(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Translation from closed lambda to C-- *) open Misc open Arch open Asttypes open Primitive open Types open Lambda open Clambda open Cmm open Cmx_format (* Local binding of complex expressions *) let bind name arg fn = match arg with Cvar _ | Cconst_int _ | Cconst_natint _ | Cconst_symbol _ | Cconst_pointer _ | Cconst_natpointer _ | Cconst_blockheader _ -> fn arg | _ -> let id = Ident.create name in Clet(id, arg, fn (Cvar id)) let bind_load name arg fn = match arg with | Cop(Cload _, [Cvar _]) -> fn arg | _ -> bind name arg fn let bind_nonvar name arg fn = match arg with Cconst_int _ | Cconst_natint _ | Cconst_symbol _ | Cconst_pointer _ | Cconst_natpointer _ | Cconst_blockheader _ -> fn arg | _ -> let id = Ident.create name in Clet(id, arg, fn (Cvar id)) let caml_black = Nativeint.shift_left (Nativeint.of_int 3) 8 (* cf. byterun/gc.h *) (* Block headers. Meaning of the tag field: see stdlib/obj.ml *) let floatarray_tag = Cconst_int Obj.double_array_tag let block_header tag sz = Nativeint.add (Nativeint.shift_left (Nativeint.of_int sz) 10) (Nativeint.of_int tag) (* Static data corresponding to "value"s must be marked black in case we are in no-naked-pointers mode. See [caml_darken] and the code below that emits structured constants and static module definitions. *) let black_block_header tag sz = Nativeint.logor (block_header tag sz) caml_black let white_closure_header sz = block_header Obj.closure_tag sz let black_closure_header sz = black_block_header Obj.closure_tag sz let infix_header ofs = block_header Obj.infix_tag ofs let float_header = block_header Obj.double_tag (size_float / size_addr) let floatarray_header len = block_header Obj.double_array_tag (len * size_float / size_addr) let string_header len = block_header Obj.string_tag ((len + size_addr) / size_addr) let boxedint32_header = block_header Obj.custom_tag 2 let boxedint64_header = block_header Obj.custom_tag (1 + 8 / size_addr) let boxedintnat_header = block_header Obj.custom_tag 2 let alloc_float_header = Cconst_blockheader(float_header) let alloc_floatarray_header len = Cconst_blockheader(floatarray_header len) let alloc_closure_header sz = Cconst_blockheader(white_closure_header sz) let alloc_infix_header ofs = Cconst_blockheader(infix_header ofs) let alloc_boxedint32_header = Cconst_blockheader(boxedint32_header) let alloc_boxedint64_header = Cconst_blockheader(boxedint64_header) let alloc_boxedintnat_header = Cconst_blockheader(boxedintnat_header) (* Integers *) let max_repr_int = max_int asr 1 let min_repr_int = min_int asr 1 let int_const n = if n <= max_repr_int && n >= min_repr_int then Cconst_int((n lsl 1) + 1) else Cconst_natint (Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n) let cint_const n = Cint(Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n) let add_no_overflow n x c = let d = n + x in if d = 0 then c else Cop(Caddi, [c; Cconst_int d]) let rec add_const c n = if n = 0 then c else match c with | Cconst_int x when no_overflow_add x n -> Cconst_int (x + n) | Cop(Caddi, [Cconst_int x; c]) when no_overflow_add n x -> add_no_overflow n x c | Cop(Caddi, [c; Cconst_int x]) when no_overflow_add n x -> add_no_overflow n x c | Cop(Csubi, [Cconst_int x; c]) when no_overflow_add n x -> Cop(Csubi, [Cconst_int (n + x); c]) | Cop(Csubi, [c; Cconst_int x]) when no_overflow_sub n x -> add_const c (n - x) | c -> Cop(Caddi, [c; Cconst_int n]) let incr_int c = add_const c 1 let decr_int c = add_const c (-1) let rec add_int c1 c2 = match (c1, c2) with | (Cconst_int n, c) | (c, Cconst_int n) -> add_const c n | (Cop(Caddi, [c1; Cconst_int n1]), c2) -> add_const (add_int c1 c2) n1 | (c1, Cop(Caddi, [c2; Cconst_int n2])) -> add_const (add_int c1 c2) n2 | (_, _) -> Cop(Caddi, [c1; c2]) let rec sub_int c1 c2 = match (c1, c2) with | (c1, Cconst_int n2) when n2 <> min_int -> add_const c1 (-n2) | (c1, Cop(Caddi, [c2; Cconst_int n2])) when n2 <> min_int -> add_const (sub_int c1 c2) (-n2) | (Cop(Caddi, [c1; Cconst_int n1]), c2) -> add_const (sub_int c1 c2) n1 | (c1, c2) -> Cop(Csubi, [c1; c2]) let rec lsl_int c1 c2 = match (c1, c2) with | (Cop(Clsl, [c; Cconst_int n1]), Cconst_int n2) when n1 > 0 && n2 > 0 && n1 + n2 < size_int * 8 -> Cop(Clsl, [c; Cconst_int (n1 + n2)]) | (Cop(Caddi, [c1; Cconst_int n1]), Cconst_int n2) when no_overflow_lsl n1 n2 -> add_const (lsl_int c1 c2) (n1 lsl n2) | (_, _) -> Cop(Clsl, [c1; c2]) let is_power2 n = n = 1 lsl Misc.log2 n and mult_power2 c n = lsl_int c (Cconst_int (Misc.log2 n)) let rec mul_int c1 c2 = match (c1, c2) with | (c, Cconst_int 0) | (Cconst_int 0, c) -> Cconst_int 0 | (c, Cconst_int 1) | (Cconst_int 1, c) -> c | (c, Cconst_int(-1)) | (Cconst_int(-1), c) -> sub_int (Cconst_int 0) c | (c, Cconst_int n) when is_power2 n -> mult_power2 c n | (Cconst_int n, c) when is_power2 n -> mult_power2 c n | (Cop(Caddi, [c; Cconst_int n]), Cconst_int k) | (Cconst_int k, Cop(Caddi, [c; Cconst_int n])) when no_overflow_mul n k -> add_const (mul_int c (Cconst_int k)) (n * k) | (c1, c2) -> Cop(Cmuli, [c1; c2]) let ignore_low_bit_int = function Cop(Caddi, [(Cop(Clsl, [_; Cconst_int n]) as c); Cconst_int 1]) when n > 0 -> c | Cop(Cor, [c; Cconst_int 1]) -> c | c -> c let lsr_int c1 c2 = match c2 with Cconst_int 0 -> c1 | Cconst_int n when n > 0 -> Cop(Clsr, [ignore_low_bit_int c1; c2]) | _ -> Cop(Clsr, [c1; c2]) let asr_int c1 c2 = match c2 with Cconst_int 0 -> c1 | Cconst_int n when n > 0 -> Cop(Casr, [ignore_low_bit_int c1; c2]) | _ -> Cop(Casr, [c1; c2]) let tag_int = function Cconst_int n -> int_const n | Cop(Casr, [c; Cconst_int n]) when n > 0 -> Cop(Cor, [asr_int c (Cconst_int (n - 1)); Cconst_int 1]) | c -> incr_int (lsl_int c (Cconst_int 1)) let force_tag_int = function Cconst_int n -> int_const n | Cop(Casr, [c; Cconst_int n]) when n > 0 -> Cop(Cor, [asr_int c (Cconst_int (n - 1)); Cconst_int 1]) | c -> Cop(Cor, [lsl_int c (Cconst_int 1); Cconst_int 1]) let untag_int = function Cconst_int n -> Cconst_int(n asr 1) | Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) -> c | Cop(Cor, [Cop(Casr, [c; Cconst_int n]); Cconst_int 1]) when n > 0 && n < size_int * 8 -> Cop(Casr, [c; Cconst_int (n+1)]) | Cop(Cor, [Cop(Clsr, [c; Cconst_int n]); Cconst_int 1]) when n > 0 && n < size_int * 8 -> Cop(Clsr, [c; Cconst_int (n+1)]) | Cop(Cor, [c; Cconst_int 1]) -> Cop(Casr, [c; Cconst_int 1]) | c -> Cop(Casr, [c; Cconst_int 1]) let if_then_else (cond, ifso, ifnot) = match cond with | Cconst_int 0 -> ifnot | Cconst_int 1 -> ifso | _ -> Cifthenelse(cond, ifso, ifnot) (* Turning integer divisions into multiply-high then shift. The [division_parameters] function is used in module Emit for those target platforms that support this optimization. *) (* Unsigned comparison between native integers. *) let ucompare x y = Nativeint.(compare (add x min_int) (add y min_int)) (* Unsigned division and modulus at type nativeint. Algorithm: Hacker's Delight section 9.3 *) let udivmod n d = Nativeint.( if d < 0n then if ucompare n d < 0 then (0n, n) else (1n, sub n d) else begin let q = shift_left (div (shift_right_logical n 1) d) 1 in let r = sub n (mul q d) in if ucompare r d >= 0 then (succ q, sub r d) else (q, r) end) (* Compute division parameters. Algorithm: Hacker's Delight chapter 10, fig 10-1. *) let divimm_parameters d = Nativeint.( assert (d > 0n); let twopsm1 = min_int in (* 2^31 for 32-bit archs, 2^63 for 64-bit archs *) let nc = sub (pred twopsm1) (snd (udivmod twopsm1 d)) in let rec loop p (q1, r1) (q2, r2) = let p = p + 1 in let q1 = shift_left q1 1 and r1 = shift_left r1 1 in let (q1, r1) = if ucompare r1 nc >= 0 then (succ q1, sub r1 nc) else (q1, r1) in let q2 = shift_left q2 1 and r2 = shift_left r2 1 in let (q2, r2) = if ucompare r2 d >= 0 then (succ q2, sub r2 d) else (q2, r2) in let delta = sub d r2 in if ucompare q1 delta < 0 || (q1 = delta && r1 = 0n) then loop p (q1, r1) (q2, r2) else (succ q2, p - size) in loop (size - 1) (udivmod twopsm1 nc) (udivmod twopsm1 d)) (* The result [(m, p)] of [divimm_parameters d] satisfies the following inequality: 2^(wordsize + p) < m * d <= 2^(wordsize + p) + 2^(p + 1) (i) from which it follows that floor(n / d) = floor(n * m / 2^(wordsize+p)) if 0 <= n < 2^(wordsize-1) ceil(n / d) = floor(n * m / 2^(wordsize+p)) + 1 if -2^(wordsize-1) <= n < 0 The correctness condition (i) above can be checked by the code below. It was exhaustively tested for values of d from 2 to 10^9 in the wordsize = 64 case. let add2 (xh, xl) (yh, yl) = let zl = add xl yl and zh = add xh yh in ((if ucompare zl xl < 0 then succ zh else zh), zl) let shl2 (xh, xl) n = assert (0 < n && n < size + size); if n < size then (logor (shift_left xh n) (shift_right_logical xl (size - n)), shift_left xl n) else (shift_left xl (n - size), 0n) let mul2 x y = let halfsize = size / 2 in let halfmask = pred (shift_left 1n halfsize) in let xl = logand x halfmask and xh = shift_right_logical x halfsize in let yl = logand y halfmask and yh = shift_right_logical y halfsize in add2 (mul xh yh, 0n) (add2 (shl2 (0n, mul xl yh) halfsize) (add2 (shl2 (0n, mul xh yl) halfsize) (0n, mul xl yl))) let ucompare2 (xh, xl) (yh, yl) = let c = ucompare xh yh in if c = 0 then ucompare xl yl else c let validate d m p = let md = mul2 m d in let one2 = (0n, 1n) in let twoszp = shl2 one2 (size + p) in let twop1 = shl2 one2 (p + 1) in ucompare2 twoszp md < 0 && ucompare2 md (add2 twoszp twop1) <= 0 *) let rec div_int c1 c2 dbg = match (c1, c2) with (c1, Cconst_int 0) -> Csequence(c1, Cop(Craise (Raise_regular, dbg), [Cconst_symbol "caml_exn_Division_by_zero"])) | (c1, Cconst_int 1) -> c1 | (Cconst_int 0 as c1, c2) -> Csequence(c2, c1) | (Cconst_int n1, Cconst_int n2) -> Cconst_int (n1 / n2) | (c1, Cconst_int n) when n <> min_int -> let l = Misc.log2 n in if n = 1 lsl l then (* Algorithm: t = shift-right-signed(c1, l - 1) t = shift-right(t, W - l) t = c1 + t res = shift-right-signed(c1 + t, l) *) Cop(Casr, [bind "dividend" c1 (fun c1 -> let t = asr_int c1 (Cconst_int (l - 1)) in let t = lsr_int t (Cconst_int (Nativeint.size - l)) in add_int c1 t); Cconst_int l]) else if n < 0 then sub_int (Cconst_int 0) (div_int c1 (Cconst_int (-n)) dbg) else begin let (m, p) = divimm_parameters (Nativeint.of_int n) in (* Algorithm: t = multiply-high-signed(c1, m) if m < 0, t = t + c1 if p > 0, t = shift-right-signed(t, p) res = t + sign-bit(c1) *) bind "dividend" c1 (fun c1 -> let t = Cop(Cmulhi, [c1; Cconst_natint m]) in let t = if m < 0n then Cop(Caddi, [t; c1]) else t in let t = if p > 0 then Cop(Casr, [t; Cconst_int p]) else t in add_int t (lsr_int c1 (Cconst_int (Nativeint.size - 1)))) end | (c1, c2) when !Clflags.fast -> Cop(Cdivi, [c1; c2]) | (c1, c2) -> bind "divisor" c2 (fun c2 -> Cifthenelse(c2, Cop(Cdivi, [c1; c2]), Cop(Craise (Raise_regular, dbg), [Cconst_symbol "caml_exn_Division_by_zero"]))) let mod_int c1 c2 dbg = match (c1, c2) with (c1, Cconst_int 0) -> Csequence(c1, Cop(Craise (Raise_regular, dbg), [Cconst_symbol "caml_exn_Division_by_zero"])) | (c1, Cconst_int (1 | (-1))) -> Csequence(c1, Cconst_int 0) | (Cconst_int 0, c2) -> Csequence(c2, Cconst_int 0) | (Cconst_int n1, Cconst_int n2) -> Cconst_int (n1 mod n2) | (c1, (Cconst_int n as c2)) when n <> min_int -> let l = Misc.log2 n in if n = 1 lsl l then (* Algorithm: t = shift-right-signed(c1, l - 1) t = shift-right(t, W - l) t = c1 + t t = bit-and(t, -n) res = c1 - t *) bind "dividend" c1 (fun c1 -> let t = asr_int c1 (Cconst_int (l - 1)) in let t = lsr_int t (Cconst_int (Nativeint.size - l)) in let t = add_int c1 t in let t = Cop(Cand, [t; Cconst_int (-n)]) in sub_int c1 t) else bind "dividend" c1 (fun c1 -> sub_int c1 (mul_int (div_int c1 c2 dbg) c2)) | (c1, c2) when !Clflags.fast -> Cop(Cmodi, [c1; c2]) | (c1, c2) -> bind "divisor" c2 (fun c2 -> Cifthenelse(c2, Cop(Cmodi, [c1; c2]), Cop(Craise (Raise_regular, dbg), [Cconst_symbol "caml_exn_Division_by_zero"]))) (* Division or