(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) open Misc open Longident open Path open Asttypes open Parsetree open Types open Format let () = Includemod_errorprinter.register () module Sig_component_kind = Shape.Sig_component_kind module String = Misc.Stdlib.String type hiding_error = | Illegal_shadowing of { shadowed_item_id: Ident.t; shadowed_item_kind: Sig_component_kind.t; shadowed_item_loc: Location.t; shadower_id: Ident.t; user_id: Ident.t; user_kind: Sig_component_kind.t; user_loc: Location.t; } | Appears_in_signature of { opened_item_id: Ident.t; opened_item_kind: Sig_component_kind.t; user_id: Ident.t; user_kind: Sig_component_kind.t; user_loc: Location.t; } type error = Cannot_apply of module_type | Not_included of Includemod.explanation | Cannot_eliminate_dependency of module_type | Signature_expected | Structure_expected of module_type | With_no_component of Longident.t | With_mismatch of Longident.t * Includemod.explanation | With_makes_applicative_functor_ill_typed of Longident.t * Path.t * Includemod.explanation | With_changes_module_alias of Longident.t * Ident.t * Path.t | With_cannot_remove_constrained_type | Repeated_name of Sig_component_kind.t * string | Non_generalizable of { vars : type_expr list; expression : type_expr } | Non_generalizable_module of { vars : type_expr list; item : value_description; mty : module_type } | Implementation_is_required of string | Interface_not_compiled of string | Not_allowed_in_functor_body | Not_a_packed_module of type_expr | Incomplete_packed_module of type_expr | Scoping_pack of Longident.t * type_expr | Recursive_module_require_explicit_type | Apply_generative | Cannot_scrape_alias of Path.t | Cannot_scrape_package_type of Path.t | Badly_formed_signature of string * Typedecl.error | Cannot_hide_id of hiding_error | Invalid_type_subst_rhs | Unpackable_local_modtype_subst of Path.t | With_cannot_remove_packed_modtype of Path.t * module_type exception Error of Location.t * Env.t * error exception Error_forward of Location.error open Typedtree let rec path_concat head p = match p with Pident tail -> Pdot (Pident head, Ident.name tail) | Pdot (pre, s) -> Pdot (path_concat head pre, s) | Papply _ -> assert false | Pextra_ty (p, extra) -> Pextra_ty (path_concat head p, extra) (* Extract a signature from a module type *) let extract_sig env loc mty = match Env.scrape_alias env mty with Mty_signature sg -> sg | Mty_alias path -> raise(Error(loc, env, Cannot_scrape_alias path)) | _ -> raise(Error(loc, env, Signature_expected)) let extract_sig_open env loc mty = match Env.scrape_alias env mty with Mty_signature sg -> sg | Mty_alias path -> raise(Error(loc, env, Cannot_scrape_alias path)) | mty -> raise(Error(loc, env, Structure_expected mty)) (* Compute the environment after opening a module *) let type_open_ ?used_slot ?toplevel ovf env loc lid = let path = Env.lookup_module_path ~load:true ~loc:lid.loc lid.txt env in match Env.open_signature ~loc ?used_slot ?toplevel ovf path env with | Ok env -> path, env | Error _ -> let md = Env.find_module path env in ignore (extract_sig_open env lid.loc md.md_type); assert false let initial_env ~loc ~initially_opened_module ~open_implicit_modules = let env = Env.initial in let open_module env m = let open Asttypes in let lexbuf = Lexing.from_string m in let txt = Location.init lexbuf (Printf.sprintf "command line argument: -open %S" m); Parse.simple_module_path lexbuf in snd (type_open_ Override env loc {txt;loc}) in let add_units env units = String.Set.fold (fun name env -> Env.add_persistent_structure (Ident.create_persistent name) env) units env in let units = List.map Env.persistent_structures_of_dir (Load_path.get ()) in let env, units = match initially_opened_module with | None -> (env, units) | Some m -> (* Locate the directory that contains [m], adds the units it contains to the environment and open [m] in the resulting environment. *) let rec loop before after = match after with | [] -> None | units :: after -> if String.Set.mem m units then Some (units, List.rev_append before after) else loop (units :: before) after in let env, units = match loop [] units with | None -> (env, units) | Some (units_containing_m, other_units) -> (add_units env units_containing_m, other_units) in (open_module env m, units) in let env = List.fold_left add_units env units in List.fold_left open_module env open_implicit_modules let type_open_descr ?used_slot ?toplevel env sod = let (path, newenv) = Builtin_attributes.warning_scope sod.popen_attributes (fun () -> type_open_ ?used_slot ?toplevel sod.popen_override env sod.popen_loc sod.popen_expr ) in let od = { open_expr = (path, sod.popen_expr); open_bound_items = []; open_override = sod.popen_override; open_env = newenv; open_attributes = sod.popen_attributes; open_loc = sod.popen_loc; } in (od, newenv) (* Forward declaration, to be filled in by type_module_type_of *) let type_module_type_of_fwd : (Env.t -> Parsetree.module_expr -> Typedtree.module_expr * Types.module_type) ref = ref (fun _env _m -> assert false) (* Additional validity checks on type definitions arising from recursive modules *) let check_recmod_typedecls env decls = let recmod_ids = List.map fst decls in List.iter (fun (id, md) -> List.iter (fun path -> Typedecl.check_recmod_typedecl env md.Types.md_loc recmod_ids path (Env.find_type path env)) (Mtype.type_paths env (Pident id) md.Types.md_type)) decls (* Merge one "with" constraint in a signature *) let check_type_decl env sg loc id row_id newdecl decl = let fresh_id = Ident.rename id in let path = Pident fresh_id in let sub = Subst.add_type id path Subst.identity in let fresh_row_id, sub = match row_id with | None -> None, sub | Some id -> let fresh_row_id = Some (Ident.rename id) in let sub = Subst.add_type id (Pident fresh_id) sub in fresh_row_id, sub in let newdecl = Subst.type_declaration sub newdecl in let decl = Subst.type_declaration sub decl in let sg = List.map (Subst.signature_item Keep sub) sg in let env = Env.add_type ~check:false fresh_id newdecl env in let env = match fresh_row_id with | None -> env | Some fresh_row_id -> Env.add_type ~check:false fresh_row_id newdecl env in let env = Env.add_signature sg env in Includemod.type_declarations ~mark:Mark_both ~loc env fresh_id newdecl decl; Typedecl.check_coherence env loc path newdecl let make_variance p n i = let open Variance in set_if p May_pos (set_if n May_neg (set_if i Inj null)) let rec iter_path_apply p ~f = match p with | Pident _ -> () | Pdot (p, _) -> iter_path_apply p ~f | Papply (p1, p2) -> iter_path_apply p1 ~f; iter_path_apply p2 ~f; f p1 p2 (* after recursing, so we know both paths are well typed *) | Pextra_ty _ -> assert false let path_is_strict_prefix = let rec list_is_strict_prefix l ~prefix = match l, prefix with | [], [] -> false | _ :: _, [] -> true | [], _ :: _ -> false | s1 :: t1, s2 :: t2 -> String.equal s1 s2 && list_is_strict_prefix t1 ~prefix:t2 in fun path ~prefix -> match Path.flatten path, Path.flatten prefix with | `Contains_apply, _ | _, `Contains_apply -> false | `Ok (ident1, l1), `Ok (ident2, l2) -> Ident.same ident1 ident2 && list_is_strict_prefix l1 ~prefix:l2 let iterator_with_env env = let env = ref (lazy env) in let super = Btype.type_iterators in env, { super with Btype.it_signature = (fun self sg -> (* add all items to the env before recursing down, to handle recursive definitions *) let env_before = !env in env := lazy (Env.add_signature sg (Lazy.force env_before)); super.Btype.it_signature self sg; env := env_before ); Btype.it_module_type = (fun self -> function | Mty_functor (param, mty_body) -> let env_before = !env in begin match param with | Unit -> () | Named (param, mty_arg) -> self.Btype.it_module_type self mty_arg; match param with | None -> () | Some id -> env := lazy (Env.add_module ~arg:true id Mp_present mty_arg (Lazy.force env_before)) end; self.Btype.it_module_type self mty_body; env := env_before; | mty -> super.Btype.it_module_type self mty ) } let retype_applicative_functor_type ~loc env funct arg = let mty_functor = (Env.find_module funct env).md_type in let mty_arg = (Env.find_module arg env).md_type in let mty_param = match Env.scrape_alias env mty_functor with | Mty_functor (Named (_, mty_param), _) -> mty_param | _ -> assert false (* could trigger due to MPR#7611 *) in Includemod.check_modtype_inclusion ~loc env mty_arg arg mty_param (* When doing a deep destructive substitution with type M.N.t := .., we change M and M.N and so we have to check that uses of the modules other than just extracting components from them still make sense. There are only two such kinds of uses: - applicative functor types: F(M).t might not be well typed anymore - aliases: module A = M still makes sense but it doesn't mean the same thing anymore, so it's forbidden until it's clear what we should do with it. This function would be called with M.N.t and N.t to check for these uses. *) let check_usage_of_path_of_substituted_item paths ~loc ~lid env super = { super with Btype.it_signature_item = (fun self -> function | Sig_module (id, _, { md_type = Mty_alias aliased_path; _ }, _, _) when List.exists (fun path -> path_is_strict_prefix path ~prefix:aliased_path) paths -> let e = With_changes_module_alias (lid.txt, id, aliased_path) in raise(Error(loc, Lazy.force !env, e)) | sig_item -> super.Btype.it_signature_item self sig_item ); Btype.it_path = (fun referenced_path -> iter_path_apply referenced_path ~f:(fun funct arg -> if List.exists (fun path -> path_is_strict_prefix path ~prefix:arg) paths then let env = Lazy.force !env in match retype_applicative_functor_type ~loc env funct arg with | None -> () | Some explanation -> raise(Error(loc, env, With_makes_applicative_functor_ill_typed (lid.txt, referenced_path, explanation))) ) ); } (* When doing a module type destructive substitution [with module type T = RHS] where RHS is not a module type path, we need to check that the module type T was not used as a path for a packed module *) let check_usage_of_module_types ~error ~paths ~loc env super = let it_do_type_expr it ty = match get_desc ty with | Tpackage (p, _) -> begin match List.find_opt (Path.same p) paths with | Some p -> raise (Error(loc,Lazy.force !env,error p)) | _ -> super.Btype.it_do_type_expr it ty end | _ -> super.Btype.it_do_type_expr it ty in { super with Btype.it_do_type_expr } let do_check_after_substitution env ~loc ~lid paths unpackable_modtype sg = let env, iterator = iterator_with_env env in let last, rest = match List.rev paths with | [] -> assert false | last :: rest -> last, rest in (* The last item is the one that's removed. We don't need to check how it's used since it's replaced by a more specific type/module. *) assert (match last with Pident _ -> true | _ -> false); let iterator = match rest with | [] -> iterator | _ :: _ -> check_usage_of_path_of_substituted_item rest ~loc ~lid env iterator in let iterator = match unpackable_modtype with | None -> iterator | Some mty -> let error p = With_cannot_remove_packed_modtype(p,mty) in check_usage_of_module_types ~error ~paths ~loc env iterator in iterator.Btype.it_signature iterator sg; Btype.