(**************************************************************************) (* *) (* OCaml *) (* *) (* Pierre Chambart, OCamlPro *) (* Mark Shinwell and Leo White, Jane Street Europe *) (* *) (* Copyright 2013--2016 OCamlPro SAS *) (* Copyright 2014--2016 Jane Street Group LLC *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) [@@@ocaml.warning "+a-4-9-30-40-41-42-66"] open! Int_replace_polymorphic_compare (* Simple approximation of the space cost of a primitive. *) let prim_size (prim : Clambda_primitives.primitive) args = match prim with | Pmakeblock _ -> 5 + List.length args | Pfield _ -> 1 | Psetfield (_, isptr, init) -> begin match init with | Root_initialization -> 1 (* never causes a write barrier hit *) | Assignment | Heap_initialization -> match isptr with | Pointer -> 4 | Immediate -> 1 end | Pfloatfield _ -> 1 | Psetfloatfield _ -> 1 | Pduprecord _ -> 10 + List.length args | Pccall p -> (if p.Primitive.prim_alloc then 10 else 4) + List.length args | Praise _ -> 4 | Pstringlength -> 5 | Pbyteslength -> 5 | Pstringrefs -> 6 | Pbytesrefs | Pbytessets -> 6 | Pmakearray _ -> 5 + List.length args | Parraylength Pgenarray -> 6 | Parraylength _ -> 2 | Parrayrefu Pgenarray -> 12 | Parrayrefu _ -> 2 | Parraysetu Pgenarray -> 16 | Parraysetu _ -> 4 | Parrayrefs Pgenarray -> 18 | Parrayrefs _ -> 8 | Parraysets Pgenarray -> 22 | Parraysets _ -> 10 | Pbigarrayref (_, ndims, _, _) -> 4 + ndims * 6 | Pbigarrayset (_, ndims, _, _) -> 4 + ndims * 6 | Psequand | Psequor -> Misc.fatal_error "Psequand and Psequor are not allowed in Prim \ expressions; translate out instead (cf. closure_conversion.ml)" (* CR-soon mshinwell: This match must be made exhaustive. mshinwell: Let's do this when we have the new size computation. *) | _ -> 2 (* arithmetic and comparisons *) (* Simple approximation of the space cost of an Flambda expression. *) (* CR-soon mshinwell: Investigate revised size numbers. *) let direct_call_size = 4 let project_size = 1 let lambda_smaller' lam ~than:threshold = let size = ref 0 in let rec lambda_size (lam : Flambda.t) = if !size > threshold then raise Exit; match lam with | Var _ -> () | Apply ({ func = _; args = _; kind = direct }) -> let call_cost = match direct with Indirect -> 6 | Direct _ -> direct_call_size in size := !size + call_cost | Assign _ -> incr size | Send _ -> size := !size + 8 | Proved_unreachable -> () | Let { defining_expr; body; _ } -> lambda_named_size defining_expr; lambda_size body | Let_mutable { body } -> lambda_size body | Let_rec (bindings, body) -> List.iter (fun (_, lam) -> lambda_named_size lam) bindings; lambda_size body | Switch (_, sw) -> let aux = function _::_::_ -> size := !size + 5 | _ -> () in aux sw.consts; aux sw.blocks; List.iter (fun (_, lam) -> lambda_size lam) sw.consts; List.iter (fun (_, lam) -> lambda_size lam) sw.blocks; Option.iter lambda_size sw.failaction | String_switch (_, sw, def) -> List.iter (fun (_, lam) -> size := !size + 2; lambda_size lam) sw; Misc.may lambda_size def | Static_raise _ -> () | Static_catch (_, _, body, handler) -> incr size; lambda_size body; lambda_size handler | Try_with (body, _, handler) -> size := !size + 8; lambda_size body; lambda_size handler | If_then_else (_, ifso, ifnot) -> size := !size + 2; lambda_size ifso; lambda_size ifnot | While (cond, body) -> size := !size + 2; lambda_size cond; lambda_size body | For { body; _ } -> size := !size + 4; lambda_size body and lambda_named_size (named : Flambda.named) = if !size > threshold then raise Exit; match named with | Symbol _ | Read_mutable _ -> () | Const _ | Allocated_const _ -> incr size | Read_symbol_field _ -> incr size | Set_of_closures ({ function_decls = ffuns }) -> Variable.Map.iter (fun _ (ffun : Flambda.function_declaration) -> lambda_size ffun.body) ffuns.funs | Project_closure _ | Project_var _ -> size := !size + project_size | Move_within_set_of_closures _ -> incr size | Prim (prim, args, _) -> size := !size + prim_size prim args | Expr expr -> lambda_size expr in try lambda_size lam; if !size <= threshold then Some !size else None with Exit -> None let lambda_size lam = match lambda_smaller' lam ~than:max_int with | Some size -> size | None -> (* There is no way that an expression of size max_int could fit in memory. *) assert false module Threshold = struct type t = | Never_inline | Can_inline_if_no_larger_than of int let add t1 t2 = match t1, t2 with | Never_inline, t -> t | t, Never_inline -> t | Can_inline_if_no_larger_than i1, Can_inline_if_no_larger_than i2 -> Can_inline_if_no_larger_than (i1 + i2) let sub t1 t2 = match t1, t2 with | Never_inline, _ -> Never_inline | t, Never_inline -> t | Can_inline_if_no_larger_than i1, Can_inline_if_no_larger_than i2 -> if i1 > i2 then Can_inline_if_no_larger_than (i1 - i2) else Never_inline let min t1 t2 = match t1, t2 with | Never_inline, _ -> Never_inline | _, Never_inline -> Never_inline | Can_inline_if_no_larger_than i1, Can_inline_if_no_larger_than i2 -> Can_inline_if_no_larger_than (min i1 i2) let equal t1 t2 = match t1, t2 with | Never_inline, Never_inline -> true | Can_inline_if_no_larger_than i1, Can_inline_if_no_larger_than i2 -> i1 = i2 | (Never_inline | Can_inline_if_no_larger_than _), _ -> false end let can_try_inlining lam inlining_threshold ~number_of_arguments ~size_from_approximation = match inlining_threshold with | Threshold.Never_inline -> Threshold.Never_inline | Threshold.Can_inline_if_no_larger_than inlining_threshold -> let bonus = (* removing a call will reduce the size by at least the number of arguments *) number_of_arguments in let size = let than = inlining_threshold + bonus in match size_from_approximation with | Some size -> if size <= than then Some size else None | None -> lambda_smaller' lam ~than in match size with | None -> Threshold.Never_inline | Some size -> Threshold.Can_inline_if_no_larger_than (inlining_threshold - size + bonus) let lambda_smaller lam ~than = match lambda_smaller' lam ~than with | Some _ -> true | None -> false let can_inline lam inlining_threshold ~bonus = match inlining_threshold with | Threshold.Never_inline -> false | Threshold.Can_inline_if_no_larger_than inlining_threshold -> lambda_smaller lam ~than:(inlining_threshold + bonus) let cost (flag : Clflags.Int_arg_helper.parsed) ~round = Clflags.Int_arg_helper.get ~key:round flag let benefit_factor = 1 module Benefit = struct type t = { remove_call : int; remove_alloc : int; remove_prim : int; remove_branch : int; (* CR-someday pchambart: branch_benefit : t list; *) direct_call_of_indirect : int; requested_inline : int; (* Benefit to compensate the size of functions marked for inlining *) } let zero = { remove_call = 0; remove_alloc = 0; remove_prim = 0; remove_branch = 0; direct_call_of_indirect = 0; requested_inline = 0; } let remove_call t = { t with remove_call = t.remove_call + 1; } let remove_alloc t = { t with remove_alloc = t.remove_alloc + 1; } let remove_prim t = { t with remove_prim = t.remove_prim + 1; } let remove_prims t n = { t with remove_prim = t.remove_prim + n; } let remove_branch t = { t with remove_branch = t.remove_branch + 1; } let direct_call_of_indirect t = { t with direct_call_of_indirect = t.direct_call_of_indirect + 1; } let requested_inline t ~size_of = let size = lambda_size size_of in { t with requested_inline = t.requested_inline + size; } let remove_code_helper b (flam : Flambda.t) = match flam with | Assign _ -> b := remove_prim !b | Switch _ | String_switch _ | Static_raise _ | Try_with _ | If_then_else _ | While _ | For _ -> b := remove_branch !b | Apply _ | Send _ -> b := remove_call !b | Let _ | Let_mutable _ | Let_rec _ | Proved_unreachable | Var _ | Static_catch _ -> () let remove_code_helper_named b (named : Flambda.named) = match named with | Set_of_closures _ | Prim ((Pmakearray _ | Pmakeblock _ | Pduprecord _), _, _) -> b := remove_alloc !b (* CR-soon pchambart: should we consider that boxed integer and float operations are allocations ? *) | Prim _ | Project_closure _ | Project_var _ | Move_within_set_of_closures _ | Read_symbol_field _ -> b := remove_prim !b | Symbol _ | Read_mutable _ | Allocated_const _ | Const _ | Expr _ -> () let remove_code lam b = let b = ref b in Flambda_iterators.iter_toplevel (remove_code_helper b) (remove_code_helper_named b) lam; !b let remove_code_named lam b = let b = ref b in Flambda_iterators.iter_named_toplevel (remove_code_helper b) (remove_code_helper_named b) lam; !b let remove_projection (_proj : Projection.t) b = (* They are all primitives for the moment. The [Projection.t] argument is here for future expansion. *) remove_prim b let print ppf b = Format.fprintf ppf "@[remove_call: %i@ remove_alloc: %i@ \ remove_prim: %i@ remove_branch: %i@ \ direct: %i@ requested: %i@]" b.remove_call b.remove_alloc b.remove_prim b.remove_branch b.direct_call_of_indirect b.requested_inline let evaluate t ~round : int = benefit_factor * (t.remove_call * (cost !Clflags.inline_call_cost ~round) + t.remove_alloc * (cost !Clflags.inline_alloc_cost ~round) + t.remove_prim * (cost !Clflags.inline_prim_cost ~round) + t.remove_branch * (cost !Clflags.inline_branch_cost ~round) + (t.direct_call_of_indirect * (cost !Clflags.inline_indirect_cost ~round))) + t.requested_inline let (+) t1 t2 = { remove_call = t1.remove_call + t2.remove_call; remove_alloc = t1.remove_alloc + t2.remove_alloc; remove_prim = t1.remove_prim + t2.remove_prim; remove_branch = t1.remove_branch + t2.remove_branch; direct_call_of_indirect = t1.direct_call_of_indirect + t2.direct_call_of_indirect; requested_inline = t1.requested_inline + t2.requested_inline; } let (-) t1 t2 = { remove_call = t1.remove_call - t2.remove_call; remove_alloc = t1.remove_alloc - t2.remove_alloc; remove_prim = t1.remove_prim - t2.remove_prim; remove_branch = t1.remove_branch - t2.remove_branch; direct_call_of_indirect = t1.direct_call_of_indirect - t2.direct_call_of_indirect; requested_inline = t1.requested_inline - t2.requested_inline; } let max ~round t1 t2 = let c1 = evaluate ~round t1 in let c2 = evaluate ~round t2 in if c1 > c2 then t1 else t2 let add_code lam b = b - (remove_code lam zero) let add_code_named lam b = b - (remove_code_named lam zero) let add_projection proj b = b - (remove_projection proj zero) (* Print out a benefit as a table *) let benefit_table = [ "Calls", (fun b -> b.remove_call); "Allocs", (fun b -> b.remove_alloc); "Prims", (fun b -> b.remove_prim); "Branches", (fun b -> b.remove_branch); "Indirect calls", (fun b -> b.direct_call_of_indirect); ] let benefits_table = lazy begin List.map (fun (header, accessor) -> (header, accessor, String.length header)) benefit_table end let table_line = lazy begin let benefits_table = Lazy.force benefits_table in let dashes = List.map (fun (_, _, n) -> String.make n '-') benefits_table in "|-" ^ String.concat "-+-" dashes ^ "-|" end let table_headers = lazy begin let benefits_table = Lazy.force benefits_table in let headers = List.map (fun (head, _, _) -> head) benefits_table in "| " ^ String.concat " | " headers ^ " |" end let print_table_values ppf b = let rec loop ppf = function | [] -> Format.fprintf ppf "|" | (_, accessor, width) :: rest -> Format.fprintf ppf "| %*d %a" width (accessor b) loop rest in loop ppf (Lazy.force benefits_table) let print_table ppf b = let table_line = Lazy.force table_line in let table_headers = Lazy.force table_headers in Format.fprintf ppf "@[@[%s@]@;@[%s@]@;@[%s@]@;@[%a@]@;@[%s@]@]" table_line table_headers table_line print_table_values b table_line end module Whether_sufficient_benefit = struct type t = { round : int; benefit : Benefit.t; toplevel : bool; branch_depth : int; lifting : bool; original_size : int; new_size : int; evaluated_benefit : int; estimate : bool; } let create ~original ~toplevel ~branch_depth lam ~benefit ~lifting ~round = let evaluated_benefit = Benefit.evaluate benefit ~round in { round; benefit; toplevel; branch_depth; lifting; original_size = lambda_size original; new_size = lambda_size lam; evaluated_benefit; estimate = false; } let create_estimate ~original_size ~toplevel ~branch_depth ~new_size ~benefit ~lifting ~round = let evaluated_benefit = Benefit.evaluate benefit ~round in { round; benefit; toplevel; branch_depth; lifting; original_size; new_size; evaluated_benefit; estimate = true; } let is_nan f = match Float.classify_float