summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/rsa.c
blob: e91ed3c221e0cfca2e69678208d0b7564e71bd6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
/*
 * The contents of this file are subject to the Mozilla Public
 * License Version 1.1 (the "License"); you may not use this file
 * except in compliance with the License. You may obtain a copy of
 * the License at http://www.mozilla.org/MPL/
 * 
 * Software distributed under the License is distributed on an "AS
 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * rights and limitations under the License.
 * 
 * The Original Code is the Netscape security libraries.
 * 
 * The Initial Developer of the Original Code is Netscape
 * Communications Corporation.  Portions created by Netscape are 
 * Copyright (C) 1994-2000 Netscape Communications Corporation.  All
 * Rights Reserved.
 * 
 * Contributor(s):
 * 
 * Alternatively, the contents of this file may be used under the
 * terms of the GNU General Public License Version 2 or later (the
 * "GPL"), in which case the provisions of the GPL are applicable 
 * instead of those above.  If you wish to allow use of your 
 * version of this file only under the terms of the GPL and not to
 * allow others to use your version of this file under the MPL,
 * indicate your decision by deleting the provisions above and
 * replace them with the notice and other provisions required by
 * the GPL.  If you do not delete the provisions above, a recipient
 * may use your version of this file under either the MPL or the
 * GPL.
 *
 */

/*
 * RSA key generation, public key op, private key op.
 *
 * $Id$
 */

#include "secerr.h"

#include "prclist.h"
#include "nssilock.h"
#include "prinit.h"
#include "blapi.h"
#include "mpi.h"
#include "mpprime.h"
#include "mplogic.h"
#include "secmpi.h"
#include "secitem.h"

/*
** Number of times to attempt to generate a prime (p or q) from a random
** seed (the seed changes for each iteration).
*/
#define MAX_PRIME_GEN_ATTEMPTS 10
/*
** Number of times to attempt to generate a key.  The primes p and q change
** for each attempt.
*/
#define MAX_KEY_GEN_ATTEMPTS 10

/*
** RSABlindingParamsStr
**
** For discussion of Paul Kocher's timing attack against an RSA private key
** operation, see http://www.cryptography.com/timingattack/paper.html.  The 
** countermeasure to this attack, known as blinding, is also discussed in 
** the Handbook of Applied Cryptography, 11.118-11.119.
*/
struct RSABlindingParamsStr
{
    /* Blinding-specific parameters */
    PRCList   link;                  /* link to list of structs            */
    SECItem   modulus;               /* list element "key"                 */
    mp_int    f, g;                  /* Blinding parameters                */
    int       counter;               /* number of remaining uses of (f, g) */
};

/*
** RSABlindingParamsListStr
**
** List of key-specific blinding params.  The arena holds the volatile pool
** of memory for each entry and the list itself.  The lock is for list
** operations, in this case insertions and iterations, as well as control
** of the counter for each set of blinding parameters.
*/
struct RSABlindingParamsListStr
{
    PZLock  *lock;   /* Lock for the list   */
    PRCList  head;   /* Pointer to the list */
};

/*
** The master blinding params list.
*/
static struct RSABlindingParamsListStr blindingParamsList = { 0 };

/* Number of times to reuse (f, g).  Suggested by Paul Kocher */
#define RSA_BLINDING_PARAMS_MAX_REUSE 50

/* Global, allows optional use of blinding.  On by default. */
/* Cannot be changed at the moment, due to thread-safety issues. */
static PRBool nssRSAUseBlinding = PR_TRUE;

