summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/sha_fast.c
blob: b59e3ce39dda28d6b7485b13e5fbff1ebe4a3b0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is SHA 180-1 Reference Implementation (Optimized).
 *
 * The Initial Developer of the Original Code is
 * Paul Kocher of Cryptography Research.
 * Portions created by the Initial Developer are Copyright (C) 1995-9
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */
#include <memory.h>
#include "blapi.h"
#include "sha_fast.h"
#include "prerror.h"

#ifdef TRACING_SSL
#include "ssl.h"
#include "ssltrace.h"
#endif

static void shaCompress(volatile SHA_HW_t *X, const PRUint32 * datain);

#define W u.w
#define B u.b


#define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z))
#define SHA_F2(X,Y,Z) ((X)^(Y)^(Z))
#define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y))))
#define SHA_F4(X,Y,Z) ((X)^(Y)^(Z))

#define SHA_MIX(n,a,b,c)    XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1)

/*
 *  SHA: initialize context
 */
void 
SHA1_Begin(SHA1Context *ctx)
{
  ctx->size = 0;
  /*
   *  Initialize H with constants from FIPS180-1.
   */
  ctx->H[0] = 0x67452301L;
  ctx->H[1] = 0xefcdab89L;
  ctx->H[2] = 0x98badcfeL;
  ctx->H[3] = 0x10325476L;
  ctx->H[4] = 0xc3d2e1f0L;
}

/* Explanation of H array and index values:
 * The context's H array is actually the concatenation of two arrays 
 * defined by SHA1, the H array of state variables (5 elements),
 * and the W array of intermediate values, of which there are 16 elements.
 * The W array starts at H[5], that is W[0] is H[5].
 * Although these values are defined as 32-bit values, we use 64-bit
 * variables to hold them because the AMD64 stores 64 bit values in
 * memory MUCH faster than it stores any smaller values.
 *
 * Rather than passing the context structure to shaCompress, we pass
 * this combined array of H and W values.  We do not pass the address
 * of the first element of this array, but rather pass the address of an
 * element in the middle of the array, element X.  Presently X[0] is H[11].
 * So we pass the address of H[11] as the address of array X to shaCompress.
 * Then shaCompress accesses the members of the array using positive AND 
 * negative indexes.  
 *
 * Pictorially: (each element is 8 bytes)
 * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
 * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
 * 
 * The byte offset from X[0] to any member of H and W is always 
 * representable in a signed 8-bit value, which will be encoded 
 * as a single byte offset in the X86-64 instruction set.  
 * If we didn't pass the address of H[11], and instead passed the 
 * address of H[0], the offsets to elements H[16] and above would be
 * greater than 127, not representable in a signed 8-bit value, and the 
 * x86-64 instruction set would encode every such offset as a 32-bit 
 * signed number in each instruction that accessed element H[16] or 
 * higher.  This results in much bigger and slower code. 
 */
#if !defined(SHA_PUT_W_IN_STACK)
#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
#define W2X  6 /* X[0] is W[6],  and W[0] is X[-6]  */
#else
#define H2X 0
#endif

/*
 *  SHA: Add data to context.
 */
void 
SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len) 
{
  register unsigned int lenB;
  register unsigned int togo;

  if (!len)
    return;

  /* accumulate the byte count. */
  lenB = (unsigned int)(ctx->size) & 63U;

  ctx->size += len;

  /*
   *  Read the data into W and process blocks as they get full
   */
  if (lenB > 0) {
    togo = 64U - lenB;
    if (len < togo)
      togo = len;
    memcpy(ctx->B + lenB, dataIn, togo);
    len    -= togo;
    dataIn += togo;
    lenB    = (lenB + togo) & 63U;
    if (!lenB) {
      shaCompress(&ctx->H[H2X], ctx->W);
    }
  }
#if !defined(SHA_ALLOW_UNALIGNED_ACCESS)
  if ((ptrdiff_t)dataIn % sizeof(PRUint32)) {
    while (len >= 64U) {
      memcpy(ctx->B, dataIn, 64);
      len    -= 64U;
      shaCompress(&ctx->H[H2X], ctx->W);
      dataIn += 64U;
    }
  } else 
#endif
  {
    while (len >= 64U) {
      len    -= 64U;
      shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn);
      dataIn += 64U;
    }
  }
  if (len) {
    memcpy(ctx->B, dataIn, len);
  }
}


/*
 *  SHA: Generate hash value from context
 */
void 
SHA1_End(SHA1Context *ctx, unsigned char *hashout,
         unsigned int *pDigestLen, unsigned int maxDigestLen)
{
  register PRUint64 size;
  register PRUint32 lenB;

  static const unsigned char bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0,
          0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
          0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0  };
#define tmp lenB

