summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/mpi/hppa20.s
blob: 4cabd249b542d20360ffe7309b287f39d422ac62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
; ***** BEGIN LICENSE BLOCK *****
; Version: MPL 1.1/GPL 2.0/LGPL 2.1
;
; The contents of this file are subject to the Mozilla Public License Version
; 1.1 (the "License"); you may not use this file except in compliance with
; the License. You may obtain a copy of the License at
; http://www.mozilla.org/MPL/
;
; Software distributed under the License is distributed on an "AS IS" basis,
; WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
; for the specific language governing rights and limitations under the
; License.
;
; The Original Code is MAXPY multiple-precision integer arithmetic.
;
; The Initial Developer of the Original Code is
; the Hewlett-Packard Company.
; Portions created by the Initial Developer are Copyright (C) 1997
; the Initial Developer. All Rights Reserved.
;
; Contributor(s):
;   coded by:   William B. Ackerman
;
; Alternatively, the contents of this file may be used under the terms of
; either the GNU General Public License Version 2 or later (the "GPL"), or
; the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
; in which case the provisions of the GPL or the LGPL are applicable instead
; of those above. If you wish to allow use of your version of this file only
; under the terms of either the GPL or the LGPL, and not to allow others to
; use your version of this file under the terms of the MPL, indicate your
; decision by deleting the provisions above and replace them with the notice
; and other provisions required by the GPL or the LGPL. If you do not delete
; the provisions above, a recipient may use your version of this file under
; the terms of any one of the MPL, the GPL or the LGPL.
;
; ***** END LICENSE BLOCK *****

#ifdef __LP64__
        .LEVEL   2.0W
#else
;       .LEVEL   1.1
;       .ALLOW   2.0N
        .LEVEL   2.0N
#endif
        .SPACE   $TEXT$,SORT=8
        .SUBSPA  $CODE$,QUAD=0,ALIGN=4,ACCESS=0x2c,CODE_ONLY,SORT=24

; ***************************************************************
;
;                 maxpy_[little/big]
;
; ***************************************************************

; There is no default -- you must specify one or the other.
#define LITTLE_WORDIAN 1

#ifdef LITTLE_WORDIAN
#define EIGHT 8
#define SIXTEEN 16
#define THIRTY_TWO 32
#define UN_EIGHT -8
#define UN_SIXTEEN -16
#define UN_TWENTY_FOUR -24
#endif

#ifdef BIG_WORDIAN
#define EIGHT -8
#define SIXTEEN -16
#define THIRTY_TWO -32
#define UN_EIGHT 8
#define UN_SIXTEEN 16
#define UN_TWENTY_FOUR 24
#endif

; This performs a multiple-precision integer version of "daxpy",
; Using the selected addressing direction.  "Little-wordian" means that
; the least significant word of a number is stored at the lowest address.
; "Big-wordian" means that the most significant word is at the lowest
; address.  Either way, the incoming address of the vector is that
; of the least significant word.  That means that, for little-wordian
; addressing, we move the address upward as we propagate carries
; from the least significant word to the most significant.  For
; big-wordian we move the address downward.

; We use the following registers:
;
;     r2   return PC, of course
;     r26 = arg1 =  length
;     r25 = arg2 =  address of scalar
;     r24 = arg3 =  multiplicand vector
;     r23 = arg4 =  result vector
;
;     fr9 = scalar loaded once only from r25

; The cycle counts shown in the bodies below are simply the result of a
; scheduling by hand.  The actual PCX-U hardware does it differently.
; The intention is that the overall speed is the same.

; The pipeline startup and shutdown code is constructed in the usual way,
; by taking the loop bodies and removing unnecessary instructions.
; We have left the comments describing cycle numbers in the code.
; These are intended for reference when comparing with the main loop,
; and have no particular relationship to actual cycle numbers.

#ifdef LITTLE_WORDIAN
maxpy_little
#else
maxpy_big
#endif
        .PROC
        .CALLINFO FRAME=120,ENTRY_GR=%r4
        .ENTER

; Of course, real men don't use the sissy "enter" and "leave" commands.
; They write their own stack manipulation stuff.  Unfortunately,
; that doesn't generate complete unwind info, whereas "enter" and
; "leave" (if the documentation is to be believed) do so.  Therefore,
; we use the sissy commands.  We have verified (by real-man methods)
; that the above command generates what we want:
;       STW,MA  %r3,128(%sp)
;       STW     %r4,-124(%sp)

        ADDIB,< -1,%r26,$L0         ; If N = 0, exit immediately.
        FLDD    0(%r25),%fr9        ; fr9 = scalar

