summaryrefslogtreecommitdiff
path: root/lib/freebl/cts.c
blob: 5d4ed18bc3ed577e8a386b9bc02de00be7c2e855 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif
#include "blapit.h"
#include "blapii.h"
#include "cts.h"
#include "secerr.h"

struct CTSContextStr {
    freeblCipherFunc cipher;
    void *context;
    /* iv stores the last ciphertext block of the previous message.
     * Only used by decrypt. */
    unsigned char iv[MAX_BLOCK_SIZE];
};

CTSContext *
CTS_CreateContext(void *context, freeblCipherFunc cipher,
		  const unsigned char *iv, unsigned int blocksize)
{
    CTSContext  *cts;

    if (blocksize > MAX_BLOCK_SIZE) {
	PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
	return NULL;
    }
    cts = PORT_ZNew(CTSContext);
    if (cts == NULL) {
	return NULL;
    }
    PORT_Memcpy(cts->iv, iv, blocksize);
    cts->cipher = cipher;
    cts->context = context;
    return cts;
}

void
CTS_DestroyContext(CTSContext *cts, PRBool freeit)
{
    if (freeit) {
	PORT_Free(cts);
    }
}
	
/*
 * See addemdum to NIST SP 800-38A
 * Generically handle cipher text stealing. Basically this is doing CBC
 * operations except someone can pass us a partial block.
 *
 *  Output Order:
 *  CS-1:  C1||C2||C3..Cn-1(could be partial)||Cn   (NIST)
 *  CS-2: pad == 0 C1||C2||C3...Cn-1(is full)||Cn   (Schneier)
 *  CS-2: pad != 0 C1||C2||C3...Cn||Cn-1(is partial)(Schneier)
 *  CS-3: C1||C2||C3...Cn||Cn-1(could be partial)   (Kerberos)
 *
 * The characteristics of these three options:
 *  - NIST & Schneier (CS-1 & CS-2) are identical to CBC if there are no
 * partial blocks on input.
 *  - Scheier and Kerberos (CS-2 and CS-3) have no embedded partial blocks,
 * which make decoding easier.
 *  - NIST & Kerberos (CS-1 and CS-3) have consistent block order independent
 * of padding.
 *
 * PKCS #11 did not specify which version to implement, but points to the NIST
 * spec, so this code implements CTS-CS-1 from NIST.
 *
 * To convert the returned buffer to:
 *   CS-2 (Schneier): do
 *       unsigned char tmp[MAX_BLOCK_SIZE];
 *       pad = *outlen % blocksize;
 *       if (pad) {
 *          memcpy(tmp, outbuf+*outlen-blocksize, blocksize);
 *          memcpy(outbuf+*outlen-pad,outbuf+*outlen-blocksize-pad, pad);
 *	    memcpy(outbuf+*outlen-blocksize-pad, tmp, blocksize);
 *       }
 *   CS-3 (Kerberos): do
 *       unsigned char tmp[MAX_BLOCK_SIZE];
 *       pad = *outlen % blocksize;
 *       if (pad == 0) {
 *           pad = blocksize;
 *       }
 *       memcpy(tmp, outbuf+*outlen-blocksize, blocksize);
 *       memcpy(outbuf+*outlen-pad,outbuf+*outlen-blocksize-pad, pad);
 *	 memcpy(outbuf+*outlen-blocksize-pad, tmp, blocksize);
 */
SECStatus
CTS_EncryptUpdate(CTSContext *cts, unsigned char *outbuf,
		unsigned int *outlen, unsigned int maxout,
		const unsigned char *inbuf, unsigned int inlen,
		unsigned int blocksize)
{
    unsigned char lastBlock[MAX_BLOCK_SIZE];
    unsigned int tmp;
    int fullblocks;
    int written;
    SECStatus rv;

    if (inlen < blocksize) {
	PORT_SetError(SEC_ERROR_INPUT_LEN);
	return SECFailure;
    }

    if (maxout < inlen) {
	*outlen = inlen;
	PORT_SetError(SEC_ERROR_OUTPUT_LEN);
	return SECFailure;
    }
    fullblocks = (inlen/blocksize)*blocksize;
    rv = (*cts->cipher)(cts->context, outbuf, outlen, maxout, inbuf,
	 fullblocks, blocksize);
    if (rv != SECSuccess) {
	return SECFailure;
    }
    *outlen = fullblocks; /* AES low level doesn't set outlen */
    inbuf += fullblocks;
    inlen -= fullblocks;
    if (inlen == 0) {
	return SECSuccess;
    }
    written = *outlen - (blocksize - inlen);
    outbuf += written;
    maxout -= written;

