summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/mpi/mp_gf2m.c
blob: 93d419611bfbde41ad57824482194dba806b680f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/*
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is the Multi-precision Binary Polynomial Arithmetic 
 * Library.
 *
 * The Initial Developer of the Original Code is Sun Microsystems, Inc.
 * Portions created by Sun Microsystems, Inc. are Copyright (C) 2003
 * Sun Microsystems, Inc. All Rights Reserved.
 *
 * Contributor(s):
 *      Sheueling Chang Shantz <sheueling.chang@sun.com> and
 *      Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 */

#include "mp_gf2m.h"
#include "mplogic.h"
#include "mpi-priv.h"

static const mp_digit SQR_tb[16] =
{
      0,     1,     4,     5,    16,    17,    20,    21,
     64,    65,    68,    69,    80,    81,    84,    85
};

#if defined(MP_USE_UINT_DIGIT)
#define MP_DIGIT_BITS 32

/* Platform-specific macros for fast binary polynomial squaring. */

#define gf2m_SQR1(w) \
    SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
    SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
#define gf2m_SQR0(w) \
    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]

/* Multiply two binary polynomials mp_digits a, b.
 * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
 * Output in two mp_digits rh, rl.
 */
static void 
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
{
    register mp_digit h, l, s;
    mp_digit tab[8], top2b = a >> 30; 
    register mp_digit a1, a2, a4;

    a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;

    tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
    tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;

    s = tab[b       & 0x7]; l  = s;
    s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
    s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
    s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
    s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
    s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
    s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
    s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
    s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
    s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
    s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;

    /* compensate for the top two bits of a */

    if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } 
    if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } 

    *rh = h; *rl = l;
} 
#endif

#if defined(MP_USE_LONG_DIGIT) || defined(MP_USE_LONG_LONG_DIGIT)
#define MP_DIGIT_BITS 64
#define MP_TOP_BIT 

/* Platform-specific fast binary polynomial squaring. */
#define gf2m_SQR1(w) \
    SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
    SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
    SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
    SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
#define gf2m_SQR0(w) \
    SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
    SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]

/* Multiply two binary polynomials mp_digits a, b, output in rh, rl */
static void 
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
{
    register mp_digit h, l, s;
    mp_digit tab[16], top3b = a >> 61;
    register mp_digit a1, a2, a4, a8;

    a1 = a & (0x1FFFFFFFFFFFFFFF); a2 = a1 << 1; 
    a4 = a2 << 1; a8 = a4 << 1;
    tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
    tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
    tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
    tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;

    s = tab[b       & 0xF]; l  = s;
    s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
    s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
    s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
    s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
    s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
    s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
    s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
    s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
    s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
    s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
    s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
    s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
    s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
    s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
    s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;

    /* compensate for the top three bits of a */

    if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } 
    if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } 
    if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } 

    *rh = h; *rl = l;
} 
#endif

#if 0 /* to be used later */
/* Compute xor-multiply of two binary polynomials  (a1, a0) x (b1, b0)  
 * result is a binary polynomial in 4 mp_digits r[4].
 * The caller MUST ensure that r has the right amount of space allocated.
 */
static void 
s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
           const mp_digit b0)
{
    mp_digit m1, m0;
    /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
    s_bmul_1x1(r+3, r+2, a1, b1);
    s_bmul_1x1(r+1, r, a0, b0);
    s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
    /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
    r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
    r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
}
#endif /* 0 */

/* Compute addition of two binary polynomials a and b,
 * store result in c; c could be a or b, a and b could be equal; 
 * c is the bitwise XOR of a and b.
 */
mp_err
mp_badd(const mp_int *a, const mp_int *b, mp_int *c)
{
    mp_digit *pa, *pb, *pc;
    mp_size ix;
    mp_size used_pa, used_pb;
    mp_err res = MP_OKAY;

    /* Add all digits up to the precision of b.  If b had more
     * precision than a initially, swap a, b first
     */
    if (MP_USED(a) >= MP_USED(b)) {
        pa = MP_DIGITS(a);
        pb = MP_DIGITS(b);
        used_pa = MP_USED(a);
        used_pb = MP_USED(b);
    } else {
        pa = MP_DIGITS(b);
        pb = MP_DIGITS(a);
        used_pa = MP_USED(b);
        used_pb = MP_USED(a);
    }

    /* Make sure c has enough precision for the output value */
    MP_CHECKOK( s_mp_pad(c, used_pa) );

    /* Do word-by-word xor */
    pc = MP_DIGITS(c);
    for (ix = 0; ix < used_pb; ix++) {
        (*pc++) = (*pa++) ^ (*pb++);
    }

    /* Finish the rest of digits until we're actually done */
    for (; ix < used_pa; ++ix) {
        *pc++ = *pa++;
    }

    MP_USED(c) = used_pa;
    MP_SIGN(c) = ZPOS;
    s_mp_clamp(c);

CLEANUP:
    return res;
} 

#define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) );