(unmark_iterators.it_signature unmark_iterators) sg let check_usage_after_substitution env ~loc ~lid paths unpackable_modtype sg = match paths, unpackable_modtype with | [_], None -> () | _ -> do_check_after_substitution env ~loc ~lid paths unpackable_modtype sg (* After substitution one also needs to re-check the well-foundedness of type declarations in recursive modules *) let rec extract_next_modules = function | Sig_module (id, _, mty, Trec_next, _) :: rem -> let (id_mty_l, rem) = extract_next_modules rem in ((id, mty) :: id_mty_l, rem) | sg -> ([], sg) let check_well_formed_module env loc context mty = (* Format.eprintf "@[check_well_formed_module@ %a@]@." Printtyp.modtype mty; *) let open Btype in let iterator = let rec check_signature env = function | [] -> () | Sig_module (id, _, mty, Trec_first, _) :: rem -> let (id_mty_l, rem) = extract_next_modules rem in begin try check_recmod_typedecls (Lazy.force env) ((id, mty) :: id_mty_l) with Typedecl.Error (_, err) -> raise (Error (loc, Lazy.force env, Badly_formed_signature(context, err))) end; check_signature env rem | _ :: rem -> check_signature env rem in let env, super = iterator_with_env env in { super with it_type_expr = (fun _self _ty -> ()); it_signature = (fun self sg -> let env_before = !env in let env = lazy (Env.add_signature sg (Lazy.force env_before)) in check_signature env sg; super.it_signature self sg); } in iterator.it_module_type iterator mty let () = Env.check_well_formed_module := check_well_formed_module let type_decl_is_alias sdecl = (* assuming no explicit constraint *) match sdecl.ptype_manifest with | Some {ptyp_desc = Ptyp_constr (lid, stl)} when List.length stl = List.length sdecl.ptype_params -> begin match List.iter2 (fun x (y, _) -> match x, y with {ptyp_desc=Ptyp_var sx}, {ptyp_desc=Ptyp_var sy} when sx = sy -> () | _, _ -> raise Exit) stl sdecl.ptype_params; with | exception Exit -> None | () -> Some lid end | _ -> None let params_are_constrained = let rec loop = function | [] -> false | hd :: tl -> match get_desc hd with | Tvar _ -> List.memq hd tl || loop tl | _ -> true in loop type with_info = | With_type of Parsetree.type_declaration | With_typesubst of Parsetree.type_declaration | With_module of { lid:Longident.t loc; path:Path.t; md:Types.module_declaration; remove_aliases:bool } | With_modsubst of Longident.t loc * Path.t * Types.module_declaration | With_modtype of Typedtree.module_type | With_modtypesubst of Typedtree.module_type let merge_constraint initial_env loc sg lid constr = let destructive_substitution = match constr with | With_type _ | With_module _ | With_modtype _ -> false | With_typesubst _ | With_modsubst _ | With_modtypesubst _ -> true in let real_ids = ref [] in let unpackable_modtype = ref None in let split_row_id s ghosts = let srow = s ^ "#row" in let rec split before = function | Sig_type(id,_,_,_) :: rest when Ident.name id = srow -> before, Some id, rest | a :: rest -> split (a::before) rest | [] -> before, None, [] in split [] ghosts in let rec patch_item constr namelist outer_sig_env sg_for_env ~ghosts item = let return ?(ghosts=ghosts) ~replace_by info = Some (info, {Signature_group.ghosts; replace_by}) in match item, namelist, constr with | Sig_type(id, decl, rs, priv), [s], With_type ({ptype_kind = Ptype_abstract} as sdecl) when Ident.name id = s && Typedecl.is_fixed_type sdecl -> let decl_row = let arity = List.length sdecl.ptype_params in { type_params = List.map (fun _ -> Btype.newgenvar()) sdecl.ptype_params; type_arity = arity; type_kind = Type_abstract; type_private = Private; type_manifest = None; type_variance = List.map (fun (_, (v, i)) -> let (c, n) = match v with | Covariant -> true, false | Contravariant -> false, true | NoVariance -> false, false in make_variance (not n) (not c) (i = Injective) ) sdecl.ptype_params; type_separability = Types.Separability.default_signature ~arity; type_loc = sdecl.ptype_loc; type_is_newtype = false; type_expansion_scope = Btype.lowest_level; type_attributes = []; type_immediate = Unknown; type_unboxed_default = false; type_uid = Uid.mk ~current_unit:(Env.get_unit_name ()); } and id_row = Ident.create_local (s^"#row") in let initial_env = Env.add_type ~check:false id_row decl_row initial_env in let sig_env = Env.add_signature sg_for_env outer_sig_env in let tdecl = Typedecl.transl_with_constraint id ~fixed_row_path:(Pident id_row) ~sig_env ~sig_decl:decl ~outer_env:initial_env sdecl in let newdecl = tdecl.typ_type in let before_ghosts, row_id, after_ghosts = split_row_id s ghosts in check_type_decl outer_sig_env sg_for_env sdecl.ptype_loc id row_id newdecl decl; let decl_row = {decl_row with type_params = newdecl.type_params} in let rs' = if rs = Trec_first then Trec_not else rs in let ghosts = List.rev_append before_ghosts (Sig_type(id_row, decl_row, rs', priv)::after_ghosts) in return ~ghosts ~replace_by:(Some (Sig_type(id, newdecl, rs, priv))) (Pident id, lid, Twith_type tdecl) | Sig_type(id, sig_decl, rs, priv) , [s], (With_type sdecl | With_typesubst sdecl as constr) when Ident.name id = s -> let sig_env = Env.add_signature sg_for_env outer_sig_env in let tdecl = Typedecl.transl_with_constraint id ~sig_env ~sig_decl ~outer_env:initial_env sdecl in let newdecl = tdecl.typ_type and loc = sdecl.ptype_loc in let before_ghosts, row_id, after_ghosts = split_row_id s ghosts in let ghosts = List.rev_append before_ghosts after_ghosts in check_type_decl outer_sig_env sg_for_env loc id row_id newdecl sig_decl; begin match constr with With_type _ -> return ~ghosts ~replace_by:(Some(Sig_type(id, newdecl, rs, priv))) (Pident id, lid, Twith_type tdecl) | (* With_typesubst *) _ -> real_ids := [Pident id]; return ~ghosts ~replace_by:None (Pident id, lid, Twith_typesubst tdecl) end | Sig_modtype(id, mtd, priv), [s], (With_modtype mty | With_modtypesubst mty) when Ident.name id = s -> let sig_env = Env.add_signature sg_for_env outer_sig_env in let () = match mtd.mtd_type with | None -> () | Some previous_mty -> Includemod.check_modtype_equiv ~loc sig_env id previous_mty mty.mty_type in if not destructive_substitution then let mtd': modtype_declaration = { mtd_uid = Uid.mk ~current_unit:(Env.get_unit_name ()); mtd_type = Some mty.mty_type; mtd_attributes = []; mtd_loc = loc; } in return ~replace_by:(Some(Sig_modtype(id, mtd', priv))) (Pident id, lid, Twith_modtype mty) else begin let path = Pident id in real_ids := [path]; begin match mty.mty_type with | Mty_ident _ -> () | mty -> unpackable_modtype := Some mty end; return ~replace_by:None (Pident id, lid, Twith_modtypesubst mty) end | Sig_module(id, pres, md, rs, priv), [s], With_module {lid=lid'; md=md'; path; remove_aliases} when Ident.name id = s -> let sig_env = Env.add_signature sg_for_env outer_sig_env in let mty = md'.md_type in let mty = Mtype.scrape_for_type_of ~remove_aliases sig_env mty in let md'' = { md' with md_type = mty } in let newmd = Mtype.strengthen_decl ~aliasable:false sig_env md'' path in ignore(Includemod.modtypes ~mark:Mark_both ~loc sig_env newmd.md_type md.md_type); return ~replace_by:(Some(Sig_module(id, pres, newmd, rs, priv))) (Pident id, lid, Twith_module (path, lid')) | Sig_module(id, _, md, _rs, _), [s], With_modsubst (lid',path,md') when Ident.name id = s -> let sig_env = Env.add_signature sg_for_env outer_sig_env in let aliasable = not (Env.is_functor_arg path sig_env) in ignore (Includemod.strengthened_module_decl ~loc ~mark:Mark_both ~aliasable sig_env md' path md); real_ids := [Pident id]; return ~replace_by:None (Pident id, lid, Twith_modsubst (path, lid')) | Sig_module(id, _, md, rs, priv) as item, s :: namelist, constr when Ident.name id = s -> let sig_env = Env.add_signature sg_for_env outer_sig_env in let sg = extract_sig sig_env loc md.md_type in let ((path, _, tcstr), newsg) = merge_signature sig_env sg namelist in let path = path_concat id path in real_ids := path :: !real_ids; let item = match md.md_type, constr with Mty_alias _, (With_module _ | With_type _) -> (* A module alias cannot be refined, so keep it and just check that the constraint is correct *) item | _ -> let newmd = {md with md_type = Mty_signature newsg} in Sig_module(id, Mp_present, newmd, rs, priv) in return ~replace_by:(Some item) (path, lid, tcstr) | _ -> None and merge_signature env sg namelist = match Signature_group.replace_in_place (patch_item constr namelist env sg) sg with | Some (x,sg) -> x, sg | None -> raise(Error(loc, env, With_no_component lid.txt)) in try let names = Longident.flatten lid.txt in let (tcstr, sg) = merge_signature initial_env sg names in if destructive_substitution then check_usage_after_substitution ~loc ~lid initial_env !real_ids !unpackable_modtype sg; let sg = match tcstr with | (_, _, Twith_typesubst tdecl) -> let how_to_extend_subst = let sdecl = match constr with | With_typesubst sdecl -> sdecl | _ -> assert false in match type_decl_is_alias sdecl with | Some lid -> let replacement, _ = try Env.find_type_by_name lid.txt initial_env with Not_found -> assert false in fun s path -> Subst.add_type_path path replacement s | None -> let body = Option.get tdecl.typ_type.type_manifest in let params = tdecl.typ_type.type_params in if params_are_constrained params then raise(Error(loc, initial_env, With_cannot_remove_constrained_type)); fun s path -> Subst.add_type_function path ~params ~body s in let sub = Subst.change_locs Subst.identity loc in let sub = List.fold_left how_to_extend_subst sub !real_ids in (* This signature will not be used directly, it will always be freshened by the caller. So what we do with the scope doesn't really matter. But making it local makes it unlikely that we will ever use the result of this function unfreshened without issue. *) Subst.signature Make_local sub sg | (_, _, Twith_modsubst (real_path, _)) -> let sub = Subst.change_locs Subst.identity loc in let sub = List.fold_left (fun s path -> Subst.add_module_path path real_path s) sub !real_ids in (* See explanation in the [Twith_typesubst] case above. *) Subst.signature Make_local sub sg | (_, _, Twith_modtypesubst tmty) -> let add s p = Subst.add_modtype_path p tmty.mty_type s in let sub = Subst.change_locs Subst.identity loc in let sub = List.fold_left add sub !real_ids in Subst.signature Make_local sub sg | _ -> sg in check_well_formed_module initial_env loc "this instantiated signature" (Mty_signature sg); (tcstr, sg) with Includemod.Error explanation -> raise(Error(loc, initial_env, With_mismatch(lid.txt, explanation))) (* Add recursion flags on declarations arising from a mutually recursive block. *) let map_rec fn decls rem = match decls with | [] -> rem | d1 :: dl -> fn Trec_first d1 :: map_end (fn Trec_next) dl rem let map_rec_type ~rec_flag fn decls rem = match decls with | [] -> rem | d1 :: dl -> let first = match rec_flag with | Recursive -> Trec_first | Nonrecursive -> Trec_not in fn first d1 :: map_end (fn Trec_next) dl rem let rec map_rec_type_with_row_types ~rec_flag fn decls rem = match decls with | [] -> rem | d1 :: dl -> if Btype.is_row_name (Ident.name d1.typ_id) then fn Trec_not d1 :: map_rec_type_with_row_types ~rec_flag fn dl rem else map_rec_type ~rec_flag fn decls rem (* Add type extension flags to extension constructors *) let map_ext fn exts rem = match exts with | [] -> rem | d1 :: dl -> fn Text_first d1 :: map_end (fn Text_next) dl rem (* Auxiliary for translating recursively-defined module types. Return a module type that approximates the shape of the given module type AST. Retain only module, type, and module type components of signatures. For types, retain only their arity, making them abstract otherwise. *) let rec approx_modtype env smty = match smty.pmty_desc with Pmty_ident lid -> let path = Env.lookup_modtype_path ~use:false ~loc:smty.pmty_loc lid.txt env in Mty_ident path | Pmty_alias lid -> let path = Env.lookup_module_path ~use:false ~load:false ~loc:smty.pmty_loc lid.txt env in Mty_alias(path) | Pmty_signature ssg -> Mty_signature(approx_sig env ssg) | Pmty_functor(param, sres) -> let (param, newenv) = match param with | Unit -> Types.Unit, env | Named (param, sarg) -> let arg = approx_modtype env sarg in match param.txt with | None -> Types.Named (None, arg), env | Some name -> let rarg = Mtype.scrape_for_functor_arg env arg in let scope = Ctype.create_scope () in let (id, newenv) = Env.enter_module ~scope ~arg:true name Mp_present rarg env in Types.Named (Some id, arg), newenv in let res = approx_modtype newenv sres in Mty_functor(param, res) | Pmty_with(sbody, constraints) -> let body = approx_modtype env sbody in List.iter (fun sdecl -> match sdecl with | Pwith_type _ | Pwith_typesubst _ | Pwith_modtype _ | Pwith_modtypesubst _ -> () | Pwith_module (_, lid') -> (* Lookup the module to make sure that it is not recursive. (GPR#1626) *) ignore (Env.lookup_module_path ~use:false ~load:false ~loc:lid'.loc lid'.txt env) | Pwith_modsubst (_, lid') -> ignore (Env.lookup_module_path ~use:false ~load:false ~loc:lid'.loc lid'.txt env)) constraints; body | Pmty_typeof smod -> let (_, mty) = !type_module_type_of_fwd env smod in mty | Pmty_extension ext -> raise (Error_forward (Builtin_attributes.error_of_extension ext)) and approx_module_declaration env pmd = { Types.md_type = approx_modtype env pmd.pmd_type; md_attributes = pmd.pmd_attributes; md_loc = pmd.pmd_loc; md_uid = Uid.internal_not_actually_unique; } and approx_sig env ssg = match ssg with [] -> [] | item :: srem -> match item.psig_desc with | Psig_type (rec_flag, sdecls) -> let decls = Typedecl.approx_type_decl sdecls in let rem = approx_sig env srem in map_rec_type ~rec_flag (fun rs (id, info) -> Sig_type(id, info, rs, Exported)) decls rem | Psig_typesubst _ -> approx_sig env srem | Psig_module { pmd_name = { txt = None; _ }; _ } -> approx_sig env srem | Psig_module pmd -> let scope = Ctype.create_scope () in let md = approx_module_declaration env pmd in let pres = match md.Types.md_type with | Mty_alias _ -> Mp_absent | _ -> Mp_present in let id, newenv = Env.enter_module_declaration ~scope (Option.get pmd.pmd_name.txt) pres md env in Sig_module(id, pres, md, Trec_not, Exported) :: approx_sig