(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (** Miscellaneous useful types and functions {b Warning:} this module is unstable and part of {{!Compiler_libs}compiler-libs}. *) (** {1 Reporting fatal errors} *) val fatal_error: string -> 'a (** Raise the [Fatal_error] exception with the given string. *) val fatal_errorf: ('a, Format.formatter, unit, 'b) format4 -> 'a (** Format the arguments according to the given format string and raise [Fatal_error] with the resulting string. *) exception Fatal_error (** {1 Exceptions and finalization} *) val try_finally : ?always:(unit -> unit) -> ?exceptionally:(unit -> unit) -> (unit -> 'a) -> 'a (** [try_finally work ~always ~exceptionally] is designed to run code in [work] that may fail with an exception, and has two kind of cleanup routines: [always], that must be run after any execution of the function (typically, freeing system resources), and [exceptionally], that should be run only if [work] or [always] failed with an exception (typically, undoing user-visible state changes that would only make sense if the function completes correctly). For example: {[ let objfile = outputprefix ^ ".cmo" in let oc = open_out_bin objfile in Misc.try_finally (fun () -> bytecode ++ Timings.(accumulate_time (Generate sourcefile)) (Emitcode.to_file oc modulename objfile); Warnings.check_fatal ()) ~always:(fun () -> close_out oc) ~exceptionally:(fun _exn -> remove_file objfile); ]} If [exceptionally] fail with an exception, it is propagated as usual. If [always] or [exceptionally] use exceptions internally for control-flow but do not raise, then [try_finally] is careful to preserve any exception backtrace coming from [work] or [always] for easier debugging. *) val reraise_preserving_backtrace : exn -> (unit -> unit) -> 'a (** [reraise_preserving_backtrace e f] is (f (); raise e) except that the current backtrace is preserved, even if [f] uses exceptions internally. *) (** {1 List operations} *) val map_end: ('a -> 'b) -> 'a list -> 'b list -> 'b list (** [map_end f l t] is [map f l @ t], just more efficient. *) val map_left_right: ('a -> 'b) -> 'a list -> 'b list (** Like [List.map], with guaranteed left-to-right evaluation order *) val for_all2: ('a -> 'b -> bool) -> 'a list -> 'b list -> bool (** Same as [List.for_all] but for a binary predicate. In addition, this [for_all2] never fails: given two lists with different lengths, it returns false. *) val replicate_list: 'a -> int -> 'a list (** [replicate_list elem n] is the list with [n] elements all identical to [elem]. *) val list_remove: 'a -> 'a list -> 'a list (** [list_remove x l] returns a copy of [l] with the first element equal to [x] removed. *) val split_last: 'a list -> 'a list * 'a (** Return the last element and the other elements of the given list. *) (** {1 Hash table operations} *) val create_hashtable: int -> ('a * 'b) list -> ('a, 'b) Hashtbl.t (** Create a hashtable with the given initial size and fills it with the given bindings. *) (** {1 Extensions to the standard library} *) module Stdlib : sig (** {2 Extensions to the List module} *) module List : sig type 'a t = 'a list val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int (** The lexicographic order supported by the provided order. There is no constraint on the relative lengths of the lists. *) val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool (** Returns [true] if and only if the given lists have the same length and content with respect to the given equality function. *) val some_if_all_elements_are_some : 'a option t -> 'a t option (** If all elements of the given list are [Some _] then [Some xs] is returned with the [xs] being the contents of those [Some]s, with order preserved. Otherwise return [None]. *) val map2_prefix : ('a -> 'b -> 'c) -> 'a t -> 'b t -> ('c t * 'b t) (** [let r1, r2 = map2_prefix f l1 l2] If [l1] is of length n and [l2 = h2 @ t2] with h2 of length n, r1 is [List.map2 f l1 h1] and r2 is t2. *) val split_at : int -> 'a t -> 'a t * 'a t (** [split_at n l] returns the pair [before, after] where [before] is the [n] first elements of [l] and [after] the remaining ones. If [l] has less than [n] elements, raises Invalid_argument. *) val is_prefix : equal:('a -> 'a -> bool) -> 'a list -> of_:'a list -> bool (** Returns [true] if and only if the given list, with respect to the given equality function on list members, is a prefix of the list [of_]. *) type 'a longest_common_prefix_result = private { longest_common_prefix : 'a list; first_without_longest_common_prefix : 'a list; second_without_longest_common_prefix : 'a list; } val find_and_chop_longest_common_prefix : equal:('a -> 'a -> bool) -> first:'a list -> second:'a list -> 'a longest_common_prefix_result (** Returns the longest list that, with respect to the provided equality function, is a prefix of both of the given lists. The input lists, each with such longest common prefix removed, are also returned. *) end (** {2 