static SECStatus
rsa_keygen_from_primes(mp_int *p, mp_int *q, mp_int *e, RSAPrivateKey *key,
                       unsigned int keySizeInBits)
{
    mp_int n, d, phi;
    mp_int psub1, qsub1, tmp;
    mp_err   err = MP_OKAY;
    SECStatus rv = SECSuccess;
    MP_DIGITS(&n)     = 0;
    MP_DIGITS(&d)     = 0;
    MP_DIGITS(&phi)   = 0;
    MP_DIGITS(&psub1) = 0;
    MP_DIGITS(&qsub1) = 0;
    MP_DIGITS(&tmp)   = 0;
    CHECK_MPI_OK( mp_init(&n)     );
    CHECK_MPI_OK( mp_init(&d)     );
    CHECK_MPI_OK( mp_init(&phi)   );
    CHECK_MPI_OK( mp_init(&psub1) );
    CHECK_MPI_OK( mp_init(&qsub1) );
    CHECK_MPI_OK( mp_init(&tmp)   );
    /* 1.  Compute n = p*q */
    CHECK_MPI_OK( mp_mul(p, q, &n) );
    /*     verify that the modulus has the desired number of bits */
    if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) {
	PORT_SetError(SEC_ERROR_NEED_RANDOM);
	rv = SECFailure;
	goto cleanup;
    }
    /* 2.  Compute phi = (p-1)*(q-1) */
    CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) );
    CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) );
    CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) );
    /* 3.  Compute d = e**-1 mod(phi) */
    err = mp_invmod(e, &phi, &d);
    /*     Verify that phi(n) and e have no common divisors */
    if (err != MP_OKAY) {
	if (err == MP_UNDEF) {
	    PORT_SetError(SEC_ERROR_NEED_RANDOM);
	    err = MP_OKAY; /* to keep PORT_SetError from being called again */
	    rv = SECFailure;
	}
	goto cleanup;
    }
    MPINT_TO_SECITEM(&n, &key->modulus, key->arena);
    MPINT_TO_SECITEM(&d, &key->privateExponent, key->arena);
    /* 4.  Compute exponent1 = d mod (p-1) */
    CHECK_MPI_OK( mp_mod(&d, &psub1, &tmp) );
    MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena);
    /* 5.  Compute exponent2 = d mod (q-1) */
    CHECK_MPI_OK( mp_mod(&d, &qsub1, &tmp) );
    MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena);
    /* 6.  Compute coefficient = q**-1 mod p */
    CHECK_MPI_OK( mp_invmod(q, p, &tmp) );
    MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena);
cleanup:
    mp_clear(&n);
    mp_clear(&d);
    mp_clear(&phi);
    mp_clear(&psub1);
    mp_clear(&qsub1);
    mp_clear(&tmp);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}
static SECStatus
generate_prime(mp_int *prime, int primeLen)
{
    mp_err   err = MP_OKAY;
    SECStatus rv = SECSuccess;
    unsigned long counter = 0;
    int piter;
    unsigned char *pb = NULL;
    pb = PORT_Alloc(primeLen);
    if (!pb) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	goto cleanup;
    }
    for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) {
	CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) );
	pb[0]          |= 0xC0; /* set two high-order bits */
	pb[primeLen-1] |= 0x01; /* set low-order bit       */
	CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) );
	err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter);
	if (err != MP_NO)
	    goto cleanup;
	/* keep going while err == MP_NO */
    }
cleanup:
    if (pb)
	PORT_ZFree(pb, primeLen);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}