    /*
     * here's the CTS magic, we pad our final block with zeros,
     * then do a CBC encrypt. CBC will xor our plain text with
     * the previous block (Cn-1), capturing part of that block (Cn-1**) as it
     * xors with the zero pad. We then write this full block, overwritting
     * (Cn-1**) in our buffer. This allows us to have input data == output
     * data since Cn contains enough information to reconver Cn-1** when
     * we decrypt (at the cost of some complexity as you can see in decrypt
     * below */
    PORT_Memcpy(lastBlock, inbuf, inlen);
    PORT_Memset(lastBlock + inlen, 0, blocksize - inlen);
    rv = (*cts->cipher)(cts->context, outbuf, &tmp, maxout, lastBlock,
			blocksize, blocksize);
    PORT_Memset(lastBlock, 0, blocksize);
    if (rv == SECSuccess) {
	*outlen = written + blocksize;
    }
    return rv;
}


#define XOR_BLOCK(x,y,count) for(i=0; i < count; i++) x[i] = x[i] ^ y[i]

/*
 * See addemdum to NIST SP 800-38A
 * Decrypt, Expect CS-1: input. See the comment on the encrypt side
 * to understand what CS-2 and CS-3 mean.
 *
 * To convert the input buffer to CS-1 from ...
 *   CS-2 (Schneier): do
 *       unsigned char tmp[MAX_BLOCK_SIZE];
 *       pad = inlen % blocksize;
 *       if (pad) {
 *          memcpy(tmp, inbuf+inlen-blocksize-pad, blocksize);
 *          memcpy(inbuf+inlen-blocksize-pad,inbuf+inlen-pad, pad);
 *	    memcpy(inbuf+inlen-blocksize, tmp, blocksize);
 *       }
 *   CS-3 (Kerberos): do
 *       unsigned char tmp[MAX_BLOCK_SIZE];
 *       pad = inlen % blocksize;
 *       if (pad == 0) {
 *           pad = blocksize;
 *       }
 *       memcpy(tmp, inbuf+inlen-blocksize-pad, blocksize);
 *       memcpy(inbuf+inlen-blocksize-pad,inbuf+inlen-pad, pad);
 *	 memcpy(inbuf+inlen-blocksize, tmp, blocksize);
 */
SECStatus
CTS_DecryptUpdate(CTSContext *cts, unsigned char *outbuf,
		unsigned int *outlen, unsigned int maxout,
		const unsigned char *inbuf, unsigned int inlen,
		unsigned int blocksize)
{
    unsigned char *Pn;
    unsigned char Cn_2[MAX_BLOCK_SIZE]; /* block Cn-2 */
    unsigned char Cn_1[MAX_BLOCK_SIZE]; /* block Cn-1 */
    unsigned char Cn[MAX_BLOCK_SIZE];   /* block Cn   */
    unsigned char lastBlock[MAX_BLOCK_SIZE];
    const unsigned char *tmp;
    unsigned int tmpLen;
    int fullblocks, pad;
    unsigned int i;
    SECStatus rv;

    if (inlen < blocksize) {
	PORT_SetError(SEC_ERROR_INPUT_LEN);
	return SECFailure;
    }

    if (maxout < inlen) {
	*outlen = inlen;
	PORT_SetError(SEC_ERROR_OUTPUT_LEN);
	return SECFailure;
    }

    fullblocks = (inlen/blocksize)*blocksize;