Extensions to the Option module} *) module Option : sig type 'a t = 'a option val print : (Format.formatter -> 'a -> unit) -> Format.formatter -> 'a t -> unit end (** {2 Extensions to the Array module} *) module Array : sig val exists2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> bool (** Same as [Array.exists2] from the standard library. *) val for_alli : (int -> 'a -> bool) -> 'a array -> bool (** Same as [Array.for_all] from the standard library, but the function is applied with the index of the element as first argument, and the element itself as second argument. *) val all_somes : 'a option array -> 'a array option end (** {2 Extensions to the String module} *) module String : sig include module type of String module Set : Set.S with type elt = string module Map : Map.S with type key = string module Tbl : Hashtbl.S with type key = string val print : Format.formatter -> t -> unit val for_all : (char -> bool) -> t -> bool end external compare : 'a -> 'a -> int = "%compare" end (** {1 Operations on files and file paths} *) val find_in_path: string list -> string -> string (** Search a file in a list of directories. *) val find_in_path_rel: string list -> string -> string (** Search a relative file in a list of directories. *) val find_in_path_uncap: string list -> string -> string (** Same, but search also for uncapitalized name, i.e. if name is [Foo.ml], allow [/path/Foo.ml] and [/path/foo.ml] to match. *) val remove_file: string -> unit (** Delete the given file if it exists and is a regular file. Does nothing for other kinds of files. Never raises an error. *) val expand_directory: string -> string -> string (** [expand_directory alt file] eventually expands a [+] at the beginning of file into [alt] (an alternate root directory) *) val split_path_contents: ?sep:char -> string -> string list (** [split_path_contents ?sep s] interprets [s] as the value of a "PATH"-like variable and returns the corresponding list of directories. [s] is split using the platform-specific delimiter, or [~sep] if it is passed. Returns the empty list if [s] is empty. *) val copy_file: in_channel -> out_channel -> unit (** [copy_file ic oc] reads the contents of file [ic] and copies them to [oc]. It stops when encountering EOF on [ic]. *) val copy_file_chunk: in_channel -> out_channel -> int -> unit (** [copy_file_chunk ic oc n] reads [n] bytes from [ic] and copies them to [oc]. It raises [End_of_file] when encountering EOF on [ic]. *) val string_of_file: in_channel -> string (** [string_of_file ic] reads the contents of file [ic] and copies them to a string. It stops when encountering EOF on [ic]. *) val output_to_file_via_temporary: ?mode:open_flag list -> string -> (string -> out_channel -> 'a) -> 'a (** Produce output in temporary file, then rename it (as atomically as possible) to the desired output file name. [output_to_file_via_temporary filename fn] opens a temporary file which is passed to [fn] (name + output channel). When [fn] returns, the channel is closed and the temporary file is renamed to [filename]. *) val protect_writing_to_file : filename:string -> f:(out_channel -> 'a) -> 'a (** Open the given [filename] for writing (in binary mode), pass the [out_channel] to the given function, then close the channel. If the function raises an exception then [filename] will be removed. *) val concat_null_terminated : string list -> string (** [concat_null_terminated [x1;x2; ... xn]] is [x1 ^ "\000" ^ x2 ^ "\000" ^ ... ^ xn ^ "\000"] *) val split_null_terminated : string -> string list (** [split_null_terminated s] is similar [String.split_on_char '\000'] but ignores the trailing separator, if any *) val chop_extensions: string -> string (** Return the given file name without its extensions. The extensions is the longest suffix starting with a period and not including a directory separator, [.xyz.uvw] for instance. Return the given name if it does not contain an extension. *) (** {1 Integer operations} *) val log2: int -> int (** [log2 n] returns [s] such that [n = 1 lsl s] if [n] is a power of 2*) val align: int -> int -> int (** [align n a] rounds [n] upwards to a multiple of [a] (a power of 2). *) val no_overflow_add: int -> int -> bool (** [no_overflow_add n1 n2] returns [true] if the computation of [n1 + n2] does not overflow. *) val no_overflow_sub: int -> int -> bool (** [no_overflow_sub n1 n2] returns [true] if the computation of [n1 - n2] does not overflow. *) val no_overflow_mul: int -> int -> bool (** [no_overflow_mul n1 n2] returns [true] if the computation of [n1 * n2] does not overflow. *) val no_overflow_lsl: int -> int -> bool (** [no_overflow_lsl n k] returns [true] if the computation of [n lsl k] does not overflow. *) module Int_literal_converter : sig val int : string -> int (** Convert a string to an integer. Unlike {!Stdlib.int_of_string}, this function accepts the string representation of [max_int + 1] and returns [min_int] in this case. *) val int32 : string -> int32 (** Likewise, at type [int32] *) val int64 : string -> int64 (** Likewise, at type [int64] *) val nativeint : string -> nativeint (** Likewise, at type [nativeint] *) end val find_first_mono : (int -> bool) -> int (**[find_first_mono p] takes an integer predicate [p : int -> bool] that we assume: 1. is monotonic on natural numbers: if [a <= b] then [p a] implies [p b], 2. is satisfied for some natural numbers in range [0; max_int] (this is equivalent to: [p max_int = true]). [find_first_mono p] is the smallest natural number N that satisfies [p], computed in O(log(N)) calls to [p]. Our implementation supports two cases where the preconditions on [p] are not respected: - If [p] is always [false], we silently return [max_int] instead of looping or crashing. - If [p] is non-monotonic but eventually true, we return some satisfying value. *) (** {1 String operations} *) val search_substring: string -> string -> int -> int (** [search_substring pat str start] returns the position of the first occurrence of string [pat] in string [str]. Search starts at offset [start] in [str]. Raise [Not_found] if [pat] does not occur. *) val replace_substring: before:string -> after:string -> string -> string (** [replace_substring ~before ~after str] replaces all occurrences of [before] with [after] in [str] and returns the resulting string. *) val rev_split_words: string -> string list (** [rev_split_words s] splits [s] in blank-separated words, and returns the list of words in reverse order. *) val cut_at : string -> char -> string * string (** [String.cut_at s c] returns a pair containing the sub-string before the first occurrence of [c] in [s], and the sub-string after the first occurrence of [c] in [s]. [let (before, after) = String.cut_at s c in before ^ String.make 1 c ^ after] is the identity if [s] contains [c]. Raise [Not_found] if the character does not appear in the string @since 4.01 *) val ordinal_suffix : int -> string (** [ordinal_suffix n] is the appropriate suffix to append to the numeral [n] as an ordinal number: [1] -> ["st"], [2] -> ["nd"], [3] -> ["rd"], [4] -> ["th"], and so on. Handles larger numbers (e.g., [42] -> ["nd"]) and the numbers 11--13 (which all get ["th"]) correctly. *) val normalise_eol : string -> string (** [normalise_eol s] returns a fresh copy of [s] with any '\r' characters removed. Intended for pre-processing text which will subsequently be printed on a channel which performs EOL transformations (i.e. Windows) *) val delete_eol_spaces : string -> string (** [delete_eol_spaces s] returns a fresh copy of [s] with any end of line spaces removed. Intended to normalize the output of the toplevel for tests. *) (** {1 Operations on references} *) type ref_and_value = R : 'a ref * 'a -> ref_and_value val protect_refs : ref_and_value list -> (unit -> 'a) -> 'a (** [protect_refs l f] temporarily sets [r] to [v] for each [R (r, v)] in [l] while executing [f]. The previous contents of the references is restored even if [f] raises an exception, without altering the exception backtrace. *) val get_ref: 'a list ref -> 'a list (** [get_ref lr] returns the content of the list reference [lr] and reset its content to the empty list. *) val set_or_ignore : ('a -> 'b option) -> 'b option ref -> 'a -> unit (** [set_or_ignore f opt x] sets [opt] to [f x] if it returns [Some _], or leaves it unmodified if it returns [None]. *) (** {1 Operations on triples and quadruples} *) val fst3: 'a * 'b * 'c -> 'a val snd3: 'a * 'b * 'c -> 'b val thd3: 'a * 'b * 'c -> 'c val fst4: 'a * 'b * 'c * 'd -> 'a val snd4: 'a * 'b * 'c * 'd -> 'b val thd4: 'a * 'b * 'c * 'd -> 'c val for4: 'a * 'b * 'c * 'd -> 'd (** {1 Long strings} *) (** ``Long strings'' are mutable arrays of characters that are not limited in length to {!Sys.max_string_length}. *) module LongString : sig type t = bytes array val create : int -> t val length : t -> int val get : t -> int -> char val set : t -> int -> char -> unit val blit : t -> int -> t -> int -> int -> unit val blit_string : string -> int -> t -> int -> int -> unit val output : out_channel -> t -> int -> int -> unit val input_bytes_into : t -> in_channel -> int -> unit val input_bytes : in_channel -> int -> t end (** {1 Spell checking and ``did you mean'' suggestions} *) val edit_distance : string -> string -> int -> int option (** [edit_distance a b cutoff] computes the edit distance between strings [a] and [b]. To help efficiency, it uses a cutoff: if the distance [d] is smaller than [cutoff], it returns [Some d], else [None]. The distance algorithm currently used is Damerau-Levenshtein: it computes the number of insertion, deletion, substitution of letters, or swapping of adjacent letters to go from one word to the other. The particular algorithm may change in the future. *) val spellcheck : string list -> string -> string list (** [spellcheck env name] takes a list of names [env] that exist in the current environment and an