; First startup

        FLDD    0(%r24),%fr24       ; Cycle 1
        XMPYU   %fr9R,%fr24R,%fr27  ; Cycle 3
        XMPYU   %fr9R,%fr24L,%fr25  ; Cycle 4
        XMPYU   %fr9L,%fr24L,%fr26  ; Cycle 5
        CMPIB,> 3,%r26,$N_IS_SMALL  ; Pick out cases N = 1, 2, or 3
        XMPYU   %fr9L,%fr24R,%fr24  ; Cycle 6
        FLDD    EIGHT(%r24),%fr28   ; Cycle 8
        XMPYU   %fr9L,%fr28R,%fr31  ; Cycle 10
        FSTD    %fr24,-96(%sp)
        XMPYU   %fr9R,%fr28L,%fr30  ; Cycle 11
        FSTD    %fr25,-80(%sp)
        LDO     SIXTEEN(%r24),%r24  ; Cycle 12
        FSTD    %fr31,-64(%sp)
        XMPYU   %fr9R,%fr28R,%fr29  ; Cycle 13
        FSTD    %fr27,-48(%sp)

; Second startup

        XMPYU   %fr9L,%fr28L,%fr28  ; Cycle 1
        FSTD    %fr30,-56(%sp)
        FLDD    0(%r24),%fr24

        FSTD    %fr26,-88(%sp)      ; Cycle 2

        XMPYU   %fr9R,%fr24R,%fr27  ; Cycle 3
        FSTD    %fr28,-104(%sp)

        XMPYU   %fr9R,%fr24L,%fr25  ; Cycle 4
        LDD     -96(%sp),%r3
        FSTD    %fr29,-72(%sp)

        XMPYU   %fr9L,%fr24L,%fr26  ; Cycle 5
        LDD     -64(%sp),%r19
        LDD     -80(%sp),%r21

        XMPYU   %fr9L,%fr24R,%fr24  ; Cycle 6
        LDD     -56(%sp),%r20
        ADD     %r21,%r3,%r3

        ADD,DC  %r20,%r19,%r19      ; Cycle 7
        LDD     -88(%sp),%r4
        SHRPD   %r3,%r0,32,%r21
        LDD     -48(%sp),%r1

        FLDD    EIGHT(%r24),%fr28   ; Cycle 8
        LDD     -104(%sp),%r31
        ADD,DC  %r0,%r0,%r20
        SHRPD   %r19,%r3,32,%r3

        LDD     -72(%sp),%r29       ; Cycle 9
        SHRPD   %r20,%r19,32,%r20
        ADD     %r21,%r1,%r1

        XMPYU   %fr9L,%fr28R,%fr31  ; Cycle 10
        ADD,DC  %r3,%r4,%r4
        FSTD    %fr24,-96(%sp)

        XMPYU   %fr9R,%fr28L,%fr30  ; Cycle 11
        ADD,DC  %r0,%r20,%r20
        LDD     0(%r23),%r3
        FSTD    %fr25,-80(%sp)

        LDO     SIXTEEN(%r24),%r24  ; Cycle 12
        FSTD    %fr31,-64(%sp)

        XMPYU   %fr9R,%fr28R,%fr29  ; Cycle 13
        ADD     %r0,%r0,%r0         ; clear the carry bit
        ADDIB,<= -4,%r26,$ENDLOOP   ; actually happens in cycle 12
        FSTD    %fr27,-48(%sp)
;        MFCTL   %cr16,%r21         ; for timing
;        STD     %r21,-112(%sp)

; Here is the loop.

$LOOP   XMPYU   %fr9L,%fr28L,%fr28  ; Cycle 1
        ADD,DC  %r29,%r4,%r4
        FSTD    %fr30,-56(%sp)
        FLDD    0(%r24),%fr24

        LDO     SIXTEEN(%r23),%r23  ; Cycle 2
        ADD,DC  %r0,%r20,%r20
        FSTD    %fr26,-88(%sp)

        XMPYU   %fr9R,%fr24R,%fr27  ; Cycle 3
        ADD     %r3,%r1,%r1
        FSTD    %fr28,-104(%sp)
        LDD     UN_EIGHT(%r23),%r21

        XMPYU   %fr9R,%fr24L,%fr25  ; Cycle 4
        ADD,DC  %r21,%r4,%r28
        FSTD    %fr29,-72(%sp)    
        LDD     -96(%sp),%r3

        XMPYU   %fr9L,%fr24L,%fr26  ; Cycle 5
        ADD,DC  %r20,%r31,%r22
        LDD     -64(%sp),%r19
        LDD     -80(%sp),%r21

        XMPYU   %fr9L,%fr24R,%fr24  ; Cycle 6
        ADD     %r21,%r3,%r3
        LDD     -56(%sp),%r20
        STD     %r1,UN_SIXTEEN(%r23)

        ADD,DC  %r20,%r19,%r19      ; Cycle 7
        SHRPD   %r3,%r0,32,%r21
        LDD     -88(%sp),%r4
        LDD     -48(%sp),%r1

