summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/ecl/ecp_fp160.c
blob: 8721579f26de1a315b51e8c8186f2e5d7d849e26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/* 
 * ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is the elliptic curve math library for prime field curves using floating point operations.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Stephen Fung <fungstep@hotmail.com>, Sun Microsystems Laboratories
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#include "ecp_fp.h"
#include <stdlib.h>

#define ECFP_BSIZE 160
#define ECFP_NUMDOUBLES 7

#include "ecp_fpinc.c"

/* Performs a single step of reduction, just on the uppermost float
 * (assumes already tidied), and then retidies. Note, this does not
 * guarantee that the result will be less than p, but truncates the number 
 * of bits. */
void
ecfp160_singleReduce(double *d, const EC_group_fp * group)
{
	double q;

	ECFP_ASSERT(group->doubleBitSize == 24);
	ECFP_ASSERT(group->primeBitSize == 160);
	ECFP_ASSERT(ECFP_NUMDOUBLES == 7);

	q = d[ECFP_NUMDOUBLES - 1] - ecfp_beta_160;
	q += group->bitSize_alpha;
	q -= group->bitSize_alpha;

	d[ECFP_NUMDOUBLES - 1] -= q;
	d[0] += q * ecfp_twom160;
	d[1] += q * ecfp_twom129;
	ecfp_positiveTidy(d, group);

	/* Assertions for the highest order term */
	ECFP_ASSERT(d[ECFP_NUMDOUBLES - 1] / ecfp_exp[ECFP_NUMDOUBLES - 1] ==
				(unsigned long long) (d[ECFP_NUMDOUBLES - 1] /
									  ecfp_exp[ECFP_NUMDOUBLES - 1]));
	ECFP_ASSERT(d[ECFP_NUMDOUBLES - 1] >= 0);
}

/* Performs imperfect reduction.  This might leave some negative terms,
 * and one more reduction might be required for the result to be between 0 
 * and p-1. x should not already be reduced, i.e. should have
 * 2*ECFP_NUMDOUBLES significant terms. x and r can be the same, but then
 * the upper parts of r are not zeroed */
void
ecfp160_reduce(double *r, double *x, const EC_group_fp * group)
{

	double x7, x8, q;

	ECFP_ASSERT(group->doubleBitSize == 24);
	ECFP_ASSERT(group->primeBitSize == 160);
	ECFP_ASSERT(ECFP_NUMDOUBLES == 7);

	/* Tidy just the upper bits, the lower bits can wait. */
	ecfp_tidyUpper(x, group);

	/* Assume that this is already tidied so that we have enough extra
	 * bits */
	x7 = x[7] + x[13] * ecfp_twom129;	/* adds bits 15-39 */

	/* Tidy x7, or we won't have enough bits later to add it in */
	q = x7 + group->alpha[8];
	q -= group->alpha[8];
	x7 -= q;					/* holds bits 0-24 */
	x8 = x[8] + q;				/* holds bits 0-25 */

	r[6] = x[6] + x[13] * ecfp_twom160 + x[12] * ecfp_twom129;	/* adds
																 * bits
																 * 8-39 */
	r[5] = x[5] + x[12] * ecfp_twom160 + x[11] * ecfp_twom129;
	r[4] = x[4] + x[11] * ecfp_twom160 + x[10] * ecfp_twom129;
	r[3] = x[3] + x[10] * ecfp_twom160 + x[9] * ecfp_twom129;
	r[2] = x[2] + x[9] * ecfp_twom160 + x8 * ecfp_twom129;	/* adds bits
															 * 8-40 */
	r[1] = x[1] + x8 * ecfp_twom160 + x7 * ecfp_twom129;	/* adds bits
															 * 8-39 */
	r[0] = x[0] + x7 * ecfp_twom160;

	/* Tidy up just r[ECFP_NUMDOUBLES-2] so that the number of reductions
	 * is accurate plus or minus one.  (Rather than tidy all to make it
	 * totally accurate, which is more costly.) */
	q = r[ECFP_NUMDOUBLES - 2] + group->alpha[ECFP_NUMDOUBLES - 1];
	q -= group->alpha[ECFP_NUMDOUBLES - 1];
	r[ECFP_NUMDOUBLES - 2] -= q;
	r[ECFP_NUMDOUBLES - 1] += q;

	/* Tidy up the excess bits on r[ECFP_NUMDOUBLES-1] using reduction */
	/* Use ecfp_beta so we get a positive result */
	q = r[ECFP_NUMDOUBLES - 1] - ecfp_beta_160;
	q += group->bitSize_alpha;
	q -= group->bitSize_alpha;

	r[ECFP_NUMDOUBLES - 1] -= q;
	r[0] += q * ecfp_twom160;
	r[1] += q * ecfp_twom129;

	/* Tidy the result */
	ecfp_tidyShort(r, group);
}

/* Sets group to use optimized calculations in this file */
mp_err
ec_group_set_secp160r1_fp(ECGroup *group)
{

	EC_group_fp *fpg = NULL;

	/* Allocate memory for floating point group data */
	fpg = (EC_group_fp *) malloc(sizeof(EC_group_fp));
	if (fpg == NULL) {
		return MP_MEM;
	}

	fpg->numDoubles = ECFP_NUMDOUBLES;
	fpg->primeBitSize = ECFP_BSIZE;
	fpg->orderBitSize = 161;
	fpg->doubleBitSize = 24;
	fpg->numInts = (ECFP_BSIZE + ECL_BITS - 1) / ECL_BITS;
	fpg->aIsM3 = 1;
	fpg->ecfp_singleReduce = &ecfp160_singleReduce;
	fpg->ecfp_reduce = &ecfp160_reduce;
	fpg->ecfp_tidy = &ecfp_tidy;

	fpg->pt_add_jac_aff = &ecfp160_pt_add_jac_aff;
	fpg->pt_add_jac = &ecfp160_pt_add_jac;
	fpg->pt_add_jm_chud = &ecfp160_pt_add_jm_chud;
	fpg->pt_add_chud = &ecfp160_pt_add_chud;
	fpg->pt_dbl_jac = &ecfp160_pt_dbl_jac;
	fpg->pt_dbl_jm = &ecfp160_pt_dbl_jm;
	fpg->pt_dbl_aff2chud = &ecfp160_pt_dbl_aff2chud;
	fpg->precompute_chud = &ecfp160_precompute_chud;
	fpg->precompute_jac = &ecfp160_precompute_jac;

	group->point_mul = &ec_GFp_point_mul_wNAF_fp;
	group->points_mul = &ec_pts_mul_basic;
	group->extra1 = fpg;
	group->extra_free = &ec_GFp_extra_free_fp;

	ec_set_fp_precision(fpg);
	fpg->bitSize_alpha = ECFP_TWO160 * fpg->alpha[0];
	return MP_OKAY;
}