summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/mpi/utils/sieve.c
blob: 4dd20604cecc0bb87ac9fc18d15ea4943f92702b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*
 * sieve.c
 *
 * Finds prime numbers using the Sieve of Eratosthenes
 *
 * This implementation uses a bitmap to represent all odd integers in a
 * given range.  We iterate over this bitmap, crossing off the
 * multiples of each prime we find.  At the end, all the remaining set
 * bits correspond to prime integers.
 *
 * Here, we make two passes -- once we have generated a sieve-ful of
 * primes, we copy them out, reset the sieve using the highest
 * generated prime from the first pass as a base.  Then we cross out
 * all the multiples of all the primes we found the first time through,
 * and re-sieve.  In this way, we get double use of the memory we
 * allocated for the sieve the first time though.  Since we also
 * implicitly ignore multiples of 2, this amounts to 4 times the
 * values.
 *
 * This could (and probably will) be generalized to re-use the sieve a
 * few more times.
 *
 * The contents of this file are subject to the Mozilla Public
 * License Version 1.1 (the "License"); you may not use this file
 * except in compliance with the License. You may obtain a copy of
 * the License at http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS
 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * rights and limitations under the License.
 *
 * The Original Code is the MPI Arbitrary Precision Integer Arithmetic
 * library.
 *
 * The Initial Developer of the Original Code is Michael J. Fromberger.
 * Portions created by Michael J. Fromberger are 
 * Copyright (C) 1998, 1999, 2000 Michael J. Fromberger. 
 * All Rights Reserved.
 *
 * Contributor(s):
 *
 * Alternatively, the contents of this file may be used under the
 * terms of the GNU General Public License Version 2 or later (the
 * "GPL"), in which case the provisions of the GPL are applicable
 * instead of those above.  If you wish to allow use of your
 * version of this file only under the terms of the GPL and not to
 * allow others to use your version of this file under the MPL,
 * indicate your decision by deleting the provisions above and
 * replace them with the notice and other provisions required by
 * the GPL.  If you do not delete the provisions above, a recipient
 * may use your version of this file under either the MPL or the GPL.
 *
 *  $Id$
 */

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

typedef unsigned char  byte;

typedef struct {
  int   size;
  byte *bits;
  long  base;
  int   next;
  int   nbits;
} sieve;

void sieve_init(sieve *sp, long base, int nbits);
void sieve_grow(sieve *sp, int nbits);
long sieve_next(sieve *sp);
void sieve_reset(sieve *sp, long base);
void sieve_cross(sieve *sp, long val);
void sieve_clear(sieve *sp);

#define S_ISSET(S, B)  (((S)->bits[(B)/CHAR_BIT]>>((B)%CHAR_BIT))&1)
#define S_SET(S, B)    ((S)->bits[(B)/CHAR_BIT]|=(1<<((B)%CHAR_BIT)))
#define S_CLR(S, B)    ((S)->bits[(B)/CHAR_BIT]&=~(1<<((B)%CHAR_BIT)))
#define S_VAL(S, B)    ((S)->base+(2*(B)))
#define S_BIT(S, V)    (((V)-((S)->base))/2)

int main(int argc, char *argv[])
{
  sieve   s;
  long    pr, *p;
  int     c, ix, cur = 0;

  if(argc < 2) {
    fprintf(stderr, "Usage: %s <width>\n", argv[0]);
    return 1;
  }

  c = atoi(argv[1]);
  if(c < 0) c = -c;

  fprintf(stderr, "%s: sieving to %d positions\n", argv[0], c);

  sieve_init(&s, 3, c);

  c = 0;
  while((pr = sieve_next(&s)) > 0) {
    ++c;
  }

  p = calloc(c, sizeof(long));
  if(!p) {
    fprintf(stderr, "%s: out of memory after first half\n", argv[0]);
    sieve_clear(&s);
    exit(1);
  }

  fprintf(stderr, "%s: half done ... \n", argv[0]);

