summaryrefslogtreecommitdiff
path: root/asmcomp/cmmgen.ml
blob: 70d8e732684c42e08cf74d92d86e258340bcef70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id$ *)

(* Translation from closed lambda to C-- *)

open Misc
open Arch
open Asttypes
open Primitive
open Types
open Lambda
open Clambda
open Cmm

(* Local binding of complex expressions *)

let bind name arg fn =
  match arg with
    Cvar _ | Cconst_int _ | Cconst_natint _ | Cconst_symbol _ 
  | Cconst_pointer _ | Cconst_natpointer _ -> fn arg
  | _ -> let id = Ident.create name in Clet(id, arg, fn (Cvar id))

let bind_nonvar name arg fn =
  match arg with
    Cconst_int _ | Cconst_natint _ | Cconst_symbol _
  | Cconst_pointer _ | Cconst_natpointer _ -> fn arg
  | _ -> let id = Ident.create name in Clet(id, arg, fn (Cvar id))

(* Block headers. Meaning of the tag field: see stdlib/obj.ml *)

let float_tag = Cconst_int Obj.double_tag
let floatarray_tag = Cconst_int Obj.double_array_tag

let block_header tag sz =
  Nativeint.add (Nativeint.shift_left (Nativeint.of_int sz) 10)
                (Nativeint.of_int tag)
let closure_header sz = block_header Obj.closure_tag sz
let infix_header ofs = block_header Obj.infix_tag ofs
let float_header = block_header Obj.double_tag (size_float / size_addr)
let floatarray_header len =
      block_header Obj.double_array_tag (len * size_float / size_addr)
let string_header len =
      block_header Obj.string_tag ((len + size_addr) / size_addr)
let boxedint_header = block_header Obj.custom_tag 2

let alloc_block_header tag sz = Cconst_natint(block_header tag sz)
let alloc_float_header = Cconst_natint(float_header)
let alloc_floatarray_header len = Cconst_natint(floatarray_header len)
let alloc_closure_header sz = Cconst_natint(closure_header sz)
let alloc_infix_header ofs = Cconst_natint(infix_header ofs)
let alloc_boxedint_header = Cconst_natint(boxedint_header)

(* Integers *)

let max_repr_int = max_int asr 1
let min_repr_int = min_int asr 1

let int_const n =
  if n <= max_repr_int && n >= min_repr_int
  then Cconst_int((n lsl 1) + 1)
  else Cconst_natint
          (Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n)

let add_const c n =
  if n = 0 then c else Cop(Caddi, [c; Cconst_int n])

let incr_int = function
    Cconst_int n when n < max_int -> Cconst_int(n+1)
  | Cop(Caddi, [c; Cconst_int n]) when n < max_int -> add_const c (n + 1)
  | c -> add_const c 1

let decr_int = function
    Cconst_int n when n > min_int -> Cconst_int(n-1)
  | Cop(Caddi, [c; Cconst_int n]) when n > min_int -> add_const c (n - 1)
  | c -> add_const c (-1)

let add_int c1 c2 =
  match (c1, c2) with
    (Cop(Caddi, [c1; Cconst_int n1]),
     Cop(Caddi, [c2; Cconst_int n2])) when no_overflow_add n1 n2 ->
      add_const (Cop(Caddi, [c1; c2])) (n1 + n2)
  | (Cop(Caddi, [c1; Cconst_int n1]), c2) ->
      add_const (Cop(Caddi, [c1; c2])) n1
  | (c1, Cop(Caddi, [c2; Cconst_int n2])) ->
      add_const (Cop(Caddi, [c1; c2])) n2
  | (Cconst_int _, _) ->
      Cop(Caddi, [c2; c1])
  | (_, _) ->
      Cop(Caddi, [c1; c2])

let sub_int c1 c2 =
  match (c1, c2) with
    (Cop(Caddi, [c1; Cconst_int n1]),
     Cop(Caddi, [c2; Cconst_int n2])) when no_overflow_sub n1 n2 ->
      add_const (Cop(Csubi, [c1; c2])) (n1 - n2)
  | (Cop(Caddi, [c1; Cconst_int n1]), c2) ->
      add_const (Cop(Csubi, [c1; c2])) n1
  | (c1, Cop(Caddi, [c2; Cconst_int n2])) when n2 <> min_int ->
      add_const (Cop(Csubi, [c1; c2])) (-n2)
  | (c1, Cconst_int n) when n <> min_int ->
      add_const c1 (-n)
  | (c1, c2) ->
      Cop(Csubi, [c1; c2])

let mul_int c1 c2 =
  match (c1, c2) with
    (Cconst_int 0, _) -> c1
  | (Cconst_int 1, _) -> c2
  | (_, Cconst_int 0) -> c2
  | (_, Cconst_int 1) -> c1
  | (_, _) -> Cop(Cmuli, [c1; c2])

let tag_int = function
    Cconst_int n -> int_const n
  | c -> Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1])

let force_tag_int = function
    Cconst_int n -> int_const n
  | c -> Cop(Cor, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1])