/*
** Generate and return a new RSA public and private key.
**	Both keys are encoded in a single RSAPrivateKey structure.
**	"cx" is the random number generator context
**	"keySizeInBits" is the size of the key to be generated, in bits.
**	   512, 1024, etc.
**	"publicExponent" when not NULL is a pointer to some data that
**	   represents the public exponent to use. The data is a byte
**	   encoded integer, in "big endian" order.
*/
RSAPrivateKey *
RSA_NewKey(int keySizeInBits, SECItem *publicExponent)
{
    unsigned int primeLen;
    mp_int p, q, e;
    int kiter;
    mp_err   err = MP_OKAY;
    SECStatus rv = SECSuccess;
    int prerr = 0;
    RSAPrivateKey *key = NULL;
    PRArenaPool *arena = NULL;
    /* Require key size to be a multiple of 16 bits. */
    if (!publicExponent || keySizeInBits % 16 != 0) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return NULL;
    }
    /* 1. Allocate arena & key */
    arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
    if (!arena) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	return NULL;
    }
    key = (RSAPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(RSAPrivateKey));
    if (!key) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	PORT_FreeArena(arena, PR_TRUE);
	return NULL;
    }
    key->arena = arena;
    /* length of primes p and q (in bytes) */
    primeLen = keySizeInBits / (2 * BITS_PER_BYTE);
    MP_DIGITS(&p) = 0;
    MP_DIGITS(&q) = 0;
    MP_DIGITS(&e) = 0;
    CHECK_MPI_OK( mp_init(&p) );
    CHECK_MPI_OK( mp_init(&q) );
    CHECK_MPI_OK( mp_init(&e) );
    /* 2.  Set the version number (PKCS1 v1.5 says it should be zero) */
    SECITEM_AllocItem(arena, &key->version, 1);
    key->version.data[0] = 0;
    /* 3.  Set the public exponent */
    SECITEM_CopyItem(arena, &key->publicExponent, publicExponent);
    SECITEM_TO_MPINT(*publicExponent, &e);
    kiter = 0;
    do {
	prerr = 0;
	PORT_SetError(0);
	CHECK_SEC_OK( generate_prime(&p, primeLen) );
	CHECK_SEC_OK( generate_prime(&q, primeLen) );
	/* Assure q < p */
	if (mp_cmp(&p, &q) < 0)
	    mp_exch(&p, &q);
	/* Attempt to use these primes to generate a key */
	rv = rsa_keygen_from_primes(&p, &q, &e, key, keySizeInBits);
	if (rv == SECSuccess)
	    break; /* generated two good primes */
	prerr = PORT_GetError();
	kiter++;
	/* loop until have primes */
    } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS);
    if (prerr)
	goto cleanup;
    MPINT_TO_SECITEM(&p, &key->prime1, arena);
    MPINT_TO_SECITEM(&q, &key->prime2, arena);
cleanup:
    mp_clear(&p);
    mp_clear(&q);
    mp_clear(&e);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    if (rv && arena) {
	PORT_FreeArena(arena, PR_TRUE);
	key = NULL;
    }
    return key;
}

static unsigned int
rsa_modulusLen(SECItem *modulus)
{
    unsigned char byteZero = modulus->data[0];
    unsigned int modLen = modulus->len - !byteZero;
    return modLen;
}

/*
** Perform a raw public-key operation 
**	Length of input and output buffers are equal to key's modulus len.
*/
SECStatus 
RSA_PublicKeyOp(RSAPublicKey  *key, 
                unsigned char *output, 
                const unsigned char *input)
{
    unsigned int modLen;
    mp_int n, e, m, c;
    mp_err err   = MP_OKAY;
    SECStatus rv = SECSuccess;
    if (!key || !output || !input) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    MP_DIGITS(&n) = 0;
    MP_DIGITS(&e) = 0;
    MP_DIGITS(&m) = 0;
    MP_DIGITS(&c) = 0;
    CHECK_MPI_OK( mp_init(&n) );
    CHECK_MPI_OK( mp_init(&e) );
    CHECK_MPI_OK( mp_init(&m) );
    CHECK_MPI_OK( mp_init(&c) );
    modLen = rsa_modulusLen(&key->modulus);
    /* 1.  Obtain public key (n, e) */
    SECITEM_TO_MPINT(key->modulus, &n);
    SECITEM_TO_MPINT(key->publicExponent, &e);
    /* 2.  Represent message as integer in range [0..n-1] */
    CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) );
    /* 3.  Compute c = m**e mod n */
#ifdef USE_MPI_EXPT_D
    /* XXX see which is faster */
    if (MP_USED(&e) == 1) {
	CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) );
    } else
#endif
    CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) );
    /* 4.  result c is ciphertext */
    err = mp_to_fixlen_octets(&c, output, modLen);
    if (err >= 0) err = MP_OKAY;
cleanup:
    mp_clear(&n);
    mp_clear(&e);
    mp_clear(&m);
    mp_clear(&c);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}