        ADD,DC  %r0,%r0,%r20        ; Cycle 8
        SHRPD   %r19,%r3,32,%r3
        FLDD    EIGHT(%r24),%fr28
        LDD     -104(%sp),%r31

        SHRPD   %r20,%r19,32,%r20   ; Cycle 9
        ADD     %r21,%r1,%r1
        STD     %r28,UN_EIGHT(%r23)
        LDD     -72(%sp),%r29

        XMPYU   %fr9L,%fr28R,%fr31  ; Cycle 10
        ADD,DC  %r3,%r4,%r4
        FSTD    %fr24,-96(%sp)

        XMPYU   %fr9R,%fr28L,%fr30  ; Cycle 11
        ADD,DC  %r0,%r20,%r20
        FSTD    %fr25,-80(%sp)
        LDD     0(%r23),%r3

        LDO     SIXTEEN(%r24),%r24  ; Cycle 12
        FSTD    %fr31,-64(%sp)

        XMPYU   %fr9R,%fr28R,%fr29  ; Cycle 13
        ADD     %r22,%r1,%r1
        ADDIB,> -2,%r26,$LOOP       ; actually happens in cycle 12
        FSTD    %fr27,-48(%sp)

$ENDLOOP

; Shutdown code, first stage.

;        MFCTL   %cr16,%r21         ; for timing
;        STD     %r21,UN_SIXTEEN(%r23)
;        LDD     -112(%sp),%r21
;        STD     %r21,UN_EIGHT(%r23)

        XMPYU   %fr9L,%fr28L,%fr28  ; Cycle 1
        ADD,DC  %r29,%r4,%r4
        CMPIB,= 0,%r26,$ONEMORE
        FSTD    %fr30,-56(%sp)

        LDO     SIXTEEN(%r23),%r23  ; Cycle 2
        ADD,DC  %r0,%r20,%r20
        FSTD    %fr26,-88(%sp)

        ADD     %r3,%r1,%r1         ; Cycle 3
        FSTD    %fr28,-104(%sp)
        LDD     UN_EIGHT(%r23),%r21

        ADD,DC  %r21,%r4,%r28       ; Cycle 4
        FSTD    %fr29,-72(%sp)    
        STD     %r28,UN_EIGHT(%r23) ; moved up from cycle 9
        LDD     -96(%sp),%r3

        ADD,DC  %r20,%r31,%r22      ; Cycle 5
        STD     %r1,UN_SIXTEEN(%r23)
$JOIN4
        LDD     -64(%sp),%r19
        LDD     -80(%sp),%r21

        ADD     %r21,%r3,%r3        ; Cycle 6
        LDD     -56(%sp),%r20

        ADD,DC  %r20,%r19,%r19      ; Cycle 7
        SHRPD   %r3,%r0,32,%r21
        LDD     -88(%sp),%r4
        LDD     -48(%sp),%r1

        ADD,DC  %r0,%r0,%r20        ; Cycle 8
        SHRPD   %r19,%r3,32,%r3
        LDD     -104(%sp),%r31

        SHRPD   %r20,%r19,32,%r20   ; Cycle 9
        ADD     %r21,%r1,%r1
        LDD     -72(%sp),%r29

        ADD,DC  %r3,%r4,%r4         ; Cycle 10

        ADD,DC  %r0,%r20,%r20       ; Cycle 11
        LDD     0(%r23),%r3

        ADD     %r22,%r1,%r1        ; Cycle 13

; Shutdown code, second stage.

        ADD,DC  %r29,%r4,%r4        ; Cycle 1

        LDO     SIXTEEN(%r23),%r23  ; Cycle 2
        ADD,DC  %r0,%r20,%r20

        LDD     UN_EIGHT(%r23),%r21 ; Cycle 3
        ADD     %r3,%r1,%r1

        ADD,DC  %r21,%r4,%r28       ; Cycle 4

        ADD,DC  %r20,%r31,%r22      ; Cycle 5

        STD     %r1,UN_SIXTEEN(%r23); Cycle 6

        STD     %r28,UN_EIGHT(%r23) ; Cycle 9

        LDD     0(%r23),%r3         ; Cycle 11

; Shutdown code, third stage.

        LDO     SIXTEEN(%r23),%r23
        ADD     %r3,%r22,%r1
$JOIN1  ADD,DC  %r0,%r0,%r21
        CMPIB,*= 0,%r21,$L0         ; if no overflow, exit
        STD     %r1,UN_SIXTEEN(%r23)

; Final carry propagation

$FINAL1 LDO     EIGHT(%r23),%r23
        LDD     UN_SIXTEEN(%r23),%r21
        ADDI    1,%r21,%r21
        CMPIB,*= 0,%r21,$FINAL1     ; Keep looping if there is a carry.
        STD     %r21,UN_SIXTEEN(%r23)
        B       $L0
        NOP

; Here is the code that handles the difficult cases N=1, N=2, and N=3.
; We do the usual trick -- branch out of the startup code at appropriate
; points, and branch into the shutdown code.