modulo on boxed integers. The overflow case min_int / -1 can occur, in which case we force x / -1 = -x and x mod -1 = 0. (PR#5513). *) let is_different_from x = function Cconst_int n -> n <> x | Cconst_natint n -> n <> Nativeint.of_int x | _ -> false let safe_divmod_bi mkop mkm1 c1 c2 bi dbg = bind "dividend" c1 (fun c1 -> bind "divisor" c2 (fun c2 -> let c = mkop c1 c2 dbg in if Arch.division_crashes_on_overflow && (size_int = 4 || bi <> Pint32) && not (is_different_from (-1) c2) then Cifthenelse(Cop(Ccmpi Cne, [c2; Cconst_int(-1)]), c, mkm1 c1) else c)) let safe_div_bi = safe_divmod_bi div_int (fun c1 -> Cop(Csubi, [Cconst_int 0; c1])) let safe_mod_bi = safe_divmod_bi mod_int (fun c1 -> Cconst_int 0) (* Bool *) let test_bool = function Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) -> c | Cconst_int n -> if n = 1 then Cconst_int 0 else Cconst_int 1 | c -> Cop(Ccmpi Cne, [c; Cconst_int 1]) (* Float *) let box_float c = Cop(Calloc, [alloc_float_header; c]) let rec unbox_float = function Cop(Calloc, [header; c]) -> c | Clet(id, exp, body) -> Clet(id, exp, unbox_float body) | Cifthenelse(cond, e1, e2) -> Cifthenelse(cond, unbox_float e1, unbox_float e2) | Csequence(e1, e2) -> Csequence(e1, unbox_float e2) | Cswitch(e, tbl, el) -> Cswitch(e, tbl, Array.map unbox_float el) | Ccatch(n, ids, e1, e2) -> Ccatch(n, ids, unbox_float e1, unbox_float e2) | Ctrywith(e1, id, e2) -> Ctrywith(unbox_float e1, id, unbox_float e2) | c -> Cop(Cload Double_u, [c]) (* Complex *) let box_complex c_re c_im = Cop(Calloc, [alloc_floatarray_header 2; c_re; c_im]) let complex_re c = Cop(Cload Double_u, [c]) let complex_im c = Cop(Cload Double_u, [Cop(Cadda, [c; Cconst_int size_float])]) (* Unit *) let return_unit c = Csequence(c, Cconst_pointer 1) let rec remove_unit = function Cconst_pointer 1 -> Ctuple [] | Csequence(c, Cconst_pointer 1) -> c | Csequence(c1, c2) -> Csequence(c1, remove_unit c2) | Cifthenelse(cond, ifso, ifnot) -> Cifthenelse(cond, remove_unit ifso, remove_unit ifnot) | Cswitch(sel, index, cases) -> Cswitch(sel, index, Array.map remove_unit cases) | Ccatch(io, ids, body, handler) -> Ccatch(io, ids, remove_unit body, remove_unit handler) | Ctrywith(body, exn, handler) -> Ctrywith(remove_unit body, exn, remove_unit handler) | Clet(id, c1, c2) -> Clet(id, c1, remove_unit c2) | Cop(Capply (mty, dbg), args) -> Cop(Capply (typ_void, dbg), args) | Cop(Cextcall(proc, mty, alloc, dbg), args) -> Cop(Cextcall(proc, typ_void, alloc, dbg), args) | Cexit (_,_) as c -> c | Ctuple [] as c -> c | c -> Csequence(c, Ctuple []) (* Access to block fields *) let field_address ptr n = if n = 0 then ptr else Cop(Cadda, [ptr; Cconst_int(n * size_addr)]) let get_field ptr n = Cop(Cload Word_val, [field_address ptr n]) let set_field ptr n newval init = Cop(Cstore (Word_val, init), [field_address ptr n; newval]) let header ptr = Cop(Cload Word_int, [Cop(Cadda, [ptr; Cconst_int(-size_int)])]) let tag_offset = if big_endian then -1 else -size_int let get_tag ptr = if Proc.word_addressed then (* If byte loads are slow *) Cop(Cand, [header ptr; Cconst_int 255]) else (* If byte loads are efficient *) Cop(Cload Byte_unsigned, [Cop(Cadda, [ptr; Cconst_int(tag_offset)])]) let get_size ptr = Cop(Clsr, [header ptr; Cconst_int 10]) (* Array indexing *) let log2_size_addr = Misc.log2 size_addr let log2_size_float = Misc.log2 size_float let wordsize_shift = 9 let numfloat_shift = 9 + log2_size_float - log2_size_addr let is_addr_array_hdr hdr = Cop(Ccmpi Cne, [Cop(Cand, [hdr; Cconst_int 255]); floatarray_tag]) let is_addr_array_ptr ptr = Cop(Ccmpi Cne, [get_tag ptr; floatarray_tag]) let addr_array_length hdr = Cop(Clsr, [hdr; Cconst_int wordsize_shift]) let float_array_length hdr = Cop(Clsr, [hdr; Cconst_int numfloat_shift]) let lsl_const c n = if n = 0 then c else Cop(Clsl, [c; Cconst_int n]) (* Produces a pointer to the element of the array [ptr] on the position [ofs] with the given element [log2size] log2 element size. [ofs] is given as a tagged int expression. The optional ?typ argument is the C-- type of the result. By default, it is Addr, meaning we are constructing a derived pointer into the heap. If we know the pointer is outside the heap (this is the case for bigarray indexing), we give type Int instead. *) let array_indexing ?typ log2size ptr ofs = let add = match typ with | None | Some Addr -> Cadda | Some Int -> Caddi | _ -> assert false in match ofs with Cconst_int n -> let i = n asr 1 in if i = 0 then ptr else Cop(add, [ptr; Cconst_int(i lsl log2size)]) | Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) -> Cop(add, [ptr; lsl_const c log2size]) | Cop(Caddi, [c; Cconst_int n]) when log2size = 0 -> Cop(add, [Cop(add, [ptr; untag_int c]); Cconst_int (n asr 1)]) | Cop(Caddi, [c; Cconst_int n]) -> Cop(add, [Cop(add, [ptr; lsl_const c (log2size - 1)]); Cconst_int((n-1) lsl (log2size - 1))]) | _ when log2size = 0 -> Cop(add, [ptr; untag_int ofs]) | _ -> Cop(add, [Cop(add, [ptr; lsl_const ofs (log2size - 1)]); Cconst_int((-1) lsl (log2size - 1))]) let addr_array_ref arr ofs = Cop(Cload Word_val, [array_indexing log2_size_addr arr ofs]) let int_array_ref arr ofs = Cop(Cload Word_int, [array_indexing log2_size_addr arr ofs]) let unboxed_float_array_ref arr ofs = Cop(Cload Double_u, [array_indexing log2_size_float arr ofs]) let float_array_ref arr ofs = box_float(unboxed_float_array_ref arr ofs) let addr_array_set arr ofs newval = Cop(Cextcall("caml_modify", typ_void, false, Debuginfo.none), [array_indexing log2_size_addr arr ofs; newval]) let int_array_set arr ofs newval = Cop(Cstore (Word_int, Assignment), [array_indexing log2_size_addr arr ofs; newval]) let float_array_set arr ofs newval = Cop(Cstore (Double_u, Assignment), [array_indexing log2_size_float arr ofs; newval]) (* String length *) (* Length of string block *) let string_length exp = bind "str" exp (fun str -> let tmp_var = Ident.create "tmp" in Clet(tmp_var, Cop(Csubi, [Cop(Clsl, [get_size str; Cconst_int log2_size_addr]); Cconst_int 1]), Cop(Csubi, [Cvar tmp_var; Cop(Cload Byte_unsigned, [Cop(Cadda, [str; Cvar tmp_var])])]))) (* Message sending *) let lookup_tag obj tag = bind "tag" tag (fun tag -> Cop(Cextcall("caml_get_public_method", typ_val, false, Debuginfo.none), [obj; tag])) let lookup_label obj lab = bind "lab" lab (fun lab -> let table = Cop (Cload Word_val, [obj]) in addr_array_ref table lab) let call_cached_method obj tag cache pos args dbg = let arity = List.length args in let cache = array_indexing log2_size_addr cache pos in Compilenv.need_send_fun arity; Cop(Capply (typ_val, dbg), Cconst_symbol("caml_send" ^ string_of_int arity) :: obj :: tag :: cache :: args) (* Allocation *) let make_alloc_generic set_fn tag wordsize args = if wordsize <= Config.max_young_wosize then Cop(Calloc, Cconst_blockheader(block_header tag wordsize) :: args) else begin let id = Ident.create "alloc" in let rec fill_fields idx = function [] -> Cvar id | e1::el -> Csequence(set_fn (Cvar id) (Cconst_int idx) e1, fill_fields (idx + 2) el) in Clet(id, Cop(Cextcall("caml_alloc", typ_val, true, Debuginfo.none), [Cconst_int wordsize; Cconst_int tag]), fill_fields 1 args) end let make_alloc tag args = make_alloc_generic addr_array_set tag (List.length args) args let make_float_alloc tag args = make_alloc_generic float_array_set tag (List.length args * size_float / size_addr) args (* Bounds checking *) let make_checkbound dbg = function | [Cop(Clsr, [a1; Cconst_int n]); Cconst_int m] when (m lsl n) > n -> Cop(Ccheckbound dbg, [a1; Cconst_int(m lsl n + 1 lsl n - 1)]) | args -> Cop(Ccheckbound dbg, args) (* To compile "let rec" over values *) let fundecls_size fundecls = let sz = ref (-1) in List.iter (fun f -> let indirect_call_code_pointer_size = match f.arity with | 0 | 1 -> 0 (* arity 1 does not need an indirect call handler. arity 0 cannot be indirect called *) | _ -> 1 (* For other arities there is an indirect call handler. if arity >= 2 it is caml_curry... if arity < 0 it is caml_tuplify... *) in sz := !sz + 1 + 2 + indirect_call_code_pointer_size) fundecls; !sz type rhs_kind = | RHS_block of int | RHS_floatblock of int | RHS_nonrec ;; let rec expr_size env = function | Uvar id -> begin try Ident.find_same id env with Not_found -> RHS_nonrec end | Uclosure(fundecls, clos_vars) -> RHS_block (fundecls_size fundecls + List.length clos_vars) | Ulet(id, exp, body) -> expr_size (Ident.add id (expr_size env exp) env) body | Uletrec(bindings, body) -> expr_size env body | Uprim(Pmakeblock(tag, mut), args, _) -> RHS_block (List.length args) | Uprim(Pmakearray((Paddrarray | Pintarray), _), args, _) -> RHS_block (List.length args) | Uprim(Pmakearray(Pfloatarray, _), args, _) -> RHS_floatblock (List.length args) | Uprim (Pduprecord ((Record_regular | Record_inlined _), sz), _, _) -> RHS_block sz | Uprim (Pduprecord (Record_extension, sz), _, _) -> RHS_block (sz + 1) | Uprim (Pduprecord (Record_float, sz), _, _) -> RHS_floatblock sz | Uprim (Pccall { prim_name; _ }, closure::_, _) when prim_name = "caml_check_value_is_closure" -> (* Used for "-clambda-checks". *) expr_size env closure | Usequence(exp, exp') -> expr_size env exp' | _ -> RHS_nonrec (* Record application and currying functions *) let apply_function n = Compilenv.need_apply_fun n; "caml_apply" ^ string_of_int n let curry_function n = Compilenv.need_curry_fun n; if n >= 0 then "caml_curry" ^ string_of_int n else "caml_tuplify" ^ string_of_int (-n) (* Comparisons *) let transl_comparison = function Lambda.Ceq -> Ceq | Lambda.Cneq -> Cne | Lambda.Cge -> Cge | Lambda.Cgt -> Cgt | Lambda.Cle -> Cle | Lambda.Clt -> Clt (* Translate structured constants *) let transl_constant = function | Uconst_int n -> int_const n | Uconst_ptr n -> if n <= max_repr_int && n >= min_repr_int then Cconst_pointer((n lsl 1) + 1) else Cconst_natpointer (Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n) | Uconst_ref (label, _) -> Cconst_symbol label let transl_structured_constant cst = let label = Compilenv.new_structured_constant cst ~shared:true in Cconst_symbol label (* Translate constant closures *) type is_global = Global | Not_global let constant_closures = ref ([] : ((string * is_global) * ufunction list * uconstant list) list) (* Boxed integers *) let box_int_constant bi n = match bi with Pnativeint -> Uconst_nativeint n | Pint32 -> Uconst_int32 (Nativeint.to_int32 n) | Pint64 -> Uconst_int64 (Int64.of_nativeint n) let operations_boxed_int bi = match bi with Pnativeint -> "caml_nativeint_ops" | Pint32 -> "caml_int32_ops" | Pint64 -> "caml_int64_ops" let alloc_header_boxed_int bi = match bi with Pnativeint -> alloc_boxedintnat_header | Pint32 -> alloc_boxedint32_header | Pint64 -> alloc_boxedint64_header let box_int bi arg = match arg with Cconst_int n -> transl_structured_constant (box_int_constant bi (Nativeint.of_int n)) | Cconst_natint n -> transl_structured_constant (box_int_constant bi n) | _ -> let arg' = if bi = Pint32 && size_int = 8 && big_endian then Cop(Clsl, [arg; Cconst_int 32]) else arg in Cop(Calloc, [alloc_header_boxed_int bi; Cconst_symbol(operations_boxed_int bi); arg']) let split_int64_for_32bit_target arg = bind "split_int64" arg (fun arg -> let first = Cop (Cadda, [Cconst_int size_int; arg]) in let second = Cop (Cadda, [Cconst_int (2 * size_int); arg]) in Ctuple [Cop (Cload Thirtytwo_unsigned, [first]); Cop (Cload Thirtytwo_unsigned, [second])]) let rec unbox_int bi arg = match arg with Cop(Calloc, [hdr; ops; Cop(Clsl, [contents; Cconst_int 32])]) when bi = Pint32 && size_int = 8 && big_endian -> (* Force sign-extension of low 32 bits *) Cop(Casr, [Cop(Clsl, [contents; Cconst_int 32]); Cconst_int 32]) | Cop(Calloc, [hdr; ops; contents]) when bi = Pint32 && size_int = 8 && not big_endian -> (* Force sign-extension of low 32 bits *) Cop(Casr, [Cop(Clsl, [contents; Cconst_int 32]); Cconst_int 32]) | Cop(Calloc, [hdr; ops; contents]) -> contents | Clet(id, exp, body) -> Clet(id, exp, unbox_int