/*
**  RSA Private key operation (no CRT).
*/
static SECStatus 
rsa_PrivateKeyOp(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n,
                 unsigned int modLen)
{
    mp_int d;
    mp_err   err = MP_OKAY;
    SECStatus rv = SECSuccess;
    MP_DIGITS(&d) = 0;
    CHECK_MPI_OK( mp_init(&d) );
    SECITEM_TO_MPINT(key->privateExponent, &d);
    /* 1. m = c**d mod n */
    CHECK_MPI_OK( mp_exptmod(c, &d, n, m) );
cleanup:
    mp_clear(&d);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}

/*
**  RSA Private key operation using CRT.
*/
static SECStatus 
rsa_PrivateKeyOpCRT(RSAPrivateKey *key, mp_int *m, mp_int *c,
                    unsigned int modLen)
{
    mp_int p, q, d_p, d_q, qInv;
    mp_int m1, m2, b2, h, ctmp;
    mp_err   err = MP_OKAY;
    SECStatus rv = SECSuccess;
    MP_DIGITS(&p)    = 0;
    MP_DIGITS(&q)    = 0;
    MP_DIGITS(&d_p)  = 0;
    MP_DIGITS(&d_q)  = 0;
    MP_DIGITS(&qInv) = 0;
    MP_DIGITS(&m1)   = 0;
    MP_DIGITS(&m2)   = 0;
    MP_DIGITS(&b2)   = 0;
    MP_DIGITS(&h)    = 0;
    MP_DIGITS(&ctmp) = 0;
    CHECK_MPI_OK( mp_init(&p)    );
    CHECK_MPI_OK( mp_init(&q)    );
    CHECK_MPI_OK( mp_init(&d_p)  );
    CHECK_MPI_OK( mp_init(&d_q)  );
    CHECK_MPI_OK( mp_init(&qInv) );
    CHECK_MPI_OK( mp_init(&m1)   );
    CHECK_MPI_OK( mp_init(&m2)   );
    CHECK_MPI_OK( mp_init(&b2)   );
    CHECK_MPI_OK( mp_init(&h)    );
    CHECK_MPI_OK( mp_init(&ctmp) );
    /* copy private key parameters into mp integers */
    SECITEM_TO_MPINT(key->prime1,      &p);    /* p */
    SECITEM_TO_MPINT(key->prime2,      &q);    /* q */
    SECITEM_TO_MPINT(key->exponent1,   &d_p);  /* d_p  = d mod (p-1) */
    SECITEM_TO_MPINT(key->exponent2,   &d_q);  /* d_p  = d mod (q-1) */
    SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */
    /* 1. m1 = c**d_p mod p */
    CHECK_MPI_OK( mp_mod(c, &p, &ctmp) );
    CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) );
    /* 2. m2 = c**d_q mod q */
    CHECK_MPI_OK( mp_mod(c, &q, &ctmp) );
    CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) );
    /* 3.  h = (m1 - m2) * qInv mod p */
    CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) );
    CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h)  );
    /* 4.  m = m2 + h * q */
    CHECK_MPI_OK( mp_mul(&h, &q, m) );
    CHECK_MPI_OK( mp_add(m, &m2, m) );
cleanup:
    mp_clear(&p);
    mp_clear(&q);
    mp_clear(&d_p);
    mp_clear(&d_q);
    mp_clear(&qInv);
    mp_clear(&m1);
    mp_clear(&m2);
    mp_clear(&b2);
    mp_clear(&h);
    mp_clear(&ctmp);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}

static PRCallOnceType coBPInit = { 0, 0, 0 };
static PRStatus 
init_blinding_params_list(void)
{
    blindingParamsList.lock = PZ_NewLock(nssILockOther);
    if (!blindingParamsList.lock) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	return PR_FAILURE;
    }
    PR_INIT_CLIST(&blindingParamsList.head);
    return PR_SUCCESS;
}

