/* * timespecops.h -- calculations on 'struct timespec' values * * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project. * The contents of 'html/copyright.html' apply. * * Rationale * --------- * * Doing basic arithmetic on a 'struct timespec' is not exceedingly * hard, but it requires tedious and repetitive code to keep the result * normalised. We consider a timespec normalised when the nanosecond * fraction is in the interval [0 .. 10^9[ ; there are multiple value * pairs of seconds and nanoseconds that denote the same time interval, * but the normalised representation is unique. No two different * intervals can have the same normalised representation. * * Another topic is the representation of negative time intervals. * There's more than one way to this, since both the seconds and the * nanoseconds of a timespec are signed values. IMHO, the easiest way is * to use a complement representation where the nanoseconds are still * normalised, no matter what the sign of the seconds value. This makes * normalisation easier, since the sign of the integer part is * irrelevant, and it removes several sign decision cases during the * calculations. * * As long as no signed integer overflow can occur with the nanosecond * part of the operands, all operations work as expected and produce a * normalised result. * * The exception to this are functions fix a '_fast' suffix, which do no * normalisation on input data and therefore expect the input data to be * normalised. * * Input and output operands may overlap; all input is consumed before * the output is written to. */ #ifndef TIMESPECOPS_H #define TIMESPECOPS_H #include #include #include #include "ntp.h" #include "timetoa.h" /* nanoseconds per second */ #define NANOSECONDS 1000000000 /* predicate: returns TRUE if the nanoseconds are in nominal range */ #define timespec_isnormal(x) \ ((x)->tv_nsec >= 0 && (x)->tv_nsec < NANOSECONDS) /* predicate: returns TRUE if the nanoseconds are out-of-bounds */ #define timespec_isdenormal(x) (!timespec_isnormal(x)) /* conversion between l_fp fractions and nanoseconds */ #ifdef HAVE_U_INT64 # define FTOTVN(tsf) \ ((int32) \ (((u_int64)(tsf) * NANOSECONDS + 0x80000000) >> 32)) # define TVNTOF(tvu) \ ((u_int32) \ ((((u_int64)(tvu) << 32) + NANOSECONDS / 2) / \ NANOSECONDS)) #else # define NSECFRAC (FRAC / NANOSECONDS) # define FTOTVN(tsf) \ ((int32)((tsf) / NSECFRAC + 0.5)) # define TVNTOF(tvu) \ ((u_int32)((tvu) * NSECFRAC + 0.5)) #endif /* make sure nanoseconds are in nominal range */ static inline struct timespec normalize_tspec( struct timespec x ) { #if SIZEOF_LONG > 4 long z; /* * tv_nsec is of type 'long', and on a 64-bit machine using only * loops becomes prohibitive once the upper 32 bits get * involved. On the other hand, division by constant should be * fast enough; so we do a division of the nanoseconds in that * case. The floor adjustment step follows with the standard * normalisation loops. And labs() is intentionally not used * here: it has implementation-defined behaviour when applied * to LONG_MIN. */ if (x.tv_nsec < -3l * NANOSECONDS || x.tv_nsec > 3l * NANOSECONDS) { z = x.tv_nsec / NANOSECONDS; x.tv_nsec -= z * NANOSECONDS; x.tv_sec += z; } #endif /* since 10**9 is close to 2**32, we don't divide but do a * normalisation in a loop; this takes 3 steps max, and should * outperform a division even if the mul-by-inverse trick is * employed. */ if (x.tv_nsec < 0) do { x.tv_nsec += NANOSECONDS; x.tv_sec--; } while (x.tv_nsec < 0); else if (x.tv_nsec >= NANOSECONDS) do { x.tv_nsec -= NANOSECONDS; x.tv_sec++; } while (x.tv_nsec >= NANOSECONDS); return x; } /* x = a + b */ static inline struct timespec add_tspec( struct timespec a, struct timespec b ) { struct timespec x; x = a; x.tv_sec += b.tv_sec; x.tv_nsec += b.tv_nsec; return normalize_tspec(x); } /* x = a + b, b is fraction only */ static inline struct timespec add_tspec_ns( struct timespec a, long b ) { struct timespec x; x = a; x.tv_nsec += b; return normalize_tspec(x); } /* x = a - b */ static inline struct timespec sub_tspec( struct timespec a, struct timespec b ) { struct timespec x; x = a; x.tv_sec -= b.tv_sec; x.tv_nsec -= b.tv_nsec; return normalize_tspec(x); } /* x = a - b, b is fraction only */ static inline struct timespec sub_tspec_ns( struct timespec a, long b ) { struct timespec x; x = a; x.tv_nsec -= b; return normalize_tspec(x); } /* x = -a */ static inline struct timespec neg_tspec( struct timespec a ) { struct timespec x; x.tv_sec = -a.tv_sec; x.tv_nsec = -a.tv_nsec; return normalize_tspec(x); } /* x = abs(a) */ static inline struct timespec abs_tspec( struct timespec a ) { struct timespec c; c = normalize_tspec(a); if (c.tv_sec < 0) { if (c.tv_nsec != 0) { c.tv_sec = -c.tv_sec - 1; c.tv_nsec = NANOSECONDS - c.tv_nsec; } else { c.tv_sec = -c.tv_sec; } } return c; } /* * compare previously-normalised a and b * return 1 / 0 / -1 if a < / == / > b */ static inline int cmp_tspec( struct timespec a, struct timespec b ) { int r; r = (a.tv_sec > b.tv_sec) - (a.tv_sec < b.tv_sec); if (0 == r) r = (a.tv_nsec > b.tv_nsec) - (a.tv_nsec < b.tv_nsec); return r; } /* * compare possibly-denormal a and b * return 1 / 0 / -1 if a < / == / > b */ static inline int cmp_tspec_denorm( struct timespec a, struct timespec b ) { return cmp_tspec(normalize_tspec(a), normalize_tspec(b)); } /* * test previously-normalised a * return 1 / 0 / -1 if a < / == / > 0 */ static inline int test_tspec( struct timespec a ) { int r; r = (a.tv_sec > 0) - (a.tv_sec < 0); if (r == 0) r = (a.tv_nsec > 0); return r; } /* * test possibly-denormal a * return 1 / 0 / -1 if a < / == / > 0 */ static inline int test_tspec_denorm( struct timespec a ) { return test_tspec(normalize_tspec(a)); } /* return LIB buffer ptr to string rep */ static inline const char * tspectoa( struct timespec x ) { return format_time_fraction(x.tv_sec, x.tv_nsec, 9); } /* * convert to l_fp type, relative and absolute */ /* convert from timespec duration to l_fp duration */ static inline l_fp tspec_intv_to_lfp( struct timespec x ) { struct timespec v; l_fp y; v = normalize_tspec(x); y.l_uf = TVNTOF(v.tv_nsec); y.l_i = (int32)v.tv_sec; return y; } /* x must be UN*X epoch, output will be in NTP epoch */ static inline l_fp tspec_stamp_to_lfp( struct timespec x ) { l_fp y; y = tspec_intv_to_lfp(x); y.l_ui += JAN_1970; return y; } /* convert from l_fp type, relative signed/unsigned and absolute */ static inline struct timespec lfp_intv_to_tspec( l_fp x ) { struct timespec out; l_fp absx; int neg; neg = L_ISNEG(&x); absx = x; if (neg) { L_NEG(&absx); } out.tv_nsec = FTOTVN(absx.l_uf); out.tv_sec = absx.l_i; if (neg) { out.tv_sec = -out.tv_sec; out.tv_nsec = -out.tv_nsec; out = normalize_tspec(out); } return out; } static inline struct timespec lfp_uintv_to_tspec( l_fp x ) { struct timespec out; out.tv_nsec = FTOTVN(x.l_uf); out.tv_sec = x.l_ui; return out; } /* * absolute (timestamp) conversion. Input is time in NTP epoch, output * is in UN*X epoch. The NTP time stamp will be expanded around the * pivot time *p or the current time, if p is NULL. */ static inline struct timespec lfp_stamp_to_tspec( l_fp x, const time_t * p ) { struct timespec out; vint64 sec; sec = ntpcal_ntp_to_time(x.l_ui, p); out.tv_nsec = FTOTVN(x.l_uf); /* copying a vint64 to a time_t needs some care... */ #if SIZEOF_TIME_T <= 4 out.tv_sec = (time_t)sec.d_s.lo; #elif defined(HAVE_INT64) out.tv_sec = (time_t)sec.q_s; #else out.tv_sec = ((time_t)sec.d_s.hi << 32) | sec.d_s.lo; #endif return out; } #endif /* TIMESPECOPS_H */