bi body) | Cifthenelse(cond, e1, e2) -> Cifthenelse(cond, unbox_int bi e1, unbox_int bi e2) | Csequence(e1, e2) -> Csequence(e1, unbox_int bi e2) | Cswitch(e, tbl, el) -> Cswitch(e, tbl, Array.map (unbox_int bi) el) | Ccatch(n, ids, e1, e2) -> Ccatch(n, ids, unbox_int bi e1, unbox_int bi e2) | Ctrywith(e1, id, e2) -> Ctrywith(unbox_int bi e1, id, unbox_int bi e2) | _ -> if size_int = 4 && bi = Pint64 then split_int64_for_32bit_target arg else Cop(Cload(if bi = Pint32 then Thirtytwo_signed else Word_int), [Cop(Cadda, [arg; Cconst_int size_addr])]) let make_unsigned_int bi arg = if bi = Pint32 && size_int = 8 then Cop(Cand, [arg; Cconst_natint 0xFFFFFFFFn]) else arg (* Boxed numbers *) type boxed_number = | Boxed_float | Boxed_integer of boxed_integer let box_number bn arg = match bn with | Boxed_float -> box_float arg | Boxed_integer bi -> box_int bi arg type env = { unboxed_ids : (Ident.t * boxed_number) Ident.tbl; } let empty_env = { unboxed_ids =Ident.empty; } let is_unboxed_id id env = try Some (Ident.find_same id env.unboxed_ids) with Not_found -> None let add_unboxed_id id unboxed_id bn env = { unboxed_ids = Ident.add id (unboxed_id, bn) env.unboxed_ids; } (* Big arrays *) let bigarray_elt_size = function Pbigarray_unknown -> assert false | Pbigarray_float32 -> 4 | Pbigarray_float64 -> 8 | Pbigarray_sint8 -> 1 | Pbigarray_uint8 -> 1 | Pbigarray_sint16 -> 2 | Pbigarray_uint16 -> 2 | Pbigarray_int32 -> 4 | Pbigarray_int64 -> 8 | Pbigarray_caml_int -> size_int | Pbigarray_native_int -> size_int | Pbigarray_complex32 -> 8 | Pbigarray_complex64 -> 16 (* Produces a pointer to the element of the bigarray [b] on the position [args]. [args] is given as a list of tagged int expressions, one per array dimension. *) let bigarray_indexing unsafe elt_kind layout b args dbg = let check_ba_bound bound idx v = Csequence(make_checkbound dbg [bound;idx], v) in (* Validates the given multidimensional offset against the array bounds and transforms it into a one dimensional offset. The offsets are expressions evaluating to tagged int. *) let rec ba_indexing dim_ofs delta_ofs = function [] -> assert false | [arg] -> if unsafe then arg else bind "idx" arg (fun idx -> (* Load the untagged int bound for the given dimension *) let bound = Cop(Cload Word_int,[field_address b dim_ofs]) in let idxn = untag_int idx in check_ba_bound bound idxn idx) | arg1 :: argl -> (* The remainder of the list is transformed into a one dimensional offset *) let rem = ba_indexing (dim_ofs + delta_ofs) delta_ofs argl in (* Load the untagged int bound for the given dimension *) let bound = Cop(Cload Word_int, [field_address b dim_ofs]) in if unsafe then add_int (mul_int (decr_int rem) bound) arg1 else bind "idx" arg1 (fun idx -> bind "bound" bound (fun bound -> let idxn = untag_int idx in (* [offset = rem * (tag_int bound) + idx] *) let offset = add_int (mul_int (decr_int rem) bound) idx in check_ba_bound bound idxn offset)) in (* The offset as an expression evaluating to int *) let offset = match layout with Pbigarray_unknown_layout -> assert false | Pbigarray_c_layout -> ba_indexing (4 + List.length args) (-1) (List.rev args) | Pbigarray_fortran_layout -> ba_indexing 5 1 (List.map (fun idx -> sub_int idx (Cconst_int 2)) args) and elt_size = bigarray_elt_size elt_kind in (* [array_indexing] can simplify the given expressions *) array_indexing ~typ:Int (log2 elt_size) (Cop(Cload Word_int, [field_address b 1])) offset let bigarray_word_kind = function Pbigarray_unknown -> assert false | Pbigarray_float32 -> Single | Pbigarray_float64 -> Double | Pbigarray_sint8 -> Byte_signed | Pbigarray_uint8 -> Byte_unsigned | Pbigarray_sint16 -> Sixteen_signed | Pbigarray_uint16 -> Sixteen_unsigned | Pbigarray_int32 -> Thirtytwo_signed | Pbigarray_int64 -> Word_int | Pbigarray_caml_int -> Word_int | Pbigarray_native_int -> Word_int | Pbigarray_complex32 -> Single | Pbigarray_complex64 -> Double let bigarray_get unsafe elt_kind layout b args dbg = bind "ba" b (fun b -> match elt_kind with Pbigarray_complex32 | Pbigarray_complex64 -> let kind = bigarray_word_kind elt_kind in let sz = bigarray_elt_size elt_kind / 2 in bind "addr" (bigarray_indexing unsafe elt_kind layout b args dbg) (fun addr -> box_complex (Cop(Cload kind, [addr])) (Cop(Cload kind, [Cop(Cadda, [addr; Cconst_int sz])]))) | _ -> Cop(Cload (bigarray_word_kind elt_kind), [bigarray_indexing unsafe elt_kind layout b args dbg])) let bigarray_set unsafe elt_kind layout b args newval dbg = bind "ba" b (fun b -> match elt_kind with Pbigarray_complex32 | Pbigarray_complex64 -> let kind = bigarray_word_kind elt_kind in let sz = bigarray_elt_size elt_kind / 2 in bind "newval" newval (fun newv -> bind "addr" (bigarray_indexing unsafe elt_kind layout b args dbg) (fun addr -> Csequence( Cop(Cstore (kind, Assignment), [addr; complex_re newv]), Cop(Cstore (kind, Assignment), [Cop(Cadda, [addr; Cconst_int sz]); complex_im newv])))) | _ -> Cop(Cstore (bigarray_word_kind elt_kind, Assignment), [bigarray_indexing unsafe elt_kind layout b args dbg; newval])) let unaligned_load_16 ptr idx = if Arch.allow_unaligned_access then Cop(Cload Sixteen_unsigned, [add_int ptr idx]) else let v1 = Cop(Cload Byte_unsigned, [add_int ptr idx]) in let v2 = Cop(Cload Byte_unsigned, [add_int (add_int ptr idx) (Cconst_int 1)]) in let b1, b2 = if Arch.big_endian then v1, v2 else v2, v1 in Cop(Cor, [lsl_int b1 (Cconst_int 8); b2]) let unaligned_set_16 ptr idx newval = if Arch.allow_unaligned_access then Cop(Cstore (Sixteen_unsigned, Assignment), [add_int ptr idx; newval]) else let v1 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int 8]); Cconst_int 0xFF]) in let v2 = Cop(Cand, [newval; Cconst_int 0xFF]) in let b1, b2 = if Arch.big_endian then v1, v2 else v2, v1 in Csequence( Cop(Cstore (Byte_unsigned, Assignment), [add_int ptr idx; b1]), Cop(Cstore (Byte_unsigned, Assignment), [add_int (add_int ptr idx) (Cconst_int 1); b2])) let unaligned_load_32 ptr idx = if Arch.allow_unaligned_access then Cop(Cload Thirtytwo_unsigned, [add_int ptr idx]) else let v1 = Cop(Cload Byte_unsigned, [add_int ptr idx]) in let v2 = Cop(Cload Byte_unsigned, [add_int (add_int ptr idx) (Cconst_int 1)]) in let v3 = Cop(Cload Byte_unsigned, [add_int (add_int ptr idx) (Cconst_int 2)]) in let v4 = Cop(Cload Byte_unsigned, [add_int (add_int ptr idx) (Cconst_int 3)]) in let b1, b2, b3, b4 = if Arch.big_endian then v1, v2, v3, v4 else v4, v3, v2, v1 in Cop(Cor, [Cop(Cor, [lsl_int b1 (Cconst_int 24); lsl_int b2 (Cconst_int 16)]); Cop(Cor, [lsl_int b3 (Cconst_int 8); b4])]) let unaligned_set_32 ptr idx newval = if Arch.allow_unaligned_access then Cop(Cstore (Thirtytwo_unsigned, Assignment), [add_int ptr idx; newval]) else let v1 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int 24]); Cconst_int 0xFF]) in let v2 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int 16]); Cconst_int 0xFF]) in let v3 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int 8]); Cconst_int 0xFF]) in let v4 = Cop(Cand, [newval; Cconst_int 0xFF]) in let b1, b2, b3, b4 = if Arch.big_endian then v1, v2, v3, v4 else v4, v3, v2, v1 in Csequence( Csequence( Cop(Cstore (Byte_unsigned, Assignment), [add_int ptr idx; b1]), Cop(Cstore (Byte_unsigned, Assignment), [add_int (add_int ptr idx) (Cconst_int 1); b2])), Csequence( Cop(Cstore (Byte_unsigned, Assignment), [add_int (add_int ptr idx) (Cconst_int 2); b3]), Cop(Cstore (Byte_unsigned, Assignment), [add_int (add_int ptr idx) (Cconst_int 3); b4]))) let unaligned_load_64 ptr idx = assert(size_int = 8); if Arch.allow_unaligned_access then Cop(Cload Word_int, [add_int ptr idx]) else let v1 = Cop(Cload Byte_unsigned, [add_int ptr idx]) in let v2 = Cop(Cload Byte_unsigned, [add_int (add_int ptr idx) (Cconst_int 1)]) in let v3 = Cop(Cload Byte_unsigned, [add_int (add_int ptr idx) (Cconst_int 2)]) in let v4 = Cop(Cload Byte_unsigned, [add_int (add_int ptr idx) (Cconst_int 3)]) in let v5 = Cop(Cload Byte_unsigned, [add_int (add_int ptr idx) (Cconst_int 4)]) in let v6 = Cop(Cload Byte_unsigned, [add_int (add_int ptr idx) (Cconst_int 5)]) in let v7 = Cop(Cload Byte_unsigned, [add_int (add_int ptr idx) (Cconst_int 6)]) in let v8 = Cop(Cload Byte_unsigned, [add_int (add_int ptr idx) (Cconst_int 7)]) in let b1, b2, b3, b4, b5, b6, b7, b8 = if Arch.big_endian then v1, v2, v3, v4, v5, v6, v7, v8 else v8, v7, v6, v5, v4, v3, v2, v1 in Cop(Cor, [Cop(Cor, [Cop(Cor, [lsl_int b1 (Cconst_int (8*7)); lsl_int b2 (Cconst_int (8*6))]); Cop(Cor, [lsl_int b3 (Cconst_int (8*5)); lsl_int b4 (Cconst_int (8*4))])]); Cop(Cor, [Cop(Cor, [lsl_int b5 (Cconst_int (8*3)); lsl_int b6 (Cconst_int (8*2))]); Cop(Cor, [lsl_int b7 (Cconst_int 8); b8])])]) let unaligned_set_64 ptr idx newval = assert(size_int = 8); if Arch.allow_unaligned_access then Cop(Cstore (Word_int, Assignment), [add_int ptr idx; newval]) else let v1 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int (8*7)]); Cconst_int 0xFF]) in let v2 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int (8*6)]); Cconst_int 0xFF]) in let v3 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int (8*5)]); Cconst_int 0xFF]) in let v4 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int (8*4)]); Cconst_int 0xFF]) in let v5 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int (8*3)]); Cconst_int 0xFF]) in let v6 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int (8*2)]); Cconst_int 0xFF]) in let v7 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int 8]); Cconst_int 0xFF]) in let v8 = Cop(Cand, [newval; Cconst_int 0xFF]) in let b1, b2, b3, b4, b5, b6, b7, b8 = if Arch.big_endian then v1, v2, v3, v4, v5, v6, v7, v8 else v8, v7, v6, v5, v4, v3, v2, v1 in Csequence( Csequence( Csequence( Cop(Cstore (Byte_unsigned, Assignment), [add_int ptr idx; b1]), Cop(Cstore (Byte_unsigned, Assignment), [add_int (add_int ptr idx) (Cconst_int 1); b2])), Csequence( Cop(Cstore (Byte_unsigned, Assignment), [add_int (add_int ptr idx) (Cconst_int 2); b3]), Cop(Cstore (Byte_unsigned, Assignment), [add_int (add_int ptr idx) (Cconst_int 3); b4]))), Csequence( Csequence( Cop(Cstore (Byte_unsigned, Assignment), [add_int (add_int ptr idx) (Cconst_int 4); b5]), Cop(Cstore (Byte_unsigned, Assignment), [add_int (add_int ptr idx) (Cconst_int 5); b6])), Csequence( Cop(Cstore (Byte_unsigned, Assignment), [add_int (add_int ptr idx) (Cconst_int 6); b7]), Cop(Cstore (Byte_unsigned, Assignment), [add_int (add_int ptr idx) (Cconst_int 7); b8])))) let max_or_zero a = bind "size" a (fun a -> (* equivalent to Cifthenelse(Cop(Ccmpi Cle, [a; Cconst_int 0]), Cconst_int 0, a) if a is positive, sign is 0 hence sign_negation is full of 1 so sign_negation&a = a if a is negative, sign is full of 1 hence sign_negation is 0 so sign_negation&a = 0 *) let sign = Cop(Casr, [a; Cconst_int (size_int * 8 - 1)]) in let sign_negation = Cop(Cxor, [sign; Cconst_int (-1)]) in Cop(Cand, [sign_negation; a])) let check_bound unsafe dbg a1 a2 k = if unsafe then k else Csequence(make_checkbound dbg [max_or_zero a1;a2], k) (* Simplification of some primitives into C calls *) let default_prim name = Primitive.simple ~name ~arity:0(*ignored*) ~alloc:true let simplif_primitive_32bits = function Pbintofint Pint64 -> Pccall (default_prim "caml_int64_of_int") | Pintofbint Pint64 -> Pccall (default_prim "caml_int64_to_int") | Pcvtbint(Pint32, Pint64) -> Pccall (default_prim "caml_int64_of_int32") | Pcvtbint(Pint64, Pint32) -> Pccall (default_prim "caml_int64_to_int32") | Pcvtbint(Pnativeint, Pint64) -> Pccall (default_prim "caml_int64_of_nativeint") | Pcvtbint(Pint64, Pnativeint) -> Pccall (default_prim "caml_int64_to_nativeint") | Pnegbint Pint64 -> Pccall (default_prim "caml_int64_neg") | Paddbint Pint64 -> Pccall (default_prim "caml_int64_add") | Psubbint Pint64 -> Pccall (default_prim "caml_int64_sub") | Pmulbint Pint64 -> Pccall (default_prim "caml_int64_mul") | Pdivbint Pint64 -> Pccall (default_prim "caml_int64_div") | Pmodbint Pint64 -> Pccall (default_prim "caml_int64_mod") | Pandbint Pint64 -> Pccall (default_prim "caml_int64_and") | Porbint Pint64 -> Pccall (default_prim "caml_int64_or") | Pxorbint Pint64 -> Pccall (default_prim "caml_int64_xor") | Plslbint Pint64 -> Pccall (default_prim "caml_int64_shift_left") | Plsrbint Pint64 -> Pccall (default_prim "caml_int64_shift_right_unsigned") | Pasrbint Pint64 -> Pccall (default_prim "caml_int64_shift_right") | Pbintcomp(Pint64, Lambda.Ceq) -> Pccall (default_prim "caml_equal") | Pbintcomp(Pint64, Lambda.Cneq) -> Pccall (default_prim "caml_notequal") | Pbintcomp(Pint64, Lambda.Clt) -> Pccall (default_prim "caml_lessthan") | Pbintcomp(Pint64, Lambda.Cgt) -> Pccall (default_prim "caml_greaterthan") | Pbintcomp(Pint64, Lambda.Cle) -> Pccall (default_prim "caml_lessequal") | Pbintcomp(Pint64, Lambda.Cge) -> Pccall (default_prim "caml_greaterequal") | Pbigarrayref(unsafe, n, Pbigarray_int64, layout) -> Pccall (default_prim ("caml_ba_get_" ^ string_of_int n)) | Pbigarrayset(unsafe, n, Pbigarray_int64, layout) -> Pccall (default_prim ("caml_ba_set_" ^ string_of_int n)) | Pstring_load_64(_) -> Pccall (default_prim "caml_string_get64") | Pstring_set_64(_) -> Pccall (default_prim "caml_string_set64") | Pbigstring_load_64(_) -> Pccall (default_prim "caml_ba_uint8_get64") | Pbigstring_set_64(_) -> Pccall (default_prim "caml_ba_uint8_set64") | Pbbswap Pint64 -> Pccall (default_prim "caml_int64_bswap") | p -> p let simplif_primitive p = match p with | Pduprecord _ -> Pccall (default_prim "caml_obj_dup") | Pbigarrayref(unsafe, n, Pbigarray_unknown, layout) -> Pccall (default_prim ("caml_ba_get_" ^ string_of_int n)) | Pbigarrayset(unsafe, n, Pbigarray_unknown, layout) -> Pccall (default_prim ("caml_ba_set_" ^ string_of_int n)) | Pbigarrayref(unsafe, n, kind, Pbigarray_unknown_layout) -> Pccall (default_prim ("caml_ba_get_" ^ string_of_int n)) | Pbigarrayset(unsafe, n, kind, Pbigarray_unknown_layout) -> Pccall (default_prim ("caml_ba_set_" ^ string_of_int n)) | p -> if size_int = 8 then p else simplif_primitive_32bits p (* Build switchers both for constants and blocks *) let transl_isout h arg = tag_int (Cop(Ccmpa Clt, [h ; arg])) (* Build an actual switch (ie jump table) *) module SArgBlocks = struct type primitive = operation let eqint = Ccmpi Ceq let neint = Ccmpi Cne let leint = Ccmpi Cle let ltint = Ccmpi Clt let geint = Ccmpi Cge let gtint = Ccmpi Cgt type act = expression let make_const i = Cconst_int i let make_prim p args = Cop (p,args) let make_offset arg n = add_const arg n let make_isout h arg = Cop (Ccmpa Clt, [h ; arg]) let make_isin h arg = Cop (Ccmpa Cge, [h ; arg]) let make_if cond ifso ifnot = Cifthenelse (cond, ifso, ifnot) let make_switch arg cases actions = Cswitch (arg,cases,actions) let bind arg body = bind "switcher" arg body let make_catch handler = match handler with | Cexit (i,[]) -> i,fun e -> e | _ -> let i = next_raise_count () in (* Printf.eprintf "SHARE CMM: %i\n" i ; Printcmm.expression Format.str_formatter handler ; Printf.eprintf "%s\n" (Format.flush_str_formatter ()) ; *) i, (fun body -> match body with | Cexit (j,_) -> if i=j then handler else body | _ -> Ccatch (i,[],body,handler)) let make_exit i = Cexit (i,[]) end (* cmm store, as sharing as normally been detected in previous phases, we only share exits *) module StoreExp = Switch.Store (struct type t = expression type key = int let make_key = function | Cexit (i,[]) -> Some i | _ -> None end) module SwitcherBlocks = Switch.Make(SArgBlocks) (* Int switcher, arg in [low..high], cases is list of individual cases, and is sorted by first component *) let transl_int_switch arg low high cases default = match cases with | [] -> assert false | _::_ -> let store = StoreExp.mk_store () in assert (store.Switch.act_store default = 0) ; let cases = List.map (fun (i,act) -> i,store.Switch.act_store act) cases in let rec inters plow phigh pact = function | [] -> if phigh = high then [plow,phigh,pact] else [(plow,phigh,pact); (phigh+1,high,0) ] | (i,act)::rem -> if i = phigh+1 then if pact = act then inters plow i pact rem else (plow,phigh,pact)::inters i i act rem else (* insert default *) if pact = 0 then if act = 0 then inters plow i 0 rem else (plow,i-1,pact):: inters i i act rem else (* pact <> 0 *) (plow,phigh,pact):: begin if act = 0 then inters (phigh+1) i 0 rem else (phigh+1,i-1,0)::inters i i act rem end in let inters = match cases with | [] -> assert false | (k0,act0)::rem -> if k0 = low then inters k0 k0 act0 rem else inters low (k0-1) 0 cases in bind "switcher" arg (fun a -> SwitcherBlocks.zyva (low,high) a (Array.of_list inters) store) (* Auxiliary functions for optimizing "let" of boxed numbers (floats and boxed integers *) type unboxed_number_kind = No_unboxing | Boxed of boxed_number | No_result (* expression never returns a result *) let unboxed_number_kind_of_unbox = function | Same_as_ocaml_repr -> No_unboxing | Unboxed_float -> Boxed Boxed_float | Unboxed_integer bi -> Boxed (Boxed_integer bi) | Untagged_int -> No_unboxing let rec is_unboxed_number env e = (* Given unboxed_number_kind from two branches of the code, returns the resulting unboxed_number_kind *) let join k1 e = match k1, is_unboxed_number env e with | Boxed b1, Boxed b2 when b1 = b2 -> Boxed b1 | No_result, k | k, No_result -> k (* if a branch never returns, it is safe to unbox it *) | _, _ -> No_unboxing in match e with | Uvar id -> begin match is_unboxed_id id env with | None -> No_unboxing | Some (_, bn) -> Boxed bn end | Uconst(Uconst_ref(_, Some (Uconst_float _))) -> Boxed Boxed_float | Uconst(Uconst_ref(_, Some (Uconst_int32 _))) -> Boxed (Boxed_integer Pint32) | Uconst(Uconst_ref(_, Some (Uconst_int64 _))) -> Boxed (Boxed_integer Pint64) | Uconst(Uconst_ref(_, Some (Uconst_nativeint _))) -> Boxed (Boxed_integer Pnativeint) | Uprim(p, _, _) -> begin match simplif_primitive p with | Pccall p -> unboxed_number_kind_of_unbox p.prim_native_repr_res | Pfloatfield _ -> Boxed Boxed_float | Pfloatofint -> Boxed Boxed_float | Pnegfloat -> Boxed Boxed_float | Pabsfloat -> Boxed Boxed_float | Paddfloat -> Boxed Boxed_float | Psubfloat -> Boxed Boxed_float | Pmulfloat -> Boxed Boxed_float | Pdivfloat -> Boxed Boxed_float | Parrayrefu Pfloatarray -> Boxed Boxed_float | Parrayrefs Pfloatarray -> Boxed Boxed_float | Pbintofint bi -> Boxed (Boxed_integer bi) | Pcvtbint(src, dst) -> Boxed (Boxed_integer dst) | Pnegbint bi -> Boxed (Boxed_integer bi) | Paddbint bi -> Boxed (Boxed_integer bi) | Psubbint bi -> Boxed (Boxed_integer bi) | Pmulbint bi -> Boxed (Boxed_integer bi) | Pdivbint bi -> Boxed (Boxed_integer bi) | Pmodbint bi -> Boxed (Boxed_integer bi) | Pandbint bi -> Boxed (Boxed_integer bi) | Porbint bi -> Boxed (Boxed_integer bi) | Pxorbint bi -> Boxed (Boxed_integer bi) | Plslbint bi -> Boxed (Boxed_integer bi) | Plsrbint bi -> Boxed (Boxed_integer bi) | Pasrbint bi -> Boxed (Boxed_integer bi) | Pbigarrayref(_, _, (Pbigarray_float32 | Pbigarray_float64), _) -> Boxed Boxed_float | Pbigarrayref(_, _, Pbigarray_int32, _) -> Boxed (Boxed_integer Pint32) | Pbigarrayref(_, _, Pbigarray_int64, _) -> Boxed (Boxed_integer Pint64) | Pbigarrayref(_, _, Pbigarray_native_int,_) -> Boxed (Boxed_integer Pnativeint) | Pstring_load_32(_) -> Boxed (Boxed_integer Pint32) | Pstring_load_64(_) -> Boxed (Boxed_integer Pint64) | Pbigstring_load_32(_) -> Boxed (Boxed_integer Pint32) | Pbigstring_load_64(_) -> Boxed (Boxed_integer Pint64) | Pbbswap bi -> Boxed (Boxed_integer bi) | Praise _ -> No_result | _ -> No_unboxing end | Ulet (_, _, e) | Uletrec (_, e) | Usequence (_, e) -> is_unboxed_number env e | Uswitch (_, switch) -> let k = Array.fold_left join No_result switch.us_actions_consts in Array.fold_left join k switch.us_actions_blocks | Ustringswitch (_, actions, default_opt) -> let k = List.fold_left (fun k (_, e) -> join k e) No_result actions in begin match default_opt with None -> k | Some default -> join k default end | Ustaticfail _ -> No_result | Uifthenelse (_, e1, e2) | Ucatch (_, _, e1, e2) | Utrywith (e1, _, e2) -> join (is_unboxed_number env e1) e2 | _ -> No_unboxing (* Translate an expression *) let functions = (Queue.create() : ufunction Queue.t) let strmatch_compile = let module S = Strmatch.Make (struct let string_block_length = get_size let transl_switch = transl_int_switch end) in S.compile let rec transl env e = match e with Uvar id -> begin match is_unboxed_id id env with | None -> Cvar id | Some (unboxed_id, bn) -> box_number bn (Cvar unboxed_id) end | Uconst sc -> transl_constant sc | Uclosure(fundecls, []) -> let lbl = Compilenv.new_const_symbol() in constant_closures := ((lbl, Not_global), fundecls, []) :: !constant_closures; List.iter (fun f -> Queue.add f functions) fundecls; Cconst_symbol lbl | Uclosure(fundecls, clos_vars) -> let block_size = fundecls_size fundecls + List.length clos_vars in let rec transl_fundecls pos = function [] -> List.map (transl env) clos_vars | f :: rem -> Queue.add f functions; let header = if pos = 0 then alloc_closure_header block_size else alloc_infix_header pos in if f.arity = 1 || f.arity = 0 then header :: Cconst_symbol f.label :: int_const f.arity :: transl_fundecls (pos + 3) rem else header :: Cconst_symbol(curry_function f.arity) :: int_const f.arity :: Cconst_symbol f.label :: transl_fundecls (pos + 4) rem in Cop(Calloc, transl_fundecls 0 fundecls) | Uoffset(arg, offset) -> (* produces a valid Caml value, pointing just after an infix header *) let ptr = transl env arg in if offset = 0 then ptr else Cop(Caddv, [ptr; Cconst_int(offset * size_addr)]) | Udirect_apply(lbl, args, dbg) -> Cop(Capply(typ_val, dbg), Cconst_symbol lbl :: List.map (transl env) args) | Ugeneric_apply(clos, [arg], dbg) -> bind "fun" (transl env clos) (fun clos -> Cop(Capply(typ_val, dbg), [get_field clos 0; transl env arg; clos])) | Ugeneric_apply(clos, args, dbg) -> let arity = List.length args in let cargs = Cconst_symbol(apply_function arity) :: List.map (transl env) (args @ [clos]) in Cop(Capply(typ_val, dbg), cargs) | Usend(kind, met, obj, args, dbg) -> let call_met obj args clos = if args = [] then Cop(Capply(typ_val, dbg), [get_field clos 0;obj;clos]) else let arity = List.length args + 1 in let cargs = Cconst_symbol(apply_function arity) :: obj :: (List.map (transl env) args) @ [clos] in Cop(Capply(typ_val, dbg), cargs) in bind "obj" (transl env obj) (fun obj -> match kind, args with Self, _ -> bind "met" (lookup_label obj (transl env met)) (call_met obj args) | Cached, cache :: pos :: args -> call_cached_method obj (transl env met) (transl env cache) (transl env pos) (List.map (transl env) args) dbg | _ -> bind "met" (lookup_tag obj (transl env met)) (call_met obj args)) | Ulet(id, exp, body) -> transl_let env id exp body | Uletrec(bindings, body) -> transl_letrec env bindings (transl env body) (* Primitives *) | Uprim(prim, args, dbg) -> begin match (simplif_primitive prim, args) with (Pgetglobal id, []) -> Cconst_symbol (Ident.name id) | (Pmakeblock(tag, mut), []) -> assert false | (Pmakeblock(tag, mut), args) -> make_alloc tag (List.map (transl env) args) | (Pccall prim, args) -> transl_ccall env prim args dbg | (Pduparray (kind, _), [Uprim (Pmakearray (kind', _), args, _dbg)]) -> (* We arrive here in two cases: 1. When using Closure, all the time. 2. When using Flambda, if a float array longer than [Translcore.use_dup_for_constant_arrays_bigger_than] turns out to be non-constant. If for some reason Flambda fails to lift a constant array we could in theory also end up here. Note that [kind] above is unconstrained, but with the current state of [Translcore], we will in fact only get here with [Pfloatarray]s. *) assert (kind = kind'); transl_make_array env kind args | (Pduparray _, [arg]) -> let prim_obj_dup = Primitive.simple ~name:"caml_obj_dup" ~arity:1 ~alloc:true in transl_ccall env prim_obj_dup [arg] dbg | (Pmakearray (kind, _), []) -> transl_structured_constant (Uconst_block(0, [])) | (Pmakearray (kind, _), args) -> transl_make_array env kind args | (Pbigarrayref(unsafe, num_dims, elt_kind, layout), arg1 :: argl) -> let elt = bigarray_get unsafe elt_kind layout (transl env arg1) (List.map (transl env) argl) dbg in begin match elt_kind with Pbigarray_float32 | Pbigarray_float64 -> box_float elt | Pbigarray_complex32 | Pbigarray_complex64 -> elt | Pbigarray_int32 -> box_int Pint32 elt | Pbigarray_int64 -> box_int Pint64 elt | Pbigarray_native_int -> box_int Pnativeint elt | Pbigarray_caml_int -> force_tag_int elt | _ -> tag_int elt end | (Pbigarrayset(unsafe, num_dims, elt_kind, layout), arg1 :: argl) -> let (argidx, argnewval) = split_last argl in return_unit(bigarray_set unsafe elt_kind layout (transl env arg1) (List.map (transl env) argidx) (match elt_kind with Pbigarray_float32 | Pbigarray_float64 -> transl_unbox_float env argnewval | Pbigarray_complex32 | Pbigarray_complex64 -> transl env argnewval | Pbigarray_int32 -> transl_unbox_int env Pint32 argnewval | Pbigarray_int64 -> transl_unbox_int env Pint64 argnewval | Pbigarray_native_int -> transl_unbox_int env Pnativeint argnewval | _ -> untag_int (transl env argnewval)) dbg) | (Pbigarraydim(n), [b]) -> let dim_ofs = 4 + n in tag_int (Cop(Cload Word_int, [field_address (transl env b) dim_ofs])) | (p, [arg]) -> transl_prim_1 env p arg dbg | (p, [arg1; arg2]) -> transl_prim_2 env p arg1 arg2 dbg | (p, [arg1; arg2; arg3]) -> transl_prim_3 env p arg1 arg2 arg3 dbg | (_, _) -> fatal_error "Cmmgen.transl:prim" end (* Control structures *) | Uswitch(arg, s) -> (* As in the bytecode interpreter, only matching against constants can be checked *) if Array.length s.us_index_blocks = 0 then Cswitch (untag_int (transl env arg), s.us_index_consts, Array.map (transl env) s.us_actions_consts) else if Array.length s.us_index_consts = 0 then transl_switch env (get_tag (transl env arg)) s.us_index_blocks s.us_actions_blocks else bind "switch" (transl env arg) (fun arg -> Cifthenelse( Cop(Cand, [arg; Cconst_int 1]), transl_switch env (untag_int arg) s.us_index_consts s.us_actions_consts, transl_switch env (get_tag arg) s.us_index_blocks s.us_actions_blocks)) | Ustringswitch(arg,sw,d) -> bind "switch" (transl env arg) (fun arg -> strmatch_compile arg (Misc.may_map (transl env) d) (List.map (fun (s,act) -> s,transl env act) sw)) | Ustaticfail (nfail, args) -> Cexit (nfail, List.map (transl env) args) | Ucatch(nfail, [], body, handler) -> make_catch nfail (transl env body) (transl env handler) | Ucatch(nfail, ids, body, handler) -> Ccatch(nfail, ids, transl env body, transl env handler) | Utrywith(body, exn, handler) -> Ctrywith(transl env body, exn, transl env handler) | Uifthenelse(Uprim(Pnot, [arg], _), ifso, ifnot) -> transl env (Uifthenelse(arg, ifnot, ifso)) | Uifthenelse(cond, ifso, Ustaticfail (nfail, [])) -> exit_if_false env cond (transl env ifso) nfail | Uifthenelse(cond, Ustaticfail (nfail, []), ifnot) -> exit_if_true env cond nfail (transl env ifnot) | Uifthenelse(Uprim(Psequand, _, _) as cond, ifso, ifnot) -> let raise_num = next_raise_count () in make_catch raise_num (exit_if_false env cond (transl env ifso) raise_num) (transl env ifnot) | Uifthenelse(Uprim(Psequor, _, _) as cond, ifso, ifnot) -> let raise_num = next_raise_count () in make_catch raise_num (exit_if_true env cond raise_num (transl env ifnot)) (transl env ifso) | Uifthenelse (Uifthenelse (cond, condso, condnot), ifso, ifnot) -> let num_true = next_raise_count () in make_catch num_true (make_catch2 (fun shared_false -> if_then_else (test_bool (transl env cond), exit_if_true env condso num_true shared_false, exit_if_true env condnot num_true shared_false)) (transl env ifnot)) (transl env ifso) | Uifthenelse(cond, ifso, ifnot) -> if_then_else(test_bool(transl env cond), transl env ifso, transl env ifnot) | Usequence(exp1, exp2) -> Csequence(remove_unit(transl env exp1), transl env exp2) | Uwhile(cond, body) -> let raise_num = next_raise_count () in return_unit (Ccatch (raise_num, [], Cloop(exit_if_false env cond (remove_unit(transl env body)) raise_num), Ctuple [])) | Ufor(id, low, high, dir, body) -> let tst = match dir with Upto -> Cgt | Downto -> Clt in let inc = match dir with Upto -> Caddi | Downto -> Csubi in let raise_num = next_raise_count () in let id_prev = Ident.rename id in return_unit (Clet (id, transl env low, bind_nonvar "bound" (transl env high) (fun high -> Ccatch (raise_num, [], Cifthenelse (Cop(Ccmpi tst, [Cvar id; high]), Cexit (raise_num, []), Cloop (Csequence (remove_unit(transl env body), Clet(id_prev, Cvar id, Csequence (Cassign(id, Cop(inc, [Cvar id; Cconst_int 2])), Cifthenelse (Cop(Ccmpi Ceq, [Cvar id_prev; high]), Cexit (raise_num,[]), Ctuple [])))))), Ctuple [])))) | Uassign(id, exp) -> begin match is_unboxed_id id env with | None -> return_unit (Cassign(id, transl env exp)) | Some (unboxed_id, bn) -> return_unit(Cassign(unboxed_id, transl_unbox_number env bn exp)) end | Uunreachable -> Cop(Cload Word_int, [Cconst_int 0]) and transl_make_array env kind args = match kind with | Pgenarray -> Cop(Cextcall("caml_make_array", typ_val, true, Debuginfo.none), [make_alloc 0 (List.map (transl env) args)]) | Paddrarray | Pintarray -> make_alloc 0 (List.map (transl env) args) | Pfloatarray -> make_float_alloc Obj.double_array_tag (List.map (transl_unbox_float env) args) and transl_ccall env prim args dbg = let transl_arg native_repr arg = match native_repr with | Same_as_ocaml_repr -> transl env arg | Unboxed_float -> transl_unbox_float env arg | Unboxed_integer bi -> transl_unbox_int env bi arg | Untagged_int -> untag_int (transl env arg) in let rec transl_args native_repr_args args = match native_repr_args, args with | [], args -> (* We don't require the two lists to be of the same length as [default_prim] always sets the arity to [0]. *) List.map (transl env) args | _, [] -> assert false | native_repr :: native_repr_args, arg :: args -> transl_arg native_repr arg :: transl_args native_repr_args args in let typ_res, wrap_result = match prim.prim_native_repr_res with | Same_as_ocaml_repr -> (typ_val, fun x -> x) | Unboxed_float -> (typ_float, box_float) | Unboxed_integer Pint64 when size_int = 4 -> ([|Int; Int|], box_int Pint64) | Unboxed_integer bi -> (typ_int, box_int bi) | Untagged_int -> (typ_int, tag_int) in let args = transl_args prim.prim_native_repr_args args in wrap_result (Cop(Cextcall(Primitive.native_name prim, typ_res, prim.prim_alloc, dbg), args)) and transl_prim_1 env p arg dbg = match p with (* Generic operations *) Pidentity | Popaque -> transl env arg | Pignore -> return_unit(remove_unit (transl env arg)) (* Heap operations *) | Pfield n -> get_field (transl env arg) n | Pfloatfield n -> let ptr = transl env arg in box_float( Cop(Cload Double_u, [if n = 0 then ptr else Cop(Cadda, [ptr; Cconst_int(n * size_float)])])) | Pint_as_pointer -> Cop(Caddi, [transl env arg; Cconst_int (-1)]) (* always a pointer outside the heap *) (* Exceptions *) | Praise k -> Cop(Craise (k, dbg), [transl env arg]) (* Integer operations *) | Pnegint -> Cop(Csubi, [Cconst_int 2; transl env arg]) | Pctconst c -> let const_of_bool b = tag_int (Cconst_int (if b then 1 else 0)) in begin match c with | Big_endian -> const_of_bool Arch.big_endian | Word_size -> tag_int (Cconst_int (8*Arch.size_int)) | Int_size -> tag_int (Cconst_int ((8*Arch.size_int) - 1)) | Max_wosize -> tag_int (Cconst_int ((1 lsl ((8*Arch.size_int) - 10)) - 1 )) | Ostype_unix -> const_of_bool (Sys.os_type = "Unix") | Ostype_win32 -> const_of_bool (Sys.os_type = "Win32") | Ostype_cygwin -> const_of_bool (Sys.os_type = "Cygwin") end | Poffsetint n -> if no_overflow_lsl n 1 then add_const (transl env arg) (n lsl 1) else transl_prim_2 env Paddint arg (Uconst (Uconst_int n)) Debuginfo.none | Poffsetref n -> return_unit (bind "ref" (transl env arg) (fun arg -> Cop(Cstore (Word_int, Assignment), [arg; add_const (Cop(Cload Word_int, [arg])) (n lsl 1)]))) (* Floating-point operations *) | Pfloatofint -> box_float(Cop(Cfloatofint, [untag_int(transl env arg)])) | Pintoffloat -> tag_int(Cop(Cintoffloat, [transl_unbox_float env arg])) | Pnegfloat -> box_float(Cop(Cnegf, [transl_unbox_float env arg])) | Pabsfloat -> box_float(Cop(Cabsf, [transl_unbox_float env arg])) (* String operations *) | Pstringlength -> tag_int(string_length (transl env arg)) (* Array operations *) | Parraylength kind -> begin match kind with Pgenarray -> let len = if wordsize_shift = numfloat_shift then Cop(Clsr, [header(transl env arg); Cconst_int wordsize_shift]) else bind "header" (header(transl env arg)) (fun hdr -> Cifthenelse(is_addr_array_hdr hdr, Cop(Clsr, [hdr; Cconst_int wordsize_shift]), Cop(Clsr, [hdr; Cconst_int numfloat_shift]))) in Cop(Cor, [len; Cconst_int 1]) | Paddrarray | Pintarray -> Cop(Cor, [addr_array_length(header(transl env arg)); Cconst_int 1]) | Pfloatarray -> Cop(Cor, [float_array_length(header(transl env arg)); Cconst_int 1]) end (* Boolean operations *) | Pnot -> Cop(Csubi, [Cconst_int 4; transl env arg]) (* 1 -> 3, 3 -> 1 *) (* Test integer/block *) | Pisint -> tag_int(Cop(Cand, [transl env arg; Cconst_int 1])) (* Boxed integers *) | Pbintofint bi -> box_int bi (untag_int (transl env arg)) | Pintofbint bi -> force_tag_int (transl_unbox_int env bi arg) | Pcvtbint(bi1, bi2) -> box_int bi2 (transl_unbox_int env bi1 arg) | Pnegbint bi -> box_int bi (Cop(Csubi, [Cconst_int 0; transl_unbox_int env bi arg])) | Pbbswap bi -> let prim = match bi with | Pnativeint -> "nativeint" | Pint32 -> "int32" | Pint64 -> "int64" in box_int bi (Cop(Cextcall(Printf.sprintf "caml_%s_direct_bswap" prim, typ_int, false, Debuginfo.none), [transl_unbox_int env bi arg])) | Pbswap16 -> tag_int (Cop(Cextcall("caml_bswap16_direct", typ_int, false, Debuginfo.none), [untag_int (transl env arg)])) | prim -> fatal_errorf "Cmmgen.transl_prim_1: %a" Printlambda.primitive prim and transl_prim_2 env p arg1 arg2 dbg = match p with (* Heap operations *) Psetfield(n, ptr, init) -> begin match init, ptr with | Assignment, Pointer -> return_unit(Cop(Cextcall("caml_modify", typ_void, false,Debuginfo.none), [field_address (transl env arg1) n; transl env arg2])) | Assignment, Immediate | Initialization, (Immediate | Pointer) -> return_unit(set_field (transl env arg1) n (transl env arg2) init) end | Psetfloatfield (n, init) -> let ptr = transl env arg1 in return_unit( Cop(Cstore (Double_u, init), [if n = 0 then ptr else Cop(Cadda, [ptr; Cconst_int(n * size_float)]); transl_unbox_float env arg2])) (* Boolean operations *) | Psequand -> if_then_else(test_bool(transl env arg1), transl env arg2, Cconst_int 1) (* let id = Ident.create "res1" in Clet(id, transl env arg1, Cifthenelse(test_bool(Cvar id), transl env arg2, Cvar id)) *) | Psequor -> if_then_else(test_bool(transl env arg1), Cconst_int 3, transl env arg2) (* Integer operations *) | Paddint -> decr_int(add_int (transl env arg1) (transl env arg2)) | Psubint -> incr_int(sub_int (transl env arg1) (transl env arg2)) | Pmulint -> begin (* decrementing the non-constant part helps when the multiplication is followed by an addition; for example, using this trick compiles (100 * a + 7) into (+ ( * a 100) -85) rather than (+ ( * 200 (>>s a 1)) 15) *) match transl env arg1, transl env arg2 with | Cconst_int _ as c1, c2 -> incr_int (mul_int (untag_int c1) (decr_int c2)) | c1, c2 -> incr_int (mul_int (decr_int c1) (untag_int c2)) end | Pdivint -> tag_int(div_int (untag_int(transl env arg1)) (untag_int(transl env arg2)) dbg) | Pmodint -> tag_int(mod_int (untag_int(transl env arg1)) (untag_int(transl env arg2)) dbg) | Pandint -> Cop(Cand, [transl env arg1; transl env arg2]) | Porint -> Cop(Cor, [transl env arg1; transl env arg2]) | Pxorint -> Cop(Cor, [Cop(Cxor, [ignore_low_bit_int(transl env arg1); ignore_low_bit_int(transl env arg2)]); Cconst_int 1]) | Plslint -> incr_int(lsl_int (decr_int(transl env arg1)) (untag_int(transl env arg2))) | Plsrint -> Cop(Cor, [lsr_int (transl env arg1) (untag_int(transl env arg2)); Cconst_int 1]) | Pasrint -> Cop(Cor, [asr_int (transl env arg1) (untag_int(transl env arg2)); Cconst_int 1]) | Pintcomp cmp -> tag_int(Cop(Ccmpi(transl_comparison cmp), [transl env arg1; transl env arg2])) | Pisout -> transl_isout (transl env arg1) (transl env arg2) (* Float operations *) | Paddfloat -> box_float(Cop(Caddf, [transl_unbox_float env arg1; transl_unbox_float env arg2])) | Psubfloat -> box_float(Cop(Csubf, [transl_unbox_float env arg1; transl_unbox_float env arg2])) | Pmulfloat -> box_float(Cop(Cmulf, [transl_unbox_float env arg1; transl_unbox_float env arg2])) | Pdivfloat -> box_float(Cop(Cdivf, [transl_unbox_float env arg1; transl_unbox_float env arg2])) | Pfloatcomp cmp -> tag_int(Cop(Ccmpf(transl_comparison cmp), [transl_unbox_float env arg1; transl_unbox_float env arg2])) (* String operations *) | Pstringrefu -> tag_int(Cop(Cload Byte_unsigned, [add_int (transl env arg1) (untag_int(transl env arg2))])) | Pstringrefs -> tag_int (bind "str" (transl env arg1) (fun str -> bind "index" (untag_int (transl env arg2)) (fun idx -> Csequence( make_checkbound dbg [string_length str; idx], Cop(Cload Byte_unsigned, [add_int str idx]))))) | Pstring_load_16(unsafe) -> tag_int (bind "str" (transl env arg1) (fun str -> bind "index" (untag_int (transl env arg2)) (fun idx -> check_bound unsafe dbg (sub_int (string_length str) (Cconst_int 1)) idx (unaligned_load_16 str idx)))) | Pbigstring_load_16(unsafe) -> tag_int (bind "ba" (transl env arg1) (fun ba -> bind "index" (untag_int (transl env arg2)) (fun idx -> bind "ba_data" (Cop(Cload Word_int, [field_address ba 1])) (fun ba_data -> check_bound unsafe dbg (sub_int (Cop(Cload Word_int, [field_address ba 5])) (Cconst_int 1)) idx (unaligned_load_16 ba_data idx))))) | Pstring_load_32(unsafe) -> box_int Pint32 (bind "str" (transl env arg1) (fun str -> bind "index" (untag_int (transl env arg2)) (fun idx -> check_bound unsafe dbg (sub_int (string_length str) (Cconst_int 3)) idx (unaligned_load_32 str idx)))) | Pbigstring_load_32(unsafe) -> box_int Pint32 (bind "ba" (transl env arg1) (fun ba -> bind "index" (untag_int (transl env arg2)) (fun idx -> bind "ba_data" (Cop(Cload Word_int, [field_address ba 1])) (fun ba_data -> check_bound unsafe dbg (sub_int (Cop(Cload Word_int, [field_address ba 5])) (Cconst_int 3)) idx (unaligned_load_32 ba_data idx))))) | Pstring_load_64(unsafe) -> box_int Pint64 (bind "str" (transl env arg1) (fun str -> bind "index" (untag_int (transl env arg2)) (fun idx -> check_bound unsafe dbg (sub_int (string_length str) (Cconst_int 7)) idx (unaligned_load_64 str idx)))) | Pbigstring_load_64(unsafe) -> box_int Pint64 (bind "ba" (transl env arg1) (fun ba -> bind "index" (untag_int (transl env arg2)) (fun idx -> bind "ba_data" (Cop(Cload Word_int, [field_address ba 1])) (fun ba_data -> check_bound unsafe dbg (sub_int (Cop(Cload Word_int, [field_address ba 5])) (Cconst_int 7)) idx (unaligned_load_64 ba_data idx))))) (* Array operations *) | Parrayrefu kind -> begin match kind with Pgenarray -> bind "arr" (transl env arg1) (fun arr -> bind "index" (transl env arg2) (fun idx -> Cifthenelse(is_addr_array_ptr arr, addr_array_ref arr idx, float_array_ref arr idx))) | Paddrarray -> addr_array_ref (transl env arg1) (transl env arg2) | Pintarray -> int_array_ref (transl env arg1) (transl env arg2) | Pfloatarray -> float_array_ref (transl env arg1) (transl env arg2) end | Parrayrefs kind -> begin match kind with | Pgenarray -> bind "index" (transl env arg2) (fun idx -> bind "arr" (transl env arg1) (fun arr -> bind "header" (header arr) (fun hdr -> if wordsize_shift = numfloat_shift then Csequence(make_checkbound dbg [addr_array_length hdr; idx], Cifthenelse(is_addr_array_hdr hdr, addr_array_ref arr idx, float_array_ref arr idx)) else Cifthenelse(is_addr_array_hdr hdr, Csequence(make_checkbound dbg [addr_array_length hdr; idx], addr_array_ref arr idx), Csequence(make_checkbound dbg [float_array_length hdr; idx], float_array_ref arr idx))))) | Paddrarray -> bind "index" (transl env arg2) (fun idx -> bind "arr" (transl env arg1) (fun arr -> Csequence(make_checkbound dbg [addr_array_length(header arr); idx], addr_array_ref arr idx))) | Pintarray -> bind "index" (transl env arg2) (fun idx -> bind "arr" (transl env arg1) (fun arr -> Csequence(make_checkbound dbg [addr_array_length(header arr); idx], int_array_ref arr idx))) | Pfloatarray -> box_float( bind "index" (transl env arg2) (fun idx -> bind "arr" (transl env arg1) (fun arr -> Csequence(make_checkbound dbg [float_array_length(header arr); idx], unboxed_float_array_ref arr idx)))) end (* Operations on bitvects *) | Pbittest -> bind "index" (untag_int(transl env arg2)) (fun idx -> tag_int( Cop(Cand, [Cop(Clsr, [Cop(Cload Byte_unsigned, [add_int (transl env arg1) (Cop(Clsr, [idx; Cconst_int 3]))]); Cop(Cand, [idx; Cconst_int 7])]); Cconst_int 1]))) (* Boxed integers *) | Paddbint bi -> box_int bi (Cop(Caddi, [transl_unbox_int env bi arg1; transl_unbox_int env bi arg2])) | Psubbint bi -> box_int bi (Cop(Csubi, [transl_unbox_int env bi arg1; transl_unbox_int env bi arg2])) | Pmulbint bi -> box_int bi (Cop(Cmuli, [transl_unbox_int env bi arg1; transl_unbox_int env bi arg2])) | Pdivbint bi -> box_int bi (safe_div_bi (transl_unbox_int env bi arg1) (transl_unbox_int env bi arg2) bi dbg) | Pmodbint bi -> box_int bi (safe_mod_bi (transl_unbox_int env bi arg1) (transl_unbox_int env bi arg2) bi dbg) | Pandbint bi -> box_int bi (Cop(Cand, [transl_unbox_int env bi arg1; transl_unbox_int env bi arg2])) | Porbint bi -> box_int bi (Cop(Cor, [transl_unbox_int env bi arg1; transl_unbox_int env bi arg2])) | Pxorbint bi -> box_int bi (Cop(Cxor, [transl_unbox_int env bi arg1; transl_unbox_int env bi arg2])) | Plslbint bi -> box_int bi (Cop(Clsl, [transl_unbox_int env bi arg1; untag_int(transl env arg2)])) | Plsrbint bi -> box_int bi (Cop(Clsr, [make_unsigned_int bi (transl_unbox_int env bi arg1); untag_int(transl env arg2)])) | Pasrbint bi -> box_int bi (Cop(Casr, [transl_unbox_int env bi arg1; untag_int(transl env arg2)])) | Pbintcomp(bi, cmp) -> tag_int (Cop(Ccmpi(transl_comparison cmp), [transl_unbox_int env bi arg1; transl_unbox_int env bi arg2])) | prim -> fatal_errorf "Cmmgen.transl_prim_2: %a" Printlambda.primitive prim and transl_prim_3 env p arg1 arg2 arg3 dbg = match p with (* String operations *) Pstringsetu -> return_unit(Cop(Cstore (Byte_unsigned, Assignment), [add_int (transl env arg1) (untag_int(transl env arg2)); untag_int(transl env arg3)])) | Pstringsets -> return_unit (bind "str" (transl env arg1) (fun str -> bind "index" (untag_int (transl env arg2)) (fun idx -> Csequence( make_checkbound dbg [string_length str; idx], Cop(Cstore (Byte_unsigned, Assignment), [add_int str idx; untag_int(transl env arg3)]))))) (* Array operations *) | Parraysetu kind -> return_unit(begin match kind with Pgenarray -> bind "newval" (transl env arg3) (fun newval -> bind "index" (transl env arg2) (fun index -> bind "arr" (transl env arg1) (fun arr -> Cifthenelse(is_addr_array_ptr arr, addr_array_set arr index newval, float_array_set arr index (unbox_float newval))))) | Paddrarray -> addr_array_set (transl env arg1) (transl env arg2) (transl env arg3) | Pintarray -> int_array_set (transl env arg1) (transl env arg2) (transl env arg3) | Pfloatarray -> float_array_set (transl env arg1) (transl env arg2) (transl_unbox_float env arg3) end) | Parraysets kind -> return_unit(begin match kind with | Pgenarray -> bind "newval" (transl env arg3) (fun newval -> bind "index" (transl env arg2) (fun idx -> bind "arr" (transl env arg1) (fun arr -> bind "header" (header arr) (fun hdr -> if wordsize_shift = numfloat_shift then Csequence(make_checkbound dbg [addr_array_length hdr; idx], Cifthenelse(is_addr_array_hdr hdr, addr_array_set arr idx newval, float_array_set arr idx (unbox_float newval))) else Cifthenelse(is_addr_array_hdr hdr, Csequence(make_checkbound dbg [addr_array_length hdr; idx], addr_array_set arr idx newval), Csequence(make_checkbound dbg [float_array_length hdr; idx], float_array_set arr idx (unbox_float newval))))))) | Paddrarray -> bind "newval" (transl env arg3) (fun newval -> bind "index" (transl env arg2) (fun idx -> bind "arr" (transl env arg1) (fun arr -> Csequence(make_checkbound dbg [addr_array_length(header arr); idx], addr_array_set arr idx newval)))) | Pintarray -> bind "newval" (transl env arg3) (fun newval -> bind "index" (transl env arg2) (fun idx -> bind "arr" (transl env arg1) (fun arr -> Csequence(make_checkbound dbg [addr_array_length(header arr); idx], int_array_set arr idx newval)))) | Pfloatarray -> bind_load "newval" (transl_unbox_float env arg3) (fun newval -> bind "index" (transl env arg2) (fun idx -> bind "arr" (transl env arg1) (fun arr -> Csequence(make_checkbound dbg [float_array_length(header arr);idx], float_array_set arr idx newval)))) end) | Pstring_set_16(unsafe) -> return_unit (bind "str" (transl env arg1) (fun str -> bind "index" (untag_int (transl env arg2)) (fun idx -> bind "newval" (untag_int (transl env arg3)) (fun newval -> check_bound unsafe dbg (sub_int (string_length str) (Cconst_int 1)) idx (unaligned_set_16 str idx newval))))) | Pbigstring_set_16(unsafe) -> return_unit (bind "ba" (transl env arg1) (fun ba -> bind "index" (untag_int (transl env arg2)) (fun idx -> bind "newval" (untag_int (transl env arg3)) (fun newval -> bind "ba_data" (Cop(Cload Word_int, [field_address ba 1])) (fun ba_data -> check_bound unsafe dbg (sub_int (Cop(Cload Word_int, [field_address ba 5])) (Cconst_int 1)) idx (unaligned_set_16 ba_data idx newval)))))) | Pstring_set_32(unsafe) -> return_unit (bind "str" (transl env arg1) (fun str -> bind "index" (untag_int (transl env arg2)) (fun idx -> bind "newval" (transl_unbox_int env Pint32 arg3) (fun newval -> check_bound unsafe dbg (sub_int (string_length str) (Cconst_int 3)) idx (unaligned_set_32 str idx newval))))) | Pbigstring_set_32(unsafe) -> return_unit (bind "ba" (transl env arg1) (fun ba -> bind "index" (untag_int (transl env arg2)) (fun idx -> bind "newval" (transl_unbox_int env Pint32 arg3) (fun newval -> bind "ba_data" (Cop(Cload Word_int, [field_address ba 1])) (fun ba_data -> check_bound unsafe dbg (sub_int (Cop(Cload Word_int, [field_address ba 5])) (Cconst_int 3)) idx (unaligned_set_32 ba_data idx newval)))))) | Pstring_set_64(unsafe) -> return_unit (bind "str" (transl env arg1) (fun str -> bind "index" (untag_int (transl env arg2)) (fun idx -> bind "newval" (transl_unbox_int env Pint64 arg3) (fun newval -> check_bound unsafe dbg (sub_int (string_length str) (Cconst_int 7)) idx (unaligned_set_64 str idx newval))))) | Pbigstring_set_64(unsafe) -> return_unit (bind "ba" (transl env arg1) (fun ba -> bind "index" (untag_int (transl env arg2)) (fun idx -> bind "newval" (transl_unbox_int env Pint64 arg3) (fun newval -> bind "ba_data" (Cop(Cload Word_int, [field_address ba 1])) (fun ba_data -> check_bound unsafe dbg (sub_int (Cop(Cload Word_int, [field_address ba 5])) (Cconst_int 7)) idx (unaligned_set_64 ba_data idx newval)))))) | prim -> fatal_errorf "Cmmgen.transl_prim_3: %a" Printlambda.primitive prim and transl_unbox_float env = function Uconst(Uconst_ref(_, Some (Uconst_float f))) -> Cconst_float f | exp -> unbox_float(transl env exp) and transl_unbox_int env bi = function Uconst(Uconst_ref(_, Some (Uconst_int32 n))) -> Cconst_natint (Nativeint.of_int32 n) | Uconst(Uconst_ref(_, Some (Uconst_nativeint n))) -> Cconst_natint n | Uconst(Uconst_ref(_, Some (Uconst_int64 n))) -> if size_int = 8 then Cconst_natint (Int64.to_nativeint n) else begin let low = Int64.to_nativeint n in let high = Int64.to_nativeint (Int64.shift_right_logical n 32) in if big_endian then Ctuple [Cconst_natint high; Cconst_natint low] else Ctuple [Cconst_natint low; Cconst_natint