newenv srem | Psig_modsubst pms -> let scope = Ctype.create_scope () in let _, md = Env.lookup_module ~use:false ~loc:pms.pms_manifest.loc pms.pms_manifest.txt env in let pres = match md.Types.md_type with | Mty_alias _ -> Mp_absent | _ -> Mp_present in let _, newenv = Env.enter_module_declaration ~scope pms.pms_name.txt pres md env in approx_sig newenv srem | Psig_recmodule sdecls -> let scope = Ctype.create_scope () in let decls = List.filter_map (fun pmd -> Option.map (fun name -> Ident.create_scoped ~scope name, approx_module_declaration env pmd ) pmd.pmd_name.txt ) sdecls in let newenv = List.fold_left (fun env (id, md) -> Env.add_module_declaration ~check:false id Mp_present md env) env decls in map_rec (fun rs (id, md) -> Sig_module(id, Mp_present, md, rs, Exported)) decls (approx_sig newenv srem) | Psig_modtype d -> let info = approx_modtype_info env d in let scope = Ctype.create_scope () in let (id, newenv) = Env.enter_modtype ~scope d.pmtd_name.txt info env in Sig_modtype(id, info, Exported) :: approx_sig newenv srem | Psig_modtypesubst d -> let info = approx_modtype_info env d in let scope = Ctype.create_scope () in let (_id, newenv) = Env.enter_modtype ~scope d.pmtd_name.txt info env in approx_sig newenv srem | Psig_open sod -> let _, env = type_open_descr env sod in approx_sig env srem | Psig_include sincl -> let smty = sincl.pincl_mod in let mty = approx_modtype env smty in let scope = Ctype.create_scope () in let sg, newenv = Env.enter_signature ~scope (extract_sig env smty.pmty_loc mty) env in sg @ approx_sig newenv srem | Psig_class sdecls | Psig_class_type sdecls -> let decls = Typeclass.approx_class_declarations env sdecls in let rem = approx_sig env srem in map_rec (fun rs decl -> let open Typeclass in [ Sig_class_type(decl.clsty_ty_id, decl.clsty_ty_decl, rs, Exported); Sig_type(decl.clsty_obj_id, decl.clsty_obj_abbr, rs, Exported); ] ) decls [rem] |> List.flatten | _ -> approx_sig env srem and approx_modtype_info env sinfo = { mtd_type = Option.map (approx_modtype env) sinfo.pmtd_type; mtd_attributes = sinfo.pmtd_attributes; mtd_loc = sinfo.pmtd_loc; mtd_uid = Uid.internal_not_actually_unique; } let approx_modtype env smty = Warnings.without_warnings (fun () -> approx_modtype env smty) (* Auxiliaries for checking the validity of name shadowing in signatures and structures. If a shadowing is valid, we also record some information (its ident, location where it first appears, etc) about the item that gets shadowed. *) module Signature_names : sig type t type shadowable = { self: Ident.t; group: Ident.t list; (** group includes the element itself and all elements that should be removed at the same time *) loc:Location.t; } type info = [ | `Exported | `From_open | `Shadowable of shadowable | `Substituted_away of Subst.t | `Unpackable_modtype_substituted_away of Ident.t * Subst.t ] val create : unit -> t val check_value : ?info:info -> t -> Location.t -> Ident.t -> unit val check_type : ?info:info -> t -> Location.t -> Ident.t -> unit val check_typext : ?info:info -> t -> Location.t -> Ident.t -> unit val check_module : ?info:info -> t -> Location.t -> Ident.t -> unit val check_modtype : ?info:info -> t -> Location.t -> Ident.t -> unit val check_class : ?info:info -> t -> Location.t -> Ident.t -> unit val check_class_type: ?info:info -> t -> Location.t -> Ident.t -> unit val check_sig_item: ?info:info -> t -> Location.t -> Signature_group.rec_group -> unit val simplify: Env.t -> t -> Types.signature -> Types.signature end = struct type shadowable = { self: Ident.t; group: Ident.t list; (** group includes the element itself and all elements that should be removed at the same time *) loc:Location.t; } type bound_info = [ | `Exported | `Shadowable of shadowable ] type info = [ | `From_open | `Substituted_away of Subst.t | `Unpackable_modtype_substituted_away of Ident.t * Subst.t | bound_info ] type hide_reason = | From_open | Shadowed_by of Ident.t * Location.t type to_be_removed = { mutable subst: Subst.t; mutable hide: (Sig_component_kind.t * Location.t * hide_reason) Ident.Map.t; mutable unpackable_modtypes: Ident.Set.t; } type names_infos = (string, bound_info) Hashtbl.t type names = { values: names_infos; types: names_infos; modules: names_infos; modtypes: names_infos; typexts: names_infos; classes: names_infos; class_types: names_infos; } let new_names () = { values = Hashtbl.create 16; types = Hashtbl.create 16; modules = Hashtbl.create 16; modtypes = Hashtbl.create 16; typexts = Hashtbl.create 16; classes = Hashtbl.create 16; class_types = Hashtbl.create 16; } type t = { bound: names; to_be_removed: to_be_removed; } let create () = { bound = new_names (); to_be_removed = { subst = Subst.identity; hide = Ident.Map.empty; unpackable_modtypes = Ident.Set.empty; }; } let table_for component names = let open Sig_component_kind in match component with | Value -> names.values | Type -> names.types | Module -> names.modules | Module_type -> names.modtypes | Extension_constructor -> names.typexts | Class -> names.classes | Class_type -> names.class_types let check cl t loc id (info : info) = let to_be_removed = t.to_be_removed in match info with | `Substituted_away s -> to_be_removed.subst <- Subst.compose s to_be_removed.subst; | `Unpackable_modtype_substituted_away (id,s) -> to_be_removed.subst <- Subst.compose s to_be_removed.subst; to_be_removed.unpackable_modtypes <- Ident.Set.add id to_be_removed.unpackable_modtypes | `From_open -> to_be_removed.hide <- Ident.Map.add id (cl, loc, From_open) to_be_removed.hide | #bound_info as bound_info -> let tbl = table_for cl t.bound in let name = Ident.name id in match Hashtbl.find_opt tbl name with | None -> Hashtbl.add tbl name bound_info | Some (`Shadowable s) -> Hashtbl.replace tbl name bound_info; let reason = Shadowed_by (id, loc) in List.iter (fun shadowed_id -> to_be_removed.hide <- Ident.Map.add shadowed_id (cl, s.loc, reason) to_be_removed.hide ) s.group | Some `Exported -> raise(Error(loc, Env.empty, Repeated_name(cl, name))) let check_value ?info t loc id = let info = match info with | Some i -> i | None -> `Shadowable {self=id; group=[id]; loc} in check Sig_component_kind.Value t loc id info let check_type ?(info=`Exported) t loc id = check Sig_component_kind.Type t loc id info let check_module ?(info=`Exported) t loc id = check Sig_component_kind.Module t loc id info let check_modtype ?(info=`Exported) t loc id = check Sig_component_kind.Module_type t loc id info let check_typext ?(info=`Exported) t loc id = check Sig_component_kind.Extension_constructor t loc id info let check_class ?(info=`Exported) t loc id = check Sig_component_kind.Class t loc id info let check_class_type ?(info=`Exported) t loc id = check Sig_component_kind.Class_type t loc id info let classify = let open Sig_component_kind in function | Sig_type(id, _, _, _) -> Type, id | Sig_module(id, _, _, _, _) -> Module, id | Sig_modtype(id, _, _) -> Module_type, id | Sig_typext(id, _, _, _) -> Extension_constructor, id | Sig_value (id, _, _) -> Value, id | Sig_class (id, _, _, _) -> Class, id | Sig_class_type (id, _, _, _) -> Class_type, id let check_item ?info names loc kind id ids = let info = match info with | None -> `Shadowable {self=id; group=ids; loc} | Some i -> i in check kind names loc id info let check_sig_item ?info names loc (item:Signature_group.rec_group) = let check ?info names loc item = let all = List.map classify (Signature_group.flatten item) in let group = List.map snd all in List.iter (fun (kind,id) -> check_item ?info names loc kind id group) all in (* we can ignore x.pre_ghosts: they are eliminated by strengthening, and thus never appear in includes *) List.iter (check ?info names loc) (Signature_group.rec_items item.group) (* Before applying local module type substitutions where the right-hand side is not a path, we need to check that those module types where never used to pack modules. For instance {[ module type T := sig end val x: (module T) ]} should raise an error. *) let check_unpackable_modtypes ~loc ~env to_remove component = if not (Ident.Set.is_empty to_remove.unpackable_modtypes) then begin let iterator = let error p = Unpackable_local_modtype_subst p in let paths = List.map (fun id -> Pident id) (Ident.Set.elements to_remove.unpackable_modtypes) in check_usage_of_module_types ~loc ~error ~paths (ref (lazy env)) Btype.type_iterators in iterator.Btype.it_signature_item iterator component; Btype.(unmark_iterators.it_signature_item unmark_iterators) component end (* We usually require name uniqueness of signature components (e.g. types, modules, etc), however in some situation reusing the name is allowed: if the component is a value or an extension, or if the name is introduced by an include. When there are multiple specifications of a component with the same name, we try to keep only the last (rightmost) one, removing all references to the previous ones from the signature. If some reference cannot be removed, then we error out with [Cannot_hide_id]. *) let simplify env t sg = let to_remove = t.to_be_removed in let ids_to_remove = Ident.Map.fold (fun id (kind, _, _) lst -> if Sig_component_kind.can_appear_in_types kind then id :: lst else lst ) to_remove.hide [] in let simplify_item (component: Types.signature_item) = let user_kind, user_id, user_loc = let open Sig_component_kind in match component with | Sig_value(id, v, _) -> Value, id, v.val_loc | Sig_type (id, td, _, _) -> Type, id, td.type_loc | Sig_typext (id, te, _, _) -> Extension_constructor, id, te.ext_loc | Sig_module (id, _, md, _, _) -> Module, id, md.md_loc | Sig_modtype (id, mtd, _) -> Module_type, id, mtd.mtd_loc | Sig_class (id, c, _, _) -> Class, id, c.cty_loc | Sig_class_type (id, ct, _, _) -> Class_type, id, ct.clty_loc in if Ident.Map.mem user_id to_remove.hide then None else begin let component = if to_remove.subst == Subst.identity then component else begin check_unpackable_modtypes ~loc:user_loc ~env to_remove component; Subst.signature_item Keep to_remove.subst component end in let component = match ids_to_remove with | [] -> component | ids -> try Mtype.nondep_sig_item env ids component with | Ctype.Nondep_cannot_erase removed_item_id -> let (removed_item_kind, removed_item_loc, reason) = Ident.Map.find removed_item_id to_remove.hide in let err_loc, hiding_error = match reason with | From_open -> removed_item_loc, Appears_in_signature { opened_item_kind = removed_item_kind; opened_item_id = removed_item_id; user_id; user_kind; user_loc; } | Shadowed_by (shadower_id, shadower_loc) -> shadower_loc, Illegal_shadowing { shadowed_item_kind = removed_item_kind; shadowed_item_id = removed_item_id; shadowed_item_loc = removed_item_loc; shadower_id; user_id; user_kind; user_loc; } in raise (Error(err_loc, env, Cannot_hide_id hiding_error)) in Some component end in List.filter_map simplify_item sg end let has_remove_aliases_attribute attr = let remove_aliases = Attr_helper.get_no_payload_attribute ["remove_aliases"; "ocaml.remove_aliases"] attr in match remove_aliases with | None -> false | Some _ -> true (* Check and translate a module type expression *) let transl_modtype_longident loc env lid = Env.lookup_modtype_path ~loc lid env let transl_module_alias loc env lid = Env.lookup_module_path ~load:false ~loc lid env let mkmty desc typ env loc attrs = let mty = { mty_desc = desc; mty_type = typ; mty_loc = loc; mty_env = env; mty_attributes = attrs; } in Cmt_format.add_saved_type (Cmt_format.Partial_module_type mty); mty let mksig desc env loc = let sg = { sig_desc = desc; sig_loc = loc; sig_env = env } in Cmt_format.add_saved_type (Cmt_format.Partial_signature_item sg); sg (* let signature sg = List.map (fun item -> item.sig_type) sg *) let rec transl_modtype env smty = Builtin_attributes.warning_scope smty.pmty_attributes (fun () -> transl_modtype_aux env smty) and transl_modtype_functor_arg env sarg = let mty = transl_modtype env sarg in {mty with mty_type = Mtype.scrape_for_functor_arg env mty.mty_type} and transl_modtype_aux env smty = let loc = smty.pmty_loc in match smty.pmty_desc with Pmty_ident lid -> let path = transl_modtype_longident loc env lid.txt in mkmty (Tmty_ident (path, lid)) (Mty_ident path) env loc smty.pmty_attributes | Pmty_alias lid -> let path = transl_module_alias loc env lid.txt in mkmty (Tmty_alias (path, lid)) (Mty_alias path) env loc smty.pmty_attributes | Pmty_signature ssg -> let sg = transl_signature env ssg in mkmty (Tmty_signature sg) (Mty_signature sg.sig_type) env loc smty.pmty_attributes | Pmty_functor(sarg_opt, sres) -> let t_arg, ty_arg, newenv = match sarg_opt with | Unit -> Unit, Types.Unit, env | Named (param, sarg) -> let arg = transl_modtype_functor_arg env sarg in let (id, newenv) = match param.txt with | None -> None, env | Some name -> let scope = Ctype.create_scope () in let id, newenv = let arg_md = { md_type = arg.mty_type; md_attributes = []; md_loc = param.loc; md_uid = Uid.mk ~current_unit:(Env.get_unit_name ()); } in Env.enter_module_declaration ~scope ~arg:true name Mp_present arg_md env in Some id, newenv in Named (id, param, arg), Types.Named (id, arg.mty_type), newenv in let res = transl_modtype newenv sres in mkmty (Tmty_functor (t_arg, res)) (Mty_functor(ty_arg, res.mty_type)) env loc smty.pmty_attributes | Pmty_with(sbody, constraints) -> let body = transl_modtype env sbody in let init_sg = extract_sig env sbody.pmty_loc body.mty_type in let remove_aliases = has_remove_aliases_attribute smty.pmty_attributes in let (rev_tcstrs, final_sg) = List.fold_left (transl_with ~loc:smty.pmty_loc env remove_aliases) ([],init_sg) constraints in let scope = Ctype.create_scope () in mkmty (Tmty_with ( body, List.rev rev_tcstrs)) (Mtype.freshen ~scope (Mty_signature final_sg)) env loc smty.pmty_attributes | Pmty_typeof smod -> let env = Env.in_signature false env in let tmty, mty = !type_module_type_of_fwd env smod in mkmty (Tmty_typeof tmty) mty env loc smty.pmty_attributes | Pmty_extension ext -> raise (Error_forward (Builtin_attributes.error_of_extension ext)) and transl_with ~loc env remove_aliases (rev_tcstrs,sg) constr = let lid, with_info = match constr with | Pwith_type (l,decl) ->l , With_type decl | Pwith_typesubst (l,decl) ->l , With_typesubst decl | Pwith_module (l,l') -> let path, md = Env.lookup_module ~loc l'.txt env in l , With_module {lid=l';path;md; remove_aliases} | Pwith_modsubst (l,l') -> let path, md' = Env.lookup_module ~loc l'.txt env in l , With_modsubst (l',path,md') | Pwith_modtype (l,smty) -> let mty = transl_modtype env smty in l, With_modtype mty | Pwith_modtypesubst (l,smty) -> let mty = transl_modtype env smty in l, With_modtypesubst mty in let (tcstr, sg) = merge_constraint env loc sg lid with_info in (tcstr :: rev_tcstrs, sg) and transl_signature env sg = let names = Signature_names.create () in let rec transl_sig env sg = match sg with [] -> [], [], env | item :: srem -> let loc = item.psig_loc in match item.psig_desc with | Psig_value sdesc -> let (tdesc, newenv) = Typedecl.transl_value_decl env item.psig_loc sdesc in Signature_names.check_value names tdesc.val_loc tdesc.val_id; Env.register_uid tdesc.val_val.val_uid tdesc.val_loc; let (trem,rem, final_env) = transl_sig newenv srem in mksig (Tsig_value tdesc) env loc :: trem, Sig_value(tdesc.val_id, tdesc.val_val, Exported) :: rem, final_env | Psig_type (rec_flag, sdecls) -> let (decls, newenv) = Typedecl.transl_type_decl env rec_flag sdecls in List.iter (fun td -> Signature_names.check_type names td.typ_loc td.typ_id; if not (Btype.is_row_name (Ident.name td.typ_id)) then Env.register_uid td.typ_type.type_uid td.typ_loc ) decls; let (trem, rem, final_env) = transl_sig newenv srem in let sg = map_rec_type_with_row_types ~rec_flag (fun rs td -> Sig_type(td.typ_id, td.typ_type, rs, Exported)) decls rem in mksig (Tsig_type (rec_flag, decls)) env loc :: trem, sg, final_env | Psig_typesubst sdecls -> let (decls, newenv) = Typedecl.transl_type_decl env Nonrecursive sdecls in List.iter (fun td -> if td.typ_kind <> Ttype_abstract || td.typ_manifest = None || td.typ_private = Private then raise (Error (td.typ_loc, env, Invalid_type_subst_rhs)); let params = td.typ_type.type_params in if params_are_constrained params then raise(Error(loc, env, With_cannot_remove_constrained_type)); let info = let subst = Subst.add_type_function (Pident td.typ_id) ~params ~body:(Option.get td.typ_type.type_manifest) Subst.identity in Some (`Substituted_away subst) in Signature_names.check_type ?info names td.typ_loc td.typ_id; Env.register_uid td.typ_type.type_uid td.typ_loc ) decls; let (trem, rem, final_env) = transl_sig newenv srem in let sg = rem in mksig (Tsig_typesubst decls) env loc :: trem, sg, final_env | Psig_typext styext -> let (tyext, newenv) = Typedecl.transl_type_extension false env item.psig_loc styext in let constructors = tyext.tyext_constructors in List.iter (fun ext -> Signature_names.check_typext names ext.ext_loc ext.ext_id; Env.register_uid ext.ext_type.ext_uid ext.ext_loc ) constructors; let (trem, rem, final_env) = transl_sig newenv srem in mksig (Tsig_typext tyext) env loc :: trem, map_ext (fun es ext -> Sig_typext(ext.ext_id, ext.ext_type, es, Exported) ) constructors rem, final_env | Psig_exception sext -> let (ext, newenv) = Typedecl.transl_type_exception env sext in let constructor = ext.tyexn_constructor in Signature_names.check_typext names constructor.ext_loc constructor.ext_id; Env.register_uid constructor.ext_type.ext_uid constructor.ext_loc; let (trem, rem, final_env) = transl_sig newenv srem in mksig (Tsig_exception ext) env loc :: trem, Sig_typext(constructor.ext_id, constructor.ext_type, Text_exception, Exported) :: rem, final_env | Psig_module pmd -> let scope = Ctype.create_scope () in let tmty = Builtin_attributes.warning_scope pmd.pmd_attributes (fun () -> transl_modtype env pmd.pmd_type) in let pres = match tmty.mty_type with | Mty_alias _ -> Mp_absent | _ -> Mp_present in let md = { md_type=tmty.mty_type; md_attributes=pmd.pmd_attributes; md_loc=pmd.pmd_loc; md_uid = Uid.mk ~current_unit:(Env.get_unit_name ()); } in let id, newenv = match pmd.pmd_name.txt with | None -> None, env | Some name -> let id, newenv = Env.enter_module_declaration ~scope name pres md env in Signature_names.check_module names pmd.pmd_name.loc id; Some id, newenv in Env.register_uid md.md_uid md.md_loc; let (trem, rem, final_env) = transl_sig newenv srem in mksig (Tsig_module {md_id=id; md_name=pmd.pmd_name; md_presence=pres; md_type=tmty; md_loc=pmd.pmd_loc; md_attributes=pmd.pmd_attributes}) env loc :: trem, (match id with | None -> rem | Some id -> Sig_module(id, pres, md, Trec_not, Exported) :: rem), final_env | Psig_modsubst pms -> let scope = Ctype.create_scope () in let path, md = Env.lookup_module ~loc:pms.pms_manifest.loc pms.pms_manifest.txt env in let aliasable = not (Env.is_functor_arg path env) in let md = if not aliasable then md else { md_type = Mty_alias path; md_attributes = pms.pms_attributes; md_loc = pms.pms_loc; md_uid = Uid.mk ~current_unit:(Env.get_unit_name ()); } in let pres = match md.md_type with | Mty_alias _ -> Mp_absent | _ -> Mp_present in let id, newenv = Env.enter_module_declaration ~scope pms.pms_name.txt pres md env in let info = `Substituted_away (Subst.add_module id path Subst.identity) in Signature_names.check_module ~info names pms.pms_name.loc id; Env.register_uid md.md_uid md.md_loc; let (trem, rem, final_env) = transl_sig newenv srem in mksig (Tsig_modsubst {ms_id=id; ms_name=pms.pms_name; ms_manifest=path; ms_txt=pms.pms_manifest; ms_loc=pms.pms_loc; ms_attributes=pms.pms_attributes}) env loc :: trem, rem, final_env | Psig_recmodule sdecls -> let (tdecls, newenv) = transl_recmodule_modtypes env sdecls in let decls = List.filter_map (fun (md, uid, _) -> match md.md_id with | None -> None | Some id -> Some (id, md, uid) ) tdecls in List.iter (fun (id, md, uid) -> Signature_names.check_module names md.md_loc id; Env.register_uid uid md.md_loc ) decls; let (trem, rem, final_env) = transl_sig newenv srem in mksig (Tsig_recmodule (List.map (fun (md, _, _) -> md) tdecls)) env loc :: trem, map_rec (fun rs (id, md, uid) -> let d = {Types.md_type = md.md_type.mty_type; md_attributes = md.md_attributes; md_loc = md.md_loc; md_uid = uid; } in Sig_module(id, Mp_present, d, rs, Exported)) decls rem, final_env | Psig_modtype pmtd -> let newenv, mtd, decl = transl_modtype_decl env pmtd in Signature_names.check_modtype names pmtd.pmtd_loc mtd.mtd_id; Env.register_uid decl.mtd_uid mtd.mtd_loc; let (trem, rem, final_env) = transl_sig newenv srem in mksig (Tsig_modtype mtd) env loc :: trem, Sig_modtype (mtd.mtd_id, decl, Exported) :: rem, final_env | Psig_modtypesubst pmtd -> let newenv, mtd, decl = transl_modtype_decl env pmtd in let info = let mty = match mtd.mtd_type with | Some tmty -> tmty.mty_type | None -> (* parsetree invariant, see Ast_invariants *) assert false in let subst = Subst.add_modtype mtd.mtd_id mty Subst.identity in match mty with | Mty_ident _ -> `Substituted_away subst | _ -> `Unpackable_modtype_substituted_away (mtd.mtd_id,subst) in Signature_names.check_modtype ~info names pmtd.pmtd_loc mtd.mtd_id; Env.register_uid decl.mtd_uid mtd.mtd_loc; let (trem, rem, final_env) = transl_sig newenv srem in mksig (Tsig_modtypesubst mtd) env loc :: trem, rem, final_env | Psig_open sod -> let (od, newenv) = type_open_descr env sod in let (trem, rem, final_env) = transl_sig newenv srem in mksig (Tsig_open od) env loc :: trem, rem, final_env | Psig_include sincl -> let smty = sincl.pincl_mod in let tmty = Builtin_attributes.warning_scope sincl.pincl_attributes (fun () -> transl_modtype env smty) in let mty = tmty.mty_type in let scope = Ctype.create_scope () in let sg, newenv = Env.enter_signature ~scope (extract_sig env smty.pmty_loc mty) env in Signature_group.iter (Signature_names.check_sig_item names item.psig_loc) sg; let incl = { incl_mod = tmty; incl_type = sg; incl_attributes = sincl.pincl_attributes; incl_loc = sincl.pincl_loc; } in let (trem, rem, final_env) = transl_sig newenv srem in mksig (Tsig_include incl) env loc :: trem, sg @ rem, final_env | Psig_class cl -> let (classes, newenv) = Typeclass.class_descriptions env cl in List.iter (fun cls -> let open Typeclass in let loc = cls.cls_id_loc.Location.loc in Signature_names.check_type names loc cls.cls_obj_id; Signature_names.check_class names loc cls.cls_id; Signature_names.check_class_type names loc cls.cls_ty_id; Env.register_uid cls.cls_decl.cty_uid cls.cls_decl.cty_loc; ) classes; let (trem, rem, final_env) = transl_sig newenv srem in let sg = map_rec (fun rs cls -> let open Typeclass in [Sig_class(cls.cls_id, cls.cls_decl, rs, Exported); Sig_class_type(cls.cls_ty_id, cls.cls_ty_decl, rs, Exported); Sig_type(cls.cls_obj_id, cls.cls_obj_abbr, rs, Exported) ] ) classes [rem] |> List.flatten in let typedtree = mksig (Tsig_class (List.map (fun decr -> decr.Typeclass.cls_info) classes)) env loc :: trem in typedtree, sg, final_env | Psig_class_type cl -> let (classes, newenv) = Typeclass.class_type_declarations env cl in List.iter (fun decl -> let open Typeclass in let loc = decl.clsty_id_loc.Location.loc in Signature_names.check_class_type names loc decl.clsty_ty_id; Signature_names.check_type names loc decl.clsty_obj_id; Env.register_uid decl.clsty_ty_decl.clty_uid decl.clsty_ty_decl.clty_loc; ) classes; let (trem,rem, final_env) = transl_sig newenv srem in let sg = map_rec (fun rs decl -> let open Typeclass in [Sig_class_type(decl.clsty_ty_id, decl.clsty_ty_decl, rs, Exported); Sig_type(decl.clsty_obj_id, decl.clsty_obj_abbr, rs, Exported); ] ) classes [rem] |> List.flatten in let typedtree = mksig (Tsig_class_type (List.map (fun decl -> decl.Typeclass.clsty_info) classes)) env loc :: trem in typedtree, sg, final_env | Psig_attribute x -> Builtin_attributes.warning_attribute x; let (trem,rem, final_env) = transl_sig env srem in mksig (Tsig_attribute x) env loc :: trem, rem, final_env | Psig_extension (ext, _attrs) -> raise (Error_forward (Builtin_attributes.error_of_extension ext)) in let previous_saved_types = Cmt_format.get_saved_types () in Builtin_attributes.warning_scope [] (fun () -> let (trem, rem, final_env) = transl_sig (Env.in_signature true env) sg in let rem = Signature_names.simplify final_env names rem in let sg = { sig_items = trem; sig_type = rem; sig_final_env = final_env } in Cmt_format.set_saved_types ((Cmt_format.Partial_signature sg) :: previous_saved_types); sg ) and transl_modtype_decl env pmtd = Builtin_attributes.warning_scope pmtd.pmtd_attributes (fun () -> transl_modtype_decl_aux env pmtd) and transl_modtype_decl_aux env {pmtd_name; pmtd_type; pmtd_attributes; pmtd_loc} = let tmty = Option.map (transl_modtype (Env.in_signature true env)) pmtd_type in let decl = { Types.mtd_type=Option.map (fun t -> t.mty_type) tmty; mtd_attributes=pmtd_attributes; mtd_loc=pmtd_loc; mtd_uid = Uid.mk ~current_unit:(Env.get_unit_name ()); } in let scope = Ctype.create_scope () in let (id, newenv) = Env.enter_modtype ~scope pmtd_name.txt decl env in let mtd = { mtd_id=id; mtd_name=pmtd_name; mtd_type=tmty; mtd_attributes=pmtd_attributes; mtd_loc=pmtd_loc; } in newenv, mtd, decl and transl_recmodule_modtypes env sdecls = let make_env curr = List.fold_left (fun env (id_shape, _, md, _) -> Option.fold ~none:env ~some:(fun (id, shape) -> Env.add_module_declaration ~check:true ~shape ~arg:true id Mp_present md env ) id_shape ) env curr in let transition env_c curr = List.map2 (fun pmd (id_shape, id_loc, md, _) -> let tmty = Builtin_attributes.warning_scope pmd.pmd_attributes (fun () -> transl_modtype env_c pmd.pmd_type) in let md = { md with Types.md_type = tmty.mty_type } in (id_shape, id_loc, md, tmty)) sdecls curr in let map_mtys curr = List.filter_map (fun (id_shape, _, md, _) -> Option.map (fun (id, _) -> (id, md)) id_shape) curr in let scope = Ctype.create_scope () in let ids = List.map (fun x -> Option.map (Ident.create_scoped ~scope) x.pmd_name.txt) sdecls in let approx_env = List.fold_left (fun env -> Option.fold ~none:env ~some:(fun id -> (* cf #5965 *) Env.enter_unbound_module (Ident.name id) Mod_unbound_illegal_recursion env )) env ids in let init = List.map2 (fun id pmd -> let md_uid = Uid.mk ~current_unit:(Env.get_unit_name ()) in let md = { md_type = approx_modtype approx_env pmd.pmd_type; md_loc = pmd.pmd_loc; md_attributes = pmd.pmd_attributes; md_uid } in let id_shape = Option.map (fun id -> id, Shape.var md_uid id) id in (id_shape, pmd.pmd_name, md, ())) ids sdecls in let env0 = make_env init in let dcl1 = Warnings.without_warnings (fun () -> transition env0 init) in let env1 = make_env dcl1 in check_recmod_typedecls env1 (map_mtys dcl1); let dcl2 = transition env1 dcl1 in (* List.iter (fun (id, mty) -> Format.printf "%a: %a@." Printtyp.ident id Printtyp.modtype mty) dcl2; *) let env2 = make_env dcl2 in check_recmod_typedecls env2 (map_mtys dcl2); let dcl2 = List.map2 (fun pmd (id_shape, id_loc, md, mty) -> let tmd = {md_id=Option.map fst id_shape; md_name=id_loc; md_type=mty; md_presence=Mp_present; md_loc=pmd.pmd_loc; md_attributes=pmd.pmd_attributes} in tmd, md.md_uid, Option.map snd id_shape ) sdecls dcl2 in (dcl2, env2) (* Try to convert a module expression to a module path. *) exception Not_a_path let rec path_of_module mexp = match mexp.mod_desc with | Tmod_ident (p,_) -> p | Tmod_apply(funct, arg, _coercion) when !Clflags.applicative_functors -> Papply(path_of_module funct, path_of_module arg) | Tmod_constraint (mexp, _, _, _) -> path_of_module mexp | (Tmod_structure _ | Tmod_functor _ | Tmod_apply_unit _ | Tmod_unpack _ | Tmod_apply _) -> raise Not_a_path let path_of_module mexp = try Some (path_of_module mexp) with Not_a_path -> None (* Check that all core type schemes in a structure do not contain non-generalized type variable *) let rec nongen_modtype env = function Mty_ident _ -> None | Mty_alias _ -> None | Mty_signature sg -> let env = Env.add_signature sg env in List.find_map (nongen_signature_item env) sg | Mty_functor(arg_opt, body) -> let env = match arg_opt with | Unit | Named (None, _) -> env | Named (Some id, param) -> Env.add_module ~arg:true id Mp_present param env in nongen_modtype env body and nongen_signature_item env = function | Sig_value(_id, desc, _) -> Ctype.nongen_vars_in_schema env desc.val_type |> Option.map (fun vars -> (vars, desc)) | Sig_module(_id, _, md, _, _) -> nongen_modtype env md.md_type | _ -> None let check_nongen_modtype env loc mty = nongen_modtype env mty |> Option.iter (fun (vars, item) -> let vars = Btype.TypeSet.elements vars in let error = Non_generalizable_module { vars; item; mty } in raise(Error(loc, env, error)) ) let check_nongen_signature_item env sig_item = match sig_item with Sig_value(_id, vd, _) -> Ctype.nongen_vars_in_schema env vd.val_type |> Option.iter (fun vars -> let vars = Btype.TypeSet.elements vars in let error = Non_generalizable { vars; expression = vd.val_type } in raise (Error (vd.val_loc, env, error)) ) | Sig_module (_id, _, md, _, _) -> check_nongen_modtype env md.md_loc md.md_type | _ -> () let check_nongen_signature env sg = List.iter (check_nongen_signature_item env) sg (* Helpers for typing recursive modules *) let anchor_submodule name anchor = match anchor, name with | None, _ | _, None -> None | Some p, Some name -> Some(Pdot(p, name)) let anchor_recmodule = Option.map (fun id -> Pident id) let enrich_type_decls anchor decls oldenv newenv = match anchor with None -> newenv | Some p -> List.fold_left (fun e info -> let id = info.typ_id in let info' = Mtype.enrich_typedecl oldenv (Pdot(p, Ident.name id)) id info.typ_type in Env.add_type ~check:true id info' e) oldenv decls let enrich_module_type anchor name mty env = match anchor, name with | None, _ | _, None -> mty | Some p, Some name -> Mtype.enrich_modtype env (Pdot(p, name)) mty let check_recmodule_inclusion env bindings = (* PR#4450, PR#4470: consider module rec X : DECL = MOD where MOD has inferred type ACTUAL The "natural" typing condition E, X: ACTUAL |- ACTUAL <: DECL leads to circularities through manifest types. Instead, we "unroll away" the potential circularities a finite number of times. The (weaker) condition we implement is: E, X: DECL, X1: ACTUAL, X2: ACTUAL{X <- X1}/X1 ... Xn: ACTUAL{X <- X(n-1)}/X(n-1) |- ACTUAL{X <- Xn}/Xn <: DECL{X <- Xn} so that manifest types rooted at X(n+1) are expanded in terms of X(n), avoiding circularities. The strengthenings ensure that Xn.t = X(n-1).t = ... = X2.t = X1.t. N can be chosen arbitrarily; larger values of N result in more recursive definitions being accepted. A good choice appears to be the number of mutually recursive declarations. *) let subst_and_strengthen env scope s id mty = let mty = Subst.modtype (Rescope scope) s mty in match id with | None -> mty | Some id -> Mtype.strengthen ~aliasable:false env mty (Subst.module_path s (Pident id)) in let rec check_incl first_time n env s = let scope = Ctype.create_scope () in if n > 0 then begin (* Generate fresh names Y_i for the rec. bound module idents X_i *) let bindings1 = List.map (fun (id, _name, _mty_decl, _modl, mty_actual, _attrs, _loc, shape, _uid) -> let ids = Option.map (fun id -> (id, Ident.create_scoped ~scope (Ident.name id))) id in (ids, mty_actual, shape)) bindings in (* Enter the Y_i in the environment with their actual types substituted by the input substitution s *) let env' = List.fold_left (fun env (ids, mty_actual, shape) -> match ids with | None -> env | Some (id, id') -> let mty_actual' = if first_time then mty_actual else subst_and_strengthen env scope s (Some id) mty_actual in Env.add_module ~arg:false ~shape id' Mp_present mty_actual' env) env bindings1 in (* Build the output substitution Y_i <- X_i *) let s' = List.fold_left (fun s (ids, _mty_actual, _shape) -> match ids with | None -> s | Some (id, id') -> Subst.add_module id (Pident id') s) Subst.identity bindings1 in (* Recurse with env' and s' *) check_incl false (n-1) env' s' end else begin (* Base case: check inclusion of s(mty_actual) in s(mty_decl) and insert coercion if needed *) let check_inclusion (id, name, mty_decl, modl, mty_actual, attrs, loc, shape, uid) = let mty_decl' = Subst.modtype (Rescope scope) s mty_decl.mty_type and mty_actual' = subst_and_strengthen env scope s id mty_actual in let coercion, shape = try Includemod.modtypes_with_shape ~shape ~loc:modl.mod_loc ~mark:Mark_both env mty_actual' mty_decl' with Includemod.Error msg -> raise(Error(modl.mod_loc, env, Not_included msg)) in let modl' = { mod_desc = Tmod_constraint(modl, mty_decl.mty_type, Tmodtype_explicit mty_decl, coercion); mod_type = mty_decl.mty_type; mod_env = env; mod_loc = modl.mod_loc; mod_attributes = []; } in let mb = { mb_id = id; mb_name = name; mb_presence = Mp_present; mb_expr = modl'; mb_attributes = attrs; mb_loc = loc; } in mb, shape, uid in List.map check_inclusion bindings end in check_incl true (List.length bindings) env Subst.identity (* Helper for unpack *) let rec package_constraints_sig env loc sg constrs = List.map (function | Sig_type (id, ({type_params=[]} as td), rs, priv) when List.mem_assoc [Ident.name id] constrs -> let ty = List.assoc [Ident.name id] constrs in Sig_type (id, {td with type_manifest = Some ty}, rs, priv) | Sig_module (id, pres, md, rs, priv) -> let rec aux = function | (m :: ((_ :: _) as l), t) :: rest when m = Ident.name id -> (l, t) :: aux rest | _ :: rest -> aux rest | [] -> [] in let md = {md with md_type = package_constraints env loc md.md_type (aux constrs) } in Sig_module (id, pres, md, rs, priv) | item -> item ) sg and package_constraints env loc mty constrs = if constrs = [] then mty else begin match Mtype.scrape env mty with | Mty_signature sg -> Mty_signature (package_constraints_sig env loc sg constrs) | Mty_functor _ | Mty_alias _ -> assert false | Mty_ident p -> raise(Error(loc, env, Cannot_scrape_package_type p)) end let modtype_of_package env loc p fl = (* We call Ctype.correct_levels to ensure that the types being added to the module type are at generic_level. *) let mty = package_constraints env loc (Mty_ident p) (List.map (fun (n, t) -> Longident.flatten n, Ctype.correct_levels t) fl) in Subst.modtype Keep Subst.identity mty let package_subtype env p1 fl1 p2 fl2 = let mkmty p fl = let fl = List.filter (fun (_n,t) -> Ctype.free_variables t = []) fl in modtype_of_package env Location.none p fl in match mkmty p1 fl1, mkmty p2 fl2 with | exception Error(_, _, Cannot_scrape_package_type _) -> false | mty1, mty2 -> let loc = Location.none in match Includemod.modtypes ~loc ~mark:Mark_both env mty1 mty2 with | Tcoerce_none -> true | _ | exception Includemod.Error _ -> false let () = Ctype.package_subtype := package_subtype let wrap_constraint_package env mark arg mty explicit = let mark = if mark then Includemod.Mark_both else Includemod.Mark_neither in let mty1 = Subst.modtype Keep Subst.identity arg.mod_type in let mty2 = Subst.modtype Keep Subst.identity mty in let coercion = try Includemod.modtypes ~loc:arg.mod_loc env ~mark mty1 mty2 with Includemod.Error msg -> raise(Error(arg.mod_loc, env, Not_included msg)) in { mod_desc = Tmod_constraint(arg, mty, explicit, coercion); mod_type = mty; mod_env = env; mod_attributes = []; mod_loc = arg.mod_loc } let wrap_constraint_with_shape env mark arg mty shape explicit = let mark = if mark then Includemod.Mark_both else Includemod.Mark_neither in let coercion, shape = try Includemod.modtypes_with_shape ~shape ~loc:arg.mod_loc env ~mark arg.mod_type mty with Includemod.Error msg -> raise(Error(arg.mod_loc, env, Not_included msg)) in { mod_desc = Tmod_constraint(arg, mty, explicit, coercion); mod_type = mty; mod_env = env; mod_attributes = []; mod_loc = arg.mod_loc }, shape (* Type a module value expression *) (* These describe the X in [F(X)] (which might be missing, for [F ()]) *) type argument_summary = { is_syntactic_unit: bool; arg: Typedtree.module_expr; path: Path.t option; shape: Shape.t } type application_summary = { loc: Location.t; attributes: attributes; f_loc: Location.t; (* loc for F *) arg: argument_summary option (* None for () *) } let simplify_app_summary app_view = match app_view.arg with | None -> Includemod.Error.Unit, Mty_signature [] | Some arg -> let mty = arg.arg.mod_type in match arg.is_syntactic_unit , arg.path with | true , _ -> Includemod.Error.Empty_struct, mty | false, Some p -> Includemod.Error.Named p, mty | false, None -> Includemod.Error.Anonymous, mty let rec type_module ?