(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Substitutions *) open Misc open Path open Types open Btype type type_replacement = | Path of Path.t | Type_function of { params : type_expr list; body : type_expr } type t = { types: type_replacement Path.Map.t; modules: Path.t Path.Map.t; modtypes: module_type Ident.Map.t; for_saving: bool; } let identity = { types = Path.Map.empty; modules = Path.Map.empty; modtypes = Ident.Map.empty; for_saving = false; } let add_type_path id p s = { s with types = Path.Map.add id (Path p) s.types } let add_type id p s = add_type_path (Pident id) p s let add_type_function id ~params ~body s = { s with types = Path.Map.add id (Type_function { params; body }) s.types } let add_module_path id p s = { s with modules = Path.Map.add id p s.modules } let add_module id p s = add_module_path (Pident id) p s let add_modtype id ty s = { s with modtypes = Ident.Map.add id ty s.modtypes } let for_saving s = { s with for_saving = true } let loc s x = if s.for_saving && not !Clflags.keep_locs then Location.none else x let remove_loc = let open Ast_mapper in {default_mapper with location = (fun _this _loc -> Location.none)} let is_not_doc = function | {Parsetree.attr_name = {Location.txt = "ocaml.doc"}; _} -> false | {Parsetree.attr_name = {Location.txt = "ocaml.text"}; _} -> false | {Parsetree.attr_name = {Location.txt = "doc"}; _} -> false | {Parsetree.attr_name = {Location.txt = "text"}; _} -> false | _ -> true let attrs s x = let x = if s.for_saving && not !Clflags.keep_docs then List.filter is_not_doc x else x in if s.for_saving && not !Clflags.keep_locs then remove_loc.Ast_mapper.attributes remove_loc x else x let rec module_path s path = try Path.Map.find path s.modules with Not_found -> match path with | Pident _ -> path | Pdot(p, n) -> Pdot(module_path s p, n) | Papply(p1, p2) -> Papply(module_path s p1, module_path s p2) let modtype_path s = function Pident id as p -> begin try match Ident.Map.find id s.modtypes with | Mty_ident p -> p | _ -> fatal_error "Subst.modtype_path" with Not_found -> p end | Pdot(p, n) -> Pdot(module_path s p, n) | Papply _ -> fatal_error "Subst.modtype_path" let type_path s path = match Path.Map.find path s.types with | Path p -> p | Type_function _ -> assert false | exception Not_found -> match path with | Pident _ -> path | Pdot(p, n) -> Pdot(module_path s p, n) | Papply _ -> fatal_error "Subst.type_path" let type_path s p = match Path.constructor_typath p with | Regular p -> type_path s p | Cstr (ty_path, cstr) -> Pdot(type_path s ty_path, cstr) | LocalExt _ -> type_path s p | Ext (p, cstr) -> Pdot(module_path s p, cstr) let to_subst_by_type_function s p = match Path.Map.find p s.types with | Path _ -> false | Type_function _ -> true | exception Not_found -> false (* Special type ids for saved signatures *) let new_id = ref (-1) let reset_for_saving () = new_id := -1 let newpersty desc = decr new_id; { desc; level = generic_level; scope = Btype.lowest_level; id = !new_id } (* ensure that all occurrences of 'Tvar None' are physically shared *) let tvar_none = Tvar None let tunivar_none = Tunivar None let norm = function | Tvar None -> tvar_none | Tunivar None -> tunivar_none | d -> d let ctype_apply_env_empty = ref (fun _ -> assert false) (* Similar to [Ctype.nondep_type_rec]. *) let rec typexp copy_scope s ty = let ty = repr ty in match ty.desc with Tvar _ | Tunivar _ as desc -> if s.for_saving || ty.id < 0 then let ty' = if s.for_saving then newpersty (norm desc) else newty2 ty.level desc in For_copy.save_desc copy_scope ty desc; ty.desc <- Tsubst ty'; ty' else ty | Tsubst ty -> ty | Tfield (m, k, _t1, _t2) when not s.for_saving && m = dummy_method && field_kind_repr k <> Fabsent && (repr ty).level < generic_level -> (* do not copy the type of self when it is not generalized *) ty (* cannot do it, since it would omit substitution | Tvariant row when not (static_row row) -> ty *) | _ -> let desc = ty.desc in For_copy.save_desc