high] end | Uprim(Pbintofint bi',[Uconst(Uconst_int i)],_) when bi = bi' -> Cconst_int i | exp -> unbox_int bi (transl env exp) and transl_unbox_number env bn arg = match bn with | Boxed_float -> transl_unbox_float env arg | Boxed_integer bi -> transl_unbox_int env bi arg and transl_let env id exp body = match is_unboxed_number env exp with | No_unboxing -> Clet(id, transl env exp, transl env body) | No_result -> (* the let-bound expression never returns a value, we can ignore the body *) transl env exp | Boxed boxed_number -> let unboxed_id = Ident.create (Ident.name id) in Clet(unboxed_id, transl_unbox_number env boxed_number exp, transl (add_unboxed_id id unboxed_id boxed_number env) body) and make_catch ncatch body handler = match body with | Cexit (nexit,[]) when nexit=ncatch -> handler | _ -> Ccatch (ncatch, [], body, handler) and make_catch2 mk_body handler = match handler with | Cexit (_,[])|Ctuple []|Cconst_int _|Cconst_pointer _ -> mk_body handler | _ -> let nfail = next_raise_count () in make_catch nfail (mk_body (Cexit (nfail,[]))) handler and exit_if_true env cond nfail otherwise = match cond with | Uconst (Uconst_ptr 0) -> otherwise | Uconst (Uconst_ptr 1) -> Cexit (nfail,[]) | Uifthenelse (arg1, Uconst (Uconst_ptr 1), arg2) | Uprim(Psequor, [arg1; arg2], _) -> exit_if_true env arg1 nfail (exit_if_true env arg2 nfail otherwise) | Uifthenelse (_, _, Uconst (Uconst_ptr 0)) | Uprim(Psequand, _, _) -> begin match otherwise with | Cexit (raise_num,[]) -> exit_if_false env cond (Cexit (nfail,[])) raise_num | _ -> let raise_num = next_raise_count () in make_catch raise_num (exit_if_false env cond (Cexit (nfail,[])) raise_num) otherwise end | Uprim(Pnot, [arg], _) -> exit_if_false env arg otherwise nfail | Uifthenelse (cond, ifso, ifnot) -> make_catch2 (fun shared -> if_then_else (test_bool (transl env cond), exit_if_true env ifso nfail shared, exit_if_true env ifnot nfail shared)) otherwise | _ -> if_then_else(test_bool(transl env cond), Cexit (nfail, []), otherwise) and exit_if_false env cond otherwise nfail = match cond with | Uconst (Uconst_ptr 0) -> Cexit (nfail,[]) | Uconst (Uconst_ptr 1) -> otherwise | Uifthenelse (arg1, arg2, Uconst (Uconst_ptr 0)) | Uprim(Psequand, [arg1; arg2], _) -> exit_if_false env arg1 (exit_if_false env arg2 otherwise nfail) nfail | Uifthenelse (_, Uconst (Uconst_ptr 1), _) | Uprim(Psequor, _, _) -> begin match otherwise with | Cexit (raise_num,[]) -> exit_if_true env cond raise_num (Cexit (nfail,[])) | _ -> let raise_num = next_raise_count () in make_catch raise_num (exit_if_true env cond raise_num (Cexit (nfail,[]))) otherwise end | Uprim(Pnot, [arg], _) -> exit_if_true env arg nfail otherwise | Uifthenelse (cond, ifso, ifnot) -> make_catch2 (fun shared -> if_then_else (test_bool (transl env cond), exit_if_false env ifso shared nfail, exit_if_false env ifnot shared nfail)) otherwise | _ -> if_then_else(test_bool(transl env cond), otherwise, Cexit (nfail, [])) and transl_switch env arg index cases = match Array.length cases with | 0 -> fatal_error "Cmmgen.transl_switch" | 1 -> transl env cases.(0) | _ -> let cases = Array.map (transl env) cases in let store = StoreExp.mk_store () in let index = Array.map (fun j -> store.Switch.act_store cases.(j)) index in let n_index = Array.length index in let inters = ref [] and this_high = ref (n_index-1) and this_low = ref (n_index-1) and this_act = ref index.(n_index-1) in for i = n_index-2 downto 0 do let act = index.(i) in if act = !this_act then decr this_low else begin inters := (!this_low, !this_high, !this_act) :: !inters ; this_high := i ; this_low := i ; this_act := act end done ; inters := (0, !this_high, !this_act) :: !inters ; match !inters with | [_] -> cases.(0) | inters -> bind "switcher" arg (fun a -> SwitcherBlocks.zyva (0,n_index-1) a (Array.of_list inters) store) and transl_letrec env bindings cont = let bsz = List.map (fun (id, exp) -> (id, exp, expr_size Ident.empty exp)) bindings in let op_alloc prim sz = Cop(Cextcall(prim, typ_val, true, Debuginfo.none), [int_const sz]) in let rec init_blocks = function | [] -> fill_nonrec bsz | (id, exp, RHS_block sz) :: rem -> Clet(id, op_alloc "caml_alloc_dummy" sz, init_blocks rem) | (id, exp, RHS_floatblock sz) :: rem -> Clet(id, op_alloc "caml_alloc_dummy_float" sz, init_blocks rem) | (id, exp, RHS_nonrec) :: rem -> Clet (id, Cconst_int 0, init_blocks rem) and fill_nonrec = function | [] -> fill_blocks bsz | (id, exp, (RHS_block _ | RHS_floatblock _)) :: rem -> fill_nonrec rem | (id, exp, RHS_nonrec) :: rem -> Clet(id, transl env exp, fill_nonrec rem) and fill_blocks = function | [] -> cont | (id, exp, (RHS_block _ | RHS_floatblock _)) :: rem -> let op = Cop(Cextcall("caml_update_dummy", typ_void, false, Debuginfo.none), [Cvar id; transl env exp]) in Csequence(op, fill_blocks rem) | (id, exp, RHS_nonrec) :: rem -> fill_blocks rem in init_blocks bsz (* Translate a function definition *) let transl_function f = let body = if Config.flambda then Un_anf.apply f.body ~what:f.label else f.body in Cfunction {fun_name = f.label; fun_args = List.map (fun id -> (id, typ_val)) f.params; fun_body = transl empty_env body; fun_fast = !Clflags.optimize_for_speed; fun_dbg = f.dbg; } (* Translate all function definitions *) module StringSet = Set.Make(struct type t = string let compare (x:t) y = compare x y end) let rec transl_all_functions already_translated cont = try let f = Queue.take functions in if StringSet.mem f.label already_translated then transl_all_functions already_translated cont else begin transl_all_functions (StringSet.add f.label already_translated) (transl_function f :: cont) end with Queue.Empty -> cont, already_translated let cdefine_symbol (symb, global) = match global with | Global -> [Cglobal_symbol symb; Cdefine_symbol symb] | Not_global -> [Cdefine_symbol symb] (* Emit structured constants *) let rec emit_structured_constant symb cst cont = let emit_block white_header symb cont = (* Headers for structured constants must be marked black in case we are in no-naked-pointers mode. See [caml_darken]. *) let black_header = Nativeint.logor white_header caml_black in Cint black_header :: cdefine_symbol symb @ cont in match cst with | Uconst_float s-> emit_block float_header symb (Cdouble s :: cont) | Uconst_string s -> emit_block (string_header (String.length s)) symb (emit_string_constant s cont) | Uconst_int32 n -> emit_block boxedint32_header symb (emit_boxed_int32_constant n cont) | Uconst_int64 n -> emit_block boxedint64_header symb (emit_boxed_int64_constant n cont) | Uconst_nativeint n -> emit_block boxedintnat_header symb (emit_boxed_nativeint_constant n cont) | Uconst_block (tag, csts) -> let cont = List.fold_right emit_constant csts cont in emit_block (block_header tag (List.length csts)) symb cont | Uconst_float_array fields -> emit_block (floatarray_header (List.length fields)) symb (Misc.map_end (fun f -> Cdouble f) fields cont) | Uconst_closure(fundecls, lbl, fv) -> assert(lbl = fst symb); constant_closures := (symb, fundecls, fv) :: !constant_closures; List.iter (fun f -> Queue.add f functions) fundecls; cont and emit_constant cst cont = match cst with | Uconst_int n | Uconst_ptr n -> cint_const n :: cont | Uconst_ref (label, _) -> Csymbol_address label :: cont and emit_string_constant s cont = let n = size_int - 1 - (String.length s) mod size_int in Cstring s :: Cskip n :: Cint8 n :: cont and emit_boxed_int32_constant n cont = let n = Nativeint.of_int32 n in if size_int = 8 then Csymbol_address("caml_int32_ops") :: Cint32 n :: Cint32 0n :: cont else Csymbol_address("caml_int32_ops") :: Cint n :: cont and emit_boxed_nativeint_constant n cont = Csymbol_address("caml_nativeint_ops") :: Cint n :: cont and emit_boxed_int64_constant n cont = let lo = Int64.to_nativeint n in if size_int = 8 then Csymbol_address("caml_int64_ops") :: Cint lo :: cont else begin let hi = Int64.to_nativeint (Int64.shift_right n 32) in if big_endian then Csymbol_address("caml_int64_ops") :: Cint hi :: Cint lo :: cont else Csymbol_address("caml_int64_ops") :: Cint lo :: Cint hi :: cont end (* Emit constant closures *) let emit_constant_closure ((_, global_symb) as symb) fundecls clos_vars cont = let closure_symbol f = if Config.flambda then cdefine_symbol (f.label ^ "_closure", global_symb) else [] in match fundecls with [] -> (* This should probably not happen: dead code has normally been eliminated and a closure cannot be accessed without going through a [Project_closure], which depends on the function. *) assert (clos_vars = []); cdefine_symbol symb @ List.fold_right emit_constant clos_vars cont | f1 :: remainder -> let rec emit_others pos = function [] -> List.fold_right emit_constant clos_vars cont | f2 :: rem -> if f2.arity = 1 || f2.arity = 0 then Cint(infix_header pos) :: (closure_symbol f2) @ Csymbol_address f2.label :: cint_const f2.arity :: emit_others (pos + 3) rem else Cint(infix_header pos) :: (closure_symbol f2) @ Csymbol_address(curry_function f2.arity) :: cint_const f2.arity :: Csymbol_address f2.label :: emit_others (pos + 4) rem in Cint(black_closure_header (fundecls_size fundecls + List.length clos_vars)) :: cdefine_symbol symb @ (closure_symbol f1) @ if f1.arity = 1 || f1.arity = 0 then Csymbol_address f1.label :: cint_const f1.arity :: emit_others 3 remainder else Csymbol_address(curry_function f1.arity) :: cint_const f1.arity :: Csymbol_address f1.label :: emit_others 4 remainder (* Emit all structured constants *) let emit_constants cont (constants:Clambda.preallocated_constant list) = let c = ref cont in List.iter (fun { symbol = lbl; exported; definition = cst } -> let global = if exported then Global else Not_global in let cst = emit_structured_constant (lbl, global) cst [] in c:= Cdata(cst):: !c) constants; List.iter (fun (symb, fundecls, clos_vars) -> c := Cdata(emit_constant_closure symb fundecls clos_vars []) :: !c) !constant_closures; constant_closures := []; !c let emit_all_constants cont = let constants = Compilenv.structured_constants () in Compilenv.clear_structured_constants (); emit_constants cont constants let transl_all_functions_and_emit_all_constants cont = let rec aux already_translated cont = if Compilenv.structured_constants () = [] && Queue.is_empty functions then cont else let cont, set = transl_all_functions already_translated cont in let cont = emit_all_constants cont in aux already_translated cont in aux StringSet.empty cont (* Build the NULL terminated array of gc roots *) let emit_gc_roots_table ~symbols cont = let table_symbol = Compilenv.make_symbol (Some "gc_roots") in Cdata(Cglobal_symbol table_symbol :: Cdefine_symbol table_symbol :: List.map (fun s -> Csymbol_address s) symbols @ [Cint 0n]) :: cont (* Build preallocated blocks (used for Flambda [Initialize_symbol] constructs, and Clambda global module) *) let preallocate_block cont { Clambda.symbol; exported; tag; size } = let space = (* These words will be registered as roots and as such must contain valid values, in case we are in no-naked-pointers mode. Likewise the block header must be black, below (see [caml_darken]), since the overall record may be referenced. *) Array.to_list (Array.init size (fun _index -> Cint (Nativeint.of_int 1 (* Val_unit *)))) in let data = Cint(black_block_header tag size) :: if exported then Cglobal_symbol symbol :: Cdefine_symbol symbol :: space else Cdefine_symbol symbol :: space in Cdata data :: cont let emit_preallocated_blocks preallocated_blocks cont = let symbols = List.map (fun ({ Clambda.symbol }:Clambda.preallocated_block) -> symbol) preallocated_blocks in let c1 = emit_gc_roots_table ~symbols cont in List.fold_left preallocate_block c1 preallocated_blocks (* Translate a compilation unit *) let compunit (ulam, preallocated_blocks, constants) = let init_code = transl empty_env ulam in let c1 = [Cfunction {fun_name = Compilenv.make_symbol (Some "entry"); fun_args = []; fun_body = init_code; fun_fast = false; fun_dbg = Debuginfo.none }] in let c2 = emit_constants c1 constants in let c3 = transl_all_functions_and_emit_all_constants c2 in emit_preallocated_blocks preallocated_blocks c3 (* CAMLprim value caml_cache_public_method (value meths, value tag, value *cache) { int li = 3, hi = Field(meths,0), mi; while (li < hi) { // no need to check the 1st time mi = ((li+hi) >> 1) | 1; if (tag < Field(meths,mi)) hi = mi-2; else li = mi; } *cache = (li-3)*sizeof(value)+1; return Field (meths, li-1); } *) let cache_public_method meths tag cache = let raise_num = next_raise_count () in let li = Ident.create "li" and hi = Ident.create "hi" and mi = Ident.create "mi" and tagged = Ident.create "tagged" in Clet ( li, Cconst_int 3, Clet ( hi, Cop(Cload Word_int, [meths]), Csequence( Ccatch (raise_num, [], Cloop (Clet( mi, Cop(Cor, [Cop(Clsr, [Cop(Caddi, [Cvar li; Cvar hi]); Cconst_int 1]); Cconst_int 1]), Csequence( Cifthenelse (Cop (Ccmpi Clt, [tag; Cop(Cload Word_int, [Cop(Cadda, [meths; lsl_const (Cvar mi) log2_size_addr])])]), Cassign(hi, Cop(Csubi, [Cvar mi; Cconst_int 2])), Cassign(li, Cvar mi)), Cifthenelse (Cop(Ccmpi Cge, [Cvar li; Cvar hi]), Cexit (raise_num, []), Ctuple [])))), Ctuple []), Clet ( tagged, Cop(Cadda, [lsl_const (Cvar li) log2_size_addr; Cconst_int(1 - 3 * size_addr)]), Csequence(Cop (Cstore (Word_int, Assignment), [cache; Cvar tagged]), Cvar tagged))))) (* Generate an application function: (defun caml_applyN (a1 ... aN clos) (if (= clos.arity N) (app clos.direct a1 ... aN clos) (let (clos1 (app clos.code a1 clos) clos2 (app clos1.code a2 clos) ... closN-1 (app closN-2.code aN-1 closN-2)) (app closN-1.code aN closN-1)))) *) let apply_function_body arity = let arg = Array.make arity (Ident.create "arg") in for i = 1 to arity - 1 do arg.(i) <- Ident.create "arg" done; let clos = Ident.create "clos" in let rec app_fun clos n = if n = arity-1 then Cop(Capply(typ_val, Debuginfo.none), [get_field (Cvar clos) 0; Cvar arg.(n); Cvar clos]) else begin let newclos = Ident.create "clos" in Clet(newclos, Cop(Capply(typ_val, Debuginfo.none), [get_field (Cvar clos) 0; Cvar arg.(n); Cvar clos]), app_fun newclos (n+1)) end in let args = Array.to_list arg in let all_args = args @ [clos] in (args, clos, if arity = 1 then app_fun clos 0 else Cifthenelse( Cop(Ccmpi Ceq, [get_field (Cvar clos) 1; int_const arity]), Cop(Capply(typ_val, Debuginfo.none), get_field (Cvar clos) 2 :: List.map (fun s -> Cvar s) all_args), app_fun clos 0)) let send_function arity = let (args, clos', body) = apply_function_body (1+arity) in let cache = Ident.create "cache" and obj = List.hd args and tag = Ident.create "tag" in let clos = let cache = Cvar cache and obj = Cvar obj and tag = Cvar tag in let meths = Ident.create "meths" and cached = Ident.create "cached" in let real = Ident.create "real" in let mask = get_field (Cvar meths) 1 in let cached_pos = Cvar cached in let tag_pos = Cop(Cadda, [Cop (Cadda, [cached_pos; Cvar meths]); Cconst_int(3*size_addr-1)]) in let tag' = Cop(Cload Word_int, [tag_pos]) in Clet ( meths, Cop(Cload Word_val, [obj]), Clet ( cached, Cop(Cand, [Cop(Cload Word_int, [cache]); mask]), Clet ( real, Cifthenelse(Cop(Ccmpa Cne, [tag'; tag]), cache_public_method (Cvar meths) tag cache, cached_pos), Cop(Cload Word_val, [Cop(Cadda, [Cop (Cadda, [Cvar real; Cvar meths]); Cconst_int(2*size_addr-1)])])))) in let body = Clet(clos', clos, body) in let fun_args = [obj, typ_val; tag, typ_int; cache, typ_val] @ List.map (fun id -> (id, typ_val)) (List.tl args) in Cfunction {fun_name = "caml_send" ^ string_of_int arity; fun_args = fun_args; fun_body = body; fun_fast = true; fun_dbg = Debuginfo.none } let apply_function arity = let (args, clos, body) = apply_function_body arity in let all_args = args @ [clos] in Cfunction {fun_name = "caml_apply" ^ string_of_int arity; fun_args = List.map (fun id -> (id, typ_val)) all_args; fun_body = body; fun_fast = true; fun_dbg = Debuginfo.none } (* Generate tuplifying functions: (defun caml_tuplifyN (arg clos) (app clos.direct #0(arg) ... #N-1(arg) clos)) *) let tuplify_function arity = let arg = Ident.create "arg" in let clos = Ident.create "clos" in let rec access_components i = if i >= arity then [] else get_field (Cvar arg) i :: access_components(i+1) in Cfunction {fun_name = "caml_tuplify" ^ string_of_int arity; fun_args = [arg, typ_val; clos, typ_val]; fun_body = Cop(Capply(typ_val, Debuginfo.none), get_field (Cvar clos) 2 :: access_components 0 @ [Cvar clos]); fun_fast = true; fun_dbg = Debuginfo.none } (* Generate currying functions: (defun caml_curryN (arg clos) (alloc HDR caml_curryN_1 caml_curry_N_1_app arg clos)) (defun caml_curryN_1 (arg clos) (alloc HDR caml_curryN_2 caml_curry_N_2_app arg clos)) ... (defun caml_curryN_N-1 (arg clos) (let (closN-2 clos.vars[1] closN-3 closN-2.vars[1] ... clos1 clos2.vars[1] clos clos1.vars[1]) (app clos.direct clos1.vars[0] ... closN-2.vars[0] clos.vars[0] arg clos))) Special "shortcut" functions are also generated to handle the case where a partially applied function is applied to all remaining arguments in one go. For instance: (defun caml_curry_N_1_app (arg2 ... argN clos) (let clos' clos.vars[1] (app clos'.direct clos.vars[0] arg2 ... argN clos'))) Those shortcuts may lead to a quadratic number of application primitives being generated in the worst case, which resulted in linking time blowup in practice (PR#5933), so we only generate and use them when below a fixed arity 'max_arity_optimized'. *) let max_arity_optimized = 15 let final_curry_function arity = let last_arg = Ident.create "arg" in let last_clos = Ident.create "clos" in let rec curry_fun args clos n = if n = 0 then Cop(Capply(typ_val, Debuginfo.none), get_field (Cvar clos) 2 :: args @ [Cvar last_arg; Cvar clos]) else if n = arity - 1 || arity > max_arity_optimized then begin let newclos = Ident.create "clos" in Clet(newclos, get_field (Cvar clos) 3, curry_fun (get_field (Cvar clos) 2 :: args) newclos (n-1)) end else begin let newclos = Ident.create "clos" in Clet(newclos, get_field (Cvar clos) 4, curry_fun (get_field (Cvar clos) 3 :: args) newclos (n-1)) end in Cfunction {fun_name = "caml_curry" ^ string_of_int arity ^ "_" ^ string_of_int (arity-1); fun_args = [last_arg, typ_val; last_clos, typ_val]; fun_body = curry_fun [] last_clos (arity-1); fun_fast = true; fun_dbg = Debuginfo.none } let rec intermediate_curry_functions arity num = if num = arity - 1 then [final_curry_function arity] else begin let name1 = "caml_curry" ^ string_of_int arity in let name2 = if num = 0 then name1 else name1 ^ "_" ^ string_of_int num in let arg = Ident.create "arg" and clos = Ident.create "clos" in Cfunction {fun_name = name2; fun_args = [arg, typ_val; clos, typ_val]; fun_body = if arity - num > 2 && arity <= max_arity_optimized then Cop(Calloc, [alloc_closure_header 5; Cconst_symbol(name1 ^ "_" ^ string_of_int (num+1)); int_const (arity - num - 1); Cconst_symbol(name1 ^ "_" ^ string_of_int (num+1) ^ "_app"); Cvar arg; Cvar clos]) else Cop(Calloc, [alloc_closure_header 4; Cconst_symbol(name1 ^ "_" ^ string_of_int (num+1)); int_const 1; Cvar arg; Cvar clos]); fun_fast = true; fun_dbg = Debuginfo.none } :: (if arity <= max_arity_optimized && arity - num > 2 then let rec iter i = if i <= arity then let arg = Ident.create (Printf.sprintf "arg%d" i) in (arg, typ_val) :: iter (i+1) else [] in let direct_args = iter (num+2) in let rec iter i args clos = if i = 0 then Cop(Capply(typ_val, Debuginfo.none), (get_field (Cvar clos) 2) :: args @ [Cvar clos]) else let newclos = Ident.create "clos" in Clet(newclos, get_field (Cvar clos) 4, iter (i-1) (get_field (Cvar clos) 3 :: args) newclos) in let cf = Cfunction {fun_name = name1 ^ "_" ^ string_of_int (num+1) ^ "_app"; fun_args = direct_args @ [clos, typ_val]; fun_body = iter (num+1) (List.map (fun (arg,_) -> Cvar arg) direct_args) clos; fun_fast = true; fun_dbg = Debuginfo.none } in cf :: intermediate_curry_functions arity (num+1) else intermediate_curry_functions arity (num+1)) end let curry_function arity = assert(arity <> 0); (* Functions with arity = 0 does not have a curry_function *) if arity > 0 then intermediate_curry_functions arity 0 else [tuplify_function (-arity)] module IntSet = Set.Make( struct type t = int let compare (x:t) y = compare x y end) let default_apply = IntSet.add 2 (IntSet.add 3 IntSet.empty) (* These apply funs are always present in the main program because the run-time system needs them (cf. asmrun/.S) . *) let generic_functions shared units = let (apply,send,curry) = List.fold_left (fun (apply,send,curry) ui -> List.fold_right IntSet.add ui.ui_apply_fun apply, List.fold_right IntSet.add ui.ui_send_fun send, List.fold_right IntSet.add ui.ui_curry_fun curry) (IntSet.empty,IntSet.empty,IntSet.empty) units in let apply = if shared then apply else IntSet.union apply default_apply in let accu = IntSet.fold (fun n accu -> apply_function n :: accu) apply [] in let accu = IntSet.fold (fun n accu -> send_function n :: accu) send accu in IntSet.fold (fun n accu -> curry_function n @ accu) curry accu (* Generate the entry point *) let entry_point namelist = let incr_global_inited = Cop(Cstore (Word_int, Assignment), [Cconst_symbol "caml_globals_inited"; Cop(Caddi, [Cop(Cload Word_int, [Cconst_symbol "caml_globals_inited"]); Cconst_int 1])]) in let body = List.fold_right (fun name next -> let entry_sym = Compilenv.make_symbol ~unitname:name (Some "entry") in Csequence(Cop(Capply(typ_void, Debuginfo.none), [Cconst_symbol entry_sym]), Csequence(incr_global_inited, next))) namelist (Cconst_int 1) in Cfunction {fun_name = "caml_program"; fun_args = []; fun_body = body; fun_fast = false; fun_dbg = Debuginfo.none } (* Generate the table of globals *) let cint_zero = Cint 0n let global_table namelist = let mksym name = Csymbol_address (Compilenv.make_symbol ~unitname:name (Some "gc_roots")) in Cdata(Cglobal_symbol "caml_globals" :: Cdefine_symbol "caml_globals" :: List.map mksym namelist @ [cint_zero]) let reference_symbols namelist = let mksym name = Csymbol_address name in Cdata(List.map mksym namelist) let global_data name v = Cdata(emit_structured_constant (name, Global) (Uconst_string (Marshal.to_string v [])) []) let globals_map v = global_data "caml_globals_map" v (* Generate the master table of frame descriptors *) let frame_table namelist = let mksym name = Csymbol_address (Compilenv.make_symbol ~unitname:name (Some "frametable")) in Cdata(Cglobal_symbol "caml_frametable" :: Cdefine_symbol "caml_frametable" :: List.map mksym namelist @ [cint_zero]) (* Generate the table of module data and code segments *) let segment_table namelist symbol begname endname = let addsyms name lst = Csymbol_address (Compilenv.make_symbol ~unitname:name (Some begname)) :: Csymbol_address (Compilenv.make_symbol ~unitname:name (Some endname)) :: lst in Cdata(Cglobal_symbol symbol :: Cdefine_symbol symbol :: List.fold_right addsyms namelist [cint_zero]) let data_segment_table namelist = segment_table namelist "caml_data_segments" "data_begin" "data_end" let code_segment_table namelist = segment_table namelist "caml_code_segments" "code_begin" "code_end" (* Initialize a predefined exception *) let predef_exception i name = let symname = "caml_exn_" ^ name in let cst = Uconst_string name in let label = Compilenv.new_const_symbol () in let cont = emit_structured_constant (label, Not_global) cst [] in Cdata(emit_structured_constant (symname, Global) (Uconst_block(Obj.object_tag, [ Uconst_ref(label, Some cst); Uconst_int (-i-1); ])) cont) (* Header for a plugin *) let plugin_header units = let mk (ui,crc) = { dynu_name = ui.ui_name; dynu_crc = crc; dynu_imports_cmi = ui.ui_imports_cmi; dynu_imports_cmx = ui.ui_imports_cmx; dynu_defines = ui.ui_defines } in global_data "caml_plugin_header" { dynu_magic = Config.cmxs_magic_number; dynu_units = List.map mk units }