedIn(slot, NULL))) { isPresent = PR_FALSE; } if (slot) { PK11_FreeSlot(slot); } return isPresent; } /* Process the plain text before sending it. * Returns the number of bytes of plaintext that were succesfully sent * plus the number of bytes of plaintext that were copied into the * output (write) buffer. * Returns SECFailure on a hard IO error, memory error, or crypto error. * Does NOT return SECWouldBlock. */ static PRInt32 ssl3_SendRecord( sslSocket * ss, SSL3ContentType type, const SSL3Opaque * buf, PRInt32 bytes, PRInt32 flags) { ssl3CipherSpec * cwSpec; sslBuffer * write = &ss->sec.writeBuf; const ssl3BulkCipherDef * cipher_def; SECStatus rv; PRUint32 bufSize = 0; PRInt32 sent = 0; PRBool isBlocking = ssl_SocketIsBlocking(ss); SSL_TRC(3, ("%d: SSL3[%d] SendRecord type: %s bytes=%d", SSL_GETPID(), ss->fd, ssl3_DecodeContentType(type), bytes)); PRINT_BUF(3, (ss, "Send record (plain text)", buf, bytes)); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) ); if (ss->ssl3.initialized == PR_FALSE) { /* This can happen on a server if the very first incoming record ** looks like a defective ssl3 record (e.g. too long), and we're ** trying to send an alert. */ PR_ASSERT(type == content_alert); rv = ssl3_InitState(ss); if (rv != SECSuccess) { return SECFailure; /* ssl3_InitState has set the error code. */ } } /* check for Token Presence */ if (!ssl3_ClientAuthTokenPresent(ss->sec.ci.sid)) { PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL); return SECFailure; } while (bytes > 0) { PRInt32 count; PRUint32 contentLen; PRUint32 fragLen; PRUint32 macLen; PRInt32 cipherBytes = 0; PRUint32 p1Len, p2Len, oddLen = 0; contentLen = PR_MIN(bytes, MAX_FRAGMENT_LENGTH); if (write->space < contentLen + SSL3_BUFFER_FUDGE) { rv = sslBuffer_Grow(write, contentLen + SSL3_BUFFER_FUDGE); if (rv != SECSuccess) { SSL_DBG(("%d: SSL3[%d]: SendRecord, tried to get %d bytes", SSL_GETPID(), ss->fd, contentLen + SSL3_BUFFER_FUDGE)); return SECFailure; /* sslBuffer_Grow set a memory error code. */ } } /* This variable records the actual size of the buffer allocated above. * Some algorithms may expand the number of bytes needed to send data. * If we only supply the output buffer with the same number * of bytes as the input buffer, we will fail. */ bufSize = contentLen + SSL3_BUFFER_FUDGE; /* * null compression is easy to do PORT_Memcpy(write->buf + SSL3_RECORD_HEADER_LENGTH, buf, contentLen); */ ssl_GetSpecReadLock(ss); /********************************/ cwSpec = ss->ssl3.cwSpec; cipher_def = cwSpec->cipher_def; /* * Add the MAC */ rv = ssl3_ComputeRecordMAC( cwSpec, (PRBool)(ss->sec.isServer), type, cwSpec->version, cwSpec->write_seq_num, buf, contentLen, write->buf + contentLen + SSL3_RECORD_HEADER_LENGTH, &macLen); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MAC_COMPUTATION_FAILURE); goto spec_locked_loser; } p1Len = contentLen; p2Len = macLen; fragLen = contentLen + macLen; /* needs to be encrypted */ PORT_Assert(fragLen <= MAX_FRAGMENT_LENGTH + 1024); /* * Pad the text (if we're doing a block cipher) * then Encrypt it */ if (cipher_def->type == type_block) { unsigned char * pBuf; int padding_length; int i; oddLen = contentLen % cipher_def->block_size; /* Assume blockSize is a power of two */ padding_length = cipher_def->block_size - 1 - ((fragLen) & (cipher_def->block_size - 1)); fragLen += padding_length + 1; PORT_Assert((fragLen % cipher_def->block_size) == 0); /* Pad according to TLS rules (also acceptable to SSL3). */ pBuf = &write->buf[fragLen + SSL3_RECORD_HEADER_LENGTH - 1]; for (i = padding_length + 1; i > 0; --i) { *pBuf-- = padding_length; } /* now, if contentLen is not a multiple of block size, fix it */ p2Len = fragLen - p1Len; } if (p1Len < 256) { oddLen = p1Len; p1Len = 0; } else { p1Len -= oddLen; } if (oddLen) { p2Len += oddLen; PORT_Assert( (cipher_def->block_size < 2) || \ (p2Len % cipher_def->block_size) == 0); memcpy(write->buf + SSL3_RECORD_HEADER_LENGTH + p1Len, buf + p1Len, oddLen); } if (p1Len > 0) { rv = cwSpec->encode( cwSpec->encodeContext, write->buf + SSL3_RECORD_HEADER_LENGTH, /* output */ &cipherBytes, /* actual outlen */ p1Len, /* max outlen */ buf, p1Len); /* input, and inputlen */ PORT_Assert(rv == SECSuccess && cipherBytes == p1Len); if (rv != SECSuccess || cipherBytes != p1Len) { PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE); goto spec_locked_loser; } } if (p2Len > 0) { PRInt32 cipherBytesPart2 = -1; rv = cwSpec->encode( cwSpec->encodeContext, write->buf + SSL3_RECORD_HEADER_LENGTH + p1Len, &cipherBytesPart2, /* output and actual outLen */ p2Len, /* max outlen */ write->buf + SSL3_RECORD_HEADER_LENGTH + p1Len, p2Len); /* input and inputLen*/ PORT_Assert(rv == SECSuccess && cipherBytesPart2 == p2Len); if (rv != SECSuccess || cipherBytesPart2 != p2Len) { PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE); goto spec_locked_loser; } cipherBytes += cipherBytesPart2; } if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_ENCRYPTION_FAILURE); spec_locked_loser: ssl_ReleaseSpecReadLock(ss); return SECFailure; } PORT_Assert(cipherBytes <= MAX_FRAGMENT_LENGTH + 1024); /* * XXX should we zero out our copy of the buffer after compressing * and encryption ?? */ ssl3_BumpSequenceNumber(&cwSpec->write_seq_num); ssl_ReleaseSpecReadLock(ss); /************************************/ buf += contentLen; bytes -= contentLen; PORT_Assert( bytes >= 0 ); /* PORT_Assert(fragLen == cipherBytes); */ write->len = cipherBytes + SSL3_RECORD_HEADER_LENGTH; write->buf[0] = type; write->buf[1] = MSB(cwSpec->version); write->buf[2] = LSB(cwSpec->version); write->buf[3] = MSB(cipherBytes); write->buf[4] = LSB(cipherBytes); PRINT_BUF(50, (ss, "send (encrypted) record data:", write->buf, write->len)); /* If there's still some previously saved ciphertext, * or the caller doesn't want us to send the data yet, * then add all our new ciphertext to the amount previously saved. */ if ((ss->pendingBuf.len > 0) || (flags & ssl_SEND_FLAG_FORCE_INTO_BUFFER)) { rv = ssl_SaveWriteData(ss, &ss->pendingBuf, write->buf, write->len); if (rv != SECSuccess) { /* presumably a memory error, SEC_ERROR_NO_MEMORY */ return SECFailure; } write->len = 0; /* All cipher text is saved away. */ if (!(flags & ssl_SEND_FLAG_FORCE_INTO_BUFFER)) { ss->handshakeBegun = 1; count = ssl_SendSavedWriteData(ss, &ss->pendingBuf, &ssl_DefSend); if (count < 0 && PR_GetError() != PR_WOULD_BLOCK_ERROR) { ssl_MapLowLevelError(SSL_ERROR_SOCKET_WRITE_FAILURE); return SECFailure; } } } else if (write->len > 0) { ss->handshakeBegun = 1; count = ssl_DefSend(ss, write->buf, write->len, flags & ~ssl_SEND_FLAG_MASK); if (count < 0) { if (PR_GetError() != PR_WOULD_BLOCK_ERROR) { ssl_MapLowLevelError(SSL_ERROR_SOCKET_WRITE_FAILURE); return (sent > 0) ? sent : SECFailure; } /* we got PR_WOULD_BLOCK_ERROR, which means none was sent. */ count = 0; } /* now take all the remaining unsent newly-generated ciphertext and * append it to the buffer of previously unsent ciphertext. */ if ((unsigned)count < write->len) { rv = ssl_SaveWriteData(ss, &ss->pendingBuf, write->buf + (unsigned)count, write->len - (unsigned)count); if (rv != SECSuccess) { /* presumably a memory error, SEC_ERROR_NO_MEMORY */ return SECFailure; } } write->len = 0; } sent += contentLen; if ((flags & ssl_SEND_FLAG_NO_BUFFER) && (isBlocking || (ss->pendingBuf.len > 0))) { break; } } return sent; } /* Attempt to send the content of "in" in an SSL application_data record. * Returns "len" or SECFailure, never SECWouldBlock, nor SECSuccess. */ int ssl3_SendApplicationData(sslSocket *ss, const unsigned char *in, PRInt32 len, PRInt32 flags) { PRInt32 sent = 0; PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) ); while (len > 0) { PRInt32 count; if (sent > 0) { /* * The thread yield is intended to give the reader thread a * chance to get some cycles while the writer thread is in * the middle of a large application data write. (See * Bugzilla bug 127740, comment #1.) */ ssl_ReleaseXmitBufLock(ss); PR_Sleep(PR_INTERVAL_NO_WAIT); /* PR_Yield(); */ ssl_GetXmitBufLock(ss); } count = ssl3_SendRecord(ss, content_application_data, in, len, flags | ssl_SEND_FLAG_NO_BUFFER); if (count < 0) { return (sent > 0) ? sent : count; /* error code set by ssl3_SendRecord */ } sent += count; len -= count; in += count; } return sent; } /* Attempt to send the content of sendBuf buffer in an SSL handshake record. * This function returns SECSuccess or SECFailure, never SECWouldBlock. * It used to always set sendBuf.len to 0, even when returning SECFailure. * Now it does not. * * Called from SSL3_SendAlert(), ssl3_SendChangeCipherSpecs(), * ssl3_AppendHandshake(), ssl3_SendClientHello(), * ssl3_SendHelloRequest(), ssl3_SendServerHelloDone(), * ssl3_SendFinished(), */ static SECStatus ssl3_FlushHandshake(sslSocket *ss, PRInt32 flags) { PRInt32 rv; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) ); if (!ss->sec.ci.sendBuf.buf || !ss->sec.ci.sendBuf.len) return SECSuccess; rv = ssl3_SendRecord(ss, content_handshake, ss->sec.ci.sendBuf.buf, ss->sec.ci.sendBuf.len, flags); if (rv < 0) { return (SECStatus)rv; /* error code set by ssl3_SendRecord */ } ss->sec.ci.sendBuf.len = 0; return SECSuccess; } /* * Called from ssl3_HandleAlert and from ssl3_HandleCertificate when * the remote client sends a negative response to our certificate request. * Returns SECFailure if the application has required client auth. * SECSuccess otherwise. */ static SECStatus ssl3_HandleNoCertificate(sslSocket *ss) { if (ss->sec.peerCert != NULL) { if (ss->sec.peerKey != NULL) { SECKEY_DestroyPublicKey(ss->sec.peerKey); ss->sec.peerKey = NULL; } CERT_DestroyCertificate(ss->sec.peerCert); ss->sec.peerCert = NULL; } ssl3_CleanupPeerCerts(ss); /* If the server has required client-auth blindly but doesn't * actually look at the certificate it won't know that no * certificate was presented so we shutdown the socket to ensure * an error. We only do this if we haven't already completed the * first handshake because if we're redoing the handshake we * know the server is paying attention to the certificate. */ if ((ss->opt.requireCertificate == SSL_REQUIRE_ALWAYS) || (!ss->firstHsDone && (ss->opt.requireCertificate == SSL_REQUIRE_FIRST_HANDSHAKE))) { PRFileDesc * lower; ss->sec.uncache(ss->sec.ci.sid); SSL3_SendAlert(ss, alert_fatal, bad_certificate); lower = ss->fd->lower; #ifdef _WIN32 lower->methods->shutdown(lower, PR_SHUTDOWN_SEND); #else lower->methods->shutdown(lower, PR_SHUTDOWN_BOTH); #endif PORT_SetError(SSL_ERROR_NO_CERTIFICATE); return SECFailure; } return SECSuccess; } /************************************************************************ * Alerts */ /* ** Acquires both handshake and XmitBuf locks. ** Called from: ssl3_IllegalParameter <- ** ssl3_HandshakeFailure <- ** ssl3_HandleAlert <- ssl3_HandleRecord. ** ssl3_HandleChangeCipherSpecs <- ssl3_HandleRecord ** ssl3_ConsumeHandshakeVariable <- ** ssl3_HandleHelloRequest <- ** ssl3_HandleServerHello <- ** ssl3_HandleServerKeyExchange <- ** ssl3_HandleCertificateRequest <- ** ssl3_HandleServerHelloDone <- ** ssl3_HandleClientHello <- ** ssl3_HandleV2ClientHello <- ** ssl3_HandleCertificateVerify <- ** ssl3_HandleClientKeyExchange <- ** ssl3_HandleCertificate <- ** ssl3_HandleFinished <- ** ssl3_HandleHandshakeMessage <- ** ssl3_HandleRecord <- ** */ SECStatus SSL3_SendAlert(sslSocket *ss, SSL3AlertLevel level, SSL3AlertDescription desc) { uint8 bytes[2]; SECStatus rv; SSL_TRC(3, ("%d: SSL3[%d]: send alert record, level=%d desc=%d", SSL_GETPID(), ss->fd, level, desc)); bytes[0] = level; bytes[1] = desc; ssl_GetSSL3HandshakeLock(ss); if (level == alert_fatal) { if (ss->sec.ci.sid) { ss->sec.uncache(ss->sec.ci.sid); } } ssl_GetXmitBufLock(ss); rv = ssl3_FlushHandshake(ss, ssl_SEND_FLAG_FORCE_INTO_BUFFER); if (rv == SECSuccess) { PRInt32 sent; sent = ssl3_SendRecord(ss, content_alert, bytes, 2, desc == no_certificate ? ssl_SEND_FLAG_FORCE_INTO_BUFFER : 0); rv = (sent >= 0) ? SECSuccess : (SECStatus)sent; } ssl_ReleaseXmitBufLock(ss); ssl_ReleaseSSL3HandshakeLock(ss); return rv; /* error set by ssl3_FlushHandshake or ssl3_SendRecord */ } /* * Send illegal_parameter alert. Set generic error number. */ static SECStatus ssl3_IllegalParameter(sslSocket *ss) { PRBool isTLS; isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0); (void)SSL3_SendAlert(ss, alert_fatal, illegal_parameter); PORT_SetError(ss->sec.isServer ? SSL_ERROR_BAD_CLIENT : SSL_ERROR_BAD_SERVER ); return SECFailure; } /* * Send handshake_Failure alert. Set generic error number. */ static SECStatus ssl3_HandshakeFailure(sslSocket *ss) { (void)SSL3_SendAlert(ss, alert_fatal, handshake_failure); PORT_SetError( ss->sec.isServer ? SSL_ERROR_BAD_CLIENT : SSL_ERROR_BAD_SERVER ); return SECFailure; } /* * Send handshake_Failure alert. Set generic error number. */ static SECStatus ssl3_DecodeError(sslSocket *ss) { (void)SSL3_SendAlert(ss, alert_fatal, ss->version > SSL_LIBRARY_VERSION_3_0 ? decode_error : illegal_parameter); PORT_SetError( ss->sec.isServer ? SSL_ERROR_BAD_CLIENT : SSL_ERROR_BAD_SERVER ); return SECFailure; } /* Called from ssl3_HandleRecord. ** Caller must hold both RecvBuf and Handshake locks. */ static SECStatus ssl3_HandleAlert(sslSocket *ss, sslBuffer *buf) { SSL3AlertLevel level; SSL3AlertDescription desc; int error; PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); SSL_TRC(3, ("%d: SSL3[%d]: handle alert record", SSL_GETPID(), ss->fd)); if (buf->len != 2) { (void)ssl3_DecodeError(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_ALERT); return SECFailure; } level = (SSL3AlertLevel)buf->buf[0]; desc = (SSL3AlertDescription)buf->buf[1]; buf->len = 0; SSL_TRC(5, ("%d: SSL3[%d] received alert, level = %d, description = %d", SSL_GETPID(), ss->fd, level, desc)); switch (desc) { case close_notify: ss->recvdCloseNotify = 1; error = SSL_ERROR_CLOSE_NOTIFY_ALERT; break; case unexpected_message: error = SSL_ERROR_HANDSHAKE_UNEXPECTED_ALERT; break; case bad_record_mac: error = SSL_ERROR_BAD_MAC_ALERT; break; case decryption_failed: error = SSL_ERROR_DECRYPTION_FAILED_ALERT; break; case record_overflow: error = SSL_ERROR_RECORD_OVERFLOW_ALERT; break; case decompression_failure: error = SSL_ERROR_DECOMPRESSION_FAILURE_ALERT; break; case handshake_failure: error = SSL_ERROR_HANDSHAKE_FAILURE_ALERT; break; case no_certificate: error = SSL_ERROR_NO_CERTIFICATE; break; case bad_certificate: error = SSL_ERROR_BAD_CERT_ALERT; break; case unsupported_certificate:error = SSL_ERROR_UNSUPPORTED_CERT_ALERT;break; case certificate_revoked: error = SSL_ERROR_REVOKED_CERT_ALERT; break; case certificate_expired: error = SSL_ERROR_EXPIRED_CERT_ALERT; break; case certificate_unknown: error = SSL_ERROR_CERTIFICATE_UNKNOWN_ALERT; break; case illegal_parameter: error = SSL_ERROR_ILLEGAL_PARAMETER_ALERT;break; /* All alerts below are TLS only. */ case unknown_ca: error = SSL_ERROR_UNKNOWN_CA_ALERT; break; case access_denied: error = SSL_ERROR_ACCESS_DENIED_ALERT; break; case decode_error: error = SSL_ERROR_DECODE_ERROR_ALERT; break; case decrypt_error: error = SSL_ERROR_DECRYPT_ERROR_ALERT; break; case export_restriction: error = SSL_ERROR_EXPORT_RESTRICTION_ALERT; break; case protocol_version: error = SSL_ERROR_PROTOCOL_VERSION_ALERT; break; case insufficient_security: error = SSL_ERROR_INSUFFICIENT_SECURITY_ALERT; break; case internal_error: error = SSL_ERROR_INTERNAL_ERROR_ALERT; break; case user_canceled: error = SSL_ERROR_USER_CANCELED_ALERT; break; case no_renegotiation: error = SSL_ERROR_NO_RENEGOTIATION_ALERT; break; default: error = SSL_ERROR_RX_UNKNOWN_ALERT; break; } if (level == alert_fatal) { ss->sec.uncache(ss->sec.ci.sid); if ((ss->ssl3.hs.ws == wait_server_hello) && (desc == handshake_failure)) { /* XXX This is a hack. We're assuming that any handshake failure * XXX on the client hello is a failure to match ciphers. */ error = SSL_ERROR_NO_CYPHER_OVERLAP; } PORT_SetError(error); return SECFailure; } if ((desc == no_certificate) && (ss->ssl3.hs.ws == wait_client_cert)) { /* I'm a server. I've requested a client cert. He hasn't got one. */ SECStatus rv; PORT_Assert(ss->sec.isServer); ss->ssl3.hs.ws = wait_client_key; rv = ssl3_HandleNoCertificate(ss); return rv; } return SECSuccess; } /* * Change Cipher Specs * Called from ssl3_HandleServerHelloDone, * ssl3_HandleClientHello, * and ssl3_HandleFinished * * Acquires and releases spec write lock, to protect switching the current * and pending write spec pointers. */ static SECStatus ssl3_SendChangeCipherSpecs(sslSocket *ss) { uint8 change = change_cipher_spec_choice; ssl3CipherSpec * pwSpec; SECStatus rv; PRInt32 sent; SSL_TRC(3, ("%d: SSL3[%d]: send change_cipher_spec record", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); rv = ssl3_FlushHandshake(ss, ssl_SEND_FLAG_FORCE_INTO_BUFFER); if (rv != SECSuccess) { return rv; /* error code set by ssl3_FlushHandshake */ } sent = ssl3_SendRecord(ss, content_change_cipher_spec, &change, 1, ssl_SEND_FLAG_FORCE_INTO_BUFFER); if (sent < 0) { return (SECStatus)sent; /* error code set by ssl3_SendRecord */ } /* swap the pending and current write specs. */ ssl_GetSpecWriteLock(ss); /**************************************/ pwSpec = ss->ssl3.pwSpec; pwSpec->write_seq_num.high = 0; pwSpec->write_seq_num.low = 0; ss->ssl3.pwSpec = ss->ssl3.cwSpec; ss->ssl3.cwSpec = pwSpec; SSL_TRC(3, ("%d: SSL3[%d] Set Current Write Cipher Suite to Pending", SSL_GETPID(), ss->fd )); /* We need to free up the contexts, keys and certs ! */ /* If we are really through with the old cipher spec * (Both the read and write sides have changed) destroy it. */ if (ss->ssl3.prSpec == ss->ssl3.pwSpec) { ssl3_DestroyCipherSpec(ss->ssl3.pwSpec); } ssl_ReleaseSpecWriteLock(ss); /**************************************/ return SECSuccess; } /* Called from ssl3_HandleRecord. ** Caller must hold both RecvBuf and Handshake locks. * * Acquires and releases spec write lock, to protect switching the current * and pending write spec pointers. */ static SECStatus ssl3_HandleChangeCipherSpecs(sslSocket *ss, sslBuffer *buf) { ssl3CipherSpec * prSpec; SSL3WaitState ws = ss->ssl3.hs.ws; SSL3ChangeCipherSpecChoice change; PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); SSL_TRC(3, ("%d: SSL3[%d]: handle change_cipher_spec record", SSL_GETPID(), ss->fd)); if (ws != wait_change_cipher) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CHANGE_CIPHER); return SECFailure; } if(buf->len != 1) { (void)ssl3_DecodeError(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_CHANGE_CIPHER); return SECFailure; } change = (SSL3ChangeCipherSpecChoice)buf->buf[0]; if (change != change_cipher_spec_choice) { /* illegal_parameter is correct here for both SSL3 and TLS. */ (void)ssl3_IllegalParameter(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_CHANGE_CIPHER); return SECFailure; } buf->len = 0; /* Swap the pending and current read specs. */ ssl_GetSpecWriteLock(ss); /*************************************/ prSpec = ss->ssl3.prSpec; prSpec->read_seq_num.high = prSpec->read_seq_num.low = 0; ss->ssl3.prSpec = ss->ssl3.crSpec; ss->ssl3.crSpec = prSpec; ss->ssl3.hs.ws = wait_finished; SSL_TRC(3, ("%d: SSL3[%d] Set Current Read Cipher Suite to Pending", SSL_GETPID(), ss->fd )); /* If we are really through with the old cipher prSpec * (Both the read and write sides have changed) destroy it. */ if (ss->ssl3.prSpec == ss->ssl3.pwSpec) { ssl3_DestroyCipherSpec(ss->ssl3.prSpec); } ssl_ReleaseSpecWriteLock(ss); /*************************************/ return SECSuccess; } /* This method uses PKCS11 to derive the MS from the PMS, where PMS ** is a PKCS11 symkey. This is used in all cases except the ** "triple bypass" with RSA key exchange. ** Called from ssl3_InitPendingCipherSpec. prSpec is pwSpec. */ static SECStatus ssl3_DeriveMasterSecret(sslSocket *ss, const PK11SymKey *pms) { ssl3CipherSpec * pwSpec = ss->ssl3.pwSpec; const ssl3KEADef *kea_def= ss->ssl3.hs.kea_def; unsigned char * cr = (unsigned char *)&ss->ssl3.hs.client_random; unsigned char * sr = (unsigned char *)&ss->ssl3.hs.server_random; PRBool isTLS = (PRBool)(kea_def->tls_keygen || (pwSpec->version > SSL_LIBRARY_VERSION_3_0)); /* * Whenever isDH is true, we need to use CKM_TLS_MASTER_KEY_DERIVE_DH * which, unlike CKM_TLS_MASTER_KEY_DERIVE, converts arbitrary size * data into a 48-byte value. */ PRBool isDH = (PRBool) ((ss->ssl3.hs.kea_def->exchKeyType == kt_dh) || (ss->ssl3.hs.kea_def->exchKeyType == kt_ecdh)); SECStatus rv = SECFailure; CK_MECHANISM_TYPE master_derive; CK_MECHANISM_TYPE key_derive; SECItem params; CK_FLAGS keyFlags; CK_VERSION pms_version; CK_SSL3_MASTER_KEY_DERIVE_PARAMS master_params; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert( ss->opt.noLocks || ssl_HaveSpecWriteLock(ss)); PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec); if (isTLS) { if(isDH) master_derive = CKM_TLS_MASTER_KEY_DERIVE_DH; else master_derive = CKM_TLS_MASTER_KEY_DERIVE; key_derive = CKM_TLS_KEY_AND_MAC_DERIVE; keyFlags = CKF_SIGN | CKF_VERIFY; } else { if (isDH) master_derive = CKM_SSL3_MASTER_KEY_DERIVE_DH; else master_derive = CKM_SSL3_MASTER_KEY_DERIVE; key_derive = CKM_SSL3_KEY_AND_MAC_DERIVE; keyFlags = 0; } if (pms || !pwSpec->master_secret) { master_params.pVersion = &pms_version; master_params.RandomInfo.pClientRandom = cr; master_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH; master_params.RandomInfo.pServerRandom = sr; master_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH; params.data = (unsigned char *) &master_params; params.len = sizeof master_params; } if (pms != NULL) { pwSpec->master_secret = PK11_DeriveWithFlags((PK11SymKey *)pms, master_derive, ¶ms, key_derive, CKA_DERIVE, 0, keyFlags); if (!isDH && pwSpec->master_secret && ss->opt.detectRollBack) { SSL3ProtocolVersion client_version; client_version = pms_version.major << 8 | pms_version.minor; if (client_version != ss->clientHelloVersion) { /* Destroy it. Version roll-back detected. */ PK11_FreeSymKey(pwSpec->master_secret); pwSpec->master_secret = NULL; } } if (pwSpec->master_secret == NULL) { /* Generate a faux master secret in the same slot as the old one. */ PK11SlotInfo * slot = PK11_GetSlotFromKey((PK11SymKey *)pms); PK11SymKey * fpms = ssl3_GenerateRSAPMS(ss, pwSpec, slot); PK11_FreeSlot(slot); if (fpms != NULL) { pwSpec->master_secret = PK11_DeriveWithFlags(fpms, master_derive, ¶ms, key_derive, CKA_DERIVE, 0, keyFlags); PK11_FreeSymKey(fpms); } } } if (pwSpec->master_secret == NULL) { /* Generate a faux master secret from the internal slot. */ PK11SlotInfo * slot = PK11_GetInternalSlot(); PK11SymKey * fpms = ssl3_GenerateRSAPMS(ss, pwSpec, slot); PK11_FreeSlot(slot); if (fpms != NULL) { pwSpec->master_secret = PK11_DeriveWithFlags(fpms, master_derive, ¶ms, key_derive, CKA_DERIVE, 0, keyFlags); if (pwSpec->master_secret == NULL) { pwSpec->master_secret = fpms; /* use the fpms as the master. */ fpms = NULL; } } if (fpms) { PK11_FreeSymKey(fpms); } } if (pwSpec->master_secret == NULL) { ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE); return rv; } if (ss->opt.bypassPKCS11) { SECItem * keydata; /* In hope of doing a "double bypass", * need to extract the master secret's value from the key object * and store it raw in the sslSocket struct. */ rv = PK11_ExtractKeyValue(pwSpec->master_secret); if (rv != SECSuccess) { return rv; } /* This returns the address of the secItem inside the key struct, * not a copy or a reference. So, there's no need to free it. */ keydata = PK11_GetKeyData(pwSpec->master_secret); if (keydata && keydata->len <= sizeof pwSpec->raw_master_secret) { memcpy(pwSpec->raw_master_secret, keydata->data, keydata->len); pwSpec->msItem.data = pwSpec->raw_master_secret; pwSpec->msItem.len = keydata->len; } else { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } } return SECSuccess; } /* * Derive encryption and MAC Keys (and IVs) from master secret * Sets a useful error code when returning SECFailure. * * Called only from ssl3_InitPendingCipherSpec(), * which in turn is called from * sendRSAClientKeyExchange (for Full handshake) * sendDHClientKeyExchange (for Full handshake) * ssl3_HandleClientKeyExchange (for Full handshake) * ssl3_HandleServerHello (for session restart) * ssl3_HandleClientHello (for session restart) * Caller MUST hold the specWriteLock, and SSL3HandshakeLock. * ssl3_InitPendingCipherSpec does that. * */ static SECStatus ssl3_DeriveConnectionKeysPKCS11(sslSocket *ss) { ssl3CipherSpec * pwSpec = ss->ssl3.pwSpec; const ssl3KEADef * kea_def = ss->ssl3.hs.kea_def; unsigned char * cr = (unsigned char *)&ss->ssl3.hs.client_random; unsigned char * sr = (unsigned char *)&ss->ssl3.hs.server_random; PRBool isTLS = (PRBool)(kea_def->tls_keygen || (pwSpec->version > SSL_LIBRARY_VERSION_3_0)); /* following variables used in PKCS11 path */ const ssl3BulkCipherDef *cipher_def = pwSpec->cipher_def; PK11SlotInfo * slot = NULL; PK11SymKey * symKey = NULL; void * pwArg = ss->pkcs11PinArg; int keySize; CK_SSL3_KEY_MAT_PARAMS key_material_params; CK_SSL3_KEY_MAT_OUT returnedKeys; CK_MECHANISM_TYPE key_derive; CK_MECHANISM_TYPE bulk_mechanism; SSLCipherAlgorithm calg; SECItem params; PRBool skipKeysAndIVs = (PRBool)(cipher_def->calg == calg_null); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert( ss->opt.noLocks || ssl_HaveSpecWriteLock(ss)); PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec); if (!pwSpec->master_secret) { PORT_SetError(SSL_ERROR_SESSION_KEY_GEN_FAILURE); return SECFailure; } /* * generate the key material */ key_material_params.ulMacSizeInBits = pwSpec->mac_size * BPB; key_material_params.ulKeySizeInBits = cipher_def->secret_key_size* BPB; key_material_params.ulIVSizeInBits = cipher_def->iv_size * BPB; key_material_params.bIsExport = (CK_BBOOL)(kea_def->is_limited); /* was: (CK_BBOOL)(cipher_def->keygen_mode != kg_strong); */ key_material_params.RandomInfo.pClientRandom = cr; key_material_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH; key_material_params.RandomInfo.pServerRandom = sr; key_material_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH; key_material_params.pReturnedKeyMaterial = &returnedKeys; returnedKeys.pIVClient = pwSpec->client.write_iv; returnedKeys.pIVServer = pwSpec->server.write_iv; keySize = cipher_def->key_size; if (skipKeysAndIVs) { keySize = 0; key_material_params.ulKeySizeInBits = 0; key_material_params.ulIVSizeInBits = 0; returnedKeys.pIVClient = NULL; returnedKeys.pIVServer = NULL; } calg = cipher_def->calg; PORT_Assert( alg2Mech[calg].calg == calg); bulk_mechanism = alg2Mech[calg].cmech; params.data = (unsigned char *)&key_material_params; params.len = sizeof(key_material_params); if (isTLS) { key_derive = CKM_TLS_KEY_AND_MAC_DERIVE; } else { key_derive = CKM_SSL3_KEY_AND_MAC_DERIVE; } /* CKM_SSL3_KEY_AND_MAC_DERIVE is defined to set ENCRYPT, DECRYPT, and * DERIVE by DEFAULT */ symKey = PK11_Derive(pwSpec->master_secret, key_derive, ¶ms, bulk_mechanism, CKA_ENCRYPT, keySize); if (!symKey) { ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE); return SECFailure; } /* we really should use the actual mac'ing mechanism here, but we * don't because these types are used to map keytype anyway and both * mac's map to the same keytype. */ slot = PK11_GetSlotFromKey(symKey); PK11_FreeSlot(slot); /* slot is held until the key is freed */ pwSpec->client.write_mac_key = PK11_SymKeyFromHandle(slot, symKey, PK11_OriginDerive, CKM_SSL3_SHA1_MAC, returnedKeys.hClientMacSecret, PR_TRUE, pwArg); if (pwSpec->client.write_mac_key == NULL ) { goto loser; /* loser sets err */ } pwSpec->server.write_mac_key = PK11_SymKeyFromHandle(slot, symKey, PK11_OriginDerive, CKM_SSL3_SHA1_MAC, returnedKeys.hServerMacSecret, PR_TRUE, pwArg); if (pwSpec->server.write_mac_key == NULL ) { goto loser; /* loser sets err */ } if (!skipKeysAndIVs) { pwSpec->client.write_key = PK11_SymKeyFromHandle(slot, symKey, PK11_OriginDerive, bulk_mechanism, returnedKeys.hClientKey, PR_TRUE, pwArg); if (pwSpec->client.write_key == NULL ) { goto loser; /* loser sets err */ } pwSpec->server.write_key = PK11_SymKeyFromHandle(slot, symKey, PK11_OriginDerive, bulk_mechanism, returnedKeys.hServerKey, PR_TRUE, pwArg); if (pwSpec->server.write_key == NULL ) { goto loser; /* loser sets err */ } } PK11_FreeSymKey(symKey); return SECSuccess; loser: if (symKey) PK11_FreeSymKey(symKey); ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE); return SECFailure; } /* * Handshake messages */ /* Called from ssl3_AppendHandshake() ** ssl3_StartHandshakeHash() ** ssl3_HandleV2ClientHello() ** ssl3_HandleHandshakeMessage() ** Caller must hold the ssl3Handshake lock. */ static SECStatus ssl3_UpdateHandshakeHashes(sslSocket *ss, unsigned char *b, unsigned int l) { SECStatus rv = SECSuccess; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); PRINT_BUF(90, (NULL, "MD5 & SHA handshake hash input:", b, l)); if (ss->opt.bypassPKCS11) { MD5_Update((MD5Context *)ss->ssl3.hs.md5_cx, b, l); SHA1_Update((SHA1Context *)ss->ssl3.hs.sha_cx, b, l); return rv; } rv = PK11_DigestOp(ss->ssl3.hs.md5, b, l); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); return rv; } rv = PK11_DigestOp(ss->ssl3.hs.sha, b, l); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); return rv; } return rv; } /************************************************************************** * Append Handshake functions. * All these functions set appropriate error codes. * Most rely on ssl3_AppendHandshake to set the error code. **************************************************************************/ SECStatus ssl3_AppendHandshake(sslSocket *ss, const void *void_src, PRInt32 bytes) { unsigned char * src = (unsigned char *)void_src; int room = ss->sec.ci.sendBuf.space - ss->sec.ci.sendBuf.len; SECStatus rv; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); /* protects sendBuf. */ if (ss->sec.ci.sendBuf.space < MAX_SEND_BUF_LENGTH && room < bytes) { rv = sslBuffer_Grow(&ss->sec.ci.sendBuf, PR_MAX(MIN_SEND_BUF_LENGTH, PR_MIN(MAX_SEND_BUF_LENGTH, ss->sec.ci.sendBuf.len + bytes))); if (rv != SECSuccess) return rv; /* sslBuffer_Grow has set a memory error code. */ room = ss->sec.ci.sendBuf.space - ss->sec.ci.sendBuf.len; } PRINT_BUF(60, (ss, "Append to Handshake", (unsigned char*)void_src, bytes)); rv = ssl3_UpdateHandshakeHashes(ss, src, bytes); if (rv != SECSuccess) return rv; /* error code set by ssl3_UpdateHandshakeHashes */ while (bytes > room) { if (room > 0) PORT_Memcpy(ss->sec.ci.sendBuf.buf + ss->sec.ci.sendBuf.len, src, room); ss->sec.ci.sendBuf.len += room; rv = ssl3_FlushHandshake(ss, ssl_SEND_FLAG_FORCE_INTO_BUFFER); if (rv != SECSuccess) { return rv; /* error code set by ssl3_FlushHandshake */ } bytes -= room; src += room; room = ss->sec.ci.sendBuf.space; PORT_Assert(ss->sec.ci.sendBuf.len == 0); } PORT_Memcpy(ss->sec.ci.sendBuf.buf + ss->sec.ci.sendBuf.len, src, bytes); ss->sec.ci.sendBuf.len += bytes; return SECSuccess; } static SECStatus ssl3_AppendHandshakeNumber(sslSocket *ss, PRInt32 num, PRInt32 lenSize) { SECStatus rv; uint8 b[4]; uint8 * p = b; switch (lenSize) { case 4: *p++ = (num >> 24) & 0xff; case 3: *p++ = (num >> 16) & 0xff; case 2: *p++ = (num >> 8) & 0xff; case 1: *p = num & 0xff; } SSL_TRC(60, ("%d: number:", SSL_GETPID())); rv = ssl3_AppendHandshake(ss, &b[0], lenSize); return rv; /* error code set by AppendHandshake, if applicable. */ } SECStatus ssl3_AppendHandshakeVariable( sslSocket *ss, const SSL3Opaque *src, PRInt32 bytes, PRInt32 lenSize) { SECStatus rv; PORT_Assert((bytes < (1<<8) && lenSize == 1) || (bytes < (1L<<16) && lenSize == 2) || (bytes < (1L<<24) && lenSize == 3)); SSL_TRC(60,("%d: append variable:", SSL_GETPID())); rv = ssl3_AppendHandshakeNumber(ss, bytes, lenSize); if (rv != SECSuccess) { return rv; /* error code set by AppendHandshake, if applicable. */ } SSL_TRC(60, ("data:")); rv = ssl3_AppendHandshake(ss, src, bytes); return rv; /* error code set by AppendHandshake, if applicable. */ } SECStatus ssl3_AppendHandshakeHeader(sslSocket *ss, SSL3HandshakeType t, PRUint32 length) { SECStatus rv; SSL_TRC(30,("%d: SSL3[%d]: append handshake header: type %s", SSL_GETPID(), ss->fd, ssl3_DecodeHandshakeType(t))); PRINT_BUF(60, (ss, "MD5 handshake hash:", (unsigned char*)ss->ssl3.hs.md5_cx, MD5_LENGTH)); PRINT_BUF(95, (ss, "SHA handshake hash:", (unsigned char*)ss->ssl3.hs.sha_cx, SHA1_LENGTH)); rv = ssl3_AppendHandshakeNumber(ss, t, 1); if (rv != SECSuccess) { return rv; /* error code set by AppendHandshake, if applicable. */ } rv = ssl3_AppendHandshakeNumber(ss, length, 3); return rv; /* error code set by AppendHandshake, if applicable. */ } /************************************************************************** * Consume Handshake functions. * * All data used in these functions is protected by two locks, * the RecvBufLock and the SSL3HandshakeLock **************************************************************************/ /* Read up the next "bytes" number of bytes from the (decrypted) input * stream "b" (which is *length bytes long). Copy them into buffer "v". * Reduces *length by bytes. Advances *b by bytes. * * If this function returns SECFailure, it has already sent an alert, * and has set a generic error code. The caller should probably * override the generic error code by setting another. */ SECStatus ssl3_ConsumeHandshake(sslSocket *ss, void *v, PRInt32 bytes, SSL3Opaque **b, PRUint32 *length) { PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); if ((PRUint32)bytes > *length) { return ssl3_DecodeError(ss); } PORT_Memcpy(v, *b, bytes); PRINT_BUF(60, (ss, "consume bytes:", *b, bytes)); *b += bytes; *length -= bytes; return SECSuccess; } /* Read up the next "bytes" number of bytes from the (decrypted) input * stream "b" (which is *length bytes long), and interpret them as an * integer in network byte order. Returns the received value. * Reduces *length by bytes. Advances *b by bytes. * * Returns SECFailure (-1) on failure. * This value is indistinguishable from the equivalent received value. * Only positive numbers are to be received this way. * Thus, the largest value that may be sent this way is 0x7fffffff. * On error, an alert has been sent, and a generic error code has been set. */ static PRInt32 ssl3_ConsumeHandshakeNumber(sslSocket *ss, PRInt32 bytes, SSL3Opaque **b, PRUint32 *length) { uint8 *buf = *b; int i; PRInt32 num = 0; PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); PORT_Assert( bytes <= sizeof num); if ((PRUint32)bytes > *length) { return ssl3_DecodeError(ss); } PRINT_BUF(60, (ss, "consume bytes:", *b, bytes)); for (i = 0; i < bytes; i++) num = (num << 8) + buf[i]; *b += bytes; *length -= bytes; return num; } /* Read in two values from the incoming decrypted byte stream "b", which is * *length bytes long. The first value is a number whose size is "bytes" * bytes long. The second value is a byte-string whose size is the value * of the first number received. The latter byte-string, and its length, * is returned in the SECItem i. * * Returns SECFailure (-1) on failure. * On error, an alert has been sent, and a generic error code has been set. * * RADICAL CHANGE for NSS 3.11. All callers of this function make copies * of the data returned in the SECItem *i, so making a copy of it here * is simply wasteful. So, This function now just sets SECItem *i to * point to the values in the buffer **b. */ SECStatus ssl3_ConsumeHandshakeVariable(sslSocket *ss, SECItem *i, PRInt32 bytes, SSL3Opaque **b, PRUint32 *length) { PRInt32 count; PORT_Assert(bytes <= 3); i->len = 0; i->data = NULL; count = ssl3_ConsumeHandshakeNumber(ss, bytes, b, length); if (count < 0) { /* Can't test for SECSuccess here. */ return SECFailure; } if (count > 0) { if ((PRUint32)count > *length) { return ssl3_DecodeError(ss); } i->data = *b; i->len = count; *b += count; *length -= count; } return SECSuccess; } /************************************************************************** * end of Consume Handshake functions. **************************************************************************/ /* Extract the hashes of handshake messages to this point. * Called from ssl3_SendCertificateVerify * ssl3_SendFinished * ssl3_HandleHandshakeMessage * * Caller must hold the SSL3HandshakeLock. * Caller must hold a read or write lock on the Spec R/W lock. * (There is presently no way to assert on a Read lock.) */ static SECStatus ssl3_ComputeHandshakeHashes(sslSocket * ss, ssl3CipherSpec *spec, /* uses ->master_secret */ SSL3Hashes * hashes, /* output goes here. */ uint32 sender) { SECStatus rv = SECSuccess; PRBool isTLS = (PRBool)(spec->version > SSL_LIBRARY_VERSION_3_0); unsigned int outLength; SSL3Opaque md5_inner[MAX_MAC_LENGTH]; SSL3Opaque sha_inner[MAX_MAC_LENGTH]; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); if (ss->opt.bypassPKCS11) { /* compute them without PKCS11 */ PRUint64 md5_cx[MAX_MAC_CONTEXT_LLONGS]; PRUint64 sha_cx[MAX_MAC_CONTEXT_LLONGS]; #define md5cx ((MD5Context *)md5_cx) #define shacx ((SHA1Context *)sha_cx) if (!spec->msItem.data) { PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HANDSHAKE); return SECFailure; } MD5_Clone (md5cx, (MD5Context *)ss->ssl3.hs.md5_cx); SHA1_Clone(shacx, (SHA1Context *)ss->ssl3.hs.sha_cx); if (!isTLS) { /* compute hashes for SSL3. */ unsigned char s[4]; s[0] = (unsigned char)(sender >> 24); s[1] = (unsigned char)(sender >> 16); s[2] = (unsigned char)(sender >> 8); s[3] = (unsigned char)sender; if (sender != 0) { MD5_Update(md5cx, s, 4); PRINT_BUF(95, (NULL, "MD5 inner: sender", s, 4)); } PRINT_BUF(95, (NULL, "MD5 inner: MAC Pad 1", mac_pad_1, mac_defs[mac_md5].pad_size)); MD5_Update(md5cx, spec->msItem.data, spec->msItem.len); MD5_Update(md5cx, mac_pad_1, mac_defs[mac_md5].pad_size); MD5_End(md5cx, md5_inner, &outLength, MD5_LENGTH); PRINT_BUF(95, (NULL, "MD5 inner: result", md5_inner, outLength)); if (sender != 0) { SHA1_Update(shacx, s, 4); PRINT_BUF(95, (NULL, "SHA inner: sender", s, 4)); } PRINT_BUF(95, (NULL, "SHA inner: MAC Pad 1", mac_pad_1, mac_defs[mac_sha].pad_size)); SHA1_Update(shacx, spec->msItem.data, spec->msItem.len); SHA1_Update(shacx, mac_pad_1, mac_defs[mac_sha].pad_size); SHA1_End(shacx, sha_inner, &outLength, SHA1_LENGTH); PRINT_BUF(95, (NULL, "SHA inner: result", sha_inner, outLength)); PRINT_BUF(95, (NULL, "MD5 outer: MAC Pad 2", mac_pad_2, mac_defs[mac_md5].pad_size)); PRINT_BUF(95, (NULL, "MD5 outer: MD5 inner", md5_inner, MD5_LENGTH)); MD5_Begin(md5cx); MD5_Update(md5cx, spec->msItem.data, spec->msItem.len); MD5_Update(md5cx, mac_pad_2, mac_defs[mac_md5].pad_size); MD5_Update(md5cx, md5_inner, MD5_LENGTH); } MD5_End(md5cx, hashes->md5, &outLength, MD5_LENGTH); PRINT_BUF(60, (NULL, "MD5 outer: result", hashes->md5, MD5_LENGTH)); if (!isTLS) { PRINT_BUF(95, (NULL, "SHA outer: MAC Pad 2", mac_pad_2, mac_defs[mac_sha].pad_size)); PRINT_BUF(95, (NULL, "SHA outer: SHA inner", sha_inner, SHA1_LENGTH)); SHA1_Begin(shacx); SHA1_Update(shacx, spec->msItem.data, spec->msItem.len); SHA1_Update(shacx, mac_pad_2, mac_defs[mac_sha].pad_size); SHA1_Update(shacx, sha_inner, SHA1_LENGTH); } SHA1_End(shacx, hashes->sha, &outLength, SHA1_LENGTH); PRINT_BUF(60, (NULL, "SHA outer: result", hashes->sha, SHA1_LENGTH)); rv = SECSuccess; #undef md5cx #undef shacx } else { /* compute hases with PKCS11 */ PK11Context * md5; PK11Context * sha = NULL; unsigned char *md5StateBuf = NULL; unsigned char *shaStateBuf = NULL; unsigned int md5StateLen, shaStateLen; unsigned char md5StackBuf[256]; unsigned char shaStackBuf[512]; if (!spec->master_secret) { PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HANDSHAKE); return SECFailure; } md5StateBuf = PK11_SaveContextAlloc(ss->ssl3.hs.md5, md5StackBuf, sizeof md5StackBuf, &md5StateLen); if (md5StateBuf == NULL) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); goto loser; } md5 = ss->ssl3.hs.md5; shaStateBuf = PK11_SaveContextAlloc(ss->ssl3.hs.sha, shaStackBuf, sizeof shaStackBuf, &shaStateLen); if (shaStateBuf == NULL) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); goto loser; } sha = ss->ssl3.hs.sha; if (!isTLS) { /* compute hashes for SSL3. */ unsigned char s[4]; s[0] = (unsigned char)(sender >> 24); s[1] = (unsigned char)(sender >> 16); s[2] = (unsigned char)(sender >> 8); s[3] = (unsigned char)sender; if (sender != 0) { rv |= PK11_DigestOp(md5, s, 4); PRINT_BUF(95, (NULL, "MD5 inner: sender", s, 4)); } PRINT_BUF(95, (NULL, "MD5 inner: MAC Pad 1", mac_pad_1, mac_defs[mac_md5].pad_size)); rv |= PK11_DigestKey(md5,spec->master_secret); rv |= PK11_DigestOp(md5, mac_pad_1, mac_defs[mac_md5].pad_size); rv |= PK11_DigestFinal(md5, md5_inner, &outLength, MD5_LENGTH); PORT_Assert(rv != SECSuccess || outLength == MD5_LENGTH); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); rv = SECFailure; goto loser; } PRINT_BUF(95, (NULL, "MD5 inner: result", md5_inner, outLength)); if (sender != 0) { rv |= PK11_DigestOp(sha, s, 4); PRINT_BUF(95, (NULL, "SHA inner: sender", s, 4)); } PRINT_BUF(95, (NULL, "SHA inner: MAC Pad 1", mac_pad_1, mac_defs[mac_sha].pad_size)); rv |= PK11_DigestKey(sha, spec->master_secret); rv |= PK11_DigestOp(sha, mac_pad_1, mac_defs[mac_sha].pad_size); rv |= PK11_DigestFinal(sha, sha_inner, &outLength, SHA1_LENGTH); PORT_Assert(rv != SECSuccess || outLength == SHA1_LENGTH); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); rv = SECFailure; goto loser; } PRINT_BUF(95, (NULL, "SHA inner: result", sha_inner, outLength)); PRINT_BUF(95, (NULL, "MD5 outer: MAC Pad 2", mac_pad_2, mac_defs[mac_md5].pad_size)); PRINT_BUF(95, (NULL, "MD5 outer: MD5 inner", md5_inner, MD5_LENGTH)); rv |= PK11_DigestBegin(md5); rv |= PK11_DigestKey(md5, spec->master_secret); rv |= PK11_DigestOp(md5, mac_pad_2, mac_defs[mac_md5].pad_size); rv |= PK11_DigestOp(md5, md5_inner, MD5_LENGTH); } rv |= PK11_DigestFinal(md5, hashes->md5, &outLength, MD5_LENGTH); PORT_Assert(rv != SECSuccess || outLength == MD5_LENGTH); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); rv = SECFailure; goto loser; } PRINT_BUF(60, (NULL, "MD5 outer: result", hashes->md5, MD5_LENGTH)); if (!isTLS) { PRINT_BUF(95, (NULL, "SHA outer: MAC Pad 2", mac_pad_2, mac_defs[mac_sha].pad_size)); PRINT_BUF(95, (NULL, "SHA outer: SHA inner", sha_inner, SHA1_LENGTH)); rv |= PK11_DigestBegin(sha); rv |= PK11_DigestKey(sha,spec->master_secret); rv |= PK11_DigestOp(sha, mac_pad_2, mac_defs[mac_sha].pad_size); rv |= PK11_DigestOp(sha, sha_inner, SHA1_LENGTH); } rv |= PK11_DigestFinal(sha, hashes->sha, &outLength, SHA1_LENGTH); PORT_Assert(rv != SECSuccess || outLength == SHA1_LENGTH); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); rv = SECFailure; goto loser; } PRINT_BUF(60, (NULL, "SHA outer: result", hashes->sha, SHA1_LENGTH)); rv = SECSuccess; loser: if (md5StateBuf) { if (PK11_RestoreContext(ss->ssl3.hs.md5, md5StateBuf, md5StateLen) != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); rv = SECFailure; } if (md5StateBuf != md5StackBuf) { PORT_ZFree(md5StateBuf, md5StateLen); } } if (shaStateBuf) { if (PK11_RestoreContext(ss->ssl3.hs.sha, shaStateBuf, shaStateLen) != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); rv = SECFailure; } if (shaStateBuf != shaStackBuf) { PORT_ZFree(shaStateBuf, shaStateLen); } } } return rv; } /* * SSL 2 based implementations pass in the initial outbound buffer * so that the handshake hash can contain the included information. * * Called from ssl2_BeginClientHandshake() in sslcon.c */ SECStatus ssl3_StartHandshakeHash(sslSocket *ss, unsigned char * buf, int length) { SECStatus rv; ssl_GetSSL3HandshakeLock(ss); /**************************************/ rv = ssl3_InitState(ss); if (rv != SECSuccess) { goto done; /* ssl3_InitState has set the error code. */ } PORT_Memset(&ss->ssl3.hs.client_random, 0, SSL3_RANDOM_LENGTH); PORT_Memcpy( &ss->ssl3.hs.client_random.rand[SSL3_RANDOM_LENGTH - SSL_CHALLENGE_BYTES], &ss->sec.ci.clientChallenge, SSL_CHALLENGE_BYTES); rv = ssl3_UpdateHandshakeHashes(ss, buf, length); /* if it failed, ssl3_UpdateHandshakeHashes has set the error code. */ done: ssl_ReleaseSSL3HandshakeLock(ss); /**************************************/ return rv; } /************************************************************************** * end of Handshake Hash functions. * Begin Send and Handle functions for handshakes. **************************************************************************/ /* Called from ssl3_HandleHelloRequest(), * ssl3_HandleFinished() (for step-up) * ssl3_RedoHandshake() * ssl2_BeginClientHandshake (when resuming ssl3 session) */ SECStatus ssl3_SendClientHello(sslSocket *ss) { sslSessionID * sid; ssl3CipherSpec * cwSpec; SECStatus rv; int i; int length; int num_suites; int actual_count = 0; SSL_TRC(3, ("%d: SSL3[%d]: send client_hello handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) ); rv = ssl3_InitState(ss); if (rv != SECSuccess) { return rv; /* ssl3_InitState has set the error code. */ } SSL_TRC(30,("%d: SSL3[%d]: reset handshake hashes", SSL_GETPID(), ss->fd )); if (ss->opt.bypassPKCS11) { MD5_Begin((MD5Context *)ss->ssl3.hs.md5_cx); SHA1_Begin((SHA1Context *)ss->ssl3.hs.sha_cx); } else { rv = PK11_DigestBegin(ss->ssl3.hs.md5); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); return rv; } rv = PK11_DigestBegin(ss->ssl3.hs.sha); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); return rv; } } /* We ignore ss->sec.ci.sid here, and use ssl_Lookup because Lookup * handles expired entries and other details. * XXX If we've been called from ssl2_BeginClientHandshake, then * this lookup is duplicative and wasteful. */ sid = (ss->opt.noCache) ? NULL : ssl_LookupSID(&ss->sec.ci.peer, ss->sec.ci.port, ss->peerID, ss->url); /* We can't resume based on a different token. If the sid exists, * make sure the token that holds the master secret still exists ... * If we previously did client-auth, make sure that the token that holds * the private key still exists, is logged in, hasn't been removed, etc. */ if (sid) { PRBool sidOK = PR_TRUE; if (sid->u.ssl3.keys.msIsWrapped) { /* Session key was wrapped, which means it was using PKCS11, */ PK11SlotInfo *slot = NULL; if (sid->u.ssl3.masterValid && !ss->opt.bypassPKCS11) { slot = SECMOD_LookupSlot(sid->u.ssl3.masterModuleID, sid->u.ssl3.masterSlotID); } if (slot == NULL) { sidOK = PR_FALSE; } else { PK11SymKey *wrapKey = NULL; if (!PK11_IsPresent(slot) || ((wrapKey = PK11_GetWrapKey(slot, sid->u.ssl3.masterWrapIndex, sid->u.ssl3.masterWrapMech, sid->u.ssl3.masterWrapSeries, ss->pkcs11PinArg)) == NULL) ) { sidOK = PR_FALSE; } if (wrapKey) PK11_FreeSymKey(wrapKey); PK11_FreeSlot(slot); slot = NULL; } } /* If we previously did client-auth, make sure that the token that ** holds the private key still exists, is logged in, hasn't been ** removed, etc. */ if (sidOK && !ssl3_ClientAuthTokenPresent(sid)) { sidOK = PR_FALSE; } if (!sidOK) { ++ssl3stats.sch_sid_cache_not_ok; (*ss->sec.uncache)(sid); ssl_FreeSID(sid); sid = NULL; } } if (sid) { ++ssl3stats.sch_sid_cache_hits; rv = ssl3_NegotiateVersion(ss, sid->version); if (rv != SECSuccess) return rv; /* error code was set */ PRINT_BUF(4, (ss, "client, found session-id:", sid->u.ssl3.sessionID, sid->u.ssl3.sessionIDLength)); ss->ssl3.policy = sid->u.ssl3.policy; } else { ++ssl3stats.sch_sid_cache_misses; rv = ssl3_NegotiateVersion(ss, SSL_LIBRARY_VERSION_3_1_TLS); if (rv != SECSuccess) return rv; /* error code was set */ sid = ssl3_NewSessionID(ss, PR_FALSE); if (!sid) { return SECFailure; /* memory error is set */ } } ssl_GetSpecWriteLock(ss); cwSpec = ss->ssl3.cwSpec; if (cwSpec->mac_def->mac == mac_null) { /* SSL records are not being MACed. */ cwSpec->version = ss->version; } ssl_ReleaseSpecWriteLock(ss); if (ss->sec.ci.sid != NULL) { ssl_FreeSID(ss->sec.ci.sid); /* decrement ref count, free if zero */ } ss->sec.ci.sid = sid; ss->sec.send = ssl3_SendApplicationData; /* shouldn't get here if SSL3 is disabled, but ... */ PORT_Assert(ss->opt.enableSSL3 || ss->opt.enableTLS); if (!ss->opt.enableSSL3 && !ss->opt.enableTLS) { PORT_SetError(SSL_ERROR_SSL_DISABLED); return SECFailure; } /* how many suites does our PKCS11 support (regardless of policy)? */ num_suites = ssl3_config_match_init(ss); if (!num_suites) return SECFailure; /* ssl3_config_match_init has set error code. */ /* how many suites are permitted by policy and user preference? */ num_suites = count_cipher_suites(ss, ss->ssl3.policy, PR_TRUE); if (!num_suites) return SECFailure; /* count_cipher_suites has set error code. */ length = sizeof(SSL3ProtocolVersion) + SSL3_RANDOM_LENGTH + 1 + ((sid == NULL) ? 0 : sid->u.ssl3.sessionIDLength) + 2 + num_suites*sizeof(ssl3CipherSuite) + 1 + compressionMethodsCount; rv = ssl3_AppendHandshakeHeader(ss, client_hello, length); if (rv != SECSuccess) { return rv; /* err set by ssl3_AppendHandshake* */ } ss->clientHelloVersion = ss->version; rv = ssl3_AppendHandshakeNumber(ss, ss->clientHelloVersion, 2); if (rv != SECSuccess) { return rv; /* err set by ssl3_AppendHandshake* */ } rv = ssl3_GetNewRandom(&ss->ssl3.hs.client_random); if (rv != SECSuccess) { return rv; /* err set by GetNewRandom. */ } rv = ssl3_AppendHandshake(ss, &ss->ssl3.hs.client_random, SSL3_RANDOM_LENGTH); if (rv != SECSuccess) { return rv; /* err set by ssl3_AppendHandshake* */ } if (sid) rv = ssl3_AppendHandshakeVariable( ss, sid->u.ssl3.sessionID, sid->u.ssl3.sessionIDLength, 1); else rv = ssl3_AppendHandshakeVariable(ss, NULL, 0, 1); if (rv != SECSuccess) { return rv; /* err set by ssl3_AppendHandshake* */ } rv = ssl3_AppendHandshakeNumber(ss, num_suites*sizeof(ssl3CipherSuite), 2); if (rv != SECSuccess) { return rv; /* err set by ssl3_AppendHandshake* */ } for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) { ssl3CipherSuiteCfg *suite = &ss->cipherSuites[i]; if (config_match(suite, ss->ssl3.policy, PR_TRUE)) { actual_count++; if (actual_count > num_suites) { /* set error card removal/insertion error */ PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL); return SECFailure; } rv = ssl3_AppendHandshakeNumber(ss, suite->cipher_suite, sizeof(ssl3CipherSuite)); if (rv != SECSuccess) { return rv; /* err set by ssl3_AppendHandshake* */ } } } /* if cards were removed or inserted between count_cipher_suites and * generating our list, detect the error here rather than send it off to * the server.. */ if (actual_count != num_suites) { /* Card removal/insertion error */ PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL); return SECFailure; } rv = ssl3_AppendHandshakeNumber(ss, compressionMethodsCount, 1); if (rv != SECSuccess) { return rv; /* err set by ssl3_AppendHandshake* */ } for (i = 0; i < compressionMethodsCount; i++) { rv = ssl3_AppendHandshakeNumber(ss, compressions[i], 1); if (rv != SECSuccess) { return rv; /* err set by ssl3_AppendHandshake* */ } } rv = ssl3_FlushHandshake(ss, 0); if (rv != SECSuccess) { return rv; /* error code set by ssl3_FlushHandshake */ } ss->ssl3.hs.ws = wait_server_hello; return rv; } /* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete * ssl3 Hello Request. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleHelloRequest(sslSocket *ss) { sslSessionID *sid = ss->sec.ci.sid; SECStatus rv; SSL_TRC(3, ("%d: SSL3[%d]: handle hello_request handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); if (ss->ssl3.hs.ws == wait_server_hello) return SECSuccess; if (ss->ssl3.hs.ws != idle_handshake || ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_REQUEST); return SECFailure; } if (sid) { ss->sec.uncache(sid); ssl_FreeSID(sid); ss->sec.ci.sid = NULL; } ssl_GetXmitBufLock(ss); rv = ssl3_SendClientHello(ss); ssl_ReleaseXmitBufLock(ss); return rv; } #define UNKNOWN_WRAP_MECHANISM 0x7fffffff static const CK_MECHANISM_TYPE wrapMechanismList[SSL_NUM_WRAP_MECHS] = { CKM_DES3_ECB, CKM_CAST5_ECB, CKM_DES_ECB, CKM_KEY_WRAP_LYNKS, CKM_IDEA_ECB, CKM_CAST3_ECB, CKM_CAST_ECB, CKM_RC5_ECB, CKM_RC2_ECB, CKM_CDMF_ECB, CKM_SKIPJACK_WRAP, CKM_SKIPJACK_CBC64, UNKNOWN_WRAP_MECHANISM }; static int ssl_FindIndexByWrapMechanism(CK_MECHANISM_TYPE mech) { const CK_MECHANISM_TYPE *pMech = wrapMechanismList; while (mech != *pMech && *pMech != UNKNOWN_WRAP_MECHANISM) { ++pMech; } return (*pMech == UNKNOWN_WRAP_MECHANISM) ? -1 : (pMech - wrapMechanismList); } static PK11SymKey * ssl_UnwrapSymWrappingKey( SSLWrappedSymWrappingKey *pWswk, SECKEYPrivateKey * svrPrivKey, SSL3KEAType exchKeyType, CK_MECHANISM_TYPE masterWrapMech, void * pwArg) { PK11SymKey * unwrappedWrappingKey = NULL; SECItem wrappedKey; /* found the wrapping key on disk. */ PORT_Assert(pWswk->symWrapMechanism == masterWrapMech); PORT_Assert(pWswk->exchKeyType == exchKeyType); if (pWswk->symWrapMechanism != masterWrapMech || pWswk->exchKeyType != exchKeyType) { goto loser; } wrappedKey.type = siBuffer; wrappedKey.data = pWswk->wrappedSymmetricWrappingkey; wrappedKey.len = pWswk->wrappedSymKeyLen; PORT_Assert(wrappedKey.len <= sizeof pWswk->wrappedSymmetricWrappingkey); switch (exchKeyType) { case kt_rsa: unwrappedWrappingKey = PK11_PubUnwrapSymKey(svrPrivKey, &wrappedKey, masterWrapMech, CKA_UNWRAP, 0); break; default: /* Assert? */ SET_ERROR_CODE goto loser; } loser: return unwrappedWrappingKey; } /* Each process sharing the server session ID cache has its own array of * SymKey pointers for the symmetric wrapping keys that are used to wrap * the master secrets. There is one key for each KEA type. These Symkeys * correspond to the wrapped SymKeys kept in the server session cache. */ typedef struct { PK11SymKey * symWrapKey[kt_kea_size]; } ssl3SymWrapKey; static PZLock * symWrapKeysLock = NULL; static ssl3SymWrapKey symWrapKeys[SSL_NUM_WRAP_MECHS]; SECStatus SSL3_ShutdownServerCache(void) { int i, j; if (!symWrapKeysLock) return SECSuccess; /* was never initialized */ PZ_Lock(symWrapKeysLock); /* get rid of all symWrapKeys */ for (i = 0; i < SSL_NUM_WRAP_MECHS; ++i) { for (j = 0; j < kt_kea_size; ++j) { PK11SymKey ** pSymWrapKey; pSymWrapKey = &symWrapKeys[i].symWrapKey[j]; if (*pSymWrapKey) { PK11_FreeSymKey(*pSymWrapKey); *pSymWrapKey = NULL; } } } PZ_Unlock(symWrapKeysLock); return SECSuccess; } void ssl_InitSymWrapKeysLock(void) { /* atomically initialize the lock */ if (!symWrapKeysLock) nss_InitLock(&symWrapKeysLock, nssILockOther); } /* Try to get wrapping key for mechanism from in-memory array. * If that fails, look for one on disk. * If that fails, generate a new one, put the new one on disk, * Put the new key in the in-memory array. */ static PK11SymKey * getWrappingKey( sslSocket * ss, PK11SlotInfo * masterSecretSlot, SSL3KEAType exchKeyType, CK_MECHANISM_TYPE masterWrapMech, void * pwArg) { CERTCertificate * svrCert; SECKEYPrivateKey * svrPrivKey; SECKEYPublicKey * svrPubKey = NULL; PK11SymKey * unwrappedWrappingKey = NULL; PK11SymKey ** pSymWrapKey; CK_MECHANISM_TYPE asymWrapMechanism = CKM_INVALID_MECHANISM; int length; int symWrapMechIndex; SECStatus rv; SECItem wrappedKey; SSLWrappedSymWrappingKey wswk; svrPrivKey = ss->serverCerts[exchKeyType].SERVERKEY; PORT_Assert(svrPrivKey != NULL); if (!svrPrivKey) { return NULL; /* why are we here?!? */ } symWrapMechIndex = ssl_FindIndexByWrapMechanism(masterWrapMech); PORT_Assert(symWrapMechIndex >= 0); if (symWrapMechIndex < 0) return NULL; /* invalid masterWrapMech. */ pSymWrapKey = &symWrapKeys[symWrapMechIndex].symWrapKey[exchKeyType]; ssl_InitSymWrapKeysLock(); PZ_Lock(symWrapKeysLock); unwrappedWrappingKey = *pSymWrapKey; if (unwrappedWrappingKey != NULL) { if (PK11_VerifyKeyOK(unwrappedWrappingKey)) { unwrappedWrappingKey = PK11_ReferenceSymKey(unwrappedWrappingKey); goto done; } /* slot series has changed, so this key is no good any more. */ PK11_FreeSymKey(unwrappedWrappingKey); *pSymWrapKey = unwrappedWrappingKey = NULL; } /* Try to get wrapped SymWrapping key out of the (disk) cache. */ /* Following call fills in wswk on success. */ if (ssl_GetWrappingKey(symWrapMechIndex, exchKeyType, &wswk)) { /* found the wrapped sym wrapping key on disk. */ unwrappedWrappingKey = ssl_UnwrapSymWrappingKey(&wswk, svrPrivKey, exchKeyType, masterWrapMech, pwArg); if (unwrappedWrappingKey) { goto install; } } if (!masterSecretSlot) /* caller doesn't want to create a new one. */ goto loser; length = PK11_GetBestKeyLength(masterSecretSlot, masterWrapMech); /* Zero length means fixed key length algorithm, or error. * It's ambiguous. */ unwrappedWrappingKey = PK11_KeyGen(masterSecretSlot, masterWrapMech, NULL, length, pwArg); if (!unwrappedWrappingKey) { goto loser; } /* Prepare the buffer to receive the wrappedWrappingKey, * the symmetric wrapping key wrapped using the server's pub key. */ PORT_Memset(&wswk, 0, sizeof wswk); /* eliminate UMRs. */ svrCert = ss->serverCerts[exchKeyType].serverCert; svrPubKey = CERT_ExtractPublicKey(svrCert); if (svrPubKey == NULL) { /* CERT_ExtractPublicKey doesn't set error code */ PORT_SetError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE); goto loser; } wrappedKey.type = siBuffer; wrappedKey.len = SECKEY_PublicKeyStrength(svrPubKey); wrappedKey.data = wswk.wrappedSymmetricWrappingkey; PORT_Assert(wrappedKey.len <= sizeof wswk.wrappedSymmetricWrappingkey); if (wrappedKey.len > sizeof wswk.wrappedSymmetricWrappingkey) goto loser; /* wrap symmetric wrapping key in server's public key. */ switch (exchKeyType) { case kt_rsa: asymWrapMechanism = CKM_RSA_PKCS; rv = PK11_PubWrapSymKey(asymWrapMechanism, svrPubKey, unwrappedWrappingKey, &wrappedKey); break; default: rv = SECFailure; break; } if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } PORT_Assert(asymWrapMechanism != CKM_INVALID_MECHANISM); wswk.symWrapMechanism = masterWrapMech; wswk.symWrapMechIndex = symWrapMechIndex; wswk.asymWrapMechanism = asymWrapMechanism; wswk.exchKeyType = exchKeyType; wswk.wrappedSymKeyLen = wrappedKey.len; /* put it on disk. */ /* If the wrapping key for this KEA type has already been set, * then abandon the value we just computed and * use the one we got from the disk. */ if (ssl_SetWrappingKey(&wswk)) { /* somebody beat us to it. The original contents of our wswk * has been replaced with the content on disk. Now, discard * the key we just created and unwrap this new one. */ PK11_FreeSymKey(unwrappedWrappingKey); unwrappedWrappingKey = ssl_UnwrapSymWrappingKey(&wswk, svrPrivKey, exchKeyType, masterWrapMech, pwArg); } install: if (unwrappedWrappingKey) { *pSymWrapKey = PK11_ReferenceSymKey(unwrappedWrappingKey); } loser: done: if (svrPubKey) { SECKEY_DestroyPublicKey(svrPubKey); svrPubKey = NULL; } PZ_Unlock(symWrapKeysLock); return unwrappedWrappingKey; } /* Called from ssl3_SendClientKeyExchange(). */ /* Presently, this always uses PKCS11. There is no bypass for this. */ static SECStatus sendRSAClientKeyExchange(sslSocket * ss, SECKEYPublicKey * svrPubKey) { PK11SymKey * pms = NULL; SECStatus rv = SECFailure; SECItem enc_pms = {siBuffer, NULL, 0}; PRBool isTLS; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); /* Generate the pre-master secret ... */ ssl_GetSpecWriteLock(ss); isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0); pms = ssl3_GenerateRSAPMS(ss, ss->ssl3.pwSpec, NULL); ssl_ReleaseSpecWriteLock(ss); if (pms == NULL) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } /* Get the wrapped (encrypted) pre-master secret, enc_pms */ enc_pms.len = SECKEY_PublicKeyStrength(svrPubKey); enc_pms.data = (unsigned char*)PORT_Alloc(enc_pms.len); if (enc_pms.data == NULL) { goto loser; /* err set by PORT_Alloc */ } /* wrap pre-master secret in server's public key. */ rv = PK11_PubWrapSymKey(CKM_RSA_PKCS, svrPubKey, pms, &enc_pms); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } rv = ssl3_InitPendingCipherSpec(ss, pms); PK11_FreeSymKey(pms); pms = NULL; if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } rv = ssl3_AppendHandshakeHeader(ss, client_key_exchange, isTLS ? enc_pms.len + 2 : enc_pms.len); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } if (isTLS) { rv = ssl3_AppendHandshakeVariable(ss, enc_pms.data, enc_pms.len, 2); } else { rv = ssl3_AppendHandshake(ss, enc_pms.data, enc_pms.len); } if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } rv = SECSuccess; loser: if (enc_pms.data != NULL) { PORT_Free(enc_pms.data); } if (pms != NULL) { PK11_FreeSymKey(pms); } return rv; } /* Called from ssl3_SendClientKeyExchange(). */ /* Presently, this always uses PKCS11. There is no bypass for this. */ static SECStatus sendDHClientKeyExchange(sslSocket * ss, SECKEYPublicKey * svrPubKey) { PK11SymKey * pms = NULL; SECStatus rv = SECFailure; PRBool isTLS; CK_MECHANISM_TYPE target; SECKEYDHParams dhParam; /* DH parameters */ SECKEYPublicKey *pubKey = NULL; /* Ephemeral DH key */ SECKEYPrivateKey *privKey = NULL; /* Ephemeral DH key */ PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0); /* Copy DH parameters from server key */ dhParam.prime.data = svrPubKey->u.dh.prime.data; dhParam.prime.len = svrPubKey->u.dh.prime.len; dhParam.base.data = svrPubKey->u.dh.base.data; dhParam.base.len = svrPubKey->u.dh.base.len; /* Generate ephemeral DH keypair */ privKey = SECKEY_CreateDHPrivateKey(&dhParam, &pubKey, NULL); if (!privKey || !pubKey) { ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL); rv = SECFailure; goto loser; } PRINT_BUF(50, (ss, "DH public value:", pubKey->u.dh.publicValue.data, pubKey->u.dh.publicValue.len)); if (isTLS) target = CKM_TLS_MASTER_KEY_DERIVE_DH; else target = CKM_SSL3_MASTER_KEY_DERIVE_DH; /* Determine the PMS */ pms = PK11_PubDerive(privKey, svrPubKey, PR_FALSE, NULL, NULL, CKM_DH_PKCS_DERIVE, target, CKA_DERIVE, 0, NULL); if (pms == NULL) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } SECKEY_DestroyPrivateKey(privKey); privKey = NULL; rv = ssl3_InitPendingCipherSpec(ss, pms); PK11_FreeSymKey(pms); pms = NULL; if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } rv = ssl3_AppendHandshakeHeader(ss, client_key_exchange, pubKey->u.dh.publicValue.len + 2); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } rv = ssl3_AppendHandshakeVariable(ss, pubKey->u.dh.publicValue.data, pubKey->u.dh.publicValue.len, 2); SECKEY_DestroyPublicKey(pubKey); pubKey = NULL; if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } rv = SECSuccess; loser: if(pms) PK11_FreeSymKey(pms); if(privKey) SECKEY_DestroyPrivateKey(privKey); if(pubKey) SECKEY_DestroyPublicKey(pubKey); return rv; } /* Called from ssl3_HandleServerHelloDone(). */ static SECStatus ssl3_SendClientKeyExchange(sslSocket *ss) { SECKEYPublicKey * serverKey = NULL; SECStatus rv = SECFailure; PRBool isTLS; SSL_TRC(3, ("%d: SSL3[%d]: send client_key_exchange handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (ss->sec.peerKey == NULL) { serverKey = CERT_ExtractPublicKey(ss->sec.peerCert); if (serverKey == NULL) { PORT_SetError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE); return SECFailure; } } else { serverKey = ss->sec.peerKey; ss->sec.peerKey = NULL; /* we're done with it now */ } isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0); /* enforce limits on kea key sizes. */ if (ss->ssl3.hs.kea_def->is_limited) { int keyLen = SECKEY_PublicKeyStrength(serverKey); /* bytes */ if (keyLen * BPB > ss->ssl3.hs.kea_def->key_size_limit) { if (isTLS) (void)SSL3_SendAlert(ss, alert_fatal, export_restriction); else (void)ssl3_HandshakeFailure(ss); PORT_SetError(SSL_ERROR_PUB_KEY_SIZE_LIMIT_EXCEEDED); goto loser; } } ss->sec.keaType = ss->ssl3.hs.kea_def->exchKeyType; ss->sec.keaKeyBits = SECKEY_PublicKeyStrengthInBits(serverKey); switch (ss->ssl3.hs.kea_def->exchKeyType) { case kt_rsa: rv = sendRSAClientKeyExchange(ss, serverKey); break; case kt_dh: rv = sendDHClientKeyExchange(ss, serverKey); break; #ifdef NSS_ENABLE_ECC case kt_ecdh: rv = ssl3_SendECDHClientKeyExchange(ss, serverKey); break; #endif /* NSS_ENABLE_ECC */ default: /* got an unknown or unsupported Key Exchange Algorithm. */ SEND_ALERT PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); break; } SSL_TRC(3, ("%d: SSL3[%d]: DONE sending client_key_exchange", SSL_GETPID(), ss->fd)); loser: if (serverKey) SECKEY_DestroyPublicKey(serverKey); return rv; /* err code already set. */ } /* Called from ssl3_HandleServerHelloDone(). */ static SECStatus ssl3_SendCertificateVerify(sslSocket *ss) { SECStatus rv = SECFailure; PRBool isTLS; SECItem buf = {siBuffer, NULL, 0}; SSL3Hashes hashes; PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); SSL_TRC(3, ("%d: SSL3[%d]: send certificate_verify handshake", SSL_GETPID(), ss->fd)); ssl_GetSpecReadLock(ss); rv = ssl3_ComputeHandshakeHashes(ss, ss->ssl3.pwSpec, &hashes, 0); ssl_ReleaseSpecReadLock(ss); if (rv != SECSuccess) { goto done; /* err code was set by ssl3_ComputeHandshakeHashes */ } isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0); rv = ssl3_SignHashes(&hashes, ss->ssl3.clientPrivateKey, &buf, isTLS); if (rv == SECSuccess) { PK11SlotInfo * slot; sslSessionID * sid = ss->sec.ci.sid; /* Remember the info about the slot that did the signing. ** Later, when doing an SSL restart handshake, verify this. ** These calls are mere accessors, and can't fail. */ slot = PK11_GetSlotFromPrivateKey(ss->ssl3.clientPrivateKey); sid->u.ssl3.clAuthSeries = PK11_GetSlotSeries(slot); sid->u.ssl3.clAuthSlotID = PK11_GetSlotID(slot); sid->u.ssl3.clAuthModuleID = PK11_GetModuleID(slot); sid->u.ssl3.clAuthValid = PR_TRUE; PK11_FreeSlot(slot); } /* If we're doing RSA key exchange, we're all done with the private key * here. Diffie-Hellman key exchanges need the client's * private key for the key exchange. */ if (ss->ssl3.hs.kea_def->exchKeyType == kt_rsa) { SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey); ss->ssl3.clientPrivateKey = NULL; } if (rv != SECSuccess) { goto done; /* err code was set by ssl3_SignHashes */ } rv = ssl3_AppendHandshakeHeader(ss, certificate_verify, buf.len + 2); if (rv != SECSuccess) { goto done; /* error code set by AppendHandshake */ } rv = ssl3_AppendHandshakeVariable(ss, buf.data, buf.len, 2); if (rv != SECSuccess) { goto done; /* error code set by AppendHandshake */ } done: if (buf.data) PORT_Free(buf.data); return rv; } /* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete * ssl3 ServerHello message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleServerHello(sslSocket *ss, SSL3Opaque *b, PRUint32 length) { sslSessionID *sid = ss->sec.ci.sid; PRInt32 temp; /* allow for consume number failure */ PRBool suite_found = PR_FALSE; int i; int errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO; SECStatus rv; SECItem sidBytes = {siBuffer, NULL, 0}; PRBool sid_match; PRBool isTLS = PR_FALSE; SSL3AlertDescription desc = illegal_parameter; SSL3ProtocolVersion version; SSL_TRC(3, ("%d: SSL3[%d]: handle server_hello handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); rv = ssl3_InitState(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); /* ssl3_InitState has set the error code. */ goto alert_loser; } if (ss->ssl3.hs.ws != wait_server_hello) { errCode = SSL_ERROR_RX_UNEXPECTED_SERVER_HELLO; desc = unexpected_message; goto alert_loser; } temp = ssl3_ConsumeHandshakeNumber(ss, 2, &b, &length); if (temp < 0) { goto loser; /* alert has been sent */ } version = (SSL3ProtocolVersion)temp; /* this is appropriate since the negotiation is complete, and we only ** know SSL 3.x. */ if (MSB(version) != MSB(SSL_LIBRARY_VERSION_3_0)) { desc = (version > SSL_LIBRARY_VERSION_3_0) ? protocol_version : handshake_failure; goto alert_loser; } rv = ssl3_NegotiateVersion(ss, version); if (rv != SECSuccess) { desc = (version > SSL_LIBRARY_VERSION_3_0) ? protocol_version : handshake_failure; errCode = SSL_ERROR_NO_CYPHER_OVERLAP; goto alert_loser; } isTLS = (ss->version > SSL_LIBRARY_VERSION_3_0); rv = ssl3_ConsumeHandshake( ss, &ss->ssl3.hs.server_random, SSL3_RANDOM_LENGTH, &b, &length); if (rv != SECSuccess) { goto loser; /* alert has been sent */ } rv = ssl3_ConsumeHandshakeVariable(ss, &sidBytes, 1, &b, &length); if (rv != SECSuccess) { goto loser; /* alert has been sent */ } if (sidBytes.len > SSL3_SESSIONID_BYTES) { if (isTLS) desc = decode_error; goto alert_loser; /* malformed. */ } /* find selected cipher suite in our list. */ temp = ssl3_ConsumeHandshakeNumber(ss, 2, &b, &length); if (temp < 0) { goto loser; /* alert has been sent */ } ssl3_config_match_init(ss); for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) { ssl3CipherSuiteCfg *suite = &ss->cipherSuites[i]; if ((temp == suite->cipher_suite) && (config_match(suite, ss->ssl3.policy, PR_TRUE))) { suite_found = PR_TRUE; break; /* success */ } } if (!suite_found) { desc = handshake_failure; errCode = SSL_ERROR_NO_CYPHER_OVERLAP; goto alert_loser; } ss->ssl3.hs.cipher_suite = (ssl3CipherSuite)temp; ss->ssl3.hs.suite_def = ssl_LookupCipherSuiteDef((ssl3CipherSuite)temp); PORT_Assert(ss->ssl3.hs.suite_def); if (!ss->ssl3.hs.suite_def) { PORT_SetError(errCode = SEC_ERROR_LIBRARY_FAILURE); goto loser; /* we don't send alerts for our screw-ups. */ } /* find selected compression method in our list. */ temp = ssl3_ConsumeHandshakeNumber(ss, 1, &b, &length); if (temp < 0) { goto loser; /* alert has been sent */ } suite_found = PR_FALSE; for (i = 0; i < compressionMethodsCount; i++) { if (temp == compressions[i]) { suite_found = PR_TRUE; break; /* success */ } } if (!suite_found) { desc = handshake_failure; errCode = SSL_ERROR_NO_COMPRESSION_OVERLAP; goto alert_loser; } ss->ssl3.hs.compression = (SSL3CompressionMethod)temp; #ifdef DISALLOW_SERVER_HELLO_EXTENSIONS if (length != 0) { /* malformed */ goto alert_loser; } #endif /* Any errors after this point are not "malformed" errors. */ desc = handshake_failure; /* we need to call ssl3_SetupPendingCipherSpec here so we can check the * key exchange algorithm. */ rv = ssl3_SetupPendingCipherSpec(ss); if (rv != SECSuccess) { goto alert_loser; /* error code is set. */ } /* We may or may not have sent a session id, we may get one back or * not and if so it may match the one we sent. * Attempt to restore the master secret to see if this is so... * Don't consider failure to find a matching SID an error. */ sid_match = (PRBool)(sidBytes.len > 0 && sidBytes.len == sid->u.ssl3.sessionIDLength && !PORT_Memcmp(sid->u.ssl3.sessionID, sidBytes.data, sidBytes.len)); if (sid_match && sid->version == ss->version && sid->u.ssl3.cipherSuite == ss->ssl3.hs.cipher_suite) do { ssl3CipherSpec *pwSpec = ss->ssl3.pwSpec; SECItem wrappedMS; /* wrapped master secret. */ ss->sec.authAlgorithm = sid->authAlgorithm; ss->sec.authKeyBits = sid->authKeyBits; ss->sec.keaType = sid->keaType; ss->sec.keaKeyBits = sid->keaKeyBits; /* 3 cases here: * a) key is wrapped (implies using PKCS11) * b) key is unwrapped, but we're still using PKCS11 * c) key is unwrapped, and we're bypassing PKCS11. */ if (sid->u.ssl3.keys.msIsWrapped) { PK11SlotInfo *slot; PK11SymKey * wrapKey; /* wrapping key */ CK_FLAGS keyFlags = 0; if (ss->opt.bypassPKCS11) { /* we cannot restart a non-bypass session in a ** bypass socket. */ break; } /* unwrap master secret with PKCS11 */ slot = SECMOD_LookupSlot(sid->u.ssl3.masterModuleID, sid->u.ssl3.masterSlotID); if (slot == NULL) { break; /* not considered an error. */ } if (!PK11_IsPresent(slot)) { PK11_FreeSlot(slot); break; /* not considered an error. */ } wrapKey = PK11_GetWrapKey(slot, sid->u.ssl3.masterWrapIndex, sid->u.ssl3.masterWrapMech, sid->u.ssl3.masterWrapSeries, ss->pkcs11PinArg); PK11_FreeSlot(slot); if (wrapKey == NULL) { break; /* not considered an error. */ } if (ss->version > SSL_LIBRARY_VERSION_3_0) { /* isTLS */ keyFlags = CKF_SIGN | CKF_VERIFY; } wrappedMS.data = sid->u.ssl3.keys.wrapped_master_secret; wrappedMS.len = sid->u.ssl3.keys.wrapped_master_secret_len; pwSpec->master_secret = PK11_UnwrapSymKeyWithFlags(wrapKey, sid->u.ssl3.masterWrapMech, NULL, &wrappedMS, CKM_SSL3_MASTER_KEY_DERIVE, CKA_DERIVE, sizeof(SSL3MasterSecret), keyFlags); errCode = PORT_GetError(); PK11_FreeSymKey(wrapKey); if (pwSpec->master_secret == NULL) { break; /* errorCode set just after call to UnwrapSymKey. */ } } else if (ss->opt.bypassPKCS11) { /* MS is not wrapped */ wrappedMS.data = sid->u.ssl3.keys.wrapped_master_secret; wrappedMS.len = sid->u.ssl3.keys.wrapped_master_secret_len; memcpy(pwSpec->raw_master_secret, wrappedMS.data, wrappedMS.len); pwSpec->msItem.data = pwSpec->raw_master_secret; pwSpec->msItem.len = wrappedMS.len; } else { /* We CAN restart a bypass session in a non-bypass socket. */ /* need to import the raw master secret to session object */ PK11SlotInfo *slot = PK11_GetInternalSlot(); wrappedMS.data = sid->u.ssl3.keys.wrapped_master_secret; wrappedMS.len = sid->u.ssl3.keys.wrapped_master_secret_len; pwSpec->master_secret = PK11_ImportSymKey(slot, CKM_SSL3_MASTER_KEY_DERIVE, PK11_OriginUnwrap, CKA_ENCRYPT, &wrappedMS, NULL); PK11_FreeSlot(slot); if (pwSpec->master_secret == NULL) { break; } } /* Got a Match */ ++ssl3stats.hsh_sid_cache_hits; ss->ssl3.hs.ws = wait_change_cipher; ss->ssl3.hs.isResuming = PR_TRUE; /* copy the peer cert from the SID */ if (sid->peerCert != NULL) { ss->sec.peerCert = CERT_DupCertificate(sid->peerCert); } /* NULL value for PMS signifies re-use of the old MS */ rv = ssl3_InitPendingCipherSpec(ss, NULL); if (rv != SECSuccess) { goto alert_loser; /* err code was set */ } return SECSuccess; } while (0); if (sid_match) ++ssl3stats.hsh_sid_cache_not_ok; else ++ssl3stats.hsh_sid_cache_misses; /* throw the old one away */ sid->u.ssl3.keys.resumable = PR_FALSE; (*ss->sec.uncache)(sid); ssl_FreeSID(sid); /* get a new sid */ ss->sec.ci.sid = sid = ssl3_NewSessionID(ss, PR_FALSE); if (sid == NULL) { goto alert_loser; /* memory error is set. */ } sid->version = ss->version; sid->u.ssl3.sessionIDLength = sidBytes.len; PORT_Memcpy(sid->u.ssl3.sessionID, sidBytes.data, sidBytes.len); ss->ssl3.hs.isResuming = PR_FALSE; ss->ssl3.hs.ws = wait_server_cert; return SECSuccess; alert_loser: (void)SSL3_SendAlert(ss, alert_fatal, desc); loser: errCode = ssl_MapLowLevelError(errCode); return SECFailure; } /* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete * ssl3 ServerKeyExchange message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleServerKeyExchange(sslSocket *ss, SSL3Opaque *b, PRUint32 length) { PRArenaPool * arena = NULL; SECKEYPublicKey *peerKey = NULL; PRBool isTLS; SECStatus rv; int errCode = SSL_ERROR_RX_MALFORMED_SERVER_KEY_EXCH; SSL3AlertDescription desc = illegal_parameter; SSL3Hashes hashes; SECItem signature = {siBuffer, NULL, 0}; SSL_TRC(3, ("%d: SSL3[%d]: handle server_key_exchange handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); if (ss->ssl3.hs.ws != wait_server_key && ss->ssl3.hs.ws != wait_server_cert) { errCode = SSL_ERROR_RX_UNEXPECTED_SERVER_KEY_EXCH; desc = unexpected_message; goto alert_loser; } if (ss->sec.peerCert == NULL) { errCode = SSL_ERROR_RX_UNEXPECTED_SERVER_KEY_EXCH; desc = unexpected_message; goto alert_loser; } isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); switch (ss->ssl3.hs.kea_def->exchKeyType) { case kt_rsa: { SECItem modulus = {siBuffer, NULL, 0}; SECItem exponent = {siBuffer, NULL, 0}; rv = ssl3_ConsumeHandshakeVariable(ss, &modulus, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } rv = ssl3_ConsumeHandshakeVariable(ss, &exponent, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } rv = ssl3_ConsumeHandshakeVariable(ss, &signature, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } if (length != 0) { if (isTLS) desc = decode_error; goto alert_loser; /* malformed. */ } /* failures after this point are not malformed handshakes. */ /* TLS: send decrypt_error if signature failed. */ desc = isTLS ? decrypt_error : handshake_failure; /* * check to make sure the hash is signed by right guy */ rv = ssl3_ComputeExportRSAKeyHash(modulus, exponent, &ss->ssl3.hs.client_random, &ss->ssl3.hs.server_random, &hashes, ss->opt.bypassPKCS11); if (rv != SECSuccess) { errCode = ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); goto alert_loser; } rv = ssl3_VerifySignedHashes(&hashes, ss->sec.peerCert, &signature, isTLS, ss->pkcs11PinArg); if (rv != SECSuccess) { errCode = ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); goto alert_loser; } /* * we really need to build a new key here because we can no longer * ignore calling SECKEY_DestroyPublicKey. Using the key may allocate * pkcs11 slots and ID's. */ arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE); if (arena == NULL) { goto no_memory; } peerKey = PORT_ArenaZNew(arena, SECKEYPublicKey); if (peerKey == NULL) { PORT_FreeArena(arena, PR_FALSE); goto no_memory; } peerKey->arena = arena; peerKey->keyType = rsaKey; peerKey->pkcs11Slot = NULL; peerKey->pkcs11ID = CK_INVALID_HANDLE; if (SECITEM_CopyItem(arena, &peerKey->u.rsa.modulus, &modulus) || SECITEM_CopyItem(arena, &peerKey->u.rsa.publicExponent, &exponent)) { PORT_FreeArena(arena, PR_FALSE); goto no_memory; } ss->sec.peerKey = peerKey; ss->ssl3.hs.ws = wait_cert_request; return SECSuccess; } case kt_dh: { SECItem dh_p = {siBuffer, NULL, 0}; SECItem dh_g = {siBuffer, NULL, 0}; SECItem dh_Ys = {siBuffer, NULL, 0}; rv = ssl3_ConsumeHandshakeVariable(ss, &dh_p, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } rv = ssl3_ConsumeHandshakeVariable(ss, &dh_g, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } rv = ssl3_ConsumeHandshakeVariable(ss, &dh_Ys, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } rv = ssl3_ConsumeHandshakeVariable(ss, &signature, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } if (length != 0) { if (isTLS) desc = decode_error; goto alert_loser; /* malformed. */ } PRINT_BUF(60, (NULL, "Server DH p", dh_p.data, dh_p.len)); PRINT_BUF(60, (NULL, "Server DH g", dh_g.data, dh_g.len)); PRINT_BUF(60, (NULL, "Server DH Ys", dh_Ys.data, dh_Ys.len)); /* failures after this point are not malformed handshakes. */ /* TLS: send decrypt_error if signature failed. */ desc = isTLS ? decrypt_error : handshake_failure; /* * check to make sure the hash is signed by right guy */ rv = ssl3_ComputeDHKeyHash(dh_p, dh_g, dh_Ys, &ss->ssl3.hs.client_random, &ss->ssl3.hs.server_random, &hashes, ss->opt.bypassPKCS11); if (rv != SECSuccess) { errCode = ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); goto alert_loser; } rv = ssl3_VerifySignedHashes(&hashes, ss->sec.peerCert, &signature, isTLS, ss->pkcs11PinArg); if (rv != SECSuccess) { errCode = ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); goto alert_loser; } /* * we really need to build a new key here because we can no longer * ignore calling SECKEY_DestroyPublicKey. Using the key may allocate * pkcs11 slots and ID's. */ arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE); if (arena == NULL) { goto no_memory; } ss->sec.peerKey = peerKey = PORT_ArenaZNew(arena, SECKEYPublicKey); if (peerKey == NULL) { goto no_memory; } peerKey->arena = arena; peerKey->keyType = dhKey; peerKey->pkcs11Slot = NULL; peerKey->pkcs11ID = CK_INVALID_HANDLE; if (SECITEM_CopyItem(arena, &peerKey->u.dh.prime, &dh_p) || SECITEM_CopyItem(arena, &peerKey->u.dh.base, &dh_g) || SECITEM_CopyItem(arena, &peerKey->u.dh.publicValue, &dh_Ys)) { PORT_FreeArena(arena, PR_FALSE); goto no_memory; } ss->sec.peerKey = peerKey; ss->ssl3.hs.ws = wait_cert_request; return SECSuccess; } #ifdef NSS_ENABLE_ECC case kt_ecdh: rv = ssl3_HandleECDHServerKeyExchange(ss, b, length); return rv; #endif /* NSS_ENABLE_ECC */ default: desc = handshake_failure; errCode = SEC_ERROR_UNSUPPORTED_KEYALG; break; /* goto alert_loser; */ } alert_loser: (void)SSL3_SendAlert(ss, alert_fatal, desc); loser: PORT_SetError( errCode ); return SECFailure; no_memory: /* no-memory error has already been set. */ ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); return SECFailure; } typedef struct dnameNode { struct dnameNode *next; SECItem name; } dnameNode; /* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete * ssl3 Certificate Request message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleCertificateRequest(sslSocket *ss, SSL3Opaque *b, PRUint32 length) { PRArenaPool * arena = NULL; dnameNode * node; PRInt32 remaining; PRBool isTLS = PR_FALSE; int i; int errCode = SSL_ERROR_RX_MALFORMED_CERT_REQUEST; int nnames = 0; SECStatus rv; SSL3AlertDescription desc = illegal_parameter; SECItem cert_types = {siBuffer, NULL, 0}; CERTDistNames ca_list; SSL_TRC(3, ("%d: SSL3[%d]: handle certificate_request handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); if (ss->ssl3.hs.ws != wait_cert_request && ss->ssl3.hs.ws != wait_server_key) { desc = unexpected_message; errCode = SSL_ERROR_RX_UNEXPECTED_CERT_REQUEST; goto alert_loser; } /* clean up anything left from previous handshake. */ if (ss->ssl3.clientCertChain != NULL) { CERT_DestroyCertificateList(ss->ssl3.clientCertChain); ss->ssl3.clientCertChain = NULL; } isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); rv = ssl3_ConsumeHandshakeVariable(ss, &cert_types, 1, &b, &length); if (rv != SECSuccess) goto loser; /* malformed, alert has been sent */ arena = ca_list.arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE); if (arena == NULL) goto no_mem; remaining = ssl3_ConsumeHandshakeNumber(ss, 2, &b, &length); if (remaining < 0) goto loser; /* malformed, alert has been sent */ if ((PRUint32)remaining > length) goto alert_loser; ca_list.head = node = PORT_ArenaZNew(arena, dnameNode); if (node == NULL) goto no_mem; while (remaining > 0) { PRInt32 len; if (remaining < 2) goto alert_loser; /* malformed */ node->name.len = len = ssl3_ConsumeHandshakeNumber(ss, 2, &b, &length); if (len <= 0) goto loser; /* malformed, alert has been sent */ remaining -= 2; if (remaining < len) goto alert_loser; /* malformed */ node->name.data = b; b += len; length -= len; remaining -= len; nnames++; if (remaining <= 0) break; /* success */ node->next = PORT_ArenaZNew(arena, dnameNode); node = node->next; if (node == NULL) goto no_mem; } ca_list.nnames = nnames; ca_list.names = PORT_ArenaNewArray(arena, SECItem, nnames); if (nnames > 0 && ca_list.names == NULL) goto no_mem; for(i = 0, node = (dnameNode*)ca_list.head; i < nnames; i++, node = node->next) { ca_list.names[i] = node->name; } if (length != 0) goto alert_loser; /* malformed */ desc = no_certificate; ss->ssl3.hs.ws = wait_hello_done; if (ss->getClientAuthData == NULL) { rv = SECFailure; /* force it to send a no_certificate alert */ } else { /* XXX Should pass cert_types in this call!! */ rv = (SECStatus)(*ss->getClientAuthData)(ss->getClientAuthDataArg, ss->fd, &ca_list, &ss->ssl3.clientCertificate, &ss->ssl3.clientPrivateKey); } switch (rv) { case SECWouldBlock: /* getClientAuthData has put up a dialog box. */ ssl_SetAlwaysBlock(ss); break; /* not an error */ case SECSuccess: /* check what the callback function returned */ if ((!ss->ssl3.clientCertificate) || (!ss->ssl3.clientPrivateKey)) { /* we are missing either the key or cert */ if (ss->ssl3.clientCertificate) { /* got a cert, but no key - free it */ CERT_DestroyCertificate(ss->ssl3.clientCertificate); ss->ssl3.clientCertificate = NULL; } if (ss->ssl3.clientPrivateKey) { /* got a key, but no cert - free it */ SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey); ss->ssl3.clientPrivateKey = NULL; } goto send_no_certificate; } /* Setting ssl3.clientCertChain non-NULL will cause * ssl3_HandleServerHelloDone to call SendCertificate. */ ss->ssl3.clientCertChain = CERT_CertChainFromCert( ss->ssl3.clientCertificate, certUsageSSLClient, PR_FALSE); if (ss->ssl3.clientCertChain == NULL) { if (ss->ssl3.clientCertificate != NULL) { CERT_DestroyCertificate(ss->ssl3.clientCertificate); ss->ssl3.clientCertificate = NULL; } if (ss->ssl3.clientPrivateKey != NULL) { SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey); ss->ssl3.clientPrivateKey = NULL; } goto send_no_certificate; } break; /* not an error */ case SECFailure: default: send_no_certificate: if (isTLS) { ss->ssl3.sendEmptyCert = PR_TRUE; } else { (void)SSL3_SendAlert(ss, alert_warning, no_certificate); } rv = SECSuccess; break; } goto done; no_mem: rv = SECFailure; PORT_SetError(SEC_ERROR_NO_MEMORY); goto done; alert_loser: if (isTLS && desc == illegal_parameter) desc = decode_error; (void)SSL3_SendAlert(ss, alert_fatal, desc); loser: PORT_SetError(errCode); rv = SECFailure; done: if (arena != NULL) PORT_FreeArena(arena, PR_FALSE); return rv; } /* * attempt to restart the handshake after asynchronously handling * a request for the client's certificate. * * inputs: * cert Client cert chosen by application. * Note: ssl takes this reference, and does not bump the * reference count. The caller should drop its reference * without calling CERT_DestroyCert after calling this function. * * key Private key associated with cert. This function makes a * copy of the private key, so the caller remains responsible * for destroying its copy after this function returns. * * certChain DER-encoded certs, client cert and its signers. * Note: ssl takes this reference, and does not copy the chain. * The caller should drop its reference without destroying the * chain. SSL will free the chain when it is done with it. * * Return value: XXX * * XXX This code only works on the initial handshake on a connection, XXX * It does not work on a subsequent handshake (redo). * * Caller holds 1stHandshakeLock. */ SECStatus ssl3_RestartHandshakeAfterCertReq(sslSocket * ss, CERTCertificate * cert, SECKEYPrivateKey * key, CERTCertificateList *certChain) { SECStatus rv = SECSuccess; if (MSB(ss->version) == MSB(SSL_LIBRARY_VERSION_3_0)) { /* XXX This code only works on the initial handshake on a connection, ** XXX It does not work on a subsequent handshake (redo). */ if (ss->handshake != 0) { ss->handshake = ssl_GatherRecord1stHandshake; ss->ssl3.clientCertificate = cert; ss->ssl3.clientCertChain = certChain; if (key == NULL) { (void)SSL3_SendAlert(ss, alert_warning, no_certificate); ss->ssl3.clientPrivateKey = NULL; } else { ss->ssl3.clientPrivateKey = SECKEY_CopyPrivateKey(key); } ssl_GetRecvBufLock(ss); if (ss->ssl3.hs.msgState.buf != NULL) { rv = ssl3_HandleRecord(ss, NULL, &ss->gs.buf); } ssl_ReleaseRecvBufLock(ss); } } return rv; } /* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete * ssl3 Server Hello Done message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleServerHelloDone(sslSocket *ss) { SECStatus rv; SSL3WaitState ws = ss->ssl3.hs.ws; PRBool send_verify = PR_FALSE; SSL_TRC(3, ("%d: SSL3[%d]: handle server_hello_done handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); if (ws != wait_hello_done && ws != wait_server_cert && ws != wait_server_key && ws != wait_cert_request) { SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_DONE); return SECFailure; } ssl_GetXmitBufLock(ss); /*******************************/ if (ss->ssl3.sendEmptyCert) { ss->ssl3.sendEmptyCert = PR_FALSE; rv = ssl3_SendEmptyCertificate(ss); /* Don't send verify */ if (rv != SECSuccess) { goto loser; /* error code is set. */ } } else if (ss->ssl3.clientCertChain != NULL && ss->ssl3.clientPrivateKey != NULL) { send_verify = PR_TRUE; rv = ssl3_SendCertificate(ss); if (rv != SECSuccess) { goto loser; /* error code is set. */ } } rv = ssl3_SendClientKeyExchange(ss); if (rv != SECSuccess) { goto loser; /* err is set. */ } if (send_verify) { rv = ssl3_SendCertificateVerify(ss); if (rv != SECSuccess) { goto loser; /* err is set. */ } } rv = ssl3_SendChangeCipherSpecs(ss); if (rv != SECSuccess) { goto loser; /* err code was set. */ } rv = ssl3_SendFinished(ss, 0); if (rv != SECSuccess) { goto loser; /* err code was set. */ } ssl_ReleaseXmitBufLock(ss); /*******************************/ ss->ssl3.hs.ws = wait_change_cipher; return SECSuccess; loser: ssl_ReleaseXmitBufLock(ss); return rv; } /* * Routines used by servers */ static SECStatus ssl3_SendHelloRequest(sslSocket *ss) { SECStatus rv; SSL_TRC(3, ("%d: SSL3[%d]: send hello_request handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) ); rv = ssl3_AppendHandshakeHeader(ss, hello_request, 0); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake */ } rv = ssl3_FlushHandshake(ss, 0); if (rv != SECSuccess) { return rv; /* error code set by ssl3_FlushHandshake */ } ss->ssl3.hs.ws = wait_client_hello; return SECSuccess; } /* Sets memory error when returning NULL. * Called from: * ssl3_SendClientHello() * ssl3_HandleServerHello() * ssl3_HandleClientHello() * ssl3_HandleV2ClientHello() */ static sslSessionID * ssl3_NewSessionID(sslSocket *ss, PRBool is_server) { sslSessionID *sid; sid = PORT_ZNew(sslSessionID); if (sid == NULL) return sid; sid->peerID = (ss->peerID == NULL) ? NULL : PORT_Strdup(ss->peerID); sid->urlSvrName = (ss->url == NULL) ? NULL : PORT_Strdup(ss->url); sid->addr = ss->sec.ci.peer; sid->port = ss->sec.ci.port; sid->references = 1; sid->cached = never_cached; sid->version = ss->version; sid->u.ssl3.keys.resumable = PR_TRUE; sid->u.ssl3.policy = SSL_ALLOWED; sid->u.ssl3.clientWriteKey = NULL; sid->u.ssl3.serverWriteKey = NULL; if (is_server) { SECStatus rv; int pid = SSL_GETPID(); sid->u.ssl3.sessionIDLength = SSL3_SESSIONID_BYTES; sid->u.ssl3.sessionID[0] = (pid >> 8) & 0xff; sid->u.ssl3.sessionID[1] = pid & 0xff; rv = PK11_GenerateRandom(sid->u.ssl3.sessionID + 2, SSL3_SESSIONID_BYTES -2); if (rv != SECSuccess) { ssl_FreeSID(sid); ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE); return NULL; } } return sid; } /* Called from: ssl3_HandleClientHello, ssl3_HandleV2ClientHello */ static SECStatus ssl3_SendServerHelloSequence(sslSocket *ss) { const ssl3KEADef *kea_def; SECStatus rv; SSL_TRC(3, ("%d: SSL3[%d]: begin send server_hello sequence", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) ); rv = ssl3_SendServerHello(ss); if (rv != SECSuccess) { return rv; /* err code is set. */ } rv = ssl3_SendCertificate(ss); if (rv != SECSuccess) { return rv; /* error code is set. */ } /* We have to do this after the call to ssl3_SendServerHello, * because kea_def is set up by ssl3_SendServerHello(). */ kea_def = ss->ssl3.hs.kea_def; ss->ssl3.hs.usedStepDownKey = PR_FALSE; if (kea_def->is_limited && kea_def->exchKeyType == kt_rsa) { /* see if we can legally use the key in the cert. */ int keyLen; /* bytes */ keyLen = PK11_GetPrivateModulusLen( ss->serverCerts[kea_def->exchKeyType].SERVERKEY); if (keyLen > 0 && keyLen * BPB <= kea_def->key_size_limit ) { /* XXX AND cert is not signing only!! */ /* just fall through and use it. */ } else if (ss->stepDownKeyPair != NULL) { ss->ssl3.hs.usedStepDownKey = PR_TRUE; rv = ssl3_SendServerKeyExchange(ss); if (rv != SECSuccess) { return rv; /* err code was set. */ } } else { #ifndef HACKED_EXPORT_SERVER PORT_SetError(SSL_ERROR_PUB_KEY_SIZE_LIMIT_EXCEEDED); return rv; #endif } #ifdef NSS_ENABLE_ECC } else if ((kea_def->kea == kea_ecdhe_rsa) || (kea_def->kea == kea_ecdhe_ecdsa)) { rv = ssl3_SendServerKeyExchange(ss); if (rv != SECSuccess) { return rv; /* err code was set. */ } #endif /* NSS_ENABLE_ECC */ } if (ss->opt.requestCertificate) { rv = ssl3_SendCertificateRequest(ss); if (rv != SECSuccess) { return rv; /* err code is set. */ } } rv = ssl3_SendServerHelloDone(ss); if (rv != SECSuccess) { return rv; /* err code is set. */ } ss->ssl3.hs.ws = (ss->opt.requestCertificate) ? wait_client_cert : wait_client_key; return SECSuccess; } /* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete * ssl3 Client Hello message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleClientHello(sslSocket *ss, SSL3Opaque *b, PRUint32 length) { sslSessionID * sid = NULL; PRInt32 tmp; unsigned int i; int j; SECStatus rv; int errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO; SSL3AlertDescription desc = illegal_parameter; SSL3ProtocolVersion version; SECItem sidBytes = {siBuffer, NULL, 0}; SECItem suites = {siBuffer, NULL, 0}; SECItem comps = {siBuffer, NULL, 0}; PRBool haveSpecWriteLock = PR_FALSE; PRBool haveXmitBufLock = PR_FALSE; SSL_TRC(3, ("%d: SSL3[%d]: handle client_hello handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); /* Get peer name of client */ rv = ssl_GetPeerInfo(ss); if (rv != SECSuccess) { return rv; /* error code is set. */ } rv = ssl3_InitState(ss); if (rv != SECSuccess) { return rv; /* ssl3_InitState has set the error code. */ } if ((ss->ssl3.hs.ws != wait_client_hello) && (ss->ssl3.hs.ws != idle_handshake)) { desc = unexpected_message; errCode = SSL_ERROR_RX_UNEXPECTED_CLIENT_HELLO; goto alert_loser; } tmp = ssl3_ConsumeHandshakeNumber(ss, 2, &b, &length); if (tmp < 0) goto loser; /* malformed, alert already sent */ ss->clientHelloVersion = version = (SSL3ProtocolVersion)tmp; rv = ssl3_NegotiateVersion(ss, version); if (rv != SECSuccess) { desc = (version > SSL_LIBRARY_VERSION_3_0) ? protocol_version : handshake_failure; errCode = SSL_ERROR_NO_CYPHER_OVERLAP; goto alert_loser; } /* grab the client random data. */ rv = ssl3_ConsumeHandshake( ss, &ss->ssl3.hs.client_random, SSL3_RANDOM_LENGTH, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed */ } /* grab the client's SID, if present. */ rv = ssl3_ConsumeHandshakeVariable(ss, &sidBytes, 1, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed */ } if (sidBytes.len > 0 && !ss->opt.noCache) { SSL_TRC(7, ("%d: SSL3[%d]: server, lookup client session-id for 0x%08x%08x%08x%08x", SSL_GETPID(), ss->fd, ss->sec.ci.peer.pr_s6_addr32[0], ss->sec.ci.peer.pr_s6_addr32[1], ss->sec.ci.peer.pr_s6_addr32[2], ss->sec.ci.peer.pr_s6_addr32[3])); if (ssl_sid_lookup) { sid = (*ssl_sid_lookup)(&ss->sec.ci.peer, sidBytes.data, sidBytes.len, ss->dbHandle); } else { errCode = SSL_ERROR_SERVER_CACHE_NOT_CONFIGURED; goto loser; } } /* grab the list of cipher suites. */ rv = ssl3_ConsumeHandshakeVariable(ss, &suites, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed */ } /* grab the list of compression methods. */ rv = ssl3_ConsumeHandshakeVariable(ss, &comps, 1, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed */ } /* It's OK for length to be non-zero here. * Non-zero length means that some new protocol revision has extended * the client hello message. */ desc = handshake_failure; if (sid != NULL) { /* We've found a session cache entry for this client. * Now, if we're going to require a client-auth cert, * and we don't already have this client's cert in the session cache, * and this is the first handshake on this connection (not a redo), * then drop this old cache entry and start a new session. */ if ((sid->peerCert == NULL) && ss->opt.requestCertificate && ((ss->opt.requireCertificate == SSL_REQUIRE_ALWAYS) || (ss->opt.requireCertificate == SSL_REQUIRE_NO_ERROR) || ((ss->opt.requireCertificate == SSL_REQUIRE_FIRST_HANDSHAKE) && !ss->firstHsDone))) { ++ssl3stats.hch_sid_cache_not_ok; ss->sec.uncache(sid); ssl_FreeSID(sid); sid = NULL; } } /* Look for a matching cipher suite. */ j = ssl3_config_match_init(ss); if (j <= 0) { /* no ciphers are working/supported by PK11 */ errCode = PORT_GetError(); /* error code is already set. */ goto alert_loser; } /* If we already have a session for this client, be sure to pick the ** same cipher suite we picked before. ** This is not a loop, despite appearances. */ if (sid) do { ssl3CipherSuiteCfg *suite = ss->cipherSuites; for (j = ssl_V3_SUITES_IMPLEMENTED; j > 0; --j, ++suite) { if (suite->cipher_suite == sid->u.ssl3.cipherSuite) break; } if (!j) break; if (!config_match(suite, ss->ssl3.policy, PR_TRUE)) break; for (i = 0; i < suites.len; i += 2) { if ((suites.data[i] == MSB(suite->cipher_suite)) && (suites.data[i + 1] == LSB(suite->cipher_suite))) { ss->ssl3.hs.cipher_suite = suite->cipher_suite; ss->ssl3.hs.suite_def = ssl_LookupCipherSuiteDef(ss->ssl3.hs.cipher_suite); goto suite_found; } } } while (0); /* Select a cipher suite. ** NOTE: This suite selection algorithm should be the same as the one in ** ssl3_HandleV2ClientHello(). */ for (j = 0; j < ssl_V3_SUITES_IMPLEMENTED; j++) { ssl3CipherSuiteCfg *suite = &ss->cipherSuites[j]; if (!config_match(suite, ss->ssl3.policy, PR_TRUE)) continue; for (i = 0; i < suites.len; i += 2) { if ((suites.data[i] == MSB(suite->cipher_suite)) && (suites.data[i + 1] == LSB(suite->cipher_suite))) { ss->ssl3.hs.cipher_suite = suite->cipher_suite; ss->ssl3.hs.suite_def = ssl_LookupCipherSuiteDef(ss->ssl3.hs.cipher_suite); goto suite_found; } } } errCode = SSL_ERROR_NO_CYPHER_OVERLAP; goto alert_loser; suite_found: /* Look for a matching compression algorithm. */ for (i = 0; i < comps.len; i++) { for (j = 0; j < compressionMethodsCount; j++) { if (comps.data[i] == compressions[j]) { ss->ssl3.hs.compression = (SSL3CompressionMethod)compressions[j]; goto compression_found; } } } errCode = SSL_ERROR_NO_COMPRESSION_OVERLAP; /* null compression must be supported */ goto alert_loser; compression_found: suites.data = NULL; comps.data = NULL; ss->sec.send = ssl3_SendApplicationData; /* If there are any failures while processing the old sid, * we don't consider them to be errors. Instead, We just behave * as if the client had sent us no sid to begin with, and make a new one. */ if (sid != NULL) do { ssl3CipherSpec *pwSpec; SECItem wrappedMS; /* wrapped key */ if (sid->version != ss->version || sid->u.ssl3.cipherSuite != ss->ssl3.hs.cipher_suite) { break; /* not an error */ } if (ss->sec.ci.sid) { ss->sec.uncache(ss->sec.ci.sid); PORT_Assert(ss->sec.ci.sid != sid); /* should be impossible, but ... */ if (ss->sec.ci.sid != sid) { ssl_FreeSID(ss->sec.ci.sid); } ss->sec.ci.sid = NULL; } /* we need to resurrect the master secret.... */ ssl_GetSpecWriteLock(ss); haveSpecWriteLock = PR_TRUE; pwSpec = ss->ssl3.pwSpec; if (sid->u.ssl3.keys.msIsWrapped) { PK11SymKey * wrapKey; /* wrapping key */ CK_FLAGS keyFlags = 0; if (ss->opt.bypassPKCS11) { /* we cannot restart a non-bypass session in a ** bypass socket. */ break; } wrapKey = getWrappingKey(ss, NULL, sid->u.ssl3.exchKeyType, sid->u.ssl3.masterWrapMech, ss->pkcs11PinArg); if (!wrapKey) { /* we have a SID cache entry, but no wrapping key for it??? */ break; } if (ss->version > SSL_LIBRARY_VERSION_3_0) { /* isTLS */ keyFlags = CKF_SIGN | CKF_VERIFY; } wrappedMS.data = sid->u.ssl3.keys.wrapped_master_secret; wrappedMS.len = sid->u.ssl3.keys.wrapped_master_secret_len; /* unwrap the master secret. */ pwSpec->master_secret = PK11_UnwrapSymKeyWithFlags(wrapKey, sid->u.ssl3.masterWrapMech, NULL, &wrappedMS, CKM_SSL3_MASTER_KEY_DERIVE, CKA_DERIVE, sizeof(SSL3MasterSecret), keyFlags); PK11_FreeSymKey(wrapKey); if (pwSpec->master_secret == NULL) { break; /* not an error */ } } else if (ss->opt.bypassPKCS11) { wrappedMS.data = sid->u.ssl3.keys.wrapped_master_secret; wrappedMS.len = sid->u.ssl3.keys.wrapped_master_secret_len; memcpy(pwSpec->raw_master_secret, wrappedMS.data, wrappedMS.len); pwSpec->msItem.data = pwSpec->raw_master_secret; pwSpec->msItem.len = wrappedMS.len; } else { /* We CAN restart a bypass session in a non-bypass socket. */ /* need to import the raw master secret to session object */ PK11SlotInfo * slot; wrappedMS.data = sid->u.ssl3.keys.wrapped_master_secret; wrappedMS.len = sid->u.ssl3.keys.wrapped_master_secret_len; slot = PK11_GetInternalSlot(); pwSpec->master_secret = PK11_ImportSymKey(slot, CKM_SSL3_MASTER_KEY_DERIVE, PK11_OriginUnwrap, CKA_ENCRYPT, &wrappedMS, NULL); PK11_FreeSlot(slot); if (pwSpec->master_secret == NULL) { break; /* not an error */ } } ss->sec.ci.sid = sid; if (sid->peerCert != NULL) { ss->sec.peerCert = CERT_DupCertificate(sid->peerCert); } /* * Old SID passed all tests, so resume this old session. * * XXX make sure compression still matches */ ++ssl3stats.hch_sid_cache_hits; ss->ssl3.hs.isResuming = PR_TRUE; ss->sec.authAlgorithm = sid->authAlgorithm; ss->sec.authKeyBits = sid->authKeyBits; ss->sec.keaType = sid->keaType; ss->sec.keaKeyBits = sid->keaKeyBits; /* server sids don't remember the server cert we previously sent, ** but they do remember the kea type we originally used, so we ** can locate it again, provided that the current ssl socket ** has had its server certs configured the same as the previous one. */ ss->sec.localCert = CERT_DupCertificate(ss->serverCerts[sid->keaType].serverCert); ssl_GetXmitBufLock(ss); haveXmitBufLock = PR_TRUE; rv = ssl3_SendServerHello(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } if (haveSpecWriteLock) { ssl_ReleaseSpecWriteLock(ss); haveSpecWriteLock = PR_FALSE; } /* NULL value for PMS signifies re-use of the old MS */ rv = ssl3_InitPendingCipherSpec(ss, NULL); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } rv = ssl3_SendChangeCipherSpecs(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } rv = ssl3_SendFinished(ss, 0); ss->ssl3.hs.ws = wait_change_cipher; if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } if (haveXmitBufLock) { ssl_ReleaseXmitBufLock(ss); haveXmitBufLock = PR_FALSE; } return SECSuccess; } while (0); if (haveSpecWriteLock) { ssl_ReleaseSpecWriteLock(ss); haveSpecWriteLock = PR_FALSE; } if (sid) { /* we had a sid, but it's no longer valid, free it */ ++ssl3stats.hch_sid_cache_not_ok; ss->sec.uncache(sid); ssl_FreeSID(sid); sid = NULL; } ++ssl3stats.hch_sid_cache_misses; sid = ssl3_NewSessionID(ss, PR_TRUE); if (sid == NULL) { errCode = PORT_GetError(); goto loser; /* memory error is set. */ } ss->sec.ci.sid = sid; ss->ssl3.hs.isResuming = PR_FALSE; ssl_GetXmitBufLock(ss); rv = ssl3_SendServerHelloSequence(ss); ssl_ReleaseXmitBufLock(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } if (haveXmitBufLock) { ssl_ReleaseXmitBufLock(ss); haveXmitBufLock = PR_FALSE; } return SECSuccess; alert_loser: if (haveSpecWriteLock) { ssl_ReleaseSpecWriteLock(ss); haveSpecWriteLock = PR_FALSE; } (void)SSL3_SendAlert(ss, alert_fatal, desc); /* FALLTHRU */ loser: if (haveSpecWriteLock) { ssl_ReleaseSpecWriteLock(ss); haveSpecWriteLock = PR_FALSE; } if (haveXmitBufLock) { ssl_ReleaseXmitBufLock(ss); haveXmitBufLock = PR_FALSE; } PORT_SetError(errCode); return SECFailure; } /* * ssl3_HandleV2ClientHello is used when a V2 formatted hello comes * in asking to use the V3 handshake. * Called from ssl2_HandleClientHelloMessage() in sslcon.c */ SECStatus ssl3_HandleV2ClientHello(sslSocket *ss, unsigned char *buffer, int length) { sslSessionID * sid = NULL; unsigned char * suites; unsigned char * random; SSL3ProtocolVersion version; SECStatus rv; int i; int j; int sid_length; int suite_length; int rand_length; int errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO; SSL3AlertDescription desc = handshake_failure; SSL_TRC(3, ("%d: SSL3[%d]: handle v2 client_hello", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); ssl_GetSSL3HandshakeLock(ss); rv = ssl3_InitState(ss); if (rv != SECSuccess) { ssl_ReleaseSSL3HandshakeLock(ss); return rv; /* ssl3_InitState has set the error code. */ } if (ss->ssl3.hs.ws != wait_client_hello) { desc = unexpected_message; errCode = SSL_ERROR_RX_UNEXPECTED_CLIENT_HELLO; goto loser; /* alert_loser */ } version = (buffer[1] << 8) | buffer[2]; suite_length = (buffer[3] << 8) | buffer[4]; sid_length = (buffer[5] << 8) | buffer[6]; rand_length = (buffer[7] << 8) | buffer[8]; ss->clientHelloVersion = version; rv = ssl3_NegotiateVersion(ss, version); if (rv != SECSuccess) { /* send back which ever alert client will understand. */ desc = (version > SSL_LIBRARY_VERSION_3_0) ? protocol_version : handshake_failure; errCode = SSL_ERROR_NO_CYPHER_OVERLAP; goto alert_loser; } /* if we get a non-zero SID, just ignore it. */ if (length != SSL_HL_CLIENT_HELLO_HBYTES + suite_length + sid_length + rand_length) { SSL_DBG(("%d: SSL3[%d]: bad v2 client hello message, len=%d should=%d", SSL_GETPID(), ss->fd, length, SSL_HL_CLIENT_HELLO_HBYTES + suite_length + sid_length + rand_length)); goto loser; /* malformed */ /* alert_loser */ } suites = buffer + SSL_HL_CLIENT_HELLO_HBYTES; random = suites + suite_length + sid_length; if (rand_length < SSL_MIN_CHALLENGE_BYTES || rand_length > SSL_MAX_CHALLENGE_BYTES) { goto loser; /* malformed */ /* alert_loser */ } PORT_Assert(SSL_MAX_CHALLENGE_BYTES == SSL3_RANDOM_LENGTH); PORT_Memset(&ss->ssl3.hs.client_random, 0, SSL3_RANDOM_LENGTH); PORT_Memcpy( &ss->ssl3.hs.client_random.rand[SSL3_RANDOM_LENGTH - rand_length], random, rand_length); PRINT_BUF(60, (ss, "client random:", &ss->ssl3.hs.client_random.rand[0], SSL3_RANDOM_LENGTH)); i = ssl3_config_match_init(ss); if (i <= 0) { errCode = PORT_GetError(); /* error code is already set. */ goto alert_loser; } /* Select a cipher suite. ** NOTE: This suite selection algorithm should be the same as the one in ** ssl3_HandleClientHello(). */ for (j = 0; j < ssl_V3_SUITES_IMPLEMENTED; j++) { ssl3CipherSuiteCfg *suite = &ss->cipherSuites[j]; if (!config_match(suite, ss->ssl3.policy, PR_TRUE)) continue; for (i = 0; i < suite_length; i += 3) { if ((suites[i] == 0) && (suites[i+1] == MSB(suite->cipher_suite)) && (suites[i+2] == LSB(suite->cipher_suite))) { ss->ssl3.hs.cipher_suite = suite->cipher_suite; ss->ssl3.hs.suite_def = ssl_LookupCipherSuiteDef(ss->ssl3.hs.cipher_suite); goto suite_found; } } } errCode = SSL_ERROR_NO_CYPHER_OVERLAP; goto alert_loser; suite_found: ss->ssl3.hs.compression = compression_null; ss->sec.send = ssl3_SendApplicationData; /* we don't even search for a cache hit here. It's just a miss. */ ++ssl3stats.hch_sid_cache_misses; sid = ssl3_NewSessionID(ss, PR_TRUE); if (sid == NULL) { errCode = PORT_GetError(); goto loser; /* memory error is set. */ } ss->sec.ci.sid = sid; /* do not worry about memory leak of sid since it now belongs to ci */ /* We have to update the handshake hashes before we can send stuff */ rv = ssl3_UpdateHandshakeHashes(ss, buffer, length); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } ssl_GetXmitBufLock(ss); rv = ssl3_SendServerHelloSequence(ss); ssl_ReleaseXmitBufLock(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } /* XXX_1 The call stack to here is: * ssl_Do1stHandshake -> ssl2_HandleClientHelloMessage -> here. * ssl2_HandleClientHelloMessage returns whatever we return here. * ssl_Do1stHandshake will continue looping if it gets back either * SECSuccess or SECWouldBlock. * SECSuccess is preferable here. See XXX_1 in sslgathr.c. */ ssl_ReleaseSSL3HandshakeLock(ss); return SECSuccess; alert_loser: SSL3_SendAlert(ss, alert_fatal, desc); loser: ssl_ReleaseSSL3HandshakeLock(ss); PORT_SetError(errCode); return SECFailure; } /* The negotiated version number has been already placed in ss->version. ** ** Called from: ssl3_HandleClientHello (resuming session), ** ssl3_SendServerHelloSequence <- ssl3_HandleClientHello (new session), ** ssl3_SendServerHelloSequence <- ssl3_HandleV2ClientHello (new session) */ static SECStatus ssl3_SendServerHello(sslSocket *ss) { sslSessionID *sid; SECStatus rv; PRUint32 length; SSL_TRC(3, ("%d: SSL3[%d]: send server_hello handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert( MSB(ss->version) == MSB(SSL_LIBRARY_VERSION_3_0)); if (MSB(ss->version) != MSB(SSL_LIBRARY_VERSION_3_0)) { PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP); return SECFailure; } sid = ss->sec.ci.sid; length = sizeof(SSL3ProtocolVersion) + SSL3_RANDOM_LENGTH + 1 + ((sid == NULL) ? 