  PORT_Assert (maxDigestLen >= SHA1_LENGTH);

  /*
   *  Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits
   */
  size = ctx->size;

  lenB = (PRUint32)size & 63;
  SHA1_Update(ctx, bulk_pad, (((55+64) - lenB) & 63) + 1);
  PORT_Assert(((PRUint32)ctx->size & 63) == 56);
  /* Convert size from bytes to bits. */
  size <<= 3;
  ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32));
  ctx->W[15] = SHA_HTONL((PRUint32)size);
  shaCompress(&ctx->H[H2X], ctx->W);

  /*
   *  Output hash
   */
  SHA_STORE_RESULT;
  *pDigestLen = SHA1_LENGTH;

}

#undef B
#undef tmp
/*
 *  SHA: Compression function, unrolled.
 *
 * Some operations in shaCompress are done as 5 groups of 16 operations.
 * Others are done as 4 groups of 20 operations.
 * The code below shows that structure.
 *
 * The functions that compute the new values of the 5 state variables
 * A-E are done in 4 groups of 20 operations (or you may also think
 * of them as being done in 16 groups of 5 operations).  They are
 * done by the SHA_RNDx macros below, in the right column.
 *
 * The functions that set the 16 values of the W array are done in 
 * 5 groups of 16 operations.  The first group is done by the 
 * LOAD macros below, the latter 4 groups are done by SHA_MIX below,
 * in the left column.
 *
 * gcc's optimizer observes that each member of the W array is assigned
 * a value 5 times in this code.  It reduces the number of store 
 * operations done to the W array in the context (that is, in the X array)
 * by creating a W array on the stack, and storing the W values there for 
 * the first 4 groups of operations on W, and storing the values in the 
 * context's W array only in the fifth group.  This is undesirable.
 * It is MUCH bigger code than simply using the context's W array, because 
 * all the offsets to the W array in the stack are 32-bit signed offsets, 
 * and it is no faster than storing the values in the context's W array. 
 *
 * The original code for sha_fast.c prevented this creation of a separate 
 * W array in the stack by creating a W array of 80 members, each of
 * whose elements is assigned only once. It also separated the computations
 * of the W array values and the computations of the values for the 5
 * state variables into two separate passes, W's, then A-E's so that the 
 * second pass could be done all in registers (except for accessing the W
 * array) on machines with fewer registers.  The method is suboptimal
 * for machines with enough registers to do it all in one pass, and it
 * necessitates using many instructions with 32-bit offsets.
 *
 * This code eliminates the separate W array on the stack by a completely
 * different means: by declaring the X array volatile.  This prevents
 * the optimizer from trying to reduce the use of the X array by the
 * creation of a MORE expensive W array on the stack. The result is
 * that all instructions use signed 8-bit offsets and not 32-bit offsets.
 *
 * The combination of this code and the -O3 optimizer flag on GCC 3.4.3
 * results in code that is 3 times faster than the previous NSS sha_fast
 * code on AMD64.
 */
static void 
shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf) 
{
  register SHA_HW_t A, B, C, D, E;

#if defined(SHA_NEED_TMP_VARIABLE)
  register PRUint32 tmp;
#endif

#if !defined(SHA_PUT_W_IN_STACK)
#define XH(n) X[n-H2X]
#define XW(n) X[n-W2X]
#else
  SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7,
           w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
#define XW(n) w_ ## n
#define XH(n) X[n]
#endif

#define K0 0x5a827999L
#define K1 0x6ed9eba1L
#define K2 0x8f1bbcdcL
#define K3 0xca62c1d6L

#define SHA_RND1(a,b,c,d,e,n) \
  a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30) 
#define SHA_RND2(a,b,c,d,e,n) \
  a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30) 
#define SHA_RND3(a,b,c,d,e,n) \
  a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30) 
#define SHA_RND4(a,b,c,d,e,n) \
  a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30) 

#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n])

  A = XH(0);
  B = XH(1);
  C = XH(2);
  D = XH(3);
  E = XH(4);

  LOAD(0);		   SHA_RND1(E,A,B,C,D, 0);
  LOAD(1);		   SHA_RND1(D,E,A,B,C, 1);
  LOAD(2);		   SHA_RND1(C,D,E,A,B, 2);
  LOAD(3);		   SHA_RND1(B,C,D,E,A, 3);
  LOAD(4);		   SHA_RND1(A,B,C,D,E, 4);
  LOAD(5);		   SHA_RND1(E,A,B,C,D, 5);
  LOAD(6);		   SHA_RND1(D,E,A,B,C, 6);
  LOAD(7);		   SHA_RND1(C,D,E,A,B, 7);
  LOAD(8);		   SHA_RND1(B,C,D,E,A, 8);
  LOAD(9);		   SHA_RND1(A,B,C,D,E, 9);
  LOAD(10);		   SHA_RND1(E,A,B,C,D,10);
  LOAD(11);		   SHA_RND1(D,E,A,B,C,11);
  LOAD(12);		   SHA_RND1(C,D,E,A,B,12);
  LOAD(13);		   SHA_RND1(B,C,D,E,A,13);
  LOAD(14);		   SHA_RND1(A,B,C,D,E,14);
  LOAD(15);		   SHA_RND1(E,A,B,C,D,15);