$N_IS_SMALL
        CMPIB,= 0,%r26,$N_IS_ONE
        FSTD    %fr24,-96(%sp)      ; Cycle 10
        FLDD    EIGHT(%r24),%fr28   ; Cycle 8
        XMPYU   %fr9L,%fr28R,%fr31  ; Cycle 10
        XMPYU   %fr9R,%fr28L,%fr30  ; Cycle 11
        FSTD    %fr25,-80(%sp)
        FSTD    %fr31,-64(%sp)      ; Cycle 12
        XMPYU   %fr9R,%fr28R,%fr29  ; Cycle 13
        FSTD    %fr27,-48(%sp)
        XMPYU   %fr9L,%fr28L,%fr28  ; Cycle 1
        CMPIB,= 2,%r26,$N_IS_THREE
        FSTD    %fr30,-56(%sp)

; N = 2
        FSTD    %fr26,-88(%sp)      ; Cycle 2
        FSTD    %fr28,-104(%sp)     ; Cycle 3
        LDD     -96(%sp),%r3        ; Cycle 4
        FSTD    %fr29,-72(%sp)
        B       $JOIN4
        ADD     %r0,%r0,%r22

$N_IS_THREE
        FLDD    SIXTEEN(%r24),%fr24
        FSTD    %fr26,-88(%sp)      ; Cycle 2
        XMPYU   %fr9R,%fr24R,%fr27  ; Cycle 3
        FSTD    %fr28,-104(%sp)
        XMPYU   %fr9R,%fr24L,%fr25  ; Cycle 4
        LDD     -96(%sp),%r3
        FSTD    %fr29,-72(%sp)
        XMPYU   %fr9L,%fr24L,%fr26  ; Cycle 5
        LDD     -64(%sp),%r19
        LDD     -80(%sp),%r21
        B       $JOIN3
        ADD     %r0,%r0,%r22

$N_IS_ONE
        FSTD    %fr25,-80(%sp)
        FSTD    %fr27,-48(%sp)
        FSTD    %fr26,-88(%sp)      ; Cycle 2
        B       $JOIN5
        ADD     %r0,%r0,%r22

; We came out of the unrolled loop with wrong parity.  Do one more
; single cycle.  This is quite tricky, because of the way the
; carry chains and SHRPD chains have been chopped up.

$ONEMORE

        FLDD    0(%r24),%fr24

        LDO     SIXTEEN(%r23),%r23  ; Cycle 2
        ADD,DC  %r0,%r20,%r20
        FSTD    %fr26,-88(%sp)

        XMPYU   %fr9R,%fr24R,%fr27  ; Cycle 3
        FSTD    %fr28,-104(%sp)
        LDD     UN_EIGHT(%r23),%r21
        ADD     %r3,%r1,%r1

        XMPYU   %fr9R,%fr24L,%fr25  ; Cycle 4
        ADD,DC  %r21,%r4,%r28
        STD     %r28,UN_EIGHT(%r23) ; moved from cycle 9
        LDD     -96(%sp),%r3
        FSTD    %fr29,-72(%sp)    

        XMPYU   %fr9L,%fr24L,%fr26  ; Cycle 5
        ADD,DC  %r20,%r31,%r22
        LDD     -64(%sp),%r19
        LDD     -80(%sp),%r21

        STD     %r1,UN_SIXTEEN(%r23); Cycle 6
$JOIN3
        XMPYU   %fr9L,%fr24R,%fr24
        LDD     -56(%sp),%r20
        ADD     %r21,%r3,%r3

        ADD,DC  %r20,%r19,%r19      ; Cycle 7
        LDD     -88(%sp),%r4
        SHRPD   %r3,%r0,32,%r21
        LDD     -48(%sp),%r1

        LDD     -104(%sp),%r31      ; Cycle 8
        ADD,DC  %r0,%r0,%r20
        SHRPD   %r19,%r3,32,%r3

        LDD     -72(%sp),%r29       ; Cycle 9
        SHRPD   %r20,%r19,32,%r20
        ADD     %r21,%r1,%r1

        ADD,DC  %r3,%r4,%r4         ; Cycle 10
        FSTD    %fr24,-96(%sp)

        ADD,DC  %r0,%r20,%r20       ; Cycle 11
        LDD     0(%r23),%r3
        FSTD    %fr25,-80(%sp)

        ADD     %r22,%r1,%r1        ; Cycle 13
        FSTD    %fr27,-48(%sp)

; Shutdown code, stage 1-1/2.