f with | FP_nan -> true | FP_normal | FP_subnormal | FP_zero | FP_infinite -> false let correct_branch_factor f = (not (is_nan f)) && (Float.compare f 0. >= 0) let estimated_benefit t = if t.toplevel && t.lifting && t.branch_depth = 0 then begin let lifting_benefit = Clflags.Int_arg_helper.get ~key:t.round !Clflags.inline_lifting_benefit in float (t.evaluated_benefit + lifting_benefit) end else begin (* The estimated benefit is the evaluated benefit times an estimation of the probability that the branch does actually matter for performance (i.e. is hot). The probability is very roughly estimated by considering that under every branch the sub-expressions have the same [1 / (1 + factor)] probability [p] of being hot. Hence the probability for the current call to be hot is [p ^ number of nested branches]. The probability is expressed as [1 / (1 + factor)] rather than letting the user directly provide [p], since for every positive value of [factor] [p] is in [0, 1]. *) let branch_taken_estimated_probability = let inline_branch_factor = let factor = Clflags.Float_arg_helper.get ~key:t.round !Clflags.inline_branch_factor in if is_nan factor then Clflags.default_inline_branch_factor else if Float.compare factor 0. < 0 then 0. else factor in assert (correct_branch_factor inline_branch_factor); 1. /. (1. +. inline_branch_factor) in let call_estimated_probability = branch_taken_estimated_probability ** float t.branch_depth in float t.evaluated_benefit *. call_estimated_probability end let evaluate t = Float.compare (float t.new_size -. estimated_benefit t) (float t.original_size) <= 0 let to_string t = let lifting = t.toplevel && t.lifting && t.branch_depth = 0 in let evaluated_benefit = if lifting then let lifting_benefit = Clflags.Int_arg_helper.get ~key:t.round !Clflags.inline_lifting_benefit in t.evaluated_benefit + lifting_benefit else t.evaluated_benefit in let estimate = if t.estimate then "<" else "=" in Printf.sprintf "{benefit%s{call=%d,alloc=%d,prim=%i,branch=%i,\ indirect=%i,req=%i,\ lifting=%B}, orig_size=%d,new_size=%d,eval_size=%d,\ eval_benefit%s%d,\ branch_depth=%d}=%s" estimate t.benefit.remove_call t.benefit.remove_alloc t.benefit.remove_prim t.benefit.remove_branch t.benefit.direct_call_of_indirect t.benefit.requested_inline lifting t.original_size t.new_size (t.original_size - t.new_size) estimate evaluated_benefit t.branch_depth (if evaluate t then "yes" else "no") let print_description ~subfunctions ppf t = let pr_intro ppf = let estimate = if t.estimate then " at most" else "" in Format.pp_print_text ppf "Specialisation of the function body"; if subfunctions then Format.pp_print_text ppf ", including speculative inlining of other functions,"; Format.pp_print_text ppf " removed"; Format.pp_print_text ppf estimate; Format.pp_print_text ppf " the following operations:" in let lifting = t.toplevel && t.lifting && t.branch_depth = 0 in let requested = t.benefit.requested_inline in let pr_requested ppf = if requested > 0 then begin Format.pp_open_box ppf 0; Format.pp_print_text ppf "and inlined user-annotated functions worth "; Format.fprintf ppf "%d." requested; Format.pp_close_box ppf (); Format.pp_print_cut ppf (); Format.pp_print_cut ppf () end in let pr_lifting ppf = if lifting then begin Format.pp_open_box ppf 0; Format.pp_print_text ppf "Inlining the function would also \ lift some definitions to toplevel."; Format.pp_close_box ppf (); Format.pp_print_cut ppf (); Format.pp_print_cut ppf () end in let total_benefit = if lifting then let lifting_benefit = Clflags.Int_arg_helper.get ~key:t.round !Clflags.inline_lifting_benefit in t.evaluated_benefit + lifting_benefit else t.evaluated_benefit in let expected_benefit = estimated_benefit t in let size_change = t.new_size - t.original_size in let result = if evaluate t then "less" else "greater" in let pr_conclusion ppf = Format.pp_print_text ppf "This gives a total benefit of "; Format.pp_print_int ppf total_benefit; Format.pp_print_text ppf ". At a branch depth of "; Format.pp_print_int ppf t.branch_depth; Format.pp_print_text ppf " this produces an expected benefit of "; Format.fprintf ppf "%.1f" expected_benefit; Format.pp_print_text ppf ". The new code has size "; Format.pp_print_int ppf t.new_size; Format.pp_print_text ppf ", giving a change in code size of "; Format.pp_print_int ppf size_change; Format.pp_print_text ppf ". The change in code size is "; Format.pp_print_text ppf result; Format.pp_print_text ppf " than the expected benefit." in Format.fprintf ppf "%t@,@[@[@;%a@]@;@;%t%t@]%t" pr_intro Benefit.print_table t.benefit pr_requested pr_lifting pr_conclusion end let scale_inline_threshold_by = 8 let default_toplevel_multiplier = 8 (* CR-soon mshinwell for mshinwell: hastily-written comment, to review *) (* We may in [Inlining_decision] need to measure the size of functions that are below the inlining threshold. We also need to measure with regard to benefit (see [Inlining_decision.inline_non_recursive). The intuition for having a cached size in the second case is as follows. If a function's body exceeds some maximum size and its argument approximations are unknown (meaning that we cannot materially simplify it further), we can infer without examining the function's body that it cannot be inlined. The aim is to speed up [Inlining_decision]. The "original size" is [Inlining_cost.direct_call_size]. The "new size" is the size of the function's body plus [Inlining_cost.project_size] for each free variable and mutually recursive function accessed through the closure. To be inlined we need: body_size + (closure_accesses * project_size) <= direct_call_size - (evaluated_benefit * call_prob) i.e.: body_size <= direct_call_size + (evaluated_benefit * call_prob) - (closure_accesses * project_size) In this case we would be removing a single call and a projection for each free variable that can be accessed directly (i.e. not via the closure or the internal variable). evaluated_benefit = benefit_factor * (inline_call_cost + ((free_variables - indirect_accesses) * inline_prim_cost)) (For [inline_call_cost] and [inline_prim_cost], we use the maximum these might be across any round.) Substituting: body_size <= direct_call_size + (benefit_factor * (inline_call_cost + ((free_variables - indirect_accesses) * inline_prim_cost))) * call_prob - (closure_accesses * project_size) Rearranging: body_size <= direct_call_size + (inline_call_cost * benefit_factor * call_prob) + (free_variables * inline_prim_cost * benefit_factor * call_prob) - (indirect_accesses * inline_prim_cost * benefit_factor * call_prob) - (closure_accesses * project_size) The upper bound for the right-hand side is when call_prob = 1.0, indirect_accesses = 0 and closure_accesses = 0, giving: direct_call_size + (inline_call_cost * benefit_factor) + (free_variables * inline_prim_cost * benefit_factor) So we should measure all functions at or below this size, but also record the size discovered, so we can later re-check (without examining the body) when we know [call_prob], [indirect_accesses] and [closure_accesses]. This number is split into parts dependent and independent of the number of free variables: base = direct_call_size + (inline_call_cost * benefit_factor) multiplier = inline_prim_cost * benefit_factor body_size <= base + free_variables * multiplier *) let maximum_interesting_size_of_function_body_base = lazy begin let max_cost = ref 0 in for round = 0 to (Clflags.rounds ()) - 1 do let max_size = let inline_call_cost = cost !Clflags.inline_call_cost ~round in direct_call_size + (inline_call_cost * benefit_factor) in max_cost := max !max_cost max_size done; !max_cost end let maximum_interesting_size_of_function_body_multiplier = lazy begin let max_cost = ref 0 in for round = 0 to (Clflags.rounds ()) - 1 do let max_size = let inline_prim_cost = cost !Clflags.inline_prim_cost ~round in inline_prim_cost * benefit_factor in max_cost := max !max_cost max_size done; !max_cost end let maximum_interesting_size_of_function_body num_free_variables = let base = Lazy.force maximum_interesting_size_of_function_body_base in let multiplier = Lazy.force maximum_interesting_size_of_function_body_multiplier in base + (num_free_variables * multiplier)