  SHA_MIX( 0, 13,  8,  2); SHA_RND1(D,E,A,B,C, 0);
  SHA_MIX( 1, 14,  9,  3); SHA_RND1(C,D,E,A,B, 1);
  SHA_MIX( 2, 15, 10,  4); SHA_RND1(B,C,D,E,A, 2);
  SHA_MIX( 3,  0, 11,  5); SHA_RND1(A,B,C,D,E, 3);

  SHA_MIX( 4,  1, 12,  6); SHA_RND2(E,A,B,C,D, 4);
  SHA_MIX( 5,  2, 13,  7); SHA_RND2(D,E,A,B,C, 5);
  SHA_MIX( 6,  3, 14,  8); SHA_RND2(C,D,E,A,B, 6);
  SHA_MIX( 7,  4, 15,  9); SHA_RND2(B,C,D,E,A, 7);
  SHA_MIX( 8,  5,  0, 10); SHA_RND2(A,B,C,D,E, 8);
  SHA_MIX( 9,  6,  1, 11); SHA_RND2(E,A,B,C,D, 9);
  SHA_MIX(10,  7,  2, 12); SHA_RND2(D,E,A,B,C,10);
  SHA_MIX(11,  8,  3, 13); SHA_RND2(C,D,E,A,B,11);
  SHA_MIX(12,  9,  4, 14); SHA_RND2(B,C,D,E,A,12);
  SHA_MIX(13, 10,  5, 15); SHA_RND2(A,B,C,D,E,13);
  SHA_MIX(14, 11,  6,  0); SHA_RND2(E,A,B,C,D,14);
  SHA_MIX(15, 12,  7,  1); SHA_RND2(D,E,A,B,C,15);

  SHA_MIX( 0, 13,  8,  2); SHA_RND2(C,D,E,A,B, 0);
  SHA_MIX( 1, 14,  9,  3); SHA_RND2(B,C,D,E,A, 1);
  SHA_MIX( 2, 15, 10,  4); SHA_RND2(A,B,C,D,E, 2);
  SHA_MIX( 3,  0, 11,  5); SHA_RND2(E,A,B,C,D, 3);
  SHA_MIX( 4,  1, 12,  6); SHA_RND2(D,E,A,B,C, 4);
  SHA_MIX( 5,  2, 13,  7); SHA_RND2(C,D,E,A,B, 5);
  SHA_MIX( 6,  3, 14,  8); SHA_RND2(B,C,D,E,A, 6);
  SHA_MIX( 7,  4, 15,  9); SHA_RND2(A,B,C,D,E, 7);

  SHA_MIX( 8,  5,  0, 10); SHA_RND3(E,A,B,C,D, 8);
  SHA_MIX( 9,  6,  1, 11); SHA_RND3(D,E,A,B,C, 9);
  SHA_MIX(10,  7,  2, 12); SHA_RND3(C,D,E,A,B,10);
  SHA_MIX(11,  8,  3, 13); SHA_RND3(B,C,D,E,A,11);
  SHA_MIX(12,  9,  4, 14); SHA_RND3(A,B,C,D,E,12);
  SHA_MIX(13, 10,  5, 15); SHA_RND3(E,A,B,C,D,13);
  SHA_MIX(14, 11,  6,  0); SHA_RND3(D,E,A,B,C,14);
  SHA_MIX(15, 12,  7,  1); SHA_RND3(C,D,E,A,B,15);

  SHA_MIX( 0, 13,  8,  2); SHA_RND3(B,C,D,E,A, 0);
  SHA_MIX( 1, 14,  9,  3); SHA_RND3(A,B,C,D,E, 1);
  SHA_MIX( 2, 15, 10,  4); SHA_RND3(E,A,B,C,D, 2);
  SHA_MIX( 3,  0, 11,  5); SHA_RND3(D,E,A,B,C, 3);
  SHA_MIX( 4,  1, 12,  6); SHA_RND3(C,D,E,A,B, 4);
  SHA_MIX( 5,  2, 13,  7); SHA_RND3(B,C,D,E,A, 5);
  SHA_MIX( 6,  3, 14,  8); SHA_RND3(A,B,C,D,E, 6);
  SHA_MIX( 7,  4, 15,  9); SHA_RND3(E,A,B,C,D, 7);
  SHA_MIX( 8,  5,  0, 10); SHA_RND3(D,E,A,B,C, 8);
  SHA_MIX( 9,  6,  1, 11); SHA_RND3(C,D,E,A,B, 9);
  SHA_MIX(10,  7,  2, 12); SHA_RND3(B,C,D,E,A,10);
  SHA_MIX(11,  8,  3, 13); SHA_RND3(A,B,C,D,E,11);