  for(ix = 0; ix < s.nbits; ix++) {
    if(S_ISSET(&s, ix)) {
      p[cur] = S_VAL(&s, ix);
      printf("%ld\n", p[cur]);
      ++cur;
    }
  }

  sieve_reset(&s, p[cur - 1]);
  fprintf(stderr, "%s: crossing off %d found primes ... \n", argv[0], cur);
  for(ix = 0; ix < cur; ix++) {
    sieve_cross(&s, p[ix]);
    if(!(ix % 1000))
      fputc('.', stderr);
  }
  fputc('\n', stderr);

  free(p);

  fprintf(stderr, "%s: sieving again from %ld ... \n", argv[0], p[cur - 1]);
  c = 0;
  while((pr = sieve_next(&s)) > 0) {
    ++c;
  }
  
  fprintf(stderr, "%s: done!\n", argv[0]);
  for(ix = 0; ix < s.nbits; ix++) {
    if(S_ISSET(&s, ix)) {
      printf("%ld\n", S_VAL(&s, ix));
    }
  }

  sieve_clear(&s);

  return 0;
}

void sieve_init(sieve *sp, long base, int nbits)
{
  sp->size = (nbits / CHAR_BIT);

  if(nbits % CHAR_BIT)
    ++sp->size;

  sp->bits = calloc(sp->size, sizeof(byte));
  memset(sp->bits, UCHAR_MAX, sp->size);
  if(!(base & 1))
    ++base;
  sp->base = base;
  
  sp->next = 0;
  sp->nbits = sp->size * CHAR_BIT;
}

void sieve_grow(sieve *sp, int nbits)
{
  int  ns = (nbits / CHAR_BIT);

  if(nbits % CHAR_BIT)
    ++ns;

  if(ns > sp->size) {
    byte   *tmp;
    int     ix;

    tmp = calloc(ns, sizeof(byte));
    if(tmp == NULL) {
      fprintf(stderr, "Error: out of memory in sieve_grow\n");
      return;
    }

    memcpy(tmp, sp->bits, sp->size);
    for(ix = sp->size; ix < ns; ix++) {
      tmp[ix] = UCHAR_MAX;
    }

    free(sp->bits);
    sp->bits = tmp;
    sp->size = ns;

    sp->nbits = sp->size * CHAR_BIT;
  }
}

long sieve_next(sieve *sp)
{
  long out;
  int  ix = 0;
  long val;

  if(sp->next > sp->nbits)
    return -1;

  out = S_VAL(sp, sp->next);
#ifdef DEBUG
  fprintf(stderr, "Sieving %ld\n", out);
#endif

  /* Sieve out all multiples of the current prime */
  val = out;
  while(ix < sp->nbits) {
    val += out;
    ix = S_BIT(sp, val);
    if((val & 1) && ix < sp->nbits) { /* && S_ISSET(sp, ix)) { */
      S_CLR(sp, ix);
#ifdef DEBUG
      fprintf(stderr, "Crossing out %ld (bit %d)\n", val, ix);
#endif
    }
  }

  /* Scan ahead to the next prime */
  ++sp->next;
  while(sp->next < sp->nbits && !S_ISSET(sp, sp->next))
    ++sp->next;

  return out;
}

void sieve_cross(sieve *sp, long val)
{
  int  ix = 0;
  long cur = val;

  while(cur < sp->base)
    cur += val;

  ix = S_BIT(sp, cur);
  while(ix < sp->nbits) {
    if(cur & 1) 
      S_CLR(sp, ix);
    cur += val;
    ix = S_BIT(sp, cur);
  }
}

void sieve_reset(sieve *sp, long base)
{
  memset(sp->bits, UCHAR_MAX, sp->size);
  sp->base = base;
  sp->next = 0;
}

void sieve_clear(sieve *sp)
{
  if(sp->bits) 
    free(sp->bits);

  sp->bits = NULL;
}