        ADD,DC  %r29,%r4,%r4        ; Cycle 1

        LDO     SIXTEEN(%r23),%r23  ; Cycle 2
        ADD,DC  %r0,%r20,%r20     
        FSTD    %fr26,-88(%sp)

        LDD     UN_EIGHT(%r23),%r21 ; Cycle 3
        ADD     %r3,%r1,%r1

        ADD,DC  %r21,%r4,%r28       ; Cycle 4
        STD     %r28,UN_EIGHT(%r23) ; moved from cycle 9

        ADD,DC  %r20,%r31,%r22      ; Cycle 5
        STD     %r1,UN_SIXTEEN(%r23)
$JOIN5
        LDD     -96(%sp),%r3        ; moved from cycle 4
        LDD     -80(%sp),%r21
        ADD     %r21,%r3,%r3        ; Cycle 6
        ADD,DC  %r0,%r0,%r19        ; Cycle 7
        LDD     -88(%sp),%r4
        SHRPD   %r3,%r0,32,%r21
        LDD     -48(%sp),%r1
        SHRPD   %r19,%r3,32,%r3     ; Cycle 8
        ADD     %r21,%r1,%r1        ; Cycle 9
        ADD,DC  %r3,%r4,%r4         ; Cycle 10
        LDD     0(%r23),%r3         ; Cycle 11
        ADD     %r22,%r1,%r1        ; Cycle 13

; Shutdown code, stage 2-1/2.

        ADD,DC  %r0,%r4,%r4         ; Cycle 1
        LDO     SIXTEEN(%r23),%r23  ; Cycle 2
        LDD     UN_EIGHT(%r23),%r21 ; Cycle 3
        ADD     %r3,%r1,%r1
        STD     %r1,UN_SIXTEEN(%r23)
        ADD,DC  %r21,%r4,%r1
        B       $JOIN1
        LDO     EIGHT(%r23),%r23

; exit

$L0
        .LEAVE

; We have verified that the above command generates what we want:
;       LDW     -124(%sp),%r4
;       BVE     (%r2)
;       LDW,MB  -128(%sp),%r3

        .PROCEND

; ***************************************************************
;
;                 add_diag_[little/big]
;
; ***************************************************************

; The arguments are as follows:
;     r2   return PC, of course
;     r26 = arg1 =  length
;     r25 = arg2 =  vector to square
;     r24 = arg3 =  result vector

#ifdef LITTLE_WORDIAN
add_diag_little
#else
add_diag_big
#endif
        .PROC
        .CALLINFO FRAME=120,ENTRY_GR=%r4
        .ENTER

        ADDIB,< -1,%r26,$Z0         ; If N=0, exit immediately.
        NOP

; Startup code

        FLDD    0(%r25),%fr7        ; Cycle 2 (alternate body)
        XMPYU   %fr7R,%fr7R,%fr29   ; Cycle 4
        XMPYU   %fr7L,%fr7R,%fr27   ; Cycle 5
        XMPYU   %fr7L,%fr7L,%fr30
        LDO     SIXTEEN(%r25),%r25  ; Cycle 6
        FSTD    %fr29,-88(%sp)
        FSTD    %fr27,-72(%sp)      ; Cycle 7
        CMPIB,= 0,%r26,$DIAG_N_IS_ONE ; Cycle 1 (main body)
        FSTD    %fr30,-96(%sp)
        FLDD    UN_EIGHT(%r25),%fr7 ; Cycle 2
        LDD     -88(%sp),%r22       ; Cycle 3
        LDD     -72(%sp),%r31       ; Cycle 4
        XMPYU   %fr7R,%fr7R,%fr28
        XMPYU   %fr7L,%fr7R,%fr24   ; Cycle 5
        XMPYU   %fr7L,%fr7L,%fr31
        LDD     -96(%sp),%r20       ; Cycle 6
        FSTD    %fr28,-80(%sp)
        ADD     %r0,%r0,%r0         ; clear the carry bit
        ADDIB,<= -2,%r26,$ENDDIAGLOOP ; Cycle 7
        FSTD    %fr24,-64(%sp)

; Here is the loop.  It is unrolled twice, modelled after the "alternate body" and then the "main body".