/* Compute binary polynomial multiply d = a * b */
static void 
s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
{
    mp_digit a_i, a0b0, a1b1, carry = 0;
    while (a_len--) {
        a_i = *a++;
        s_bmul_1x1(&a1b1, &a0b0, a_i, b);
        *d++ = a0b0 ^ carry;
        carry = a1b1;
    }
    *d = carry;
}

/* Compute binary polynomial xor multiply accumulate d ^= a * b */
static void 
s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
{
    mp_digit a_i, a0b0, a1b1, carry = 0;
    while (a_len--) {
        a_i = *a++;
        s_bmul_1x1(&a1b1, &a0b0, a_i, b);
        *d++ ^= a0b0 ^ carry;
        carry = a1b1;
    }
    *d ^= carry;
}

/* Compute binary polynomial xor multiply c = a * b.  
 * All parameters may be identical.
 */
mp_err 
mp_bmul(const mp_int *a, const mp_int *b, mp_int *c)
{
    mp_digit *pb, b_i;
    mp_int tmp;
    mp_size ib, a_used, b_used;
    mp_err res = MP_OKAY;

    ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);

    if (a == c) {
        MP_CHECKOK( mp_init_copy(&tmp, a) );
        if (a == b)
            b = &tmp;
        a = &tmp;
    } else if (b == c) {
        MP_CHECKOK( mp_init_copy(&tmp, b) );
        b = &tmp;
    } else MP_DIGITS(&tmp) = 0;

    if (MP_USED(a) < MP_USED(b)) {
        const mp_int *xch = b;      /* switch a and b if b longer */
        b = a;
        a = xch;
    }

    MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
    MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) );

    pb = MP_DIGITS(b);
    s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));

    /* Outer loop:  Digits of b */
    a_used = MP_USED(a);
    b_used = MP_USED(b);
    for (ib = 1; ib < b_used; ib++) {
        b_i = *pb++;

        /* Inner product:  Digits of a */
        if (b_i)
            s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib);
        else
            MP_DIGIT(c, ib + a_used) = b_i;
    }

    s_mp_clamp(c);

    SIGN(c) = ZPOS;

CLEANUP:
    mp_clear(&tmp);
    return res;
}


/* Compute modular reduction of a and store result in r.  
 * r could be a. 
 * For modular arithmetic, the irreducible polynomial f(t) is represented 
 * as an array of int[], where f(t) is of the form: 
 *     f(t) = t^p[0] + t^p[1] + ... + t^p[k]
 * where m = p[0] > p[1] > ... > p[k] = 0.
 */
int 
mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r)
{
    int j, k;
    int n, dN, d0, d1;
    mp_digit zz, *z, tmp;
    mp_size used;
    mp_err res = MP_OKAY;

    /* The algorithm does the reduction in place in r, 
     * if a != r, copy a into r first so reduction can be done in r
     */
    if (a != r) {
        MP_CHECKOK( mp_copy(a, r) );
    }
    z = MP_DIGITS(r);

    /* start reduction */
    dN = p[0] / MP_DIGIT_BITS;
    used = MP_USED(r);

    for (j = used - 1; j > dN;) {

        zz = z[j];
        if (zz == 0) {
            j--; continue;
        }
        z[j] = 0;

        for (k = 1; p[k] > 0; k++) {
            /* reducing component t^p[k] */
            n = p[0] - p[k];
            d0 = n % MP_DIGIT_BITS;  
            d1 = MP_DIGIT_BITS - d0;
            n /= MP_DIGIT_BITS;
            z[j-n] ^= (zz>>d0);
            if (d0) 
                z[j-n-1] ^= (zz<<d1);
        }

        /* reducing component t^0 */
        n = dN;  
        d0 = p[0] % MP_DIGIT_BITS;
        d1 = MP_DIGIT_BITS - d0;
        z[j-n] ^= (zz >> d0);
        if (d0) 
            z[j-n-1] ^= (zz << d1);

    }

    /* final round of reduction */
    while (j == dN) {

        d0 = p[0] % MP_DIGIT_BITS;
        zz = z[dN] >> d0;  
        if (zz == 0) break;
        d1 = MP_DIGIT_BITS - d0;

        /* clear up the top d1 bits */
        if (d0) z[dN] = (z[dN] << d1) >> d1; 
        *z ^= zz; /* reduction t^0 component */

        for (k = 1; p[k] > 0; k++) {
            /* reducing component t^p[k]*/
            n = p[k] / MP_DIGIT_BITS;
            d0 = p[k] % MP_DIGIT_BITS;
            d1 = MP_DIGIT_BITS - d0;
            z[n] ^= (zz << d0);
            tmp = zz >> d1;
            if (d0 && tmp)
                z[n+1] ^= tmp;
        }
    }

    s_mp_clamp(r);
CLEANUP:
    return res;
}

/* Compute the product of two polynomials a and b, reduce modulo p, 
 * Store the result in r.  r could be a or b; a could be b.
 */
mp_err 
mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r)
{
    mp_err res;
    
    if (a == b) return mp_bsqrmod(a, p, r);
    if ((res = mp_bmul(a, b, r) ) != MP_OKAY)
	return res;
    return mp_bmod(r, p, r);
}