  SHA_MIX(12,  9,  4, 14); SHA_RND4(E,A,B,C,D,12);
  SHA_MIX(13, 10,  5, 15); SHA_RND4(D,E,A,B,C,13);
  SHA_MIX(14, 11,  6,  0); SHA_RND4(C,D,E,A,B,14);
  SHA_MIX(15, 12,  7,  1); SHA_RND4(B,C,D,E,A,15);

  SHA_MIX( 0, 13,  8,  2); SHA_RND4(A,B,C,D,E, 0);
  SHA_MIX( 1, 14,  9,  3); SHA_RND4(E,A,B,C,D, 1);
  SHA_MIX( 2, 15, 10,  4); SHA_RND4(D,E,A,B,C, 2);
  SHA_MIX( 3,  0, 11,  5); SHA_RND4(C,D,E,A,B, 3);
  SHA_MIX( 4,  1, 12,  6); SHA_RND4(B,C,D,E,A, 4);
  SHA_MIX( 5,  2, 13,  7); SHA_RND4(A,B,C,D,E, 5);
  SHA_MIX( 6,  3, 14,  8); SHA_RND4(E,A,B,C,D, 6);
  SHA_MIX( 7,  4, 15,  9); SHA_RND4(D,E,A,B,C, 7);
  SHA_MIX( 8,  5,  0, 10); SHA_RND4(C,D,E,A,B, 8);
  SHA_MIX( 9,  6,  1, 11); SHA_RND4(B,C,D,E,A, 9);
  SHA_MIX(10,  7,  2, 12); SHA_RND4(A,B,C,D,E,10);
  SHA_MIX(11,  8,  3, 13); SHA_RND4(E,A,B,C,D,11);
  SHA_MIX(12,  9,  4, 14); SHA_RND4(D,E,A,B,C,12);
  SHA_MIX(13, 10,  5, 15); SHA_RND4(C,D,E,A,B,13);
  SHA_MIX(14, 11,  6,  0); SHA_RND4(B,C,D,E,A,14);
  SHA_MIX(15, 12,  7,  1); SHA_RND4(A,B,C,D,E,15);

  XH(0) += A;
  XH(1) += B;
  XH(2) += C;
  XH(3) += D;
  XH(4) += E;
}

/*************************************************************************
** Code below this line added to make SHA code support BLAPI interface
*/

SHA1Context *
SHA1_NewContext(void)
{
    SHA1Context *cx;

    /* no need to ZNew, SHA1_Begin will init the context */
    cx = PORT_New(SHA1Context);
    return cx;
}

/* Zero and free the context */
void
SHA1_DestroyContext(SHA1Context *cx, PRBool freeit)
{
    memset(cx, 0, sizeof *cx);
    if (freeit) {
        PORT_Free(cx);
    }
}

SECStatus
SHA1_HashBuf(unsigned char *dest, const unsigned char *src, uint32 src_length)
{
    SHA1Context ctx;
    unsigned int outLen;

    SHA1_Begin(&ctx);
    SHA1_Update(&ctx, src, src_length);
    SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH);
    return SECSuccess;
}

/* Hash a null-terminated character string. */
SECStatus
SHA1_Hash(unsigned char *dest, const char *src)
{
    return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen (src));
}

/*
 * need to support save/restore state in pkcs11. Stores all the info necessary
 * for a structure into just a stream of bytes.
 */
unsigned int
SHA1_FlattenSize(SHA1Context *cx)
{
    return sizeof(SHA1Context);
}

SECStatus
SHA1_Flatten(SHA1Context *cx,unsigned char *space)
{
    PORT_Memcpy(space,cx, sizeof(SHA1Context));
    return SECSuccess;
}

SHA1Context *
SHA1_Resurrect(unsigned char *space,void *arg)
{
    SHA1Context *cx = SHA1_NewContext();
    if (cx == NULL) return NULL;

    PORT_Memcpy(cx,space, sizeof(SHA1Context));
    return cx;
}

void SHA1_Clone(SHA1Context *dest, SHA1Context *src) 
{
    memcpy(dest, src, sizeof *dest);
}

void
SHA1_TraceState(SHA1Context *ctx)
{
    PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
}