(alias=false) sttn funct_body anchor env smod = Builtin_attributes.warning_scope smod.pmod_attributes (fun () -> type_module_aux ~alias sttn funct_body anchor env smod) and type_module_aux ~alias sttn funct_body anchor env smod = match smod.pmod_desc with Pmod_ident lid -> let path = Env.lookup_module_path ~load:(not alias) ~loc:smod.pmod_loc lid.txt env in let md = { mod_desc = Tmod_ident (path, lid); mod_type = Mty_alias path; mod_env = env; mod_attributes = smod.pmod_attributes; mod_loc = smod.pmod_loc } in let aliasable = not (Env.is_functor_arg path env) in let shape = Env.shape_of_path ~namespace:Shape.Sig_component_kind.Module env path in let md = if alias && aliasable then (Env.add_required_global (Path.head path); md) else begin let mty = if sttn then Env.find_strengthened_module ~aliasable path env else (Env.find_module path env).md_type in match mty with | Mty_alias p1 when not alias -> let p1 = Env.normalize_module_path (Some smod.pmod_loc) env p1 in let mty = Includemod.expand_module_alias ~strengthen:sttn env p1 in { md with mod_desc = Tmod_constraint (md, mty, Tmodtype_implicit, Tcoerce_alias (env, path, Tcoerce_none)); mod_type = mty } | mty -> { md with mod_type = mty } end in md, shape | Pmod_structure sstr -> let (str, sg, names, shape, _finalenv) = type_structure funct_body anchor env sstr in let md = { mod_desc = Tmod_structure str; mod_type = Mty_signature sg; mod_env = env; mod_attributes = smod.pmod_attributes; mod_loc = smod.pmod_loc } in let sg' = Signature_names.simplify _finalenv names sg in if List.length sg' = List.length sg then md, shape else wrap_constraint_with_shape env false md (Mty_signature sg') shape Tmodtype_implicit | Pmod_functor(arg_opt, sbody) -> let t_arg, ty_arg, newenv, funct_shape_param, funct_body = match arg_opt with | Unit -> Unit, Types.Unit, env, Shape.for_unnamed_functor_param, false | Named (param, smty) -> let mty = transl_modtype_functor_arg env smty in let scope = Ctype.create_scope () in let (id, newenv, var) = match param.txt with | None -> None, env, Shape.for_unnamed_functor_param | Some name -> let md_uid = Uid.mk ~current_unit:(Env.get_unit_name ()) in let arg_md = { md_type = mty.mty_type; md_attributes = []; md_loc = param.loc; md_uid; } in let id = Ident.create_scoped ~scope name in let shape = Shape.var md_uid id in let newenv = Env.add_module_declaration ~shape ~arg:true ~check:true id Mp_present arg_md env in Some id, newenv, id in Named (id, param, mty), Types.Named (id, mty.mty_type), newenv, var, true in let body, body_shape = type_module true funct_body None newenv sbody in { mod_desc = Tmod_functor(t_arg, body); mod_type = Mty_functor(ty_arg, body.mod_type); mod_env = env; mod_attributes = smod.pmod_attributes; mod_loc = smod.pmod_loc }, Shape.abs funct_shape_param body_shape | Pmod_apply _ | Pmod_apply_unit _ -> type_application smod.pmod_loc sttn funct_body env smod | Pmod_constraint(sarg, smty) -> let arg, arg_shape = type_module ~alias true funct_body anchor env sarg in let mty = transl_modtype env smty in let md, final_shape = wrap_constraint_with_shape env true arg mty.mty_type arg_shape (Tmodtype_explicit mty) in { md with mod_loc = smod.pmod_loc; mod_attributes = smod.pmod_attributes; }, final_shape | Pmod_unpack sexp -> let exp = Ctype.with_local_level_if_principal (fun () -> Typecore.type_exp env sexp) ~post:Typecore.generalize_structure_exp in let mty = match get_desc (Ctype.expand_head env exp.exp_type) with Tpackage (p, fl) -> if List.exists (fun (_n, t) -> Ctype.free_variables t <> []) fl then raise (Error (smod.pmod_loc, env, Incomplete_packed_module exp.exp_type)); if !Clflags.principal && not (Typecore.generalizable (Btype.generic_level-1) exp.exp_type) then Location.prerr_warning smod.pmod_loc (Warnings.Not_principal "this module unpacking"); modtype_of_package env smod.pmod_loc p fl | Tvar _ -> raise (Typecore.Error (smod.pmod_loc, env, Typecore.Cannot_infer_signature)) | _ -> raise (Error(smod.pmod_loc, env, Not_a_packed_module exp.exp_type)) in if funct_body && Mtype.contains_type env mty then raise (Error (smod.pmod_loc, env, Not_allowed_in_functor_body)); { mod_desc = Tmod_unpack(exp, mty); mod_type = mty; mod_env = env; mod_attributes = smod.pmod_attributes; mod_loc = smod.pmod_loc }, Shape.leaf_for_unpack | Pmod_extension ext -> raise (Error_forward (Builtin_attributes.error_of_extension ext)) and type_application loc strengthen funct_body env smod = let rec extract_application funct_body env sargs smod = match smod.pmod_desc with | Pmod_apply (f, sarg) -> let arg, shape = type_module true funct_body None env sarg in let summary = { loc = smod.pmod_loc; attributes = smod.pmod_attributes; f_loc = f.pmod_loc; arg = Some { is_syntactic_unit = sarg.pmod_desc = Pmod_structure []; arg; path = path_of_module arg; shape; } } in extract_application funct_body env (summary::sargs) f | Pmod_apply_unit f -> let summary = { loc = smod.pmod_loc; attributes = smod.pmod_attributes; f_loc = f.pmod_loc; arg = None } in extract_application funct_body env (summary::sargs) f | _ -> smod, sargs in let sfunct, args = extract_application funct_body env [] smod in let funct, funct_shape = let has_path { arg } = match arg with | None | Some { path = None } -> false | Some { path = Some _ } -> true in let strengthen = strengthen && List.for_all has_path args in type_module strengthen funct_body None env sfunct in List.fold_left (type_one_application ~ctx:(loc, funct, args) funct_body env) (funct, funct_shape) args and type_one_application ~ctx:(apply_loc,md_f,args) funct_body env (funct, funct_shape) app_view = match Env.scrape_alias env funct.mod_type with | Mty_functor (Unit, mty_res) -> begin match app_view.arg with | None -> () | Some arg -> if arg.is_syntactic_unit then (* this call to warning_scope allows e.g. [ F (struct end [@warning "-73"]) ] not to warn; useful when generating code that must work over multiple versions of OCaml *) Builtin_attributes.warning_scope arg.arg.mod_attributes @@ fun () -> Location.prerr_warning arg.arg.mod_loc Warnings.Generative_application_expects_unit else raise (Error (app_view.f_loc, env, Apply_generative)); end; if funct_body && Mtype.contains_type env funct.mod_type then raise (Error (apply_loc, env, Not_allowed_in_functor_body)); { mod_desc = Tmod_apply_unit funct; mod_type = mty_res; mod_env = env; mod_attributes = app_view.attributes; mod_loc = funct.mod_loc }, Shape.app funct_shape ~arg:Shape.dummy_mod | Mty_functor (Named (param, mty_param), mty_res) as mty_functor -> let apply_error () = let args = List.map simplify_app_summary args in let mty_f = md_f.mod_type in let lid_app = None in raise(Includemod.Apply_error {loc=apply_loc;env;lid_app;mty_f;args}) in begin match app_view with | { arg = None; _ } -> apply_error () | { loc = app_loc; attributes = app_attributes; arg = Some { shape = arg_shape; path = arg_path; arg } } -> let coercion = try Includemod.modtypes ~loc:arg.mod_loc ~mark:Mark_both env arg.mod_type mty_param with Includemod.Error _ -> apply_error () in let mty_appl = match arg_path with | Some path -> let scope = Ctype.create_scope () in let subst = match param with | None -> Subst.identity | Some p -> Subst.add_module p path Subst.identity in Subst.modtype (Rescope scope) subst mty_res | None -> let env, nondep_mty = match param with | None -> env, mty_res | Some param -> let env = Env.add_module ~arg:true param Mp_present arg.mod_type env in check_well_formed_module env app_loc "the signature of this functor application" mty_res; try env, Mtype.nondep_supertype env [param] mty_res with Ctype.Nondep_cannot_erase _ -> let error = Cannot_eliminate_dependency mty_functor in raise (Error(app_loc, env, error)) in begin match Includemod.modtypes ~loc:app_loc ~mark:Mark_neither env mty_res nondep_mty with | Tcoerce_none -> () | _ -> fatal_error "unexpected coercion from original module type to \ nondep_supertype one" | exception Includemod.Error _ -> fatal_error "nondep_supertype not included in original module type" end; nondep_mty in check_well_formed_module env apply_loc "the signature of this functor application" mty_appl; { mod_desc = Tmod_apply(funct, arg, coercion); mod_type = mty_appl; mod_env = env; mod_attributes = app_attributes; mod_loc = app_loc }, Shape.app ~arg:arg_shape funct_shape end | Mty_alias path -> raise(Error(app_view.f_loc, env, Cannot_scrape_alias path)) | _ -> let args = List.map simplify_app_summary args in let mty_f = md_f.mod_type in let lid_app = None in raise(Includemod.Apply_error {loc=apply_loc;env;lid_app;mty_f;args}) and type_open_decl ?used_slot ?toplevel funct_body names env sod = Builtin_attributes.warning_scope sod.popen_attributes (fun () -> type_open_decl_aux ?used_slot ?toplevel funct_body names env sod ) and type_open_decl_aux ?used_slot ?toplevel funct_body names env od = let loc = od.popen_loc in match od.popen_expr.pmod_desc with | Pmod_ident lid -> let path, newenv = type_open_ ?used_slot ?toplevel od.popen_override env loc lid in let md = { mod_desc = Tmod_ident (path, lid); mod_type = Mty_alias path; mod_env = env; mod_attributes = od.popen_expr.pmod_attributes; mod_loc = od.popen_expr.pmod_loc } in let open_descr = { open_expr = md; open_bound_items = []; open_override = od.popen_override; open_env = newenv; open_loc = loc; open_attributes = od.popen_attributes } in open_descr, [], newenv | _ -> let md, mod_shape = type_module true funct_body None env od.popen_expr in let scope = Ctype.create_scope () in let sg, newenv = Env.enter_signature ~scope ~mod_shape (extract_sig_open env md.mod_loc md.mod_type) env in let info, visibility = match toplevel with | Some false | None -> Some `From_open, Hidden | Some true -> None, Exported in Signature_group.iter (Signature_names.check_sig_item ?info names loc) sg; let sg = List.map (function | Sig_value(id, vd, _) -> Sig_value(id, vd, visibility) | Sig_type(id, td, rs, _) -> Sig_type(id, td, rs, visibility) | Sig_typext(id, ec, et, _) -> Sig_typext(id, ec, et, visibility) | Sig_module(id, mp, md, rs, _) -> Sig_module(id, mp, md, rs, visibility) | Sig_modtype(id, mtd, _) -> Sig_modtype(id, mtd, visibility) | Sig_class(id, cd, rs, _) -> Sig_class(id, cd, rs, visibility) | Sig_class_type(id, ctd, rs, _) -> Sig_class_type(id, ctd, rs, visibility) ) sg in let open_descr = { open_expr = md; open_bound_items = sg; open_override = od.popen_override; open_env = newenv; open_loc = loc; open_attributes = od.popen_attributes } in open_descr, sg, newenv and type_structure ?(toplevel = false) funct_body anchor env sstr = let names = Signature_names.create () in let type_str_item env shape_map {pstr_loc = loc; pstr_desc = desc} = match desc with | Pstr_eval (sexpr, attrs) -> let expr = Builtin_attributes.warning_scope attrs (fun () -> Typecore.type_expression env sexpr) in Tstr_eval (expr, attrs), [], shape_map, env | Pstr_value(rec_flag, sdefs) -> let (defs, newenv) = Typecore.type_binding env rec_flag sdefs in let () = if rec_flag = Recursive then Typecore.check_recursive_bindings env defs in (* Note: Env.find_value does not trigger the value_used event. Values will be marked as being used during the signature inclusion test. *) let items, shape_map = List.fold_left (fun (acc, shape_map) (id, { Asttypes.loc; _ }, _typ)-> Signature_names.check_value names loc id; let vd = Env.find_value (Pident id) newenv in Env.register_uid vd.val_uid vd.val_loc; Sig_value(id, vd, Exported) :: acc, Shape.Map.add_value shape_map id vd.val_uid ) ([], shape_map) (let_bound_idents_full defs) in Tstr_value(rec_flag, defs), List.rev items, shape_map, newenv | Pstr_primitive sdesc -> let (desc, newenv) = Typedecl.transl_value_decl env loc sdesc in Signature_names.check_value names desc.val_loc desc.val_id; Env.register_uid desc.val_val.val_uid desc.val_val.val_loc; Tstr_primitive desc, [Sig_value(desc.val_id, desc.val_val, Exported)], Shape.Map.add_value shape_map desc.val_id desc.val_val.val_uid, newenv | Pstr_type (rec_flag, sdecls) -> let (decls, newenv) = Typedecl.transl_type_decl env rec_flag sdecls in List.iter Signature_names.(fun td -> check_type names td.typ_loc td.typ_id) decls; let items = map_rec_type_with_row_types ~rec_flag (fun rs info -> Sig_type(info.typ_id, info.typ_type, rs, Exported)) decls [] in let shape_map = List.fold_left (fun shape_map -> function | Sig_type (id, vd, _, _) -> if not (Btype.is_row_name (Ident.name id)) then begin Env.register_uid vd.type_uid vd.type_loc; Shape.Map.add_type shape_map id vd.type_uid end else shape_map | _ -> assert false ) shape_map items in Tstr_type (rec_flag, decls), items, shape_map, enrich_type_decls anchor decls env newenv | Pstr_typext styext -> let (tyext, newenv) = Typedecl.transl_type_extension true env loc styext in let constructors = tyext.tyext_constructors in let shape_map = List.fold_left (fun shape_map ext -> Signature_names.check_typext names ext.ext_loc ext.ext_id; Env.register_uid ext.ext_type.ext_uid ext.ext_loc; Shape.Map.add_extcons shape_map ext.ext_id ext.ext_type.ext_uid ) shape_map constructors in (Tstr_typext tyext, map_ext (fun es ext -> Sig_typext(ext.ext_id, ext.ext_type, es, Exported)) constructors [], shape_map, newenv) | Pstr_exception sext -> let (ext, newenv) = Typedecl.transl_type_exception env sext in let constructor = ext.tyexn_constructor in Signature_names.check_typext names constructor.ext_loc constructor.ext_id; Env.register_uid constructor.ext_type.ext_uid constructor.ext_loc; Tstr_exception ext, [Sig_typext(constructor.ext_id, constructor.ext_type, Text_exception, Exported)], Shape.Map.add_extcons shape_map constructor.ext_id constructor.ext_type.ext_uid, newenv | Pstr_module {pmb_name = name; pmb_expr = smodl; pmb_attributes = attrs; pmb_loc; } -> let outer_scope = Ctype.get_current_level () in let scope = Ctype.create_scope () in let modl, md_shape = Builtin_attributes.warning_scope attrs (fun () -> type_module ~alias:true true funct_body (anchor_submodule name.txt anchor) env smodl ) in let pres = match modl.mod_type with | Mty_alias _ -> Mp_absent | _ -> Mp_present in let md_uid = Uid.mk ~current_unit:(Env.get_unit_name ()) in let md = { md_type = enrich_module_type anchor name.txt modl.mod_type env; md_attributes = attrs; md_loc = pmb_loc; md_uid; } in let md_shape = Shape.set_uid_if_none md_shape md_uid in Env.register_uid md_uid pmb_loc; (*prerr_endline (Ident.unique_toplevel_name id);*) Mtype.lower_nongen outer_scope md.md_type; let id, newenv, sg = match name.txt with | None -> None, env, [] | Some name -> let id, e = Env.enter_module_declaration ~scope ~shape:md_shape name pres md env in Signature_names.check_module names pmb_loc id; Some id, e, [Sig_module(id, pres, {md_type = modl.mod_type; md_attributes = attrs; md_loc = pmb_loc; md_uid; }, Trec_not, Exported)] in let shape_map = match id with | Some id -> Shape.Map.add_module shape_map id md_shape | None -> shape_map in Tstr_module {mb_id=id; mb_name=name; mb_expr=modl; mb_presence=pres; mb_attributes=attrs; mb_loc=pmb_loc; }, sg, shape_map, newenv | Pstr_recmodule sbind -> let sbind = List.map (function | {pmb_name = name; pmb_expr = {pmod_desc=Pmod_constraint(expr, typ)}; pmb_attributes = attrs; pmb_loc = loc; } -> name, typ, expr, attrs, loc | mb -> raise (Error (mb.pmb_expr.pmod_loc, env, Recursive_module_require_explicit_type)) ) sbind in let (decls, newenv) = transl_recmodule_modtypes env (List.map (fun (name, smty, _smodl, attrs, loc) -> {pmd_name=name; pmd_type=smty; pmd_attributes=attrs; pmd_loc=loc}) sbind ) in List.iter (fun (md, _, _) -> Option.iter Signature_names.