$DIAGLOOP
        SHRPD   %r31,%r0,31,%r3     ; Cycle 1 (alternate body)
        LDO     SIXTEEN(%r25),%r25
        LDD     0(%r24),%r1
        FSTD    %fr31,-104(%sp)
        SHRPD   %r0,%r31,31,%r4     ; Cycle 2
        ADD,DC  %r22,%r3,%r3
        FLDD    UN_SIXTEEN(%r25),%fr7   
        ADD,DC  %r0,%r20,%r20       ; Cycle 3
        ADD     %r1,%r3,%r3
        XMPYU   %fr7R,%fr7R,%fr29   ; Cycle 4
        LDD     -80(%sp),%r21
        STD     %r3,0(%r24)
        XMPYU   %fr7L,%fr7R,%fr27   ; Cycle 5
        XMPYU   %fr7L,%fr7L,%fr30
        LDD     -64(%sp),%r29       
        LDD     EIGHT(%r24),%r1  
        ADD,DC  %r4,%r20,%r20       ; Cycle 6
        LDD     -104(%sp),%r19
        FSTD    %fr29,-88(%sp)
        ADD     %r20,%r1,%r1        ; Cycle 7
        FSTD    %fr27,-72(%sp)
        SHRPD   %r29,%r0,31,%r4     ; Cycle 1 (main body)
        LDO     THIRTY_TWO(%r24),%r24
        LDD     UN_SIXTEEN(%r24),%r28
        FSTD    %fr30,-96(%sp)
        SHRPD   %r0,%r29,31,%r3     ; Cycle 2
        ADD,DC  %r21,%r4,%r4
        FLDD    UN_EIGHT(%r25),%fr7
        STD     %r1,UN_TWENTY_FOUR(%r24)
        ADD,DC  %r0,%r19,%r19       ; Cycle 3
        ADD     %r28,%r4,%r4
        XMPYU   %fr7R,%fr7R,%fr28   ; Cycle 4
        LDD     -88(%sp),%r22
        STD     %r4,UN_SIXTEEN(%r24)
        XMPYU   %fr7L,%fr7R,%fr24   ; Cycle 5
        XMPYU   %fr7L,%fr7L,%fr31
        LDD     -72(%sp),%r31
        LDD     UN_EIGHT(%r24),%r28
        ADD,DC  %r3,%r19,%r19       ; Cycle 6
        LDD     -96(%sp),%r20
        FSTD    %fr28,-80(%sp)
        ADD     %r19,%r28,%r28      ; Cycle 7
        FSTD    %fr24,-64(%sp)
        ADDIB,> -2,%r26,$DIAGLOOP   ; Cycle 8
        STD     %r28,UN_EIGHT(%r24)

$ENDDIAGLOOP

        ADD,DC  %r0,%r22,%r22    
        CMPIB,= 0,%r26,$ONEMOREDIAG
        SHRPD   %r31,%r0,31,%r3

; Shutdown code, first stage.

        FSTD    %fr31,-104(%sp)     ; Cycle 1 (alternate body)
        LDD     0(%r24),%r28
        SHRPD   %r0,%r31,31,%r4     ; Cycle 2
        ADD     %r3,%r22,%r3
        ADD,DC  %r0,%r20,%r20       ; Cycle 3
        LDD     -80(%sp),%r21
        ADD     %r3,%r28,%r3
        LDD     -64(%sp),%r29       ; Cycle 4
        STD     %r3,0(%r24)
        LDD     EIGHT(%r24),%r1     ; Cycle 5
        LDO     SIXTEEN(%r25),%r25  ; Cycle 6
        LDD     -104(%sp),%r19
        ADD,DC  %r4,%r20,%r20
        ADD     %r20,%r1,%r1        ; Cycle 7
        ADD,DC  %r0,%r21,%r21       ; Cycle 8
        STD     %r1,EIGHT(%r24)

; Shutdown code, second stage.

        SHRPD   %r29,%r0,31,%r4     ; Cycle 1 (main body)
        LDO     THIRTY_TWO(%r24),%r24
        LDD     UN_SIXTEEN(%r24),%r1
        SHRPD   %r0,%r29,31,%r3      ; Cycle 2
        ADD     %r4,%r21,%r4
        ADD,DC  %r0,%r19,%r19       ; Cycle 3
        ADD     %r4,%r1,%r4
        STD     %r4,UN_SIXTEEN(%r24); Cycle 4
        LDD     UN_EIGHT(%r24),%r28 ; Cycle 5
        ADD,DC  %r3,%r19,%r19       ; Cycle 6       
        ADD     %r19,%r28,%r28      ; Cycle 7
        ADD,DC  %r0,%r0,%r22        ; Cycle 8
        CMPIB,*= 0,%r22,$Z0         ; if no overflow, exit
        STD     %r28,UN_EIGHT(%r24)

; Final carry propagation

$FDIAG2
        LDO     EIGHT(%r24),%r24
        LDD     UN_EIGHT(%r24),%r26
        ADDI    1,%r26,%r26
        CMPIB,*= 0,%r26,$FDIAG2     ; Keep looping if there is a carry.
        STD     %r26,UN_EIGHT(%r24)

        B   $Z0
        NOP

; Here is the code that handles the difficult case N=1.
; We do the usual trick -- branch out of the startup code at appropriate
; points, and branch into the shutdown code.

$DIAG_N_IS_ONE

        LDD     -88(%sp),%r22
        LDD     -72(%sp),%r31
        B       $JOINDIAG
        LDD     -96(%sp),%r20

; We came out of the unrolled loop with wrong parity.  Do one more
; single cycle.  This is the "alternate body".  It will, of course,
; give us opposite registers from the other case, so we need
; completely different shutdown code.

