/* * NTP test program * * This program tests to see if the NTP user interface routines * ntp_gettime() and ntp_adjtime() have been implemented in the kernel. * If so, each of these routines is called to display current timekeeping * data. * * For more information, see the README.kern file in the doc directory * of the xntp3 distribution. */ #ifdef HAVE_CONFIG_H # include #endif /* HAVE_CONFIG_H */ #include "ntp_fp.h" #include "timevalops.h" #include "ntp_syscall.h" #include "ntp_stdlib.h" #include #include #include #include #ifdef NTP_SYSCALLS_STD # ifndef SYS_DECOSF1 # define BADCALL -1 /* this is supposed to be a bad syscall */ # endif /* SYS_DECOSF1 */ #endif #ifdef HAVE_STRUCT_NTPTIMEVAL_TIME_TV_NSEC #define tv_frac_sec tv_nsec #else #define tv_frac_sec tv_usec #endif #define TIMEX_MOD_BITS \ "\20\1OFFSET\2FREQUENCY\3MAXERROR\4ESTERROR\5STATUS\6TIMECONST\ \13PLL\14FLL\15MICRO\16NANO\17CLKB\20CLKA" #define TIMEX_STA_BITS \ "\20\1PLL\2PPSFREQ\3PPSTIME\4FLL\5INS\6DEL\7UNSYNC\10FREQHOLD\ \11PPSSIGNAL\12PPSJITTER\13PPSWANDER\14PPSERROR\15CLOCKERR\ \16NANO\17MODE\20CLK" #define SCALE_FREQ 65536 /* frequency scale */ /* * These constants are used to round the time stamps computed from * a struct timeval to the microsecond (more or less). This keeps * things neat. */ #define TS_MASK 0xfffff000 /* mask to usec, for time stamps */ #define TS_ROUNDBIT 0x00000800 /* round at this bit */ /* * Function prototypes */ const char * sprintb (u_int, const char *); const char * timex_state (int); #ifdef SIGSYS void pll_trap (int); static struct sigaction newsigsys; /* new sigaction status */ static struct sigaction sigsys; /* current sigaction status */ static sigjmp_buf env; /* environment var. for pll_trap() */ #endif static volatile int pll_control; /* (0) daemon, (1) kernel loop */ static volatile int status; /* most recent status bits */ static volatile int flash; /* most recent ntp_adjtime() bits */ char* progname; static char optargs[] = "MNT:cde:f:hm:o:rs:t:"; int main( int argc, char *argv[] ) { extern int ntp_optind; extern char *ntp_optarg; #ifdef SUBST_ADJTIMEX struct timex ntv; #else struct ntptimeval ntv; #endif struct timeval tv; struct timex ntx, _ntx; int times[20]; double ftemp, gtemp, htemp; long time_frac; /* ntv.time.tv_frac_sec (us/ns) */ l_fp ts; volatile unsigned ts_mask = TS_MASK; /* defaults to 20 bits (us) */ volatile unsigned ts_roundbit = TS_ROUNDBIT; /* defaults to 20 bits (us) */ volatile int fdigits = 6; /* fractional digits for us */ size_t c; int ch; int errflg = 0; int cost = 0; volatile int rawtime = 0; ZERO(ntx); progname = argv[0]; while ((ch = ntp_getopt(argc, argv, optargs)) != EOF) { switch (ch) { #ifdef MOD_MICRO case 'M': ntx.modes |= MOD_MICRO; break; #endif #ifdef MOD_NANO case 'N': ntx.modes |= MOD_NANO; break; #endif #ifdef NTP_API # if NTP_API > 3 case 'T': ntx.modes = MOD_TAI; ntx.constant = atoi(ntp_optarg); break; # endif #endif case 'c': cost++; break; case 'e': ntx.modes |= MOD_ESTERROR; ntx.esterror = atoi(ntp_optarg); break; case 'f': ntx.modes |= MOD_FREQUENCY; ntx.freq = (long)(atof(ntp_optarg) * SCALE_FREQ); break; case 'm': ntx.modes |= MOD_MAXERROR; ntx.maxerror = atoi(ntp_optarg); break; case 'o': ntx.modes |= MOD_OFFSET; ntx.offset = atoi(ntp_optarg); break; case 'r': rawtime++; break; case 's': ntx.modes |= MOD_STATUS; ntx.status = atoi(ntp_optarg); if (ntx.status < 0 || ntx.status >= 0x100) errflg++; break; case 't': ntx.modes |= MOD_TIMECONST; ntx.constant = atoi(ntp_optarg); break; default: errflg++; } } if (errflg || (ntp_optind != argc)) { fprintf(stderr, "usage: %s [-%s]\n\n\ %s%s%s\ -c display the time taken to call ntp_gettime (us)\n\ -e esterror estimate of the error (us)\n\ -f frequency Frequency error (-500 .. 500) (ppm)\n\ -h display this help info\n\ -m maxerror max possible error (us)\n\ -o offset current offset (ms)\n\ -r print the unix and NTP time raw\n\ -s status Set the status bits\n\ -t timeconstant log2 of PLL time constant (0 .. %d)\n", progname, optargs, #ifdef MOD_MICRO "-M switch to microsecond mode\n", #else "", #endif #ifdef MOD_NANO "-N switch to nanosecond mode\n", #else "", #endif #ifdef NTP_API # if NTP_API > 3 "-T tai_offset set TAI offset\n", # else "", # endif #else "", #endif MAXTC); exit(2); } #ifdef SIGSYS /* * Test to make sure the sigaction() works in case of invalid * syscall codes. */ newsigsys.sa_handler = pll_trap; newsigsys.sa_flags = 0; if (sigaction(SIGSYS, &newsigsys, &sigsys)) { perror("sigaction() fails to save SIGSYS trap"); exit(1); } #endif /* SIGSYS */ #ifdef BADCALL /* * Make sure the trapcatcher works. */ pll_control = 1; #ifdef SIGSYS if (sigsetjmp(env, 1) == 0) { #endif status = syscall(BADCALL, &ntv); /* dummy parameter */ if ((status < 0) && (errno == ENOSYS)) --pll_control; #ifdef SIGSYS } #endif if (pll_control) printf("sigaction() failed to catch an invalid syscall\n"); #endif /* BADCALL */ if (cost) { #ifdef SIGSYS if (sigsetjmp(env, 1) == 0) { #endif for (c = 0; c < COUNTOF(times); c++) { status = ntp_gettime(&ntv); if ((status < 0) && (errno == ENOSYS)) --pll_control; if (pll_control < 0) break; times[c] = ntv.time.tv_frac_sec; } #ifdef SIGSYS } #endif if (pll_control >= 0) { printf("[ us %06d:", times[0]); for (c = 1; c < COUNTOF(times); c++) printf(" %d", times[c] - times[c - 1]); printf(" ]\n"); } } #ifdef SIGSYS if (sigsetjmp(env, 1) == 0) { #endif status = ntp_gettime(&ntv); if ((status < 0) && (errno == ENOSYS)) --pll_control; #ifdef SIGSYS } #endif _ntx.modes = 0; /* Ensure nothing is set */ #ifdef SIGSYS if (sigsetjmp(env, 1) == 0) { #endif status = ntp_adjtime(&_ntx); if ((status < 0) && (errno == ENOSYS)) --pll_control; flash = _ntx.status; #ifdef SIGSYS } #endif if (pll_control < 0) { printf("NTP user interface routines are not configured in this kernel.\n"); goto lexit; } /* * Fetch timekeeping data and display. */ status = ntp_gettime(&ntv); if (status < 0) { perror("ntp_gettime() call fails"); } else { printf("ntp_gettime() returns code %d (%s)\n", status, timex_state(status)); time_frac = ntv.time.tv_frac_sec; #ifdef STA_NANO if (flash & STA_NANO) { ntv.time.tv_frac_sec /= 1000; ts_mask = 0xfffffffc; /* 1/2^30 */ ts_roundbit = 0x00000002; fdigits = 9; } #endif tv.tv_sec = ntv.time.tv_sec; tv.tv_usec = ntv.time.tv_frac_sec; TVTOTS(&tv, &ts); ts.l_ui += JAN_1970; ts.l_uf += ts_roundbit; ts.l_uf &= ts_mask; printf(" time %s, (.