(check_module names md.md_loc) md.md_id ) decls; let bindings1 = List.map2 (fun ({md_id=id; md_type=mty}, uid, _prev_shape) (name, _, smodl, attrs, loc) -> let modl, shape = Builtin_attributes.warning_scope attrs (fun () -> type_module true funct_body (anchor_recmodule id) newenv smodl ) in let mty' = enrich_module_type anchor name.txt modl.mod_type newenv in (id, name, mty, modl, mty', attrs, loc, shape, uid)) decls sbind in let newenv = (* allow aliasing recursive modules from outside *) List.fold_left (fun env (id_opt, _, mty, _, _, attrs, loc, shape, uid) -> match id_opt with | None -> env | Some id -> let mdecl = { md_type = mty.mty_type; md_attributes = attrs; md_loc = loc; md_uid = uid; } in Env.add_module_declaration ~check:true ~shape id Mp_present mdecl env ) env bindings1 in let bindings2 = check_recmodule_inclusion newenv bindings1 in let mbs = List.filter_map (fun (mb, shape, uid) -> Option.map (fun id -> id, mb, uid, shape) mb.mb_id ) bindings2 in let shape_map = List.fold_left (fun map (id, mb, uid, shape) -> Env.register_uid uid mb.mb_loc; Shape.Map.add_module map id shape ) shape_map mbs in Tstr_recmodule (List.map (fun (mb, _, _) -> mb) bindings2), map_rec (fun rs (id, mb, uid, _shape) -> Sig_module(id, Mp_present, { md_type=mb.mb_expr.mod_type; md_attributes=mb.mb_attributes; md_loc=mb.mb_loc; md_uid = uid; }, rs, Exported)) mbs [], shape_map, newenv | Pstr_modtype pmtd -> (* check that it is non-abstract *) let newenv, mtd, decl = transl_modtype_decl env pmtd in Signature_names.check_modtype names pmtd.pmtd_loc mtd.mtd_id; Env.register_uid decl.mtd_uid decl.mtd_loc; let id = mtd.mtd_id in let map = Shape.Map.add_module_type shape_map id decl.mtd_uid in Tstr_modtype mtd, [Sig_modtype (id, decl, Exported)], map, newenv | Pstr_open sod -> let (od, sg, newenv) = type_open_decl ~toplevel funct_body names env sod in Tstr_open od, sg, shape_map, newenv | Pstr_class cl -> let (classes, new_env) = Typeclass.class_declarations env cl in let shape_map = List.fold_left (fun acc cls -> let open Typeclass in let loc = cls.cls_id_loc.Location.loc in Signature_names.check_class names loc cls.cls_id; Signature_names.check_class_type names loc cls.cls_ty_id; Signature_names.check_type names loc cls.cls_obj_id; Env.register_uid cls.cls_decl.cty_uid loc; let map f id acc = f acc id cls.cls_decl.cty_uid in map Shape.Map.add_class cls.cls_id acc |> map Shape.Map.add_class_type cls.cls_ty_id |> map Shape.Map.add_type cls.cls_obj_id ) shape_map classes in Tstr_class (List.map (fun cls -> (cls.Typeclass.cls_info, cls.Typeclass.cls_pub_methods)) classes), List.flatten (map_rec (fun rs cls -> let open Typeclass in [Sig_class(cls.cls_id, cls.cls_decl, rs, Exported); Sig_class_type(cls.cls_ty_id, cls.cls_ty_decl, rs, Exported); Sig_type(cls.cls_obj_id, cls.cls_obj_abbr, rs, Exported) ]) classes []), shape_map, new_env | Pstr_class_type cl -> let (classes, new_env) = Typeclass.class_type_declarations env cl in let shape_map = List.fold_left (fun acc decl -> let open Typeclass in let loc = decl.clsty_id_loc.Location.loc in Signature_names.check_class_type names loc decl.clsty_ty_id; Signature_names.check_type names loc decl.clsty_obj_id; Env.register_uid decl.clsty_ty_decl.clty_uid loc; let map f id acc = f acc id decl.clsty_ty_decl.clty_uid in map Shape.Map.add_class_type decl.clsty_ty_id acc |> map Shape.Map.add_type decl.clsty_obj_id ) shape_map classes in Tstr_class_type (List.map (fun cl -> (cl.Typeclass.clsty_ty_id, cl.Typeclass.clsty_id_loc, cl.Typeclass.clsty_info)) classes), List.flatten (map_rec (fun rs decl -> let open Typeclass in [Sig_class_type(decl.clsty_ty_id, decl.clsty_ty_decl, rs, Exported); Sig_type(decl.clsty_obj_id, decl.clsty_obj_abbr, rs, Exported); ]) classes []), shape_map, new_env | Pstr_include sincl -> let smodl = sincl.pincl_mod in let modl, modl_shape = Builtin_attributes.warning_scope sincl.pincl_attributes (fun () -> type_module true funct_body None env smodl) in let scope = Ctype.create_scope () in (* Rename all identifiers bound by this signature to avoid clashes *) let sg, shape, new_env = Env.enter_signature_and_shape ~scope ~parent_shape:shape_map modl_shape (extract_sig_open env smodl.pmod_loc modl.mod_type) env in Signature_group.iter (Signature_names.check_sig_item names loc) sg; let incl = { incl_mod = modl; incl_type = sg; incl_attributes = sincl.pincl_attributes; incl_loc = sincl.pincl_loc; } in Tstr_include incl, sg, shape, new_env | Pstr_extension (ext, _attrs) -> raise (Error_forward (Builtin_attributes.error_of_extension ext)) | Pstr_attribute x -> Builtin_attributes.warning_attribute x; Tstr_attribute x, [], shape_map, env in let rec type_struct env shape_map sstr = match sstr with | [] -> ([], [], shape_map, env) | pstr :: srem -> let previous_saved_types = Cmt_format.get_saved_types () in let desc, sg, shape_map, new_env = type_str_item env shape_map pstr in let str = { str_desc = desc; str_loc = pstr.pstr_loc; str_env = env } in Cmt_format.set_saved_types (Cmt_format.Partial_structure_item str :: previous_saved_types); let (str_rem, sig_rem, shape_map, final_env) = type_struct new_env shape_map srem in (str :: str_rem, sg @ sig_rem, shape_map, final_env) in let previous_saved_types = Cmt_format.get_saved_types () in let run () = let (items, sg, shape_map, final_env) = type_struct env Shape.Map.empty sstr in let str = { str_items = items; str_type = sg; str_final_env = final_env } in Cmt_format.set_saved_types (Cmt_format.Partial_structure str :: previous_saved_types); str, sg, names, Shape.str shape_map, final_env in if toplevel then run () else Builtin_attributes.warning_scope [] run let type_toplevel_phrase env s = Env.reset_required_globals (); type_structure ~toplevel:true false None env s let type_module_alias = type_module ~alias:true true false None let type_module = type_module true false None let type_structure = type_structure false None (* Normalize types in a signature *) let rec normalize_modtype = function Mty_ident _ | Mty_alias _ -> () | Mty_signature sg -> normalize_signature sg | Mty_functor(_param, body) -> normalize_modtype body and normalize_signature sg = List.iter normalize_signature_item sg and normalize_signature_item = function Sig_value(_id, desc, _) -> Ctype.normalize_type desc.val_type | Sig_module(_id, _, md, _, _) -> normalize_modtype md.md_type | _ -> () (* Extract the module type of a module expression *) let type_module_type_of env smod = let remove_aliases = has_remove_aliases_attribute smod.pmod_attributes in let tmty = match smod.pmod_desc with | Pmod_ident lid -> (* turn off strengthening in this case *) let path, md = Env.lookup_module ~loc:smod.pmod_loc lid.txt env in { mod_desc = Tmod_ident (path, lid); mod_type = md.md_type; mod_env = env; mod_attributes = smod.pmod_attributes; mod_loc = smod.pmod_loc } | _ -> let me, _shape = type_module env smod in me in let mty = Mtype.scrape_for_type_of ~remove_aliases env tmty.mod_type in (* PR#5036: must not contain non-generalized type variables *) check_nongen_modtype env smod.pmod_loc mty; tmty, mty (* For Typecore *) (* Graft a longident onto a path *) let rec extend_path path = fun lid -> match lid with | Lident name -> Pdot(path, name) | Ldot(m, name) -> Pdot(extend_path path m, name) | Lapply _ -> assert false (* Lookup a type's longident within a signature *) let lookup_type_in_sig sg = let types, modules = List.fold_left (fun acc item -> match item with | Sig_type(id, _, _, _) -> let types, modules = acc in let types = String.Map.add (Ident.name id) id types in types, modules | Sig_module(id, _, _, _, _) -> let types, modules = acc in let modules = String.Map.add (Ident.name id) id modules in types, modules | _ -> acc) (String.Map.empty, String.Map.empty) sg in let rec module_path = function | Lident name -> Pident (String.Map.find name modules) | Ldot(m, name) -> Pdot(module_path m, name) | Lapply _ -> assert false in fun lid -> match lid with | Lident name -> Pident (String.Map.find name types) | Ldot(m, name) -> Pdot(module_path m, name) | Lapply _ -> assert false let type_package env m p fl = (* Same as Pexp_letmodule *) let modl, scope = Typetexp.TyVarEnv.with_local_scope begin fun () -> (* type the module and create a scope in a raised level *) Ctype.with_local_level begin fun () -> let modl, _mod_shape = type_module env m in let scope = Ctype.create_scope () in modl, scope end end in let fl', env = match fl with | [] -> [], env | fl -> let type_path, env = match modl.mod_desc with | Tmod_ident (mp,_) | Tmod_constraint ({mod_desc=Tmod_ident (mp,_)}, _, Tmodtype_implicit, _) -> (* We special case these because interactions between strengthening of module types and packages can cause spurious escape errors. See examples from PR#6982 in the testsuite. This can be removed when such issues are fixed. *) extend_path mp, env | _ -> let sg = extract_sig_open env modl.mod_loc modl.mod_type in let sg, env = Env.enter_signature ~scope sg env in lookup_type_in_sig sg, env in let fl' = List.fold_right (fun (lid, _t) fl -> match type_path lid with | exception Not_found -> fl | path -> begin match Env.find_type path env with | exception Not_found -> fl | decl -> if decl.type_arity > 0 then begin fl end else begin let t = Btype.newgenty (Tconstr (path,[],ref Mnil)) in (lid, t) :: fl end end) fl [] in fl', env in let mty = if fl = [] then (Mty_ident p) else modtype_of_package env modl.mod_loc p fl' in List.iter (fun (n, ty) -> try Ctype.unify env ty (Ctype.newvar ()) with Ctype.Unify _ -> raise (Error(modl.mod_loc, env, Scoping_pack (n,ty)))) fl'; let modl = wrap_constraint_package env true modl mty Tmodtype_implicit in modl, fl' (* Fill in the forward declarations *) let type_open_decl ?used_slot env od = type_open_decl ?used_slot ?toplevel:None false (Signature_names.create ()) env od let type_open_descr ?used_slot env od = type_open_descr ?used_slot ?toplevel:None env od let () = Typecore.type_module := type_module_alias; Typetexp.transl_modtype_longident := transl_modtype_longident; Typetexp.transl_modtype := transl_modtype; Typecore.type_open := type_open_ ?toplevel:None; Typecore.type_open_decl := type_open_decl; Typecore.type_package := type_package; Typeclass.type_open_descr := type_open_descr; type_module_type_of_fwd := type_module_type_of (* Typecheck an implementation file *) let gen_annot outputprefix sourcefile annots = Cmt2annot.gen_annot (Some (outputprefix ^ ".annot")) ~sourcefile:(Some sourcefile) ~use_summaries:false annots let type_implementation sourcefile outputprefix modulename initial_env ast = Cmt_format.clear (); Misc.try_finally (fun () -> Typecore.reset_delayed_checks (); Env.reset_required_globals (); if !Clflags.print_types then (* #7656 *) ignore @@ Warnings.parse_options false "-32-34-37-38-60"; let (str, sg, names, shape, finalenv) = type_structure initial_env ast in let shape = Shape.set_uid_if_none shape (Uid.of_compilation_unit_id (Ident.create_persistent modulename)) in let simple_sg = Signature_names.simplify finalenv names sg in if !Clflags.print_types then begin Typecore.force_delayed_checks (); let shape = Shape.local_reduce