static SECStatus
generate_blinding_params(struct RSABlindingParamsStr *rsabp, 
                         RSAPrivateKey *key, mp_int *n, unsigned int modLen)
{
    SECStatus rv = SECSuccess;
    mp_int e, k;
    mp_err err = MP_OKAY;
    unsigned char *kb = NULL;
    MP_DIGITS(&e) = 0;
    MP_DIGITS(&k) = 0;
    CHECK_MPI_OK( mp_init(&e) );
    CHECK_MPI_OK( mp_init(&k) );
    SECITEM_TO_MPINT(key->publicExponent, &e);
    /* generate random k < n */
    kb = PORT_Alloc(modLen);
    if (!kb) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	goto cleanup;
    }
    CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) );
    CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) );
    /* k < n */
    CHECK_MPI_OK( mp_mod(&k, n, &k) );
    /* f = k**e mod n */
    CHECK_MPI_OK( mp_exptmod(&k, &e, n, &rsabp->f) );
    /* g = k**-1 mod n */
    CHECK_MPI_OK( mp_invmod(&k, n, &rsabp->g) );
    /* Initialize the counter for this (f, g) */
    rsabp->counter = RSA_BLINDING_PARAMS_MAX_REUSE;
cleanup:
    if (kb)
	PORT_ZFree(kb, modLen);
    mp_clear(&k);
    mp_clear(&e);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}

static SECStatus
init_blinding_params(struct RSABlindingParamsStr *rsabp, RSAPrivateKey *key,
                     mp_int *n, unsigned int modLen)
{
    SECStatus rv = SECSuccess;
    mp_err err = MP_OKAY;
    MP_DIGITS(&rsabp->f) = 0;
    MP_DIGITS(&rsabp->g) = 0;
    /* initialize blinding parameters */
    CHECK_MPI_OK( mp_init(&rsabp->f) );
    CHECK_MPI_OK( mp_init(&rsabp->g) );
    /* List elements are keyed using the modulus */
    SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus);
    CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) );
    return SECSuccess;
cleanup:
    mp_clear(&rsabp->f);
    mp_clear(&rsabp->g);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}

static SECStatus
get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen,
                    mp_int *f, mp_int *g)
{
    SECStatus rv = SECSuccess;
    mp_err err = MP_OKAY;
    int cmp;
    PRCList *el;
    struct RSABlindingParamsStr *rsabp = NULL;
    /* Init the list if neccessary (the init function is only called once!) */
    if (blindingParamsList.lock == NULL) {
	if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) {
	    PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
	    return SECFailure;
	}
    }
    /* Acquire the list lock */
    PZ_Lock(blindingParamsList.lock);
    /* Walk the list looking for the private key */
    for (el = PR_NEXT_LINK(&blindingParamsList.head);
         el != &blindingParamsList.head;
         el = PR_NEXT_LINK(el)) {
	rsabp = (struct RSABlindingParamsStr *)el;
	cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus);
	if (cmp == 0) {
	    /* Check the usage counter for the parameters */
	    if (--rsabp->counter <= 0) {
		/* Regenerate the blinding parameters */
		CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) );
	    }
	    /* Return the parameters */
	    CHECK_MPI_OK( mp_copy(&rsabp->f, f) );
	    CHECK_MPI_OK( mp_copy(&rsabp->g, g) );
	    /* Now that the params are located, release the list lock. */
	    PZ_Unlock(blindingParamsList.lock); /* XXX when fails? */
	    return SECSuccess;
	} else if (cmp > 0) {
	    /* The key is not in the list.  Break to param creation. */
	    break;
	}
    }
    /* At this point, the key is not in the list.  el should point to the
    ** list element that this key should be inserted before.  NOTE: the list
    ** lock is still held, so there cannot be a race condition here.
    */
    rsabp = (struct RSABlindingParamsStr *)
              PORT_ZAlloc(sizeof(struct RSABlindingParamsStr));
    if (!rsabp) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	goto cleanup;
    }
    /* Initialize the list pointer for the element */
    PR_INIT_CLIST(&rsabp->link);
    /* Initialize the blinding parameters 
    ** This ties up the list lock while doing some heavy, element-specific
    ** operations, but we don't want to insert the element until it is valid,
    ** which requires computing the blinding params.  If this proves costly,
    ** it could be done after the list lock is released, and then if it fails
    ** the lock would have to be reobtained and the invalid element removed.
    */
    rv = init_blinding_params(rsabp, key, n, modLen);
    if (rv != SECSuccess) {
	PORT_ZFree(rsabp, sizeof(struct RSABlindingParamsStr));
	goto cleanup;
    }
    /* Insert the new element into the list
    ** If inserting in the middle of the list, el points to the link
    ** to insert before.  Otherwise, the link needs to be appended to
    ** the end of the list, which is the same as inserting before the
    ** head (since el would have looped back to the head).
    */
    PR_INSERT_BEFORE(&rsabp->link, el);
    /* Return the parameters */
    CHECK_MPI_OK( mp_copy(&rsabp->f, f) );
    CHECK_MPI_OK( mp_copy(&rsabp->g, g) );
    /* Release the list lock */
    PZ_Unlock(blindingParamsList.lock); /* XXX when fails? */
    return SECSuccess;
cleanup:
    /* It is possible to reach this after the lock is already released.
    ** Ignore the error in that case.
    */
    PZ_Unlock(blindingParamsList.lock);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return SECFailure;
}