%0*d),\n", prettydate(&ts), fdigits, (int)time_frac); printf(" maximum error %lu us, estimated error %lu us", (u_long)ntv.maxerror, (u_long)ntv.esterror); if (rawtime) printf(" ntptime=%x.%x unixtime=%x.%0*d %s", (u_int)ts.l_ui, (u_int)ts.l_uf, (int)ntv.time.tv_sec, fdigits, (int)time_frac, ctime((time_t *)&ntv.time.tv_sec)); #if NTP_API > 3 printf(", TAI offset %ld\n", (long)ntv.tai); #else printf("\n"); #endif /* NTP_API */ } status = ntp_adjtime(&ntx); if (status < 0) { perror((errno == EPERM) ? "Must be root to set kernel values\nntp_adjtime() call fails" : "ntp_adjtime() call fails"); } else { flash = ntx.status; printf("ntp_adjtime() returns code %d (%s)\n", status, timex_state(status)); printf(" modes %s,\n", sprintb(ntx.modes, TIMEX_MOD_BITS)); ftemp = (double)ntx.offset; #ifdef STA_NANO if (flash & STA_NANO) ftemp /= 1000.0; #endif printf(" offset %.3f", ftemp); ftemp = (double)ntx.freq / SCALE_FREQ; printf(" us, frequency %.3f ppm, interval %d s,\n", ftemp, 1 << ntx.shift); printf(" maximum error %lu us, estimated error %lu us,\n", (u_long)ntx.maxerror, (u_long)ntx.esterror); printf(" status %s,\n", sprintb((u_int)ntx.status, TIMEX_STA_BITS)); ftemp = (double)ntx.tolerance / SCALE_FREQ; gtemp = (double)ntx.precision; #ifdef STA_NANO if (flash & STA_NANO) gtemp /= 1000.0; #endif printf( " time constant %lu, precision %.3f us, tolerance %.0f ppm,\n", (u_long)ntx.constant, gtemp, ftemp); if (ntx.shift == 0) exit(0); ftemp = (double)ntx.ppsfreq / SCALE_FREQ; gtemp = (double)ntx.stabil / SCALE_FREQ; htemp = (double)ntx.jitter; #ifdef STA_NANO if (flash & STA_NANO) htemp /= 1000.0; #endif printf( " pps frequency %.3f ppm, stability %.3f ppm, jitter %.3f us,\n", ftemp, gtemp, htemp); printf(" intervals %lu, jitter exceeded %lu, stability exceeded %lu, errors %lu.\n", (u_long)ntx.calcnt, (u_long)ntx.jitcnt, (u_long)ntx.stbcnt, (u_long)ntx.errcnt); return 0; } /* * Put things back together the way we found them. */ lexit: #ifdef SIGSYS if (sigaction(SIGSYS, &sigsys, (struct sigaction *)NULL)) { perror("sigaction() fails to restore SIGSYS trap"); exit(1); } #endif exit(0); } #ifdef SIGSYS /* * pll_trap - trap processor for undefined syscalls */ void pll_trap( int arg ) { pll_control--; siglongjmp(env, 1); } #endif /* * Print a value a la the %b format of the kernel's printf */ const char * sprintb( u_int v, const char * bits ) { char *cp; char *cplim; int i; int any; char c; static char buf[132]; if (bits != NULL && *bits == 8) snprintf(buf, sizeof(buf), "0%o", v); else snprintf(buf, sizeof(buf), "0x%x", v); cp = buf + strlen(buf); cplim = buf + sizeof(buf); if (bits != NULL) { bits++; *cp++ = ' '; *cp++ = '('; any = FALSE; while ((i = *bits++) != 0) { if (v & (1 << (i - 1))) { if (any) { *cp++ = ','; if (cp >= cplim) goto overrun; } any = TRUE; for (; (c = *bits) > 32; bits++) { *cp++ = c; if (cp >= cplim) goto overrun; } } else { for (; *bits > 32; bits++) continue; } } *cp++ = ')'; if (cp >= cplim) goto overrun; } *cp = '\0'; return buf; overrun: return "sprintb buffer too small"; } const char * const timex_states[] = { "OK", "INS", "DEL", "OOP", "WAIT", "ERROR" }; const char * timex_state( int s ) { static char buf[32]; if ((size_t)s < COUNTOF(timex_states)) return timex_states[s]; snprintf(buf, sizeof(buf), "TIME-#%d", s); return buf; }