erroneous [name], and returns a list of suggestions taken from [env], that are close enough to [name] that it may be a typo for one of them. *) val did_you_mean : Format.formatter -> (unit -> string list) -> unit (** [did_you_mean ppf get_choices] hints that the user may have meant one of the option returned by calling [get_choices]. It does nothing if the returned list is empty. The [unit -> ...] thunking is meant to delay any potentially-slow computation (typically computing edit-distance with many things from the current environment) to when the hint message is to be printed. You should print an understandable error message before calling [did_you_mean], so that users get a clear notification of the failure even if producing the hint is slow. *) (** {1 Colored terminal output } *) module Color : sig type color = | Black | Red | Green | Yellow | Blue | Magenta | Cyan | White type style = | FG of color (* foreground *) | BG of color (* background *) | Bold | Reset type Format.stag += Style of style list val ansi_of_style_l : style list -> string (* ANSI escape sequence for the given style *) type styles = { error: style list; warning: style list; loc: style list; hint: style list; } val default_styles: styles val get_styles: unit -> styles val set_styles: styles -> unit type setting = Auto | Always | Never val default_setting : setting val setup : setting option -> unit (* [setup opt] will enable or disable color handling on standard formatters according to the value of color setting [opt]. Only the first call to this function has an effect. *) val set_color_tag_handling : Format.formatter -> unit (* adds functions to support color tags to the given formatter. *) end (* See the -error-style option *) module Error_style : sig type setting = | Contextual | Short val default_setting : setting end (** {1 Formatted output} *) val print_if : Format.formatter -> bool ref -> (Format.formatter -> 'a -> unit) -> 'a -> 'a (** [print_if ppf flag fmt x] prints [x] with [fmt] on [ppf] if [b] is true. *) val pp_two_columns : ?sep:string -> ?max_lines:int -> Format.formatter -> (string * string) list -> unit (** [pp_two_columns ?sep ?max_lines ppf l] prints the lines in [l] as two columns separated by [sep] ("|" by default). [max_lines] can be used to indicate a maximum number of lines to print -- an ellipsis gets inserted at the middle if the input has too many lines. Example: {v pp_two_columns ~max_lines:3 Format.std_formatter [ "abc", "hello"; "def", "zzz"; "a" , "bllbl"; "bb" , "dddddd"; ] v} prints {v abc | hello ... bb | dddddd v} *) val print_see_manual : Format.formatter -> int list -> unit (** See manual section *) (** {1 Displaying configuration variables} *) val show_config_and_exit : unit -> unit (** Display the values of all compiler configuration variables from module [Config], then exit the program with code 0. *) val show_config_variable_and_exit : string -> unit (** Display the value of the given configuration variable, then exit the program with code 0. *) (** {1 Handling of build maps} *) (** Build maps cause the compiler to normalize file names embedded in object files, thus leading to more reproducible builds. *) val get_build_path_prefix_map: unit -> Build_path_prefix_map.map option (** Returns the map encoded in the [BUILD_PATH_PREFIX_MAP] environment variable. *) val debug_prefix_map_flags: unit -> string list (** Returns the list of [--debug-prefix-map] flags to be passed to the assembler, built from the [BUILD_PATH_PREFIX_MAP] environment variable. *) (** {1 Handling of magic numbers} *) module Magic_number : sig (** a typical magic number is "Caml1999I011"; it is formed of an alphanumeric prefix, here Caml1990I, followed by a version, here 011. The prefix identifies the kind of the versioned data: here the I indicates that it is the magic number for .cmi files. All magic numbers have the same byte length, [magic_length], and this is important for users as it gives them the number of bytes to read to obtain the byte sequence that should be a magic number. Typical user code will look like: {[ let ic = open_in_bin path in let magic = try really_input_string ic Magic_number.magic_length with End_of_file -> ... in match Magic_number.parse magic with | Error parse_error -> ... | Ok info -> ... ]} A given compiler version expects one specific version for each kind of object file, and will fail if given an unsupported version. Because versions grow monotonically, you can compare the parsed version with the expected "current version" for a kind, to tell whether the wrong-magic object file comes from the past or from the future. An example of code block that expects the "currently supported version" of a given kind of magic numbers, here [Cmxa], is as follows: {[ let ic = open_in_bin path in begin try Magic_number.