shape in Printtyp.wrap_printing_env ~error:false initial_env (fun () -> fprintf std_formatter "%a@." (Printtyp.printed_signature sourcefile) simple_sg ); gen_annot outputprefix sourcefile (Cmt_format.Implementation str); { structure = str; coercion = Tcoerce_none; shape; signature = simple_sg } (* result is ignored by Compile.implementation *) end else begin let sourceintf = Filename.remove_extension sourcefile ^ !Config.interface_suffix in if !Clflags.cmi_file <> None || Sys.file_exists sourceintf then begin let intf_file = match !Clflags.cmi_file with | None -> (try Load_path.find_uncap (modulename ^ ".cmi") with Not_found -> raise(Error(Location.in_file sourcefile, Env.empty, Interface_not_compiled sourceintf))) | Some cmi_file -> cmi_file in let dclsig = Env.read_signature modulename intf_file in let coercion, shape = Includemod.compunit initial_env ~mark:Mark_positive sourcefile sg intf_file dclsig shape in Typecore.force_delayed_checks (); (* It is important to run these checks after the inclusion test above, so that value declarations which are not used internally but exported are not reported as being unused. *) let shape = Shape.local_reduce shape in let annots = Cmt_format.Implementation str in Cmt_format.save_cmt (outputprefix ^ ".cmt") modulename annots (Some sourcefile) initial_env None (Some shape); gen_annot outputprefix sourcefile annots; { structure = str; coercion; shape; signature = dclsig } end else begin Location.prerr_warning (Location.in_file sourcefile) Warnings.Missing_mli; let coercion, shape = Includemod.compunit initial_env ~mark:Mark_positive sourcefile sg "(inferred signature)" simple_sg shape in check_nongen_signature finalenv simple_sg; normalize_signature simple_sg; Typecore.force_delayed_checks (); (* See comment above. Here the target signature contains all the values being exported. We can still capture unused declarations like "let x = true;; let x = 1;;", because in this case, the inferred signature contains only the last declaration. *) let shape = Shape.local_reduce shape in if not !Clflags.dont_write_files then begin let alerts = Builtin_attributes.alerts_of_str ast in let cmi = Env.save_signature ~alerts simple_sg modulename (outputprefix ^ ".cmi") in let annots = Cmt_format.Implementation str in Cmt_format.save_cmt (outputprefix ^ ".cmt") modulename annots (Some sourcefile) initial_env (Some cmi) (Some shape); gen_annot outputprefix sourcefile annots end; { structure = str; coercion; shape; signature = simple_sg } end end ) ~exceptionally:(fun () -> let annots = Cmt_format.Partial_implementation (Array.of_list (Cmt_format.get_saved_types ())) in Cmt_format.save_cmt (outputprefix ^ ".cmt") modulename annots (Some sourcefile) initial_env None None; gen_annot outputprefix sourcefile annots ) let save_signature modname tsg outputprefix source_file initial_env cmi = Cmt_format.save_cmt (outputprefix ^ ".cmti") modname (Cmt_format.Interface tsg) (Some source_file) initial_env (Some cmi) None let type_interface env ast = transl_signature env ast (* "Packaging" of several compilation units into one unit having them as sub-modules. *) let package_signatures units = let units_with_ids = List.map (fun (name, sg) -> let oldid = Ident.create_persistent name in let newid = Ident.create_local name in (oldid, newid, sg)) units in let subst = List.fold_left (fun acc (oldid, newid, _) -> Subst.add_module oldid (Pident newid) acc) Subst.identity units_with_ids in List.map (fun (_, newid, sg) -> (* This signature won't be used for anything, it'll just be saved in a cmi and cmt. *) let sg = Subst.signature Make_local subst sg in let md = { md_type=Mty_signature sg; md_attributes=[]; md_loc=Location.none; md_uid = Uid.mk ~current_unit:(Env.get_unit_name ()); } in Sig_module(newid, Mp_present, md, Trec_not, Exported)) units_with_ids let package_units initial_env objfiles cmifile modulename = (* Read the signatures of the units *) let units = List.map (fun f -> let pref = chop_extensions f in let modname = String.capitalize_ascii(Filename.basename pref) in let sg = Env.read_signature modname (pref ^ ".cmi") in if Filename.check_suffix f ".cmi" && not(Mtype.no_code_needed_sig Env.initial sg) then raise(Error(Location.none, Env.empty, Implementation_is_required f)); (modname, Env.read_signature modname (pref ^ ".cmi"))) objfiles in (* Compute signature of packaged unit *) Ident.reinit(); let sg = package_signatures units in (* Compute the shape of the package *) let prefix = Filename.remove_extension cmifile in let pack_uid = Uid.of_compilation_unit_id (Ident.create_persistent prefix) in let shape = List.fold_left (fun map (name, _sg) -> let id = Ident.create_persistent name in Shape.Map.add_module map id (Shape.for_persistent_unit name) ) Shape.Map.empty units |> Shape.str ~uid:pack_uid in (* See if explicit interface is provided *) let mlifile = prefix ^ !Config.interface_suffix in if Sys.file_exists mlifile then begin if not (Sys.file_exists cmifile) then begin raise(Error(Location.in_file mlifile, Env.empty, Interface_not_compiled mlifile)) end; let dclsig = Env.read_signature modulename cmifile in let cc, _shape = Includemod.compunit initial_env ~mark:Mark_both "(obtained by packing)" sg mlifile dclsig shape in Cmt_format.save_cmt (prefix ^ ".cmt") modulename (Cmt_format.Packed (sg, objfiles)) None initial_env None (Some shape); cc end else begin (* Determine imports *) let unit_names = List.map fst units in let imports = List.filter (fun (name, _crc) -> not (List.mem name unit_names)) (Env.imports()) in (* Write packaged signature *) if not !Clflags.dont_write_files then begin let cmi = Env.save_signature_with_imports ~alerts:Misc.Stdlib.String.Map.empty sg modulename (prefix ^ ".cmi") imports in Cmt_format.save_cmt (prefix ^ ".cmt") modulename (Cmt_format.Packed (cmi.Cmi_format.cmi_sign, objfiles)) None initial_env (Some cmi) (Some shape); end; Tcoerce_none end (* Error report *) open Printtyp let report_error ~loc _env = function Cannot_apply mty -> Location.errorf ~loc "@[This module is not a functor; it has type@ %a@]" modtype mty | Not_included errs -> let main = Includemod_errorprinter.err_msgs errs in Location.errorf ~loc "@[Signature mismatch:@ %t@]" main | Cannot_eliminate_dependency mty -> Location.errorf ~loc "@[This functor has type@ %a@ \ The parameter cannot be eliminated in the result type.@ \ Please bind the argument to a module identifier.@]" modtype mty | Signature_expected -> Location.errorf ~loc "This module type is not a signature" | Structure_expected mty -> Location.errorf ~loc "@[This module is not a structure; it has type@ %a" modtype mty | With_no_component lid -> Location.errorf ~loc "@[The signature constrained by `with' has no component named %a@]" longident lid | With_mismatch(lid, explanation) -> let main = Includemod_errorprinter.err_msgs explanation in Location.errorf ~loc "@[\ @[In this `with' constraint, the new definition of %a@ \ does not match its original definition@ \ in the constrained signature:@]@ \ %t@]" longident lid main | With_makes_applicative_functor_ill_typed(lid, path, explanation) -> let main = Includemod_errorprinter.err_msgs explanation in Location.errorf ~loc "@[\ @[This `with' constraint on %a makes the applicative functor @ \ type %s ill-typed in the constrained signature:@]@ \ %t@]" longident lid (Path.name path) main | With_changes_module_alias(lid, id, path) -> Location.errorf ~loc "@[\ @[This `with' constraint on %a changes %s, which is aliased @ \ in the constrained signature (as %s)@].@]" longident lid (Path.name path) (Ident.name id) | With_cannot_remove_constrained_type -> Location.errorf ~loc "@[Destructive substitutions are not supported for constrained @ \ types (other than when replacing a type constructor with @ \ a type constructor with the same arguments).@]" | With_cannot_remove_packed_modtype (p,mty) -> Location.errorf ~loc "This `with' constraint@ %s := %a@ makes a packed module ill-formed." (Path.name p) Printtyp.modtype mty | Repeated_name(kind, name) -> Location.errorf ~loc "@[Multiple definition of the %s name %s.@ \ Names must be unique in a given structure or signature.@]" (Sig_component_kind.to_string kind) name | Non_generalizable { vars; expression } -> let[@manual.ref "ss:valuerestriction"] manual_ref = [ 6; 1; 2 ] in prepare_for_printing vars; add_type_to_preparation expression; Location.errorf ~loc "@[The type of this expression,@ %a,@ \ contains the non-generalizable type variable(s): %a.@ %a@]" prepared_type_scheme expression (pp_print_list ~pp_sep:(fun f () -> fprintf f ",@ ") prepared_type_scheme) vars Misc.print_see_manual manual_ref | Non_generalizable_module { vars; mty; item } -> let[@manual.ref "ss:valuerestriction"] manual_ref = [ 6; 1; 2 ] in prepare_for_printing vars; add_type_to_preparation item.val_type; let sub = [ Location.msg ~loc:item.val_loc "The type of this value,@ %a,@ \ contains the non-generalizable type variable(s) %a." prepared_type_scheme item.val_type (pp_print_list ~pp_sep:(fun f () -> fprintf f ",@ ") prepared_type_scheme) vars ] in Location.errorf ~loc ~sub "@[The type of this module,@ %a,@ \ contains non-generalizable type variable(s).@ %a@]" modtype mty Misc.print_see_manual manual_ref | Implementation_is_required intf_name -> Location.errorf ~loc "@[The interface %a@ declares values, not just types.@ \ An implementation must be provided.@]" Location.print_filename intf_name | Interface_not_compiled intf_name -> Location.errorf ~loc "@[Could not find the .cmi file for interface@ %a.@]" Location.print_filename intf_name | Not_allowed_in_functor_body -> Location.errorf ~loc "@[This expression creates fresh types.@ %s@]" "It is not allowed inside applicative functors." | Not_a_packed_module ty -> Location.errorf ~loc "This expression is not a packed module. It has type@ %a" type_expr ty | Incomplete_packed_module ty -> Location.errorf ~loc "The type of this packed module contains variables:@ %a" type_expr ty | Scoping_pack (lid, ty) -> Location.errorf ~loc "The type %a in this module cannot be exported.@ \ Its type contains local dependencies:@ %a" longident lid type_expr ty | Recursive_module_require_explicit_type -> Location.errorf ~loc "Recursive modules require an explicit module type." | Apply_generative -> Location.errorf ~loc "This is a generative functor. It can only be applied to ()" | Cannot_scrape_alias p -> Location.errorf ~loc "This is an alias for module %a, which is missing" path p | Cannot_scrape_package_type p -> Location.errorf ~loc "The type of this packed module refers to %a, which is missing" path p | Badly_formed_signature (context, err) -> Location.errorf ~loc "@[In %s:@ %a@]" context Typedecl.report_error err | Cannot_hide_id Illegal_shadowing { shadowed_item_kind; shadowed_item_id; shadowed_item_loc; shadower_id; user_id; user_kind; user_loc } -> let shadowed = Printtyp.namespaced_ident shadowed_item_kind shadowed_item_id in let shadower = Printtyp.namespaced_ident shadowed_item_kind shadower_id in let shadowed_item_kind= Sig_component_kind.to_string shadowed_item_kind in let shadowed_msg = Location.msg ~loc:shadowed_item_loc "@[%s %s came from this include.@]" (String.capitalize_ascii shadowed_item_kind) shadowed in let user_msg = Location.msg ~loc:user_loc "@[The %s %s has no valid type@ if %s is shadowed.@]" (Sig_component_kind.to_string user_kind) (Ident.name user_id) shadowed in Location.errorf ~loc ~sub:[shadowed_msg; user_msg] "Illegal shadowing of included %s %s@ by %s." shadowed_item_kind shadowed shadower | Cannot_hide_id Appears_in_signature { opened_item_kind; opened_item_id; user_id; user_kind; user_loc } -> let opened_item_kind= Sig_component_kind.to_string opened_item_kind in let opened_id = Ident.name opened_item_id in let user_msg = Location.msg ~loc:user_loc "@[The %s %s has no valid type@ if %s is hidden.@]" (Sig_component_kind.to_string user_kind) (Ident.name user_id) opened_id in Location.errorf ~loc ~sub:[user_msg] "The %s %s introduced by this open appears in the signature." opened_item_kind opened_id | Invalid_type_subst_rhs -> Location.errorf ~loc "Only type synonyms are allowed on the right of :=" | Unpackable_local_modtype_subst p -> Location.errorf ~loc "The module type@ %s@ is not a valid type for a packed module:@ \ it is defined as a local substitution for a non-path module type." (Path.name p) let report_error env ~loc err = Printtyp.wrap_printing_env ~error:true env (fun () -> report_error env ~loc err) let () = Location.register_error_of_exn (function | Error (loc, env, err) -> Some (report_error ~loc env err) | Error_forward err -> Some err | _ -> None )