0: SSL3_SESSIONID_BYTES) + sizeof(ssl3CipherSuite) + 1; rv = ssl3_AppendHandshakeHeader(ss, server_hello, length); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeNumber(ss, ss->version, 2); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } rv = ssl3_GetNewRandom(&ss->ssl3.hs.server_random); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE); return rv; } rv = ssl3_AppendHandshake( ss, &ss->ssl3.hs.server_random, SSL3_RANDOM_LENGTH); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } if (sid) rv = ssl3_AppendHandshakeVariable( ss, sid->u.ssl3.sessionID, sid->u.ssl3.sessionIDLength, 1); else rv = ssl3_AppendHandshakeVariable(ss, NULL, 0, 1); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeNumber(ss, ss->ssl3.hs.cipher_suite, 2); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeNumber(ss, ss->ssl3.hs.compression, 1); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } rv = ssl3_SetupPendingCipherSpec(ss); if (rv != SECSuccess) { return rv; /* err set by ssl3_SetupPendingCipherSpec */ } return SECSuccess; } static SECStatus ssl3_SendServerKeyExchange(sslSocket *ss) { const ssl3KEADef * kea_def = ss->ssl3.hs.kea_def; SECStatus rv = SECFailure; int length; PRBool isTLS; SECItem signed_hash = {siBuffer, NULL, 0}; SSL3Hashes hashes; SECKEYPublicKey * sdPub; /* public key for step-down */ SSL_TRC(3, ("%d: SSL3[%d]: send server_key_exchange handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); switch (kea_def->exchKeyType) { case kt_rsa: /* Perform SSL Step-Down here. */ sdPub = ss->stepDownKeyPair->pubKey; PORT_Assert(sdPub != NULL); if (!sdPub) { PORT_SetError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); return SECFailure; } rv = ssl3_ComputeExportRSAKeyHash(sdPub->u.rsa.modulus, sdPub->u.rsa.publicExponent, &ss->ssl3.hs.client_random, &ss->ssl3.hs.server_random, &hashes, ss->opt.bypassPKCS11); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); return rv; } isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0); rv = ssl3_SignHashes(&hashes, ss->serverCerts[kt_rsa].SERVERKEY, &signed_hash, isTLS); if (rv != SECSuccess) { goto loser; /* ssl3_SignHashes has set err. */ } if (signed_hash.data == NULL) { /* how can this happen and rv == SECSuccess ?? */ PORT_SetError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); goto loser; } length = 2 + sdPub->u.rsa.modulus.len + 2 + sdPub->u.rsa.publicExponent.len + 2 + signed_hash.len; rv = ssl3_AppendHandshakeHeader(ss, server_key_exchange, length); if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeVariable(ss, sdPub->u.rsa.modulus.data, sdPub->u.rsa.modulus.len, 2); if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeVariable( ss, sdPub->u.rsa.publicExponent.data, sdPub->u.rsa.publicExponent.len, 2); if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeVariable(ss, signed_hash.data, signed_hash.len, 2); if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } PORT_Free(signed_hash.data); return SECSuccess; #ifdef NSS_ENABLE_ECC case kt_ecdh: { rv = ssl3_SendECDHServerKeyExchange(ss); return rv; } #endif /* NSS_ENABLE_ECC */ case kt_dh: case kt_null: default: PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); break; } loser: if (signed_hash.data != NULL) PORT_Free(signed_hash.data); return SECFailure; } static SECStatus ssl3_SendCertificateRequest(sslSocket *ss) { SECItem * name; CERTDistNames *ca_list; const uint8 * certTypes; SECItem * names = NULL; SECStatus rv; int length; int i; int calen = 0; int nnames = 0; int certTypesLength; SSL_TRC(3, ("%d: SSL3[%d]: send certificate_request handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); /* ssl3.ca_list is initialized to NULL, and never changed. */ ca_list = ss->ssl3.ca_list; if (!ca_list) { ca_list = ssl3_server_ca_list; } if (ca_list != NULL) { names = ca_list->names; nnames = ca_list->nnames; } if (!nnames) { PORT_SetError(SSL_ERROR_NO_TRUSTED_SSL_CLIENT_CA); return SECFailure; } for (i = 0, name = names; i < nnames; i++, name++) { calen += 2 + name->len; } certTypes = certificate_types; certTypesLength = sizeof certificate_types; length = 1 + certTypesLength + 2 + calen; rv = ssl3_AppendHandshakeHeader(ss, certificate_request, length); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeVariable(ss, certTypes, certTypesLength, 1); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeNumber(ss, calen, 2); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } for (i = 0, name = names; i < nnames; i++, name++) { rv = ssl3_AppendHandshakeVariable(ss, name->data, name->len, 2); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } } return SECSuccess; } static SECStatus ssl3_SendServerHelloDone(sslSocket *ss) { SECStatus rv; SSL_TRC(3, ("%d: SSL3[%d]: send server_hello_done handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); rv = ssl3_AppendHandshakeHeader(ss, server_hello_done, 0); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } rv = ssl3_FlushHandshake(ss, 0); if (rv != SECSuccess) { return rv; /* error code set by ssl3_FlushHandshake */ } return SECSuccess; } /* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete * ssl3 Certificate Verify message * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleCertificateVerify(sslSocket *ss, SSL3Opaque *b, PRUint32 length, SSL3Hashes *hashes) { SECItem signed_hash = {siBuffer, NULL, 0}; SECStatus rv; int errCode = SSL_ERROR_RX_MALFORMED_CERT_VERIFY; SSL3AlertDescription desc = handshake_failure; PRBool isTLS; SSL_TRC(3, ("%d: SSL3[%d]: handle certificate_verify handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); if (ss->ssl3.hs.ws != wait_cert_verify || ss->sec.peerCert == NULL) { desc = unexpected_message; errCode = SSL_ERROR_RX_UNEXPECTED_CERT_VERIFY; goto alert_loser; } rv = ssl3_ConsumeHandshakeVariable(ss, &signed_hash, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); /* XXX verify that the key & kea match */ rv = ssl3_VerifySignedHashes(hashes, ss->sec.peerCert, &signed_hash, isTLS, ss->pkcs11PinArg); if (rv != SECSuccess) { errCode = PORT_GetError(); desc = isTLS ? decrypt_error : handshake_failure; goto alert_loser; } signed_hash.data = NULL; if (length != 0) { desc = isTLS ? decode_error : illegal_parameter; goto alert_loser; /* malformed */ } ss->ssl3.hs.ws = wait_change_cipher; return SECSuccess; alert_loser: SSL3_SendAlert(ss, alert_fatal, desc); loser: PORT_SetError(errCode); return SECFailure; } /* find a slot that is able to generate a PMS and wrap it with RSA. * Then generate and return the PMS. * If the serverKeySlot parameter is non-null, this function will use * that slot to do the job, otherwise it will find a slot. * * Called from ssl3_DeriveConnectionKeysPKCS11() (above) * sendRSAClientKeyExchange() (above) * ssl3_HandleRSAClientKeyExchange() (below) * Caller must hold the SpecWriteLock, the SSL3HandshakeLock */ static PK11SymKey * ssl3_GenerateRSAPMS(sslSocket *ss, ssl3CipherSpec *spec, PK11SlotInfo * serverKeySlot) { PK11SymKey * pms = NULL; PK11SlotInfo * slot = serverKeySlot; void * pwArg = ss->pkcs11PinArg; SECItem param; CK_VERSION version; CK_MECHANISM_TYPE mechanism_array[3]; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); if (slot == NULL) { SSLCipherAlgorithm calg; /* The specReadLock would suffice here, but we cannot assert on ** read locks. Also, all the callers who call with a non-null ** slot already hold the SpecWriteLock. */ PORT_Assert( ss->opt.noLocks || ssl_HaveSpecWriteLock(ss)); PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec); calg = spec->cipher_def->calg; PORT_Assert(alg2Mech[calg].calg == calg); /* First get an appropriate slot. */ mechanism_array[0] = CKM_SSL3_PRE_MASTER_KEY_GEN; mechanism_array[1] = CKM_RSA_PKCS; mechanism_array[2] = alg2Mech[calg].cmech; slot = PK11_GetBestSlotMultiple(mechanism_array, 3, pwArg); if (slot == NULL) { /* can't find a slot with all three, find a slot with the minimum */ slot = PK11_GetBestSlotMultiple(mechanism_array, 2, pwArg); if (slot == NULL) { PORT_SetError(SSL_ERROR_TOKEN_SLOT_NOT_FOUND); return pms; /* which is NULL */ } } } /* Generate the pre-master secret ... */ version.major = MSB(ss->clientHelloVersion); version.minor = LSB(ss->clientHelloVersion); param.data = (unsigned char *)&version; param.len = sizeof version; pms = PK11_KeyGen(slot, CKM_SSL3_PRE_MASTER_KEY_GEN, ¶m, 0, pwArg); if (!serverKeySlot) PK11_FreeSlot(slot); if (pms == NULL) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); } return pms; } /* Note: The Bleichenbacher attack on PKCS#1 necessitates that we NEVER * return any indication of failure of the Client Key Exchange message, * where that failure is caused by the content of the client's message. * This function must not return SECFailure for any reason that is directly * or indirectly caused by the content of the client's encrypted PMS. * We must not send an alert and also not drop the connection. * Instead, we generate a random PMS. This will cause a failure * in the processing the finished message, which is exactly where * the failure must occur. * * Called from ssl3_HandleClientKeyExchange */ static SECStatus ssl3_HandleRSAClientKeyExchange(sslSocket *ss, SSL3Opaque *b, PRUint32 length, SECKEYPrivateKey *serverKey) { PK11SymKey * pms; unsigned char * cr = (unsigned char *)&ss->ssl3.hs.client_random; unsigned char * sr = (unsigned char *)&ss->ssl3.hs.server_random; ssl3CipherSpec * pwSpec = ss->ssl3.pwSpec; unsigned int outLen = 0; PRBool isTLS = PR_FALSE; SECStatus rv; SECItem enc_pms; unsigned char rsaPmsBuf[SSL3_RSA_PMS_LENGTH]; SECItem pmsItem = {siBuffer, rsaPmsBuf, sizeof rsaPmsBuf}; PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); enc_pms.data = b; enc_pms.len = length; if (ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0) { /* isTLS */ PRInt32 kLen; kLen = ssl3_ConsumeHandshakeNumber(ss, 2, &enc_pms.data, &enc_pms.len); if (kLen < 0) { PORT_SetError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); return SECFailure; } if ((unsigned)kLen < enc_pms.len) { enc_pms.len = kLen; } isTLS = PR_TRUE; } else { isTLS = (PRBool)(ss->ssl3.hs.kea_def->tls_keygen != 0); } if (ss->opt.bypassPKCS11) { /* TRIPLE BYPASS, get PMS directly from RSA decryption. * Use PK11_PrivDecryptPKCS1 to decrypt the PMS to a buffer, * then, check for version rollback attack, then * do the equivalent of ssl3_DeriveMasterSecret, placing the MS in * pwSpec->msItem. Finally call ssl3_InitPendingCipherSpec with * ss and NULL, so that it will use the MS we've already derived here. */ rv = PK11_PrivDecryptPKCS1(serverKey, rsaPmsBuf, &outLen, sizeof rsaPmsBuf, enc_pms.data, enc_pms.len); if (rv != SECSuccess) { /* avoid Bleichenbacker attack. generate faux pms. */ rv = PK11_GenerateRandom(rsaPmsBuf, sizeof rsaPmsBuf); /* ignore failure */ } else if (ss->opt.detectRollBack) { SSL3ProtocolVersion client_version = (rsaPmsBuf[0] << 8) | rsaPmsBuf[1]; if (client_version != ss->clientHelloVersion) { /* Version roll-back detected. ensure failure. */ rv = PK11_GenerateRandom(rsaPmsBuf, sizeof rsaPmsBuf); } } /* have PMS, build MS without PKCS11 */ rv = ssl3_MasterKeyDeriveBypass(pwSpec, cr, sr, &pmsItem, isTLS, PR_TRUE); if (rv != SECSuccess) { pwSpec->msItem.data = pwSpec->raw_master_secret; pwSpec->msItem.len = SSL3_MASTER_SECRET_LENGTH; PK11_GenerateRandom(pwSpec->msItem.data, pwSpec->msItem.len); } rv = ssl3_InitPendingCipherSpec(ss, NULL); } else { /* * unwrap pms out of the incoming buffer * Note: CKM_SSL3_MASTER_KEY_DERIVE is NOT the mechanism used to do * the unwrap. Rather, it is the mechanism with which the * unwrapped pms will be used. */ pms = PK11_PubUnwrapSymKey(serverKey, &enc_pms, CKM_SSL3_MASTER_KEY_DERIVE, CKA_DERIVE, 0); if (pms != NULL) { PRINT_BUF(60, (ss, "decrypted premaster secret:", PK11_GetKeyData(pms)->data, PK11_GetKeyData(pms)->len)); } else { /* unwrap failed. Generate a bogus PMS and carry on. */ PK11SlotInfo * slot = PK11_GetSlotFromPrivateKey(serverKey); ssl_GetSpecWriteLock(ss); pms = ssl3_GenerateRSAPMS(ss, ss->ssl3.prSpec, slot); ssl_ReleaseSpecWriteLock(ss); PK11_FreeSlot(slot); } if (pms == NULL) { /* last gasp. */ ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); return SECFailure; } rv = ssl3_InitPendingCipherSpec(ss, pms); PK11_FreeSymKey(pms); } if (rv != SECSuccess) { SEND_ALERT return SECFailure; /* error code set by ssl3_InitPendingCipherSpec */ } return SECSuccess; } /* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete * ssl3 ClientKeyExchange message from the remote client * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleClientKeyExchange(sslSocket *ss, SSL3Opaque *b, PRUint32 length) { SECKEYPrivateKey *serverKey = NULL; SECStatus rv; const ssl3KEADef * kea_def; #ifdef NSS_ENABLE_ECC SECKEYPublicKey *serverPubKey = NULL; #endif /* NSS_ENABLE_ECC */ SSL_TRC(3, ("%d: SSL3[%d]: handle client_key_exchange handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); if (ss->ssl3.hs.ws != wait_client_key) { SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CLIENT_KEY_EXCH); return SECFailure; } kea_def = ss->ssl3.hs.kea_def; #ifdef NSS_ENABLE_ECC /* XXX Using SSLKEAType to index server certifiates * does not work for (EC)DHE ciphers. Until we have * an indexing mechanism general enough for all key * exchange algorithms, we'll need to deal with each * one seprately. */ if ((kea_def->kea == kea_ecdhe_rsa) || (kea_def->kea == kea_ecdhe_ecdsa)) { if (ss->ephemeralECDHKeyPair != NULL) { serverKey = ss->ephemeralECDHKeyPair->privKey; ss->sec.keaKeyBits = SECKEY_PublicKeyStrengthInBits(ss->ephemeralECDHKeyPair->pubKey); } } else { #endif /* NSS_ENABLE_ECC */ serverKey = (ss->ssl3.hs.usedStepDownKey #ifdef DEBUG && kea_def->is_limited /* XXX OR cert is signing only */ && kea_def->exchKeyType == kt_rsa && ss->stepDownKeyPair != NULL #endif ) ? ss->stepDownKeyPair->privKey : ss->serverCerts[kea_def->exchKeyType].SERVERKEY; if (ss->ssl3.hs.usedStepDownKey #ifdef DEBUG && kea_def->is_limited /* XXX OR cert is signing only */ && kea_def->exchKeyType == kt_rsa && ss->stepDownKeyPair != NULL #endif ) { serverKey = ss->stepDownKeyPair->privKey; ss->sec.keaKeyBits = EXPORT_RSA_KEY_LENGTH * BPB; } else { sslServerCerts * sc = ss->serverCerts + kea_def->exchKeyType; serverKey = sc->SERVERKEY; ss->sec.keaKeyBits = sc->serverKeyBits; } #ifdef NSS_ENABLE_ECC } #endif /* NSS_ENABLE_ECC */ if (serverKey == NULL) { SEND_ALERT PORT_SetError(SSL_ERROR_NO_SERVER_KEY_FOR_ALG); return SECFailure; } ss->sec.keaType = kea_def->exchKeyType; switch (kea_def->exchKeyType) { case kt_rsa: rv = ssl3_HandleRSAClientKeyExchange(ss, b, length, serverKey); if (rv != SECSuccess) { SEND_ALERT return SECFailure; /* error code set */ } break; #ifdef NSS_ENABLE_ECC case kt_ecdh: /* XXX We really ought to be able to store multiple * EC certs (a requirement if we wish to support both * ECDH-RSA and ECDH-ECDSA key exchanges concurrently). * When we make that change, we'll need an index other * than kt_ecdh to pick the right EC certificate. */ if (((kea_def->kea == kea_ecdhe_ecdsa) || (kea_def->kea == kea_ecdhe_rsa)) && (ss->ephemeralECDHKeyPair != NULL)) { serverPubKey = ss->ephemeralECDHKeyPair->pubKey; } else { serverPubKey = CERT_ExtractPublicKey( ss->serverCerts[kt_ecdh].serverCert); } if (serverPubKey == NULL) { /* XXX Is this the right error code? */ PORT_SetError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE); return SECFailure; } rv = ssl3_HandleECDHClientKeyExchange(ss, b, length, serverPubKey, serverKey); if (rv != SECSuccess) { return SECFailure; /* error code set */ } break; #endif /* NSS_ENABLE_ECC */ default: (void) ssl3_HandshakeFailure(ss); PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); return SECFailure; } ss->ssl3.hs.ws = ss->sec.peerCert ? wait_cert_verify : wait_change_cipher; return SECSuccess; } /* This is TLS's equivalent of sending a no_certificate alert. */ static SECStatus ssl3_SendEmptyCertificate(sslSocket *ss) { SECStatus rv; rv = ssl3_AppendHandshakeHeader(ss, certificate, 3); if (rv == SECSuccess) { rv = ssl3_AppendHandshakeNumber(ss, 0, 3); } return rv; /* error, if any, set by functions called above. */ } #ifdef NISCC_TEST static PRInt32 connNum = 0; static SECStatus get_fake_cert(SECItem *pCertItem, int *pIndex) { PRFileDesc *cf; char * testdir; char * startat; char * stopat; const char *extension; int fileNum; PRInt32 numBytes = 0; PRStatus prStatus; PRFileInfo info; char cfn[100]; pCertItem->data = 0; if ((testdir = PR_GetEnv("NISCC_TEST")) == NULL) { return SECSuccess; } *pIndex = (NULL != strstr(testdir, "root")); extension = (strstr(testdir, "simple") ? "" : ".der"); fileNum = PR_AtomicIncrement(&connNum) - 1; if ((startat = PR_GetEnv("START_AT")) != NULL) { fileNum += atoi(startat); } if ((stopat = PR_GetEnv("STOP_AT")) != NULL && fileNum >= atoi(stopat)) { *pIndex = -1; return SECSuccess; } sprintf(cfn, "%s/%08d%s", testdir, fileNum, extension); cf = PR_Open(cfn, PR_RDONLY, 0); if (!cf) { goto loser; } prStatus = PR_GetOpenFileInfo(cf, &info); if (prStatus != PR_SUCCESS) { PR_Close(cf); goto loser; } pCertItem = SECITEM_AllocItem(NULL, pCertItem, info.size); if (pCertItem) { numBytes = PR_Read(cf, pCertItem->data, info.size); } PR_Close(cf); if (numBytes != info.size) { SECITEM_FreeItem(pCertItem, PR_FALSE); PORT_SetError(SEC_ERROR_IO); goto loser; } fprintf(stderr, "using %s\n", cfn); return SECSuccess; loser: fprintf(stderr, "failed to use %s\n", cfn); *pIndex = -1; return SECFailure; } #endif /* * Used by both client and server. * Called from HandleServerHelloDone and from SendServerHelloSequence. */ static SECStatus ssl3_SendCertificate(sslSocket *ss) { SECStatus rv; CERTCertificateList *certChain; int len = 0; int i; SSL3KEAType certIndex; #ifdef NISCC_TEST SECItem fakeCert; int ndex = -1; #endif SSL_TRC(3, ("%d: SSL3[%d]: send certificate handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (ss->sec.localCert) CERT_DestroyCertificate(ss->sec.localCert); if (ss->sec.isServer) { sslServerCerts * sc = NULL; /* XXX SSLKEAType isn't really a good choice for * indexing certificates (it breaks when we deal * with (EC)DHE-* cipher suites. This hack ensures * the RSA cert is picked for (EC)DHE-RSA. * Revisit this when we add server side support * for ECDHE-ECDSA or client-side authentication * using EC certificates. */ if ((ss->ssl3.hs.kea_def->kea == kea_ecdhe_rsa) || (ss->ssl3.hs.kea_def->kea == kea_dhe_rsa)) { certIndex = kt_rsa; } else { certIndex = ss->ssl3.hs.kea_def->exchKeyType; } sc = ss->serverCerts + certIndex; certChain = sc->serverCertChain; ss->sec.authKeyBits = sc->serverKeyBits; ss->sec.authAlgorithm = ss->ssl3.hs.kea_def->signKeyType; ss->sec.localCert = CERT_DupCertificate(sc->serverCert); } else { certChain = ss->ssl3.clientCertChain; ss->sec.localCert = CERT_DupCertificate(ss->ssl3.clientCertificate); } #ifdef NISCC_TEST rv = get_fake_cert(&fakeCert, &ndex); #endif if (certChain) { for (i = 0; i < certChain->len; i++) { #ifdef NISCC_TEST if (fakeCert.len > 0 && i == ndex) { len += fakeCert.len + 3; } else { len += certChain->certs[i].len + 3; } #else len += certChain->certs[i].len + 3; #endif } } rv = ssl3_AppendHandshakeHeader(ss, certificate, len + 3); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeNumber(ss, len, 3); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } for (i = 0; i < certChain->len; i++) { #ifdef NISCC_TEST if (fakeCert.len > 0 && i == ndex) { rv = ssl3_AppendHandshakeVariable(ss, fakeCert.data, fakeCert.len, 3); SECITEM_FreeItem(&fakeCert, PR_FALSE); } else { rv = ssl3_AppendHandshakeVariable(ss, certChain->certs[i].data, certChain->certs[i].len, 3); } #else rv = ssl3_AppendHandshakeVariable(ss, certChain->certs[i].data, certChain->certs[i].len, 3); #endif if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } } return SECSuccess; } /* This is used to delete the CA certificates in the peer certificate chain * from the cert database after they've been validated. */ static void ssl3_CleanupPeerCerts(sslSocket *ss) { PRArenaPool * arena = ss->ssl3.peerCertArena; ssl3CertNode *certs = (ssl3CertNode *)ss->ssl3.peerCertChain; for (; certs; certs = certs->next) { CERT_DestroyCertificate(certs->cert); } if (arena) PORT_FreeArena(arena, PR_FALSE); ss->ssl3.peerCertArena = NULL; ss->ssl3.peerCertChain = NULL; } /* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete * ssl3 Certificate message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleCertificate(sslSocket *ss, SSL3Opaque *b, PRUint32 length) { ssl3CertNode * c; ssl3CertNode * certs = NULL; PRArenaPool * arena = NULL; CERTCertificate *cert; PRInt32 remaining = 0; PRInt32 size; SECStatus rv; PRBool isServer = (PRBool)(!!ss->sec.isServer); PRBool trusted = PR_FALSE; PRBool isTLS; SSL3AlertDescription desc = bad_certificate; int errCode = SSL_ERROR_RX_MALFORMED_CERTIFICATE; SECItem certItem; SSL_TRC(3, ("%d: SSL3[%d]: handle certificate handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); if ((ss->ssl3.hs.ws != wait_server_cert) && (ss->ssl3.hs.ws != wait_client_cert)) { desc = unexpected_message; errCode = SSL_ERROR_RX_UNEXPECTED_CERTIFICATE; goto alert_loser; } if (ss->sec.peerCert != NULL) { if (ss->sec.peerKey) { SECKEY_DestroyPublicKey(ss->sec.peerKey); ss->sec.peerKey = NULL; } CERT_DestroyCertificate(ss->sec.peerCert); ss->sec.peerCert = NULL; } ssl3_CleanupPeerCerts(ss); isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); /* It is reported that some TLS client sends a Certificate message ** with a zero-length message body. We'll treat that case like a ** normal no_certificates message to maximize interoperability. */ if (length) { remaining = ssl3_ConsumeHandshakeNumber(ss, 3, &b, &length); if (remaining < 0) goto loser; /* fatal alert already sent by ConsumeHandshake. */ if ((PRUint32)remaining > length) goto decode_loser; } if (!remaining) { if (!