$ONEMOREDIAG
        FSTD    %fr31,-104(%sp)     ; Cycle 1 (alternate body)
        LDD     0(%r24),%r28
        FLDD    0(%r25),%fr7        ; Cycle 2
        SHRPD   %r0,%r31,31,%r4
        ADD     %r3,%r22,%r3
        ADD,DC  %r0,%r20,%r20       ; Cycle 3
        LDD     -80(%sp),%r21
        ADD     %r3,%r28,%r3
        LDD     -64(%sp),%r29       ; Cycle 4
        STD     %r3,0(%r24)
        XMPYU   %fr7R,%fr7R,%fr29
        LDD     EIGHT(%r24),%r1     ; Cycle 5
        XMPYU   %fr7L,%fr7R,%fr27
        XMPYU   %fr7L,%fr7L,%fr30
        LDD     -104(%sp),%r19      ; Cycle 6
        FSTD    %fr29,-88(%sp)
        ADD,DC  %r4,%r20,%r20
        FSTD    %fr27,-72(%sp)      ; Cycle 7
        ADD     %r20,%r1,%r1
        ADD,DC  %r0,%r21,%r21       ; Cycle 8
        STD     %r1,EIGHT(%r24)

; Shutdown code, first stage.

        SHRPD   %r29,%r0,31,%r4     ; Cycle 1 (main body)
        LDO     THIRTY_TWO(%r24),%r24
        FSTD    %fr30,-96(%sp)
        LDD     UN_SIXTEEN(%r24),%r1
        SHRPD   %r0,%r29,31,%r3     ; Cycle 2
        ADD     %r4,%r21,%r4
        ADD,DC  %r0,%r19,%r19       ; Cycle 3
        LDD     -88(%sp),%r22
        ADD     %r4,%r1,%r4
        LDD     -72(%sp),%r31       ; Cycle 4
        STD     %r4,UN_SIXTEEN(%r24)
        LDD     UN_EIGHT(%r24),%r28 ; Cycle 5
        LDD     -96(%sp),%r20       ; Cycle 6
        ADD,DC  %r3,%r19,%r19
        ADD     %r19,%r28,%r28      ; Cycle 7
        ADD,DC  %r0,%r22,%r22       ; Cycle 8
        STD     %r28,UN_EIGHT(%r24)

; Shutdown code, second stage.

$JOINDIAG
        SHRPD   %r31,%r0,31,%r3     ; Cycle 1 (alternate body)
        LDD     0(%r24),%r28        
        SHRPD   %r0,%r31,31,%r4     ; Cycle 2
        ADD     %r3,%r22,%r3
        ADD,DC  %r0,%r20,%r20       ; Cycle 3
        ADD     %r3,%r28,%r3
        STD     %r3,0(%r24)         ; Cycle 4
        LDD     EIGHT(%r24),%r1     ; Cycle 5
        ADD,DC  %r4,%r20,%r20
        ADD     %r20,%r1,%r1        ; Cycle 7
        ADD,DC  %r0,%r0,%r21        ; Cycle 8
        CMPIB,*= 0,%r21,$Z0         ; if no overflow, exit
        STD     %r1,EIGHT(%r24)

; Final carry propagation

$FDIAG1
        LDO     EIGHT(%r24),%r24
        LDD     EIGHT(%r24),%r26
        ADDI    1,%r26,%r26
        CMPIB,*= 0,%r26,$FDIAG1    ; Keep looping if there is a carry.
        STD     %r26,EIGHT(%r24)

$Z0
        .LEAVE
        .PROCEND
;	.ALLOW

        .SPACE         $TEXT$
        .SUBSPA        $CODE$
#ifdef LITTLE_WORDIAN
        .EXPORT        maxpy_little,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR,LONG_RETURN
        .EXPORT        add_diag_little,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR,ARGW2=GR,LONG_RETURN
#else
        .EXPORT        maxpy_big,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR,LONG_RETURN
        .EXPORT        add_diag_big,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR,ARGW2=GR,LONG_RETURN
#endif
        .END