copy_scope ty desc; let tm = row_of_type ty in let has_fixed_row = not (is_Tconstr ty) && is_constr_row ~allow_ident:false tm in (* Make a stub *) let ty' = if s.for_saving then newpersty (Tvar None) else newgenvar () in ty'.scope <- ty.scope; ty.desc <- Tsubst ty'; ty'.desc <- begin if has_fixed_row then match tm.desc with (* PR#7348 *) Tconstr (Pdot(m,i), tl, _abbrev) -> let i' = String.sub i 0 (String.length i - 4) in Tconstr(type_path s (Pdot(m,i')), tl, ref Mnil) | _ -> assert false else match desc with | Tconstr (p, args, _abbrev) -> let args = List.map (typexp copy_scope s) args in begin match Path.Map.find p s.types with | exception Not_found -> Tconstr(type_path s p, args, ref Mnil) | Path _ -> Tconstr(type_path s p, args, ref Mnil) | Type_function { params; body } -> Tlink (!ctype_apply_env_empty params body args) end | Tpackage(p, n, tl) -> Tpackage(modtype_path s p, n, List.map (typexp copy_scope s) tl) | Tobject (t1, name) -> let t1' = typexp copy_scope s t1 in let name' = match !name with | None -> None | Some (p, tl) -> if to_subst_by_type_function s p then None else Some (type_path s p, List.map (typexp copy_scope s) tl) in Tobject (t1', ref name') | Tvariant row -> let row = row_repr row in let more = repr row.row_more in (* We must substitute in a subtle way *) (* Tsubst takes a tuple containing the row var and the variant *) begin match more.desc with Tsubst {desc = Ttuple [_;ty2]} -> (* This variant type has been already copied *) ty.desc <- Tsubst ty2; (* avoid Tlink in the new type *) Tlink ty2 | _ -> let dup = s.for_saving || more.level = generic_level || static_row row || match more.desc with Tconstr _ -> true | _ -> false in (* Various cases for the row variable *) let more' = match more.desc with Tsubst ty -> ty | Tconstr _ | Tnil -> typexp copy_scope s more | Tunivar _ | Tvar _ -> For_copy.save_desc copy_scope more more.desc; if s.for_saving then newpersty (norm more.desc) else if dup && is_Tvar more then newgenty more.desc else more | _ -> assert false in (* Register new type first for recursion *) more.desc <- Tsubst(newgenty(Ttuple[more';ty'])); (* Return a new copy *) let row = copy_row (typexp copy_scope s) true row (not dup) more' in match row.row_name with | Some (p, tl) -> Tvariant {row with row_name = if to_subst_by_type_function s p then None else Some (type_path s p, tl)} | None -> Tvariant row end | Tfield(_label, kind, _t1, t2) when field_kind_repr kind = Fabsent -> Tlink (typexp copy_scope s t2) | _ -> copy_type_desc (typexp copy_scope s) desc end; ty' (* Always make a copy of the type. If this is not done, type levels might not be correct. *) let type_expr s ty = For_copy.with_scope (fun copy_scope -> typexp copy_scope s ty) let label_declaration copy_scope s l = { ld_id = l.ld_id; ld_mutable = l.ld_mutable; ld_type = typexp copy_scope s l.ld_type; ld_loc = loc s l.ld_loc; ld_attributes = attrs s l.ld_attributes; ld_uid = l.ld_uid; } let constructor_arguments copy_scope s = function | Cstr_tuple l -> Cstr_tuple (List.map (typexp copy_scope s) l) | Cstr_record l -> Cstr_record (List.map (label_declaration copy_scope s) l) let constructor_declaration copy_scope s c = { cd_id = c.cd_id; cd_args = constructor_arguments copy_scope s c.cd_args; cd_res = Option.map (typexp copy_scope s) c.cd_res; cd_loc = loc s c.cd_loc; cd_attributes = attrs s c.cd_attributes; cd_uid = c.cd_uid; } let type_declaration' copy_scope s decl = { type_params = List.map (typexp copy_scope s) decl.type_params; type_arity = decl.type_arity; type_kind = begin match decl.type_kind with Type_abstract -> Type_abstract | Type_variant cstrs -> Type_variant (List.map (constructor_declaration copy_scope s) cstrs) | Type_record(lbls, rep) -> Type_record (List.map (label_declaration copy_scope s) lbls, rep) | Type_open -> Type_open end; type_manifest = begin match decl.type_manifest with None -> None | Some ty -> Some(typexp copy_scope s ty) end; type_private = decl.type_private; type_variance = decl.type_variance; type_separability = decl.type_separability; type_is_newtype = false; type_expansion_scope = Btype.lowest_level; type_loc = loc s decl.type_loc; type_attributes = attrs s decl.type_attributes; type_immediate = decl.type_immediate; type_unboxed = decl.type_unboxed; type_uid = decl.type_uid; } let type_declaration s decl = For_copy.with_scope (fun copy_scope -> type_declaration' copy_scope s decl) let class_signature copy_scope s sign = { csig_self = typexp copy_scope s sign.csig_self; csig_vars = Vars.map (function (m, v, t) -> (m, v, typexp copy_scope s t)) sign.csig_vars; csig_concr = sign.csig_concr; csig_inher = List.map (fun (p, tl) -> (type_path s p, List.map (typexp copy_scope s) tl)) sign.csig_inher; } let rec class_type copy_scope s = function | Cty_constr (p, tyl, cty) -> let p' = type_path s p in let tyl' = List.map (typexp copy_scope s) tyl in let cty' = class_type copy_scope s cty in Cty_constr (p', tyl', cty') | Cty_signature sign -> Cty_signature (class_signature copy_scope s sign) | Cty_arrow (l, ty, cty) -> Cty_arrow (l, typexp copy_scope s ty, class_type copy_scope s cty) let class_declaration' copy_scope s decl = { cty_params = List.map (typexp copy_scope s) decl.cty_params; cty_variance = decl.cty_variance; cty_type = class_type copy_scope s decl.cty_type; cty_path = type_path s decl.cty_path; cty_new = begin match decl.cty_new with | None -> None | Some ty -> Some (typexp copy_scope s ty) end; cty_loc = loc s decl.cty_loc; cty_attributes = attrs s decl.cty_attributes; cty_uid = decl.cty_uid; } let class_declaration s decl = For_copy.with_scope (fun copy_scope -> class_declaration' copy_scope s decl) let cltype_declaration' copy_scope s decl = { clty_params = List.map (typexp copy_scope s) decl.clty_params; clty_variance = decl.clty_variance; clty_type = class_type copy_scope s decl.clty_type; clty_path = type_path s decl.clty_path; clty_loc = loc s decl.clty_loc; clty_attributes = attrs s decl.clty_attributes; clty_uid = decl.clty_uid; } let cltype_declaration s decl = For_copy.with_scope (fun copy_scope -> cltype_declaration' copy_scope s decl) let class_type s cty = For_copy.with_scope (fun copy_scope -> class_type copy_scope s cty) let value_description' copy_scope s descr = { val_type = typexp copy_scope s descr.val_type; val_kind = descr.val_kind; val_loc = loc s descr.val_loc; val_attributes = attrs s descr.val_attributes; val_uid = descr.val_uid; } let value_description s descr = For_copy.with_scope (fun copy_scope -> value_description' copy_scope s descr) let extension_constructor' copy_scope s ext = { ext_type_path = type_path s ext.ext_type_path; ext_type_params = List.map (typexp copy_scope s) ext.ext_type_params; ext_args = constructor_arguments copy_scope s ext.ext_args; ext_ret_type = Option.map (typexp copy_scope s) ext.ext_ret_type; ext_private = ext.ext_private; ext_attributes = attrs s ext.ext_attributes; ext_loc = if s.for_saving then Location.none else ext.ext_loc; ext_uid = ext.ext_uid; } let extension_constructor s ext = For_copy.with_scope (fun copy_scope -> extension_constructor' copy_scope s ext) type scoping = | Keep | Make_local | Rescope of int let rename_bound_idents scoping s sg = let rename = let open Ident in match scoping with | Keep -> (fun id -> create_scoped ~scope:(scope id) (name id)) | Make_local -> Ident.rename | Rescope scope -> (fun id -> create_scoped ~scope (name id)) in let rec rename_bound_idents s sg = function | [] -> sg, s | Sig_type(id, td, rs, vis) :: rest -> let id' = rename id in rename_bound_idents (add_type id (Pident id') s) (Sig_type(id', td, rs, vis) :: sg) rest | Sig_module(id, pres, md, rs, vis) :: rest -> let id' = rename id in rename_bound_idents (add_module id (Pident id') s) (Sig_module (id', pres, md, rs, vis) :: sg) rest | Sig_modtype(id, mtd, vis) :: rest -> let id' = rename id in rename_bound_idents (add_modtype id (Mty_ident(Pident id')) s) (Sig_modtype(id', mtd, vis) :: sg) rest | Sig_class(id, cd, rs, vis) :: rest -> (* cheat and pretend they are types cf. PR#6650 *) let id' = rename id in rename_bound_idents (add_type id (Pident id') s) (Sig_class(id', cd, rs, vis) :: sg) rest | Sig_class_type(id, ctd, rs, vis) :: rest -> (* cheat and pretend they are types cf. PR#6650 *) let id' = rename id in rename_bound_idents (add_type id (Pident id') s) (Sig_class_type(id', ctd, rs, vis) :: sg) rest | Sig_value(id, vd, vis) :: rest -> (* scope doesn't matter for value identifiers. *) let id' = Ident.rename id in rename_bound_idents s (Sig_value(id', vd, vis) :: sg) rest | Sig_typext(id, ec, es, vis) :: rest -> let id' = rename id in rename_bound_idents s (Sig_typext(id',ec,es,vis) :: sg) rest in rename_bound_idents s [] sg let rec modtype scoping s = function Mty_ident p as mty -> begin match p with Pident id -> begin try Ident.Map.find id s.modtypes with Not_found -> mty end | Pdot(p, n) -> Mty_ident(Pdot(module_path s p, n)) | Papply _ -> fatal_error "Subst.modtype" end | Mty_signature sg -> Mty_signature(signature scoping s sg) | Mty_functor(Unit, res) -> Mty_functor(Unit, modtype scoping s res) | Mty_functor(Named (None, arg), res) -> Mty_functor(Named (None, (modtype scoping s) arg), modtype scoping s res) | Mty_functor(Named (Some id, arg), res) -> let id' = Ident.rename id in Mty_functor(Named (Some id', (modtype scoping s) arg), modtype scoping (add_module id (Pident id') s) res) | Mty_alias p -> Mty_alias (module_path s p) and signature scoping s sg = (* Components of signature may be mutually recursive (e.g. type declarations or class and type declarations), so first build global renaming substitution... *) let (sg', s') = rename_bound_idents scoping s sg in (* ... then apply it to each signature component in turn *) For_copy.with_scope (fun copy_scope -> List.rev_map (signature_item' copy_scope scoping s') sg' ) and signature_item' copy_scope scoping s comp = match comp with Sig_value(id, d, vis) -> Sig_value(id, value_description' copy_scope s d, vis) | Sig_type(id, d, rs, vis) -> Sig_type(id, type_declaration' copy_scope s d, rs, vis) | Sig_typext(id, ext, es, vis) -> Sig_typext(id, extension_constructor' copy_scope s ext, es, vis) | Sig_module(id, pres, d, rs, vis) -> Sig_module(id, pres, module_declaration scoping s d, rs, vis) | Sig_modtype(id, d, vis) -> Sig_modtype(id, modtype_declaration scoping s d, vis) | Sig_class(id, d, rs, vis) -> Sig_class(id, class_declaration' copy_scope s d, rs, vis) | Sig_class_type(id, d, rs, vis) -> Sig_class_type(id, cltype_declaration' copy_scope s d, rs, vis) and signature_item scoping s comp = For_copy.with_scope (fun copy_scope -> signature_item' copy_scope scoping s comp) and module_declaration scoping s decl = { md_type = modtype scoping s decl.md_type; md_attributes = attrs s decl.md_attributes; md_loc = loc s decl.md_loc; md_uid = decl.md_uid; } and modtype_declaration scoping s decl = { mtd_type = Option.map (modtype scoping s) decl.mtd_type; mtd_attributes = attrs s decl.mtd_attributes; mtd_loc = loc s decl.mtd_loc; mtd_uid = decl.mtd_uid; } (* For every binding k |-> d of m1, add k |-> f d to m2 and return resulting merged map. *) let merge_tbls f m1 m2 = Ident.Map.fold (fun k d accu -> Ident.Map.add k (f d) accu) m1 m2 let merge_path_maps f m1 m2 = Path.Map.fold (fun k d accu -> Path.Map.add k (f d) accu) m1 m2 let type_replacement s = function | Path p -> Path (type_path s p) | Type_function { params; body } -> For_copy.with_scope (fun copy_scope -> let params = List.map (typexp copy_scope s) params in let body = typexp copy_scope s body in Type_function { params; body }) (* Composition of substitutions: apply (compose s1 s2) x = apply s2 (apply s1 x) *) let compose s1 s2 = { types = merge_path_maps (type_replacement s2) s1.types s2.types; modules = merge_path_maps (module_path s2) s1.modules s2.modules; modtypes = merge_tbls (modtype Keep s2) s1.modtypes s2.modtypes; for_saving = s1.for_saving || s2.for_saving; }