(isTLS && isServer)) goto alert_loser; /* This is TLS's version of a no_certificate alert. */ /* I'm a server. I've requested a client cert. He hasn't got one. */ rv = ssl3_HandleNoCertificate(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } goto cert_block; } ss->ssl3.peerCertArena = arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE); if ( arena == NULL ) { goto loser; /* don't send alerts on memory errors */ } /* First get the peer cert. */ remaining -= 3; if (remaining < 0) goto decode_loser; size = ssl3_ConsumeHandshakeNumber(ss, 3, &b, &length); if (size <= 0) goto loser; /* fatal alert already sent by ConsumeHandshake. */ if (remaining < size) goto decode_loser; certItem.data = b; certItem.len = size; b += size; length -= size; remaining -= size; ss->sec.peerCert = CERT_NewTempCertificate(ss->dbHandle, &certItem, NULL, PR_FALSE, PR_TRUE); if (ss->sec.peerCert == NULL) { /* We should report an alert if the cert was bad, but not if the * problem was just some local problem, like memory error. */ goto ambiguous_err; } /* Now get all of the CA certs. */ while (remaining > 0) { remaining -= 3; if (remaining < 0) goto decode_loser; size = ssl3_ConsumeHandshakeNumber(ss, 3, &b, &length); if (size <= 0) goto loser; /* fatal alert already sent by ConsumeHandshake. */ if (remaining < size) goto decode_loser; certItem.data = b; certItem.len = size; b += size; length -= size; remaining -= size; c = PORT_ArenaNew(arena, ssl3CertNode); if (c == NULL) { goto loser; /* don't send alerts on memory errors */ } c->cert = CERT_NewTempCertificate(ss->dbHandle, &certItem, NULL, PR_FALSE, PR_TRUE); if (c->cert == NULL) { goto ambiguous_err; } if (c->cert->trust) trusted = PR_TRUE; c->next = certs; certs = c; } if (remaining != 0) goto decode_loser; SECKEY_UpdateCertPQG(ss->sec.peerCert); /* * Ask caller-supplied callback function to validate cert chain. */ rv = (SECStatus)(*ss->authCertificate)(ss->authCertificateArg, ss->fd, PR_TRUE, isServer); if (rv) { errCode = PORT_GetError(); if (!ss->handleBadCert) { goto bad_cert; } rv = (SECStatus)(*ss->handleBadCert)(ss->badCertArg, ss->fd); if ( rv ) { if ( rv == SECWouldBlock ) { /* someone will handle this connection asynchronously*/ SSL_DBG(("%d: SSL3[%d]: go to async cert handler", SSL_GETPID(), ss->fd)); ss->ssl3.peerCertChain = certs; certs = NULL; ssl_SetAlwaysBlock(ss); goto cert_block; } /* cert is bad */ goto bad_cert; } /* cert is good */ } /* start SSL Step Up, if appropriate */ cert = ss->sec.peerCert; if (!isServer && ssl3_global_policy_some_restricted && ss->ssl3.policy == SSL_ALLOWED && anyRestrictedEnabled(ss) && SECSuccess == CERT_VerifyCertNow(cert->dbhandle, cert, PR_FALSE, /* checkSig */ certUsageSSLServerWithStepUp, /*XXX*/ ss->authCertificateArg) ) { ss->ssl3.policy = SSL_RESTRICTED; ss->ssl3.hs.rehandshake = PR_TRUE; } ss->sec.ci.sid->peerCert = CERT_DupCertificate(ss->sec.peerCert); if (!ss->sec.isServer) { /* set the server authentication and key exchange types and sizes ** from the value in the cert. If the key exchange key is different, ** it will get fixed when we handle the server key exchange message. */ SECKEYPublicKey * pubKey = CERT_ExtractPublicKey(cert); ss->sec.authAlgorithm = ss->ssl3.hs.kea_def->signKeyType; ss->sec.keaType = ss->ssl3.hs.kea_def->exchKeyType; if (pubKey) { ss->sec.keaKeyBits = ss->sec.authKeyBits = SECKEY_PublicKeyStrengthInBits(pubKey); #ifdef NSS_ENABLE_ECC if (ss->sec.keaType == kt_ecdh) { /* Get authKeyBits from signing key. * XXX The code below uses a quick approximation of * key size based on cert->signatureWrap.signature.data * (which contains the DER encoded signature). The field * cert->signatureWrap.signature.len contains the * length of the encoded signature in bits. */ if (ss->ssl3.hs.kea_def->kea == kea_ecdh_ecdsa) { ss->sec.authKeyBits = cert->signatureWrap.signature.data[3]*8; if (cert->signatureWrap.signature.data[4] == 0x00) ss->sec.authKeyBits -= 8; /* * XXX: if cert is not signed by ecdsa we should * destroy pubKey and goto bad_cert */ } else if (ss->ssl3.hs.kea_def->kea == kea_ecdh_rsa) { ss->sec.authKeyBits = cert->signatureWrap.signature.len; /* * XXX: if cert is not signed by rsa we should * destroy pubKey and goto bad_cert */ } } #endif /* NSS_ENABLE_ECC */ SECKEY_DestroyPublicKey(pubKey); pubKey = NULL; } } ss->ssl3.peerCertChain = certs; certs = NULL; arena = NULL; cert_block: if (ss->sec.isServer) { ss->ssl3.hs.ws = wait_client_key; } else { ss->ssl3.hs.ws = wait_cert_request; /* disallow server_key_exchange */ if (ss->ssl3.hs.kea_def->is_limited || /* XXX OR server cert is signing only. */ #ifdef NSS_ENABLE_ECC ss->ssl3.hs.kea_def->kea == kea_ecdhe_ecdsa || ss->ssl3.hs.kea_def->kea == kea_ecdhe_rsa || #endif /* NSS_ENABLE_ECC */ ss->ssl3.hs.kea_def->exchKeyType == kt_dh) { ss->ssl3.hs.ws = wait_server_key; /* allow server_key_exchange */ } } /* rv must normally be equal to SECSuccess here. If we called * handleBadCert, it can also be SECWouldBlock. */ return rv; ambiguous_err: errCode = PORT_GetError(); switch (errCode) { case PR_OUT_OF_MEMORY_ERROR: case SEC_ERROR_BAD_DATABASE: case SEC_ERROR_NO_MEMORY: if (isTLS) { desc = internal_error; goto alert_loser; } goto loser; } /* fall through to bad_cert. */ bad_cert: /* caller has set errCode. */ switch (errCode) { case SEC_ERROR_LIBRARY_FAILURE: desc = unsupported_certificate; break; case SEC_ERROR_EXPIRED_CERTIFICATE: desc = certificate_expired; break; case SEC_ERROR_REVOKED_CERTIFICATE: desc = certificate_revoked; break; case SEC_ERROR_INADEQUATE_KEY_USAGE: case SEC_ERROR_INADEQUATE_CERT_TYPE: desc = certificate_unknown; break; case SEC_ERROR_UNTRUSTED_CERT: desc = isTLS ? access_denied : certificate_unknown; break; case SEC_ERROR_UNKNOWN_ISSUER: case SEC_ERROR_UNTRUSTED_ISSUER: desc = isTLS ? unknown_ca : certificate_unknown; break; case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE: desc = isTLS ? unknown_ca : certificate_expired; break; case SEC_ERROR_CERT_NOT_IN_NAME_SPACE: case SEC_ERROR_PATH_LEN_CONSTRAINT_INVALID: case SEC_ERROR_CA_CERT_INVALID: case SEC_ERROR_BAD_SIGNATURE: default: desc = bad_certificate; break; } SSL_DBG(("%d: SSL3[%d]: peer certificate is no good: error=%d", SSL_GETPID(), ss->fd, errCode)); goto alert_loser; decode_loser: desc = isTLS ? decode_error : bad_certificate; alert_loser: (void)SSL3_SendAlert(ss, alert_fatal, desc); loser: ss->ssl3.peerCertChain = certs; certs = NULL; arena = NULL; ssl3_CleanupPeerCerts(ss); if (ss->sec.peerCert != NULL) { CERT_DestroyCertificate(ss->sec.peerCert); ss->sec.peerCert = NULL; } (void)ssl_MapLowLevelError(errCode); return SECFailure; } /* restart an SSL connection that we stopped to run certificate dialogs ** XXX Need to document here how an application marks a cert to show that ** the application has accepted it (overridden CERT_VerifyCert). * * XXX This code only works on the initial handshake on a connection, XXX * It does not work on a subsequent handshake (redo). * * Return value: XXX * * Caller holds 1stHandshakeLock. */ int ssl3_RestartHandshakeAfterServerCert(sslSocket *ss) { CERTCertificate * cert; int rv = SECSuccess; if (MSB(ss->version) != MSB(SSL_LIBRARY_VERSION_3_0)) { SET_ERROR_CODE return SECFailure; } if (!ss->ssl3.initialized) { SET_ERROR_CODE return SECFailure; } cert = ss->sec.peerCert; /* Permit step up if user decided to accept the cert */ if (!ss->sec.isServer && ssl3_global_policy_some_restricted && ss->ssl3.policy == SSL_ALLOWED && anyRestrictedEnabled(ss) && (SECSuccess == CERT_VerifyCertNow(cert->dbhandle, cert, PR_FALSE, /* checksig */ certUsageSSLServerWithStepUp, /*XXX*/ ss->authCertificateArg) )) { ss->ssl3.policy = SSL_RESTRICTED; ss->ssl3.hs.rehandshake = PR_TRUE; } if (ss->handshake != NULL) { ss->handshake = ssl_GatherRecord1stHandshake; ss->sec.ci.sid->peerCert = CERT_DupCertificate(ss->sec.peerCert); ssl_GetRecvBufLock(ss); if (ss->ssl3.hs.msgState.buf != NULL) { rv = ssl3_HandleRecord(ss, NULL, &ss->gs.buf); } ssl_ReleaseRecvBufLock(ss); } return rv; } static SECStatus ssl3_ComputeTLSFinished(ssl3CipherSpec *spec, PRBool isServer, const SSL3Finished * hashes, TLSFinished * tlsFinished) { const char * label; unsigned int len; SECStatus rv; label = isServer ? "server finished" : "client finished"; len = 15; if (spec->master_secret && !spec->bypassCiphers) { SECItem param = {siBuffer, NULL, 0}; PK11Context *prf_context = PK11_CreateContextBySymKey(CKM_TLS_PRF_GENERAL, CKA_SIGN, spec->master_secret, ¶m); if (!prf_context) return SECFailure; rv = PK11_DigestBegin(prf_context); rv |= PK11_DigestOp(prf_context, (const unsigned char *) label, len); rv |= PK11_DigestOp(prf_context, hashes->md5, sizeof *hashes); rv |= PK11_DigestFinal(prf_context, tlsFinished->verify_data, &len, sizeof tlsFinished->verify_data); PORT_Assert(rv != SECSuccess || len == sizeof *tlsFinished); PK11_DestroyContext(prf_context, PR_TRUE); } else { /* bypass PKCS11 */ SECItem inData = { siBuffer, }; SECItem outData = { siBuffer, }; PRBool isFIPS = PR_FALSE; inData.data = (unsigned char *)hashes->md5; inData.len = sizeof hashes[0]; outData.data = tlsFinished->verify_data; outData.len = sizeof tlsFinished->verify_data; rv = TLS_PRF(&spec->msItem, label, &inData, &outData, isFIPS); PORT_Assert(rv != SECSuccess || \ outData.len == sizeof tlsFinished->verify_data); } return rv; } /* called from ssl3_HandleServerHelloDone * ssl3_HandleClientHello * ssl3_HandleFinished */ static SECStatus ssl3_SendFinished(sslSocket *ss, PRInt32 flags) { ssl3CipherSpec *cwSpec; PRBool isTLS; PRBool isServer = ss->sec.isServer; SECStatus rv; SSL3Sender sender = isServer ? sender_server : sender_client; SSL3Finished hashes; TLSFinished tlsFinished; SSL_TRC(3, ("%d: SSL3[%d]: send finished handshake", SSL_GETPID(), ss->fd)); PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); ssl_GetSpecReadLock(ss); cwSpec = ss->ssl3.cwSpec; isTLS = (PRBool)(cwSpec->version > SSL_LIBRARY_VERSION_3_0); rv = ssl3_ComputeHandshakeHashes(ss, cwSpec, &hashes, sender); if (isTLS && rv == SECSuccess) { rv = ssl3_ComputeTLSFinished(cwSpec, isServer, &hashes, &tlsFinished); } ssl_ReleaseSpecReadLock(ss); if (rv != SECSuccess) { goto fail; /* err code was set by ssl3_ComputeHandshakeHashes */ } if (isTLS) { rv = ssl3_AppendHandshakeHeader(ss, finished, sizeof tlsFinished); if (rv != SECSuccess) goto fail; /* err set by AppendHandshake. */ rv = ssl3_AppendHandshake(ss, &tlsFinished, sizeof tlsFinished); if (rv != SECSuccess) goto fail; /* err set by AppendHandshake. */ } else { rv = ssl3_AppendHandshakeHeader(ss, finished, sizeof hashes); if (rv != SECSuccess) goto fail; /* err set by AppendHandshake. */ rv = ssl3_AppendHandshake(ss, &hashes, sizeof hashes); if (rv != SECSuccess) goto fail; /* err set by AppendHandshake. */ } rv = ssl3_FlushHandshake(ss, flags); if (rv != SECSuccess) { goto fail; /* error code set by ssl3_FlushHandshake */ } return SECSuccess; fail: return rv; } /* wrap the master secret, and put it into the SID. * Caller holds the Spec read lock. */ static SECStatus ssl3_CacheWrappedMasterSecret(sslSocket *ss, SSL3KEAType effectiveExchKeyType) { sslSessionID * sid = ss->sec.ci.sid; PK11SymKey * wrappingKey = NULL; PK11SlotInfo * symKeySlot; void * pwArg = ss->pkcs11PinArg; SECStatus rv = SECFailure; PRBool isServer = ss->sec.isServer; CK_MECHANISM_TYPE mechanism = CKM_INVALID_MECHANISM; symKeySlot = PK11_GetSlotFromKey(ss->ssl3.crSpec->master_secret); if (!isServer) { int wrapKeyIndex; int incarnation; /* these next few functions are mere accessors and don't fail. */ sid->u.ssl3.masterWrapIndex = wrapKeyIndex = PK11_GetCurrentWrapIndex(symKeySlot); PORT_Assert(wrapKeyIndex == 0); /* array has only one entry! */ sid->u.ssl3.masterWrapSeries = incarnation = PK11_GetSlotSeries(symKeySlot); sid->u.ssl3.masterSlotID = PK11_GetSlotID(symKeySlot); sid->u.ssl3.masterModuleID = PK11_GetModuleID(symKeySlot); sid->u.ssl3.masterValid = PR_TRUE; /* Get the default wrapping key, for wrapping the master secret before * placing it in the SID cache entry. */ wrappingKey = PK11_GetWrapKey(symKeySlot, wrapKeyIndex, CKM_INVALID_MECHANISM, incarnation, pwArg); if (wrappingKey) { mechanism = PK11_GetMechanism(wrappingKey); /* can't fail. */ } else { int keyLength; /* if the wrappingKey doesn't exist, attempt to create it. * Note: we intentionally ignore errors here. If we cannot * generate a wrapping key, it is not fatal to this SSL connection, * but we will not be able to restart this session. */ mechanism = PK11_GetBestWrapMechanism(symKeySlot); keyLength = PK11_GetBestKeyLength(symKeySlot, mechanism); /* Zero length means fixed key length algorithm, or error. * It's ambiguous. */ wrappingKey = PK11_KeyGen(symKeySlot, mechanism, NULL, keyLength, pwArg); if (wrappingKey) { PK11_SetWrapKey(symKeySlot, wrapKeyIndex, wrappingKey); } } } else { /* server socket using session cache. */ mechanism = PK11_GetBestWrapMechanism(symKeySlot); if (mechanism != CKM_INVALID_MECHANISM) { wrappingKey = getWrappingKey(ss, symKeySlot, effectiveExchKeyType, mechanism, pwArg); if (wrappingKey) { mechanism = PK11_GetMechanism(wrappingKey); /* can't fail. */ } } } sid->u.ssl3.masterWrapMech = mechanism; PK11_FreeSlot(symKeySlot); if (wrappingKey) { SECItem wmsItem; wmsItem.data = sid->u.ssl3.keys.wrapped_master_secret; wmsItem.len = sizeof sid->u.ssl3.keys.wrapped_master_secret; rv = PK11_WrapSymKey(mechanism, NULL, wrappingKey, ss->ssl3.crSpec->master_secret, &wmsItem); /* rv is examined below. */ sid->u.ssl3.keys.wrapped_master_secret_len = wmsItem.len; PK11_FreeSymKey(wrappingKey); } return rv; } /* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete * ssl3 Finished message from the peer. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleFinished(sslSocket *ss, SSL3Opaque *b, PRUint32 length, const SSL3Hashes *hashes) { sslSessionID * sid = ss->sec.ci.sid; SECStatus rv = SECSuccess; PRBool isServer = ss->sec.isServer; PRBool isTLS; PRBool doStepUp; SSL3KEAType effectiveExchKeyType; PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); SSL_TRC(3, ("%d: SSL3[%d]: handle finished handshake", SSL_GETPID(), ss->fd)); if (ss->ssl3.hs.ws != wait_finished) { SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_FINISHED); return SECFailure; } isTLS = (PRBool)(ss->ssl3.crSpec->version > SSL_LIBRARY_VERSION_3_0); if (isTLS) { TLSFinished tlsFinished; if (length != sizeof tlsFinished) { (void)SSL3_SendAlert(ss, alert_fatal, decode_error); PORT_SetError(SSL_ERROR_RX_MALFORMED_FINISHED); return SECFailure; } rv = ssl3_ComputeTLSFinished(ss->ssl3.crSpec, !isServer, hashes, &tlsFinished); if (rv != SECSuccess || 0 != PORT_Memcmp(&tlsFinished, b, length)) { (void)SSL3_SendAlert(ss, alert_fatal, decrypt_error); PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE); return SECFailure; } } else { if (length != sizeof(SSL3Hashes)) { (void)ssl3_IllegalParameter(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_FINISHED); return SECFailure; } if (0 != PORT_Memcmp(hashes, b, length)) { (void)ssl3_HandshakeFailure(ss); PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE); return SECFailure; } } doStepUp = (PRBool)(!isServer && ss->ssl3.hs.rehandshake); ssl_GetXmitBufLock(ss); /*************************************/ if ((isServer && !ss->ssl3.hs.isResuming) || (!isServer && ss->ssl3.hs.isResuming)) { PRInt32 flags = 0; rv = ssl3_SendChangeCipherSpecs(ss); if (rv != SECSuccess) { goto xmit_loser; /* err is set. */ } /* If this thread is in SSL_SecureSend (trying to write some data) ** or if it is going to step up, ** then set the ssl_SEND_FLAG_FORCE_INTO_BUFFER flag, so that the ** last two handshake messages (change cipher spec and finished) ** will be sent in the same send/write call as the application data. */ if (doStepUp || ss->writerThread == PR_GetCurrentThread()) { flags = ssl_SEND_FLAG_FORCE_INTO_BUFFER; } rv = ssl3_SendFinished(ss, flags); if (rv != SECSuccess) { goto xmit_loser; /* err is set. */ } } /* Optimization: don't cache this connection if we're going to step up. */ if (doStepUp) { ssl_FreeSID(sid); ss->sec.ci.sid = sid = NULL; ss->ssl3.hs.rehandshake = PR_FALSE; rv = ssl3_SendClientHello(ss); xmit_loser: ssl_ReleaseXmitBufLock(ss); return rv; /* err code is set if appropriate. */ } ssl_ReleaseXmitBufLock(ss); /*************************************/ /* The first handshake is now completed. */ ss->handshake = NULL; ss->firstHsDone = PR_TRUE; ss->gs.writeOffset = 0; ss->gs.readOffset = 0; if (ss->ssl3.hs.kea_def->kea == kea_ecdhe_rsa) { effectiveExchKeyType = kt_rsa; } else { effectiveExchKeyType = ss->ssl3.hs.kea_def->exchKeyType; } if (sid->cached == never_cached && !ss->opt.noCache && ss->sec.cache) { /* fill in the sid */ sid->u.ssl3.cipherSuite = ss->ssl3.hs.cipher_suite; sid->u.ssl3.compression = ss->ssl3.hs.compression; sid->u.ssl3.policy = ss->ssl3.policy; sid->u.ssl3.exchKeyType = effectiveExchKeyType; sid->version = ss->version; sid->authAlgorithm = ss->sec.authAlgorithm; sid->authKeyBits = ss->sec.authKeyBits; sid->keaType = ss->sec.keaType; sid->keaKeyBits = ss->sec.keaKeyBits; sid->lastAccessTime = sid->creationTime = ssl_Time(); sid->expirationTime = sid->creationTime + ssl3_sid_timeout; sid->localCert = CERT_DupCertificate(ss->sec.localCert); ssl_GetSpecReadLock(ss); /*************************************/ /* Copy the master secret (wrapped or unwrapped) into the sid */ if (ss->ssl3.crSpec->msItem.len && ss->ssl3.crSpec->msItem.data) { sid->u.ssl3.keys.wrapped_master_secret_len = ss->ssl3.crSpec->msItem.len; memcpy(sid->u.ssl3.keys.wrapped_master_secret, ss->ssl3.crSpec->msItem.data, ss->ssl3.crSpec->msItem.len); sid->u.ssl3.masterValid = PR_TRUE; sid->u.ssl3.keys.msIsWrapped = PR_FALSE; rv = SECSuccess; } else { rv = ssl3_CacheWrappedMasterSecret(ss, effectiveExchKeyType); sid->u.ssl3.keys.msIsWrapped = PR_TRUE; } ssl_ReleaseSpecReadLock(ss); /*************************************/ /* If the wrap failed, we don't cache the sid. * The connection continues normally however. */ if (rv == SECSuccess) { (*ss->sec.cache)(sid); } } ss->ssl3.hs.ws = idle_handshake; /* Do the handshake callback for sslv3 here. */ if (ss->handshakeCallback != NULL) { (ss->handshakeCallback)(ss->fd, ss->handshakeCallbackData); } return SECSuccess; } /* Called from ssl3_HandleHandshake() when it has gathered a complete ssl3 * hanshake message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleHandshakeMessage(sslSocket *ss, SSL3Opaque *b, PRUint32 length) { SECStatus rv = SECSuccess; SSL3HandshakeType type = ss->ssl3.hs.msg_type; SSL3Hashes hashes; /* computed hashes are put here. */ PRUint8 hdr[4]; PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); /* * We have to compute the hashes before we update them with the * current message. */ ssl_GetSpecReadLock(ss); /************************************/ if((type == finished) || (type == certificate_verify)) { SSL3Sender sender = (SSL3Sender)0; ssl3CipherSpec *rSpec = ss->ssl3.prSpec; if (type == finished) { sender = ss->sec.isServer ? sender_client : sender_server; rSpec = ss->ssl3.crSpec; } rv = ssl3_ComputeHandshakeHashes(ss, rSpec, &hashes, sender); } ssl_ReleaseSpecReadLock(ss); /************************************/ if (rv != SECSuccess) { return rv; /* error code was set by ssl3_ComputeHandshakeHashes*/ } SSL_TRC(30,("%d: SSL3[%d]: handle handshake message: %s", SSL_GETPID(), ss->fd, ssl3_DecodeHandshakeType(ss->ssl3.hs.msg_type))); PRINT_BUF(60, (ss, "MD5 handshake hash:", (unsigned char*)ss->ssl3.hs.md5_cx, MD5_LENGTH)); PRINT_BUF(95, (ss, "SHA handshake hash:", (unsigned char*)ss->ssl3.hs.sha_cx, SHA1_LENGTH)); hdr[0] = (PRUint8)ss->ssl3.hs.msg_type; hdr[1] = (PRUint8)(length >> 16); hdr[2] = (PRUint8)(length >> 8); hdr[3] = (PRUint8)(length ); /* Start new handshake hashes when we start a new handshake */ if (ss->ssl3.hs.msg_type == client_hello) { SSL_TRC(30,("%d: SSL3[%d]: reset handshake hashes", SSL_GETPID(), ss->fd )); if (ss->opt.bypassPKCS11) { MD5_Begin((MD5Context *)ss->ssl3.hs.md5_cx); SHA1_Begin((SHA1Context *)ss->ssl3.hs.sha_cx); } else { rv = PK11_DigestBegin(ss->ssl3.hs.md5); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); return rv; } rv = PK11_DigestBegin(ss->ssl3.hs.sha); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); return rv; } } } /* We should not include hello_request messages in the handshake hashes */ if (ss->ssl3.hs.msg_type != hello_request) { rv = ssl3_UpdateHandshakeHashes(ss, (unsigned char*) hdr, 4); if (rv != SECSuccess) return rv; /* err code already set. */ rv = ssl3_UpdateHandshakeHashes(ss, b, length); if (rv != SECSuccess) return rv; /* err code already set. */ } PORT_SetError(0); /* each message starts with no error. */ switch (ss->ssl3.hs.msg_type) { case hello_request: if (length != 0) { (void)ssl3_DecodeError(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_HELLO_REQUEST); return SECFailure; } if (ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_REQUEST); return SECFailure; } rv = ssl3_HandleHelloRequest(ss); break; case client_hello: if (!ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CLIENT_HELLO); return SECFailure; } rv = ssl3_HandleClientHello(ss, b, length); break; case server_hello: if (ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_SERVER_HELLO); return SECFailure; } rv = ssl3_HandleServerHello(ss, b, length); break; case certificate: rv = ssl3_HandleCertificate(ss, b, length); break; case server_key_exchange: if (ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_SERVER_KEY_EXCH); return SECFailure; } rv = ssl3_HandleServerKeyExchange(ss, b, length); break; case certificate_request: if (ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERT_REQUEST); return SECFailure; } rv = ssl3_HandleCertificateRequest(ss, b, length); break; case server_hello_done: if (length != 0) { (void)ssl3_DecodeError(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_HELLO_DONE); return SECFailure; } if (ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_DONE); return SECFailure; } rv = ssl3_HandleServerHelloDone(ss); break; case certificate_verify: if (!ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERT_VERIFY); return SECFailure; } rv = ssl3_HandleCertificateVerify(ss, b, length, &hashes); break; case client_key_exchange: if (!ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CLIENT_KEY_EXCH); return SECFailure; } rv = ssl3_HandleClientKeyExchange(ss, b, length); break; case finished: rv = ssl3_HandleFinished(ss, b, length, &hashes); break; default: (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNKNOWN_HANDSHAKE); rv = SECFailure; } return rv; } /* Called only from ssl3_HandleRecord, for each (deciphered) ssl3 record. * origBuf is the decrypted ssl record content. * Caller must hold the handshake and RecvBuf locks. */ static SECStatus ssl3_HandleHandshake(sslSocket *ss, sslBuffer *origBuf) { /* * There may be a partial handshake message already in the handshake * state. The incoming buffer may contain another portion, or a * complete message or several messages followed by another portion. * * Each message is made contiguous before being passed to the actual * message parser. */ sslBuffer *buf = &ss->ssl3.hs.msgState; /* do not lose the original buffer pointer */ SECStatus rv; PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); if (buf->buf == NULL) { *buf = *origBuf; } while (buf->len > 0) { if (ss->ssl3.hs.header_bytes < 4) { uint8 t; t = *(buf->buf++); buf->len--; if (ss->ssl3.hs.header_bytes++ == 0) ss->ssl3.hs.msg_type = (SSL3HandshakeType)t; else ss->ssl3.hs.msg_len = (ss->ssl3.hs.msg_len << 8) + t; if (ss->ssl3.hs.header_bytes < 4) continue; #define MAX_HANDSHAKE_MSG_LEN 0x1ffff /* 128k - 1 */ if (ss->ssl3.hs.msg_len > MAX_HANDSHAKE_MSG_LEN) { (void)ssl3_DecodeError(ss); PORT_SetError(SSL_ERROR_RX_RECORD_TOO_LONG); return SECFailure; } #undef MAX_HANDSHAKE_MSG_LEN /* If msg_len is zero, be sure we fall through, ** even if buf->len is zero. */ if (ss->ssl3.hs.msg_len > 0) continue; } /* * Header has been gathered and there is at least one byte of new * data available for this message. If it can be done right out * of the original buffer, then use it from there. */ if (ss->ssl3.hs.msg_body.len == 0 && buf->len >= ss->ssl3.hs.msg_len) { /* handle it from input buffer */ rv = ssl3_HandleHandshakeMessage(ss, buf->buf, ss->ssl3.hs.msg_len); if (rv == SECFailure) { /* This test wants to fall through on either * SECSuccess or SECWouldBlock. * ssl3_HandleHandshakeMessage MUST set the error code. */ return rv; } buf->buf += ss->ssl3.hs.msg_len; buf->len -= ss->ssl3.hs.msg_len; ss->ssl3.hs.msg_len = 0; ss->ssl3.hs.header_bytes = 0; if (rv != SECSuccess) { /* return if SECWouldBlock. */ return rv; } } else { /* must be copied to msg_body and dealt with from there */ unsigned int bytes; PORT_Assert(ss->ssl3.hs.msg_body.len <= ss->ssl3.hs.msg_len); bytes = PR_MIN(buf->len, ss->ssl3.hs.msg_len - ss->ssl3.hs.msg_body.len); /* Grow the buffer if needed */ rv = sslBuffer_Grow(&ss->ssl3.hs.msg_body, ss->ssl3.hs.msg_len); if (rv != SECSuccess) { /* sslBuffer_Grow has set a memory error code. */ return SECFailure; } PORT_Memcpy(ss->ssl3.hs.msg_body.buf + ss->ssl3.hs.msg_body.len, buf->buf, bytes); ss->ssl3.hs.msg_body.len += bytes; buf->buf += bytes; buf->len -= bytes; PORT_Assert(ss->ssl3.hs.msg_body.len <= ss->ssl3.hs.msg_len); /* if we have a whole message, do it */ if (ss->ssl3.hs.msg_body.len == ss->ssl3.hs.msg_len) { rv = ssl3_HandleHandshakeMessage( ss, ss->ssl3.hs.msg_body.buf, ss->ssl3.hs.msg_len); /* * XXX This appears to be wrong. This error handling * should clean up after a SECWouldBlock return, like the * error handling used 40 lines before/above this one, */ if (rv != SECSuccess) { /* ssl3_HandleHandshakeMessage MUST set error code. */ return rv; } ss->ssl3.hs.msg_body.len = 0; ss->ssl3.hs.msg_len = 0; ss->ssl3.hs.header_bytes = 0; } else { PORT_Assert(buf->len == 0); break; } } } /* end loop */ origBuf->len = 0; /* So ssl3_GatherAppDataRecord will keep looping. */ buf->buf = NULL; /* not a leak. */ return SECSuccess; } /* if cText is non-null, then decipher, check MAC, and decompress the * SSL record from cText->buf (typically gs->inbuf) * into databuf (typically gs->buf), and any previous contents of databuf * is lost. Then handle databuf according to its SSL record type, * unless it's an application record. * * If cText is NULL, then the ciphertext has previously been deciphered and * checked, and is already sitting in databuf. It is processed as an SSL * Handshake message. * * DOES NOT process the decrypted/decompressed application data. * On return, databuf contains the decrypted/decompressed record. * * Called from ssl3_GatherCompleteHandshake * ssl3_RestartHandshakeAfterCertReq * ssl3_RestartHandshakeAfterServerCert * * Caller must hold the RecvBufLock. * * This function aquires and releases the SSL3Handshake Lock, holding the * lock around any calls to functions that handle records other than * Application Data records. */ SECStatus ssl3_HandleRecord(sslSocket *ss, SSL3Ciphertext *cText, sslBuffer *databuf) { const ssl3BulkCipherDef *cipher_def; ssl3CipherSpec * crSpec; SECStatus rv; unsigned int hashBytes = MAX_MAC_LENGTH + 1; unsigned int padding_length; PRBool isTLS; PRBool padIsBad = PR_FALSE; SSL3ContentType rType; SSL3Opaque hash[MAX_MAC_LENGTH]; PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); if (!ss->ssl3.initialized) { ssl_GetSSL3HandshakeLock(ss); rv = ssl3_InitState(ss); ssl_ReleaseSSL3HandshakeLock(ss); if (rv != SECSuccess) { return rv; /* ssl3_InitState has set the error code. */ } } /* check for Token Presence */ if (!ssl3_ClientAuthTokenPresent(ss->sec.ci.sid)) { PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL); return SECFailure; } /* cText is NULL when we're called from ssl3_RestartHandshakeAfterXXX(). * This implies that databuf holds a previously deciphered SSL Handshake * message. */ if (cText == NULL) { SSL_DBG(("%d: SSL3[%d]: HandleRecord, resuming handshake", SSL_GETPID(), ss->fd)); rType = content_handshake; goto process_it; } databuf->len = 0; /* filled in by decode call below. */ if (databuf->space < MAX_FRAGMENT_LENGTH) { rv = sslBuffer_Grow(databuf, MAX_FRAGMENT_LENGTH + 2048); if (rv != SECSuccess) { SSL_DBG(("%d: SSL3[%d]: HandleRecord, tried to get %d bytes", SSL_GETPID(), ss->fd, MAX_FRAGMENT_LENGTH + 2048)); /* sslBuffer_Grow has set a memory error code. */ /* Perhaps we should send an alert. (but we have no memory!) */ return SECFailure; } } PRINT_BUF(80, (ss, "ciphertext:", cText->buf->buf, cText->buf->len)); ssl_GetSpecReadLock(ss); /******************************************/ crSpec = ss->ssl3.crSpec; cipher_def = crSpec->cipher_def; isTLS = (PRBool)(crSpec->version > SSL_LIBRARY_VERSION_3_0); if (isTLS && cText->buf->len > (MAX_FRAGMENT_LENGTH + 2048)) { ssl_ReleaseSpecReadLock(ss); SSL3_SendAlert(ss, alert_fatal, record_overflow); PORT_SetError(SSL_ERROR_RX_RECORD_TOO_LONG); return SECFailure; } /* decrypt from cText buf to databuf. */ rv = crSpec->decode( crSpec->decodeContext, databuf->buf, (int *)&databuf->len, databuf->space, cText->buf->buf, cText->buf->len); PRINT_BUF(80, (ss, "cleartext:", databuf->buf, databuf->len)); if (rv != SECSuccess) { int err = ssl_MapLowLevelError(SSL_ERROR_DECRYPTION_FAILURE); ssl_ReleaseSpecReadLock(ss); SSL3_SendAlert(ss, alert_fatal, isTLS ? decryption_failed : bad_record_mac); PORT_SetError(err); return SECFailure; } /* If it's a block cipher, check and strip the padding. */ if (cipher_def->type == type_block) { padding_length = *(databuf->buf + databuf->len - 1); /* TLS permits padding to exceed the block size, up to 255 bytes. */ if (padding_length + 1 + crSpec->mac_size > databuf->len) padIsBad = PR_TRUE; /* if TLS, check value of first padding byte. */ else if (padding_length && isTLS && padding_length != *(databuf->buf + databuf->len - (padding_length + 1))) padIsBad = PR_TRUE; else databuf->len -= padding_length + 1; } /* Remove the MAC. */ if (databuf->len >= crSpec->mac_size) databuf->len -= crSpec->mac_size; else padIsBad = PR_TRUE; /* really macIsBad */ /* compute the MAC */ rType = cText->type; rv = ssl3_ComputeRecordMAC( crSpec, (PRBool)(!ss->sec.isServer), rType, cText->version, crSpec->read_seq_num, databuf->buf, databuf->len, hash, &hashBytes); if (rv != SECSuccess) { int err = ssl_MapLowLevelError(SSL_ERROR_MAC_COMPUTATION_FAILURE); ssl_ReleaseSpecReadLock(ss); SSL3_SendAlert(ss, alert_fatal, bad_record_mac); PORT_SetError(err); return rv; } /* Check the MAC */ if (hashBytes != (unsigned)crSpec->mac_size || padIsBad || PORT_Memcmp(databuf->buf + databuf->len, hash, crSpec->mac_size) != 0) { /* must not hold spec lock when calling SSL3_SendAlert. */ ssl_ReleaseSpecReadLock(ss); SSL3_SendAlert(ss, alert_fatal, bad_record_mac); /* always log mac error, in case attacker can read server logs. */ PORT_SetError(SSL_ERROR_BAD_MAC_READ); SSL_DBG(("%d: SSL3[%d]: mac check failed", SSL_GETPID(), ss->fd)); return SECFailure; } ssl3_BumpSequenceNumber(&crSpec->read_seq_num); ssl_ReleaseSpecReadLock(ss); /*****************************************/ /* * The decrypted data is now in databuf. * * the null decompression routine is right here */ /* ** Having completed the decompression, check the length again. */ if (isTLS && databuf->len > (MAX_FRAGMENT_LENGTH + 1024)) { SSL3_SendAlert(ss, alert_fatal, record_overflow); PORT_SetError(SSL_ERROR_RX_RECORD_TOO_LONG); return SECFailure; } /* Application data records are processed by the caller of this ** function, not by this function. */ if (rType == content_application_data) { return SECSuccess; } /* It's a record that must be handled by ssl itself, not the application. */ process_it: /* XXX Get the xmit lock here. Odds are very high that we'll be xmiting * data ang getting the xmit lock here prevents deadlocks. */ ssl_GetSSL3HandshakeLock(ss); /* All the functions called in this switch MUST set error code if ** they return SECFailure or SECWouldBlock. */ switch (rType) { case content_change_cipher_spec: rv = ssl3_HandleChangeCipherSpecs(ss, databuf); break; case content_alert: rv = ssl3_HandleAlert(ss, databuf); break; case content_handshake: rv = ssl3_HandleHandshake(ss, databuf); break; case content_application_data: rv = SECSuccess; break; default: SSL_DBG(("%d: SSL3[%d]: bogus content type=%d", SSL_GETPID(), ss->fd, cText->type)); /* XXX Send an alert ??? */ PORT_SetError(SSL_ERROR_RX_UNKNOWN_RECORD_TYPE); rv = SECFailure; break; } ssl_ReleaseSSL3HandshakeLock(ss); return rv; } /* * Initialization functions */ /* Called from ssl3_InitState, immediately below. */ /* Caller must hold the SpecWriteLock. */ static void ssl3_InitCipherSpec(sslSocket *ss, ssl3CipherSpec *spec) { spec->cipher_def = &bulk_cipher_defs[cipher_null]; PORT_Assert(spec->cipher_def->cipher == cipher_null); spec->mac_def = &mac_defs[mac_null]; PORT_Assert(spec->mac_def->mac == mac_null); spec->encode = Null_Cipher; spec->decode = Null_Cipher; spec->destroy = NULL; spec->mac_size = 0; spec->master_secret = NULL; spec->bypassCiphers = PR_FALSE; spec->msItem.data = NULL; spec->msItem.len = 0; spec->client.write_key = NULL; spec->client.write_mac_key = NULL; spec->client.write_mac_context = NULL; spec->server.write_key = NULL; spec->server.write_mac_key = NULL; spec->server.write_mac_context = NULL; spec->write_seq_num.high = 0; spec->write_seq_num.low = 0; spec->read_seq_num.high = 0; spec->read_seq_num.low = 0; spec->version = ss->opt.enableTLS ? SSL_LIBRARY_VERSION_3_1_TLS : SSL_LIBRARY_VERSION_3_0; } /* Called from: ssl3_SendRecord ** ssl3_StartHandshakeHash() <- ssl2_BeginClientHandshake() ** ssl3_SendClientHello() ** ssl3_HandleServerHello() ** ssl3_HandleClientHello() ** ssl3_HandleV2ClientHello() ** ssl3_HandleRecord() ** ** This function should perhaps acquire and release the SpecWriteLock. ** ** */ static SECStatus ssl3_InitState(sslSocket *ss) { PK11Context *md5 = NULL; PK11Context *sha = NULL; SECStatus rv; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (ss->ssl3.initialized) return SECSuccess; /* Function should be idempotent */ ss->ssl3.policy = SSL_ALLOWED; ssl_GetSpecWriteLock(ss); ss->ssl3.crSpec = ss->ssl3.cwSpec = &ss->ssl3.specs[0]; ss->ssl3.prSpec = ss->ssl3.pwSpec = &ss->ssl3.specs[1]; ss->ssl3.hs.rehandshake = PR_FALSE; ssl3_InitCipherSpec(ss, ss->ssl3.crSpec); ssl3_InitCipherSpec(ss, ss->ssl3.prSpec); ss->ssl3.hs.ws = (ss->sec.isServer) ? wait_client_hello : wait_server_hello; ssl_ReleaseSpecWriteLock(ss); /* * note: We should probably lookup an SSL3 slot for these * handshake hashes in hopes that we wind up with the same slots * that the master secret will wind up in ... */ SSL_TRC(30,("%d: SSL3[%d]: start handshake hashes", SSL_GETPID(), ss->fd)); if (ss->opt.bypassPKCS11) { MD5_Begin((MD5Context *)ss->ssl3.hs.md5_cx); SHA1_Begin((SHA1Context *)ss->ssl3.hs.sha_cx); } else { ss->ssl3.hs.md5 = md5 = PK11_CreateDigestContext(SEC_OID_MD5); if (md5 == NULL) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); goto loser; } rv = PK11_DigestBegin(ss->ssl3.hs.md5); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); goto loser; } sha = ss->ssl3.hs.sha = PK11_CreateDigestContext(SEC_OID_SHA1); if (sha == NULL) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); goto loser; } rv = PK11_DigestBegin(ss->ssl3.hs.sha); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); goto loser; } } ss->ssl3.initialized = PR_TRUE; return SECSuccess; loser: if (md5 != NULL) PK11_DestroyContext(md5, PR_TRUE); if (sha != NULL) PK11_DestroyContext(sha, PR_TRUE); return SECFailure; } /* Returns a reference counted object that contains a key pair. * Or NULL on failure. Initial ref count is 1. * Uses the keys in the pair as input. */ ssl3KeyPair * ssl3_NewKeyPair( SECKEYPrivateKey * privKey, SECKEYPublicKey * pubKey) { ssl3KeyPair * pair; if (!privKey && !pubKey) { /* one or the other may be NULL, but not both. */ PORT_SetError(PR_INVALID_ARGUMENT_ERROR); return NULL; } pair = PORT_ZNew(ssl3KeyPair); if (!pair) return NULL; /* error code is set. */ pair->refCount = 1; pair->privKey = privKey; pair->pubKey = pubKey; return pair; /* success */ } ssl3KeyPair * ssl3_GetKeyPairRef(ssl3KeyPair * keyPair) { PR_AtomicIncrement(&keyPair->refCount); return keyPair; } void ssl3_FreeKeyPair(ssl3KeyPair * keyPair) { PRInt32 newCount = PR_AtomicDecrement(&keyPair->refCount); if (!newCount) { if (keyPair->privKey) SECKEY_DestroyPrivateKey(keyPair->privKey); if (keyPair->pubKey) SECKEY_DestroyPublicKey( keyPair->pubKey); PORT_Free(keyPair); } } /* * Creates the public and private RSA keys for SSL Step down. * Called from SSL_ConfigSecureServer in sslsecur.c */ SECStatus ssl3_CreateRSAStepDownKeys(sslSocket *ss) { SECStatus rv = SECSuccess; SECKEYPrivateKey * privKey; /* RSA step down key */ SECKEYPublicKey * pubKey; /* RSA step down key */ if (ss->stepDownKeyPair) ssl3_FreeKeyPair(ss->stepDownKeyPair); ss->stepDownKeyPair = NULL; #ifndef HACKED_EXPORT_SERVER /* Sigh, should have a get key strength call for private keys */ if (PK11_GetPrivateModulusLen(ss->serverCerts[kt_rsa].SERVERKEY) > EXPORT_RSA_KEY_LENGTH) { /* need to ask for the key size in bits */ privKey = SECKEY_CreateRSAPrivateKey(EXPORT_RSA_KEY_LENGTH * BPB, &pubKey, NULL); if (!privKey || !pubKey || !(ss->stepDownKeyPair = ssl3_NewKeyPair(privKey, pubKey))) { ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL); rv = SECFailure; } } #endif return rv; } /* record the export policy for this cipher suite */ SECStatus ssl3_SetPolicy(ssl3CipherSuite which, int policy) { ssl3CipherSuiteCfg *suite; suite = ssl_LookupCipherSuiteCfg(which, cipherSuites); if (suite == NULL) { return SECFailure; /* err code was set by ssl_LookupCipherSuiteCfg */ } suite->policy = policy; if (policy == SSL_RESTRICTED) { ssl3_global_policy_some_restricted = PR_TRUE; } return SECSuccess; } SECStatus ssl3_GetPolicy(ssl3CipherSuite which, PRInt32 *oPolicy) { ssl3CipherSuiteCfg *suite; PRInt32 policy; SECStatus rv; suite = ssl_LookupCipherSuiteCfg(which, cipherSuites); if (suite) { policy = suite->policy; rv = SECSuccess; } else { policy = SSL_NOT_ALLOWED; rv = SECFailure; /* err code was set by Lookup. */ } *oPolicy = policy; return rv; } /* record the user preference for this suite */ SECStatus ssl3_CipherPrefSetDefault(ssl3CipherSuite which, PRBool enabled) { ssl3CipherSuiteCfg *suite; suite = ssl_LookupCipherSuiteCfg(which, cipherSuites); if (suite == NULL) { return SECFailure; /* err code was set by ssl_LookupCipherSuiteCfg */ } suite->enabled = enabled; return SECSuccess; } /* return the user preference for this suite */ SECStatus ssl3_CipherPrefGetDefault(ssl3CipherSuite which, PRBool *enabled) { ssl3CipherSuiteCfg *suite; PRBool pref; SECStatus rv; suite = ssl_LookupCipherSuiteCfg(which, cipherSuites); if (suite) { pref = suite->enabled; rv = SECSuccess; } else { pref = SSL_NOT_ALLOWED; rv = SECFailure; /* err code was set by Lookup. */ } *enabled = pref; return rv; } SECStatus ssl3_CipherPrefSet(sslSocket *ss, ssl3CipherSuite which, PRBool enabled) { ssl3CipherSuiteCfg *suite; suite = ssl_LookupCipherSuiteCfg(which, ss->cipherSuites); if (suite == NULL) { return SECFailure; /* err code was set by ssl_LookupCipherSuiteCfg */ } suite->enabled = enabled; return SECSuccess; } SECStatus ssl3_CipherPrefGet(sslSocket *ss, ssl3CipherSuite which, PRBool *enabled) { ssl3CipherSuiteCfg *suite; PRBool pref; SECStatus rv; suite = ssl_LookupCipherSuiteCfg(which, ss->cipherSuites); if (suite) { pref = suite->enabled; rv = SECSuccess; } else { pref = SSL_NOT_ALLOWED; rv = SECFailure; /* err code was set by Lookup. */ } *enabled = pref; return rv; } /* copy global default policy into socket. */ void ssl3_InitSocketPolicy(sslSocket *ss) { PORT_Memcpy(ss->cipherSuites, cipherSuites, sizeof cipherSuites); } /* ssl3_config_match_init must have already been called by * the caller of this function. */ SECStatus ssl3_ConstructV2CipherSpecsHack(sslSocket *ss, unsigned char *cs, int *size) { int i, count = 0; PORT_Assert(ss != 0); if (!ss) { PORT_SetError(PR_INVALID_ARGUMENT_ERROR); return SECFailure; } if (!ss->opt.enableSSL3 && !ss->opt.enableTLS) { *size = 0; return SECSuccess; } if (cs == NULL) { *size = count_cipher_suites(ss, SSL_ALLOWED, PR_TRUE); return SECSuccess; } /* ssl3_config_match_init was called by the caller of this function. */ for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) { ssl3CipherSuiteCfg *suite = &ss->cipherSuites[i]; if (config_match(suite, SSL_ALLOWED, PR_TRUE)) { if (cs != NULL) { *cs++ = 0x00; *cs++ = (suite->cipher_suite >> 8) & 0xFF; *cs++ = suite->cipher_suite & 0xFF; } count++; } } *size = count; return SECSuccess; } /* ** If ssl3 socket has completed the first handshake, and is in idle state, ** then start a new handshake. ** If flushCache is true, the SID cache will be flushed first, forcing a ** "Full" handshake (not a session restart handshake), to be done. ** ** called from SSL_RedoHandshake(), which already holds the handshake locks. */ SECStatus ssl3_RedoHandshake(sslSocket *ss, PRBool flushCache) { sslSessionID * sid = ss->sec.ci.sid; SECStatus rv; PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); if (!ss->firstHsDone || ((ss->version >= SSL_LIBRARY_VERSION_3_0) && ss->ssl3.initialized && (ss->ssl3.hs.ws != idle_handshake))) { PORT_SetError(SSL_ERROR_HANDSHAKE_NOT_COMPLETED); return SECFailure; } if (sid && flushCache) { ss->sec.uncache(sid); /* remove it from whichever cache it's in. */ ssl_FreeSID(sid); /* dec ref count and free if zero. */ ss->sec.ci.sid = NULL; } ssl_GetXmitBufLock(ss); /**************************************/ /* start off a new handshake. */ rv = (ss->sec.isServer) ? ssl3_SendHelloRequest(ss) : ssl3_SendClientHello(ss); ssl_ReleaseXmitBufLock(ss); /**************************************/ return rv; } /* Called from ssl_FreeSocket() in sslsock.c */ void ssl3_DestroySSL3Info(sslSocket *ss) { if (ss->ssl3.clientCertificate != NULL) CERT_DestroyCertificate(ss->ssl3.clientCertificate); if (ss->ssl3.clientPrivateKey != NULL) SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey); if (ss->ssl3.peerCertArena != NULL) ssl3_CleanupPeerCerts(ss); if (ss->ssl3.clientCertChain != NULL) { CERT_DestroyCertificateList(ss->ssl3.clientCertChain); ss->ssl3.clientCertChain = NULL; } /* clean up handshake */ if (ss->opt.bypassPKCS11) { SHA1_DestroyContext((SHA1Context *)ss->ssl3.hs.sha_cx, PR_FALSE); MD5_DestroyContext((MD5Context *)ss->ssl3.hs.md5_cx, PR_FALSE); } if (ss->ssl3.hs.md5) { PK11_DestroyContext(ss->ssl3.hs.md5,PR_TRUE); } if (ss->ssl3.hs.sha) { PK11_DestroyContext(ss->ssl3.hs.sha,PR_TRUE); } /* free the SSL3Buffer (msg_body) */ PORT_Free(ss->ssl3.hs.msg_body.buf); /* free up the CipherSpecs */ ssl3_DestroyCipherSpec(&ss->ssl3.specs[0]); ssl3_DestroyCipherSpec(&ss->ssl3.specs[1]); ss->ssl3.initialized = PR_FALSE; } /* End of ssl3con.c */