/*
** Perform a raw private-key operation 
**	Length of input and output buffers are equal to key's modulus len.
*/
SECStatus 
RSA_PrivateKeyOp(RSAPrivateKey *key, 
                 unsigned char *output, 
                 const unsigned char *input)
{
    unsigned int modLen;
    unsigned int offset;
    SECStatus rv;
    mp_err err;
    mp_int n, c, m;
    mp_int f, g;
    if (!key || !output || !input) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    /* check input out of range (needs to be in range [0..n-1]) */
    modLen = rsa_modulusLen(&key->modulus);
    offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
    if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    MP_DIGITS(&n) = 0;
    MP_DIGITS(&c) = 0;
    MP_DIGITS(&m) = 0;
    MP_DIGITS(&f) = 0;
    MP_DIGITS(&g) = 0;
    CHECK_MPI_OK( mp_init(&n) );
    CHECK_MPI_OK( mp_init(&c) );
    CHECK_MPI_OK( mp_init(&m) );
    CHECK_MPI_OK( mp_init(&f) );
    CHECK_MPI_OK( mp_init(&g) );
    SECITEM_TO_MPINT(key->modulus, &n);
    OCTETS_TO_MPINT(input, &c, modLen);
    /* If blinding, compute pre-image of ciphertext by multiplying by
    ** blinding factor
    */
    if (nssRSAUseBlinding) {
	CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) );
	/* c' = c*f mod n */
	CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) );
    }
    /* Do the private key operation m = c**d mod n */
    if ( key->prime1.len      == 0 ||
         key->prime2.len      == 0 ||
         key->exponent1.len   == 0 ||
         key->exponent2.len   == 0 ||
         key->coefficient.len == 0) {
	CHECK_SEC_OK( rsa_PrivateKeyOp(key, &m, &c, &n, modLen) );
    } else {
	CHECK_SEC_OK( rsa_PrivateKeyOpCRT(key, &m, &c, modLen) );
    }
    /* If blinding, compute post-image of plaintext by multiplying by
    ** blinding factor
    */
    if (nssRSAUseBlinding) {
	/* m = m'*g mod n */
	CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) );
    }
    err = mp_to_fixlen_octets(&m, output, modLen);
    if (err >= 0) err = MP_OKAY;
cleanup:
    mp_clear(&n);
    mp_clear(&c);
    mp_clear(&m);
    mp_clear(&f);
    mp_clear(&g);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}