    /* even though we expect the input to be CS-1, CS-2 is easier to parse,
     * so convert to CS-2 immediately. NOTE: this is the same code as in
     * the comment for encrypt. NOTE2: since we can't modify inbuf unless
     * inbuf and outbuf overlap, just copy inbuf to outbuf and modify it there
     */
    pad = inlen - fullblocks;
    if (pad != 0) {
	if (inbuf != outbuf) {
	    memcpy(outbuf, inbuf, inlen);
	    /* keep the names so we logically know how we are using the
	     * buffers */
	    inbuf = outbuf;
	}
	memcpy(lastBlock, inbuf+inlen-blocksize, blocksize);
	/* we know inbuf == outbuf now, inbuf is declared const and can't
	 * be the target, so use outbuf for the target here */
	memcpy(outbuf+inlen-pad, inbuf+inlen-blocksize-pad, pad);
	memcpy(outbuf+inlen-blocksize-pad, lastBlock, blocksize);
    }
    /* save the previous to last block so we can undo the misordered
     * chaining */
    tmp =  (fullblocks < blocksize*2) ? cts->iv :
			inbuf+fullblocks-blocksize*2;
    PORT_Memcpy(Cn_2, tmp, blocksize);
    PORT_Memcpy(Cn, inbuf+fullblocks-blocksize, blocksize);
    rv = (*cts->cipher)(cts->context, outbuf, outlen, maxout, inbuf,
	 fullblocks, blocksize);
    if (rv != SECSuccess) {
	return SECFailure;
    }
    *outlen = fullblocks; /* AES low level doesn't set outlen */
    inbuf += fullblocks;
    inlen -= fullblocks;
    if (inlen == 0) {
	return SECSuccess;
    }
    outbuf += fullblocks;

    /* recover the stolen text */
    PORT_Memset(lastBlock, 0, blocksize);
    PORT_Memcpy(lastBlock, inbuf, inlen);
    PORT_Memcpy(Cn_1, inbuf, inlen);
    Pn = outbuf-blocksize;
    /* inbuf points to Cn-1* in the input buffer */
    /* NOTE: below there are 2 sections marked "make up for the out of order
     * cbc decryption". You may ask, what is going on here.
     *   Short answer: CBC automatically xors the plain text with the previous
     * encrypted block. We are decrypting the last 2 blocks out of order, so
     * we have to 'back out' the decrypt xor and 'add back' the encrypt xor.
     *   Long answer: When we encrypted, we encrypted as follows:
     *       Pn-2, Pn-1, (Pn || 0), but on decryption we can't
     *  decrypt Cn-1 until we decrypt Cn because part of Cn-1 is stored in
     *  Cn (see below).  So above we decrypted all the full blocks:
     *       Cn-2, Cn,
     *  to get:
     *       Pn-2, Pn, Except that Pn is not yet corect. On encrypt, we
     *  xor'd Pn || 0  with Cn-1, but on decrypt we xor'd it with Cn-2
     *  To recover Pn, we xor the block with Cn-1* || 0 (in last block) and
     *  Cn-2 to get Pn || Cn-1**. Pn can then be written to the output buffer
     *  and we can now reunite Cn-1. With the full Cn-1 we can decrypt it,
     *  but now decrypt is going to xor the decrypted data with Cn instead of
     *  Cn-2. xoring Cn and Cn-2 restores the original Pn-1 and we can now
     *  write that oout to the buffer */

    /* make up for the out of order CBC decryption */
    XOR_BLOCK(lastBlock, Cn_2, blocksize);
    XOR_BLOCK(lastBlock, Pn, blocksize);
    /* last buf now has Pn || Cn-1**, copy out Pn */
    PORT_Memcpy(outbuf, lastBlock, inlen);
    *outlen += inlen;
    /* copy Cn-1* into last buf to recover Cn-1 */
    PORT_Memcpy(lastBlock, Cn_1, inlen);
    /* note: because Cn and Cn-1 were out of order, our pointer to Pn also
     * points to where Pn-1 needs to reside. From here on out read Pn in
     * the code as really Pn-1. */
    rv = (*cts->cipher)(cts->context, Pn, &tmpLen, blocksize, lastBlock,
	 blocksize, blocksize);
    if (rv != SECSuccess) {
	return SECFailure;
    }
    /* make up for the out of order CBC decryption */
    XOR_BLOCK(Pn, Cn_2, blocksize);
    XOR_BLOCK(Pn, Cn, blocksize);
    /* reset iv to Cn  */
    PORT_Memcpy(cts->iv, Cn, blocksize);
    /* This makes Cn the last block for the next decrypt operation, which
     * matches the encrypt. We don't care about the contexts of last block,
     * only the side effect of setting the internal IV */
    (void) (*cts->cipher)(cts->context, lastBlock, &tmpLen, blocksize, Cn,
		blocksize, blocksize);
    /* clear last block. At this point last block contains Pn xor Cn_1 xor
     * Cn_2, both of with an attacker would know, so we need to clear this
     * buffer out */
    PORT_Memset(lastBlock, 0, blocksize);
    /* Cn, Cn_1, and Cn_2 have encrypted data, so no need to clear them */
    return SECSuccess;
}