; How to use "maxpy_PA20_little" and "maxpy_PA20_big"
; 
; The routine "maxpy_PA20_little" or "maxpy_PA20_big"
; performs a 64-bit x any-size multiply, and adds the
; result to an area of memory.  That is, it performs
; something like
; 
;      A B C D
;    *       Z
;   __________
;    P Q R S T
; 
; and then adds the "PQRST" vector into an area of memory,
; handling all carries.
; 
; Digression on nomenclature and endian-ness:
; 
; Each of the capital letters in the above represents a 64-bit
; quantity.  That is, you could think of the discussion as
; being in terms of radix-16-quintillion arithmetic.  The data
; type being manipulated is "unsigned long long int".  This
; requires the 64-bit extension of the HP-UX C compiler,
; available at release 10.  You need these compiler flags to
; enable these extensions:
; 
;       -Aa +e +DA2.0 +DS2.0
; 
; (The first specifies ANSI C, the second enables the
; extensions, which are beyond ANSI C, and the third and
; fourth tell the compiler to use whatever features of the
; PA2.0 architecture it wishes, in order to made the code more
; efficient.  Since the presence of the assembly code will
; make the program unable to run on anything less than PA2.0,
; you might as well gain the performance enhancements in the C
; code as well.)
; 
; Questions of "endian-ness" often come up, usually in the
; context of byte ordering in a word.  These routines have a
; similar issue, that could be called "wordian-ness".
; Independent of byte ordering (PA is always big-endian), one
; can make two choices when representing extremely large
; numbers as arrays of 64-bit doublewords in memory.
; 
; "Little-wordian" layout means that the least significant
; word of a number is stored at the lowest address.
; 
;   MSW     LSW
;    |       |
;    V       V
; 
;    A B C D E
; 
;    ^     ^ ^
;    |     | |____ address 0
;    |     |
;    |     |_______address 8
;    |
;    address 32
; 
; "Big-wordian" means that the most significant word is at the
; lowest address.
; 
;   MSW     LSW
;    |       |
;    V       V
; 
;    A B C D E
; 
;    ^     ^ ^
;    |     | |____ address 32
;    |     |
;    |     |_______address 24
;    |
;    address 0
; 
; When you compile the file, you must specify one or the other, with
; a switch "-DLITTLE_WORDIAN" or "-DBIG_WORDIAN".
; 
;     Incidentally, you assemble this file as part of your
;     project with the same C compiler as the rest of the program.
;     My "makefile" for a superprecision arithmetic package has
;     the following stuff:
; 
;     # definitions:
;     CC = cc -Aa +e -z +DA2.0 +DS2.0 +w1
;     CFLAGS = +O3
;     LDFLAGS = -L /usr/lib -Wl,-aarchive
; 
;     # general build rule for ".s" files:
;     .s.o:
;             $(CC) $(CFLAGS) -c $< -DBIG_WORDIAN
; 
;     # Now any bind step that calls for pa20.o will assemble pa20.s
; 
; End of digression, back to arithmetic:
; 
; The way we multiply two huge numbers is, of course, to multiply
; the "ABCD" vector by each of the "WXYZ" doublewords, adding
; the result vectors with increasing offsets, the way we learned
; in school, back before we all used calculators:
; 
;            A B C D
;          * W X Y Z
;         __________
;          P Q R S T
;        E F G H I
;      M N O P Q
;  + R S T U V
;    _______________
;    F I N A L S U M
; 
; So we call maxpy_PA20_big (in my case; my package is
; big-wordian) repeatedly, giving the W, X, Y, and Z arguments
; in turn as the "scalar", and giving the "ABCD" vector each
; time.  We direct it to add its result into an area of memory
; that we have cleared at the start.  We skew the exact
; location into that area with each call.
; 
; The prototype for the function is
; 
; extern void maxpy_PA20_big(
;    int length,        /* Number of doublewords in the multiplicand vector. */
;    const long long int *scalaraddr,    /* Address to fetch the scalar. */
;    const long long int *multiplicand,  /* The multiplicand vector. */
;    long long int *result);             /* Where to accumulate the result. */
; 
; (You should place a copy of this prototype in an include file
; or in your C file.)
; 
; Now, IN ALL CASES, the given address for the multiplicand or
; the result is that of the LEAST SIGNIFICANT DOUBLEWORD.
; That word is, of course, the word at which the routine
; starts processing.  "maxpy_PA20_little" then increases the
; addresses as it computes.  "maxpy_PA20_big" decreases them.
; 
; In our example above, "length" would be 4 in each case.
; "multiplicand" would be the "ABCD" vector.  Specifically,
; the address of the element "D".  "scalaraddr" would be the
; address of "W", "X", "Y", or "Z" on the four calls that we
; would make.  (The order doesn't matter, of course.)
; "result" would be the appropriate address in the result
; area.  When multiplying by "Z", that would be the least
; significant word.  When multiplying by "Y", it would be the
; next higher word (8 bytes higher if little-wordian; 8 bytes
; lower if big-wordian), and so on.  The size of the result
; area must be the the sum of the sizes of the multiplicand
; and multiplier vectors, and must be initialized to zero
; before we start.
; 
; Whenever the routine adds its partial product into the result
; vector, it follows carry chains as far as they need to go.
; 
; Here is the super-precision multiply routine that I use for
; my package.  The package is big-wordian.  I have taken out
; handling of exponents (it's a floating point package):
; 
; static void mul_PA20(
;   int size,
;   const long long int *arg1,
;   const long long int *arg2,
;   long long int *result)
; {
;    int i;
; 
;    for (i=0 ; i<2*size ; i++) result[i] = 0ULL;
; 
;    for (i=0 ; i<size ; i++) {
;       maxpy_PA20_big(size, &arg2[i], &arg1[size-1], &result[size+i]);
;    }
; }