/* Compute binary polynomial squaring c = a*a mod p .  
 * Parameter r and a can be identical.
 */

mp_err 
mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r)
{
    mp_digit *pa, *pr, a_i;
    mp_int tmp;
    mp_size ia, a_used;
    mp_err res;

    ARGCHK(a != NULL && r != NULL, MP_BADARG);

    if (a == r) {
        MP_CHECKOK( mp_init_copy(&tmp, a) );
        a = &tmp;
    } else MP_DIGITS(&tmp) = 0;

    MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
    MP_CHECKOK( s_mp_pad(r, 2*USED(a)) );

    pa = MP_DIGITS(a);
    pr = MP_DIGITS(r);
    a_used = MP_USED(a);

    for (ia = 0; ia < a_used; ia++) {
        a_i = *pa++;
        *pr++ = gf2m_SQR0(a_i);
        *pr++ = gf2m_SQR1(a_i);
    }

    MP_CHECKOK( mp_bmod(r, p, r) );
    s_mp_clamp(r);
    SIGN(r) = ZPOS;

CLEANUP:
    mp_clear(&tmp);
    return res;
}

/* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p.
 * Store the result in r. r could be x or y, and x could equal y.
 * Uses algorithm Modular_Division_GF(2^m) from 
 *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to 
 *     the Great Divide".
 */
int 
mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp, 
    const unsigned int p[], mp_int *r)
{
    mp_int aa, bb, uu;
    mp_int *a, *b, *u, *v;
    mp_err res = MP_OKAY;

    MP_CHECKOK( mp_init_copy(&aa, x) );
    MP_CHECKOK( mp_init_copy(&uu, y) );
    MP_CHECKOK( mp_init_copy(&bb, pp) );
    MP_CHECKOK( s_mp_pad(r, USED(pp)) );
    MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;

    a = &aa; b= &bb; u=&uu; v=r;
    /* reduce x and y mod p */
    MP_CHECKOK( mp_bmod(a, p, a) );
    MP_CHECKOK( mp_bmod(u, p, u) );

    while (!mp_isodd(a)) {
        s_mp_div2(a);
        if (mp_isodd(u)) {
            MP_CHECKOK( mp_badd(u, pp, u) );
        }
        s_mp_div_2(u);
    }

    do {
        if (mp_cmp_mag(b, a) > 0) {
            MP_CHECKOK( mp_badd(b, a, b) );
            MP_CHECKOK( mp_badd(v, u, v) );
            do {
                s_mp_div2(b);
                if (mp_isodd(v)) {
                    MP_CHECKOK( mp_badd(v, pp, v) );
                }
                s_mp_div2(v);
            } while (!mp_isodd(b));
        }
        else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1))
            break;
        else {
            MP_CHECKOK( mp_badd(a, b, a) );
            MP_CHECKOK( mp_badd(u, v, u) );
            do {
                s_mp_div2(a);
                if (mp_isodd(u)) {
                    MP_CHECKOK( mp_badd(u, pp, u) );
                }
                s_mp_div2(u);
            } while (!mp_isodd(a));
        }
    } while (1);

    MP_CHECKOK( mp_copy(u, r) );

CLEANUP:
    return res;

}

/* Convert the bit-string representation of a polynomial a into an array
 * of integers corresponding to the bits with non-zero coefficient.
 * Up to max elements of the array will be filled.  Return value is total
 * number of coefficients that would be extracted if array was large enough.
 */
int
mp_bpoly2arr(const mp_int *a, unsigned int p[], int max)
{
    int i, j, k;
    mp_digit top_bit, mask;

    top_bit = 1;
    top_bit <<= MP_DIGIT_BIT - 1;

    for (k = 0; k < max; k++) p[k] = 0;
    k = 0;

    for (i = MP_USED(a) - 1; i >= 0; i--) {
        mask = top_bit;
        for (j = MP_DIGIT_BIT - 1; j >= 0; j--) {
            if (MP_DIGITS(a)[i] & mask) {
                if (k < max) p[k] = MP_DIGIT_BIT * i + j;
                k++;
	    }
            mask >>= 1;
	}
    }

    return k;
}

/* Convert the coefficient array representation of a polynomial to a 
 * bit-string.  The array must be terminated by 0.
 */
mp_err
mp_barr2poly(const unsigned int p[], mp_int *a)
{

    mp_err res = MP_OKAY;
    int i;

    mp_zero(a);
    for (i = 0; p[i] > 0; i++) {
	MP_CHECKOK( mpl_set_bit(a, p[i], 1) );
    }
    MP_CHECKOK( mpl_set_bit(a, 0, 1) );
	
CLEANUP:
    return MP_OKAY;
}