(expect_current Cmxa (get_info ic)) with | Parse_error error -> ... | Unexpected error -> ... end; ... ]} Parse errors distinguish inputs that are [Not_a_magic_number str], which are likely to come from the file being completely different, and [Truncated str], raised by headers that are the (possibly empty) prefix of a valid magic number. Unexpected errors correspond to valid magic numbers that are not the one expected, either because it corresponds to a different kind, or to a newer or older version. The helper functions [explain_parse_error] and [explain_unexpected_error] will generate a textual explanation of each error, for use in error messages. @since 4.11 *) type native_obj_config = { flambda : bool; } (** native object files have a format and magic number that depend on certain native-compiler configuration parameters. This configuration space is expressed by the [native_obj_config] type. *) val native_obj_config : native_obj_config (** the native object file configuration of the active/configured compiler. *) type version = int type kind = | Exec | Cmi | Cmo | Cma | Cmx of native_obj_config | Cmxa of native_obj_config | Cmxs | Cmt | Ast_impl | Ast_intf type info = { kind: kind; version: version; (** Note: some versions of the compiler use the same [version] suffix for all kinds, but others use different versions counters for different kinds. We may only assume that versions are growing monotonically (not necessarily always by one) between compiler versions. *) } type raw = string (** the type of raw magic numbers, such as "Caml1999A027" for the .cma files of OCaml 4.10 *) (** {3 Parsing magic numbers} *) type parse_error = | Truncated of string | Not_a_magic_number of string val explain_parse_error : kind option -> parse_error -> string (** Produces an explanation for a parse error. If no kind is provided, we use an unspecific formulation suggesting that any compiler-produced object file would have been satisfying. *) val parse : raw -> (info, parse_error) result (** Parses a raw magic number *) val read_info : in_channel -> (info, parse_error) result (** Read a raw magic number from an input channel. If the data read [str] is not a valid magic number, it can be recovered from the [Truncated str | Not_a_magic_number str] payload of the [Error parse_error] case. If parsing succeeds with an [Ok info] result, we know that exactly [magic_length] bytes have been consumed from the input_channel. If you also wish to enforce that the magic number is at the current version, see {!read_current_info} below. *) val magic_length : int (** all magic numbers take the same number of bytes *) (** {3 Checking that magic numbers are current} *) type 'a unexpected = { expected : 'a; actual : 'a } type unexpected_error = | Kind of kind unexpected | Version of kind * version unexpected val check_current : kind -> info -> (unit, unexpected_error) result (** [check_current kind info] checks that the provided magic [info] is the current version of [kind]'s magic header. *) val explain_unexpected_error : unexpected_error -> string (** Provides an explanation of the [unexpected_error]. *) type error = | Parse_error of parse_error | Unexpected_error of unexpected_error val read_current_info : expected_kind:kind option -> in_channel -> (info, error) result (** Read a magic number as [read_info], and check that it is the current version as its kind. If the [expected_kind] argument is [None], any kind is accepted. *) (** {3 Information on magic numbers} *) val string_of_kind : kind -> string (** a user-printable string for a kind, eg. "exec" or "cmo", to use in error messages. *) val human_name_of_kind : kind -> string (** a user-meaningful name for a kind, eg. "executable file" or "bytecode object file", to use in error messages. *) val current_raw : kind -> raw (** the current magic number of each kind *) val current_version : kind -> version (** the current version of each kind *) (** {3 Raw representations} Mainly for internal usage and testing. *) type raw_kind = string (** the type of raw magic numbers kinds, such as "Caml1999A" for .cma files *) val parse_kind : raw_kind -> kind option (** parse a raw kind into a kind *) val raw_kind : kind -> raw_kind (** the current raw representation of a kind. In some cases the raw representation of a kind has changed over compiler versions, so other files of the same kind may have different raw kinds. Note that all currently known cases are parsed correctly by [parse_kind]. *) val raw : info -> raw (** A valid raw representation of the magic number. Due to past and future changes in the string representation of magic numbers, we cannot guarantee that the raw strings returned for past and future versions actually match the expectations of those compilers. The representation is accurate for current versions, and it is correctly parsed back into the desired version by the parsing functions above. *) val all_kinds : kind list end (** {1 Miscellaneous type aliases} *) type filepath = string type modname = string type crcs = (modname * Digest.t option) list type alerts = string Stdlib.String.Map.t