let untag_int = function
    Cconst_int n -> Cconst_int(n asr 1)
  | Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) -> c
  | Cop(Cor, [Cop(Casr, [c; Cconst_int n]); Cconst_int 1])
    when n > 0 && n < size_int * 8 ->
      Cop(Casr, [c; Cconst_int (n+1)])
  | Cop(Cor, [Cop(Clsr, [c; Cconst_int n]); Cconst_int 1])
    when n > 0 && n < size_int * 8 ->
      Cop(Clsr, [c; Cconst_int (n+1)])
  | Cop(Cor, [c; Cconst_int 1]) -> Cop(Casr, [c; Cconst_int 1])
  | c -> Cop(Casr, [c; Cconst_int 1])

let lsl_int c1 c2 =
  match (c1, c2) with
    (Cop(Clsl, [c; Cconst_int n1]), Cconst_int n2)
    when n1 > 0 && n2 > 0 && n1 + n2 < size_int * 8 ->
      Cop(Clsl, [c; Cconst_int (n1 + n2)])
  | (_, _) ->
      Cop(Clsl, [c1; c2])

let ignore_low_bit_int = function
    Cop(Caddi, [(Cop(Clsl, [_; Cconst_int 1]) as c); Cconst_int 1]) -> c
  | Cop(Cor, [c; Cconst_int 1]) -> c
  | c -> c

let is_nonzero_constant = function
    Cconst_int n -> n <> 0
  | Cconst_natint n -> n <> 0n
  | _ -> false

let safe_divmod op c1 c2 =
  if !Clflags.fast || is_nonzero_constant c2 then
    Cop(op, [c1; c2])
  else
    bind "divisor" c2 (fun c2 ->
      Cifthenelse(c2,
                  Cop(op, [c1; c2]),
                  Cop(Craise, [Cconst_symbol "bucket_Division_by_zero"])))

(* Bool *)

let test_bool = function
    Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) -> c
  | Cop(Clsl, [c; Cconst_int 1]) -> c
  | c -> Cop(Ccmpi Cne, [c; Cconst_int 1])

(* Float *)

let box_float c = Cop(Calloc, [alloc_float_header; c])

let unbox_float = function
    Cop(Calloc, [header; c]) -> c
  | c -> Cop(Cload Double_u, [c])

(* Complex *)

let box_complex c_re c_im =
  Cop(Calloc, [alloc_floatarray_header 2; c_re; c_im])

let complex_re c = Cop(Cload Double_u, [c])
let complex_im c = Cop(Cload Double_u,
                       [Cop(Cadda, [c; Cconst_int size_float])])

(* Unit *)

let return_unit c = Csequence(c, Cconst_pointer 1)

let rec remove_unit = function
    Cconst_pointer 1 -> Ctuple []
  | Csequence(c, Cconst_pointer 1) -> c
  | Csequence(c1, c2) ->
      Csequence(c1, remove_unit c2)
  | Cifthenelse(cond, ifso, ifnot) ->
      Cifthenelse(cond, remove_unit ifso, remove_unit ifnot)
  | Cswitch(sel, index, cases) ->
      Cswitch(sel, index, Array.map remove_unit cases)
  | Ccatch(io, ids, body, handler) ->
      Ccatch(io, ids, remove_unit body, remove_unit handler)
  | Ctrywith(body, exn, handler) ->
      Ctrywith(remove_unit body, exn, remove_unit handler)
  | Clet(id, c1, c2) ->
      Clet(id, c1, remove_unit c2)
  | Cop(Capply mty, args) ->
      Cop(Capply typ_void, args)
  | Cop(Cextcall(proc, mty, alloc), args) ->
      Cop(Cextcall(proc, typ_void, alloc), args)
  | Cexit (_,_) as c -> c
  | Ctuple [] as c -> c
  | c -> Csequence(c, Ctuple [])

(* Access to block fields *)

let field_address ptr n =
  if n = 0
  then ptr
  else Cop(Cadda, [ptr; Cconst_int(n * size_addr)])

let get_field ptr n =
  Cop(Cload Word, [field_address ptr n])

let set_field ptr n newval =
  Cop(Cstore Word, [field_address ptr n; newval])

let header ptr =
  Cop(Cload Word, [Cop(Cadda, [ptr; Cconst_int(-size_int)])])

let tag_offset =
  if big_endian then -1 else -size_int

let get_tag ptr =
  if Proc.word_addressed then           (* If byte loads are slow *)
    Cop(Cand, [header ptr; Cconst_int 255])
  else                                  (* If byte loads are efficient *)
    Cop(Cload Byte_unsigned,
        [Cop(Cadda, [ptr; Cconst_int(tag_offset)])])

let get_size ptr =
  Cop(Clsr, [header ptr; Cconst_int 10])

(* Array indexing *)

let log2_size_addr = Misc.log2 size_addr
let log2_size_float = Misc.log2 size_float

let wordsize_shift = 9
let numfloat_shift = 9 + log2_size_float - log2_size_addr

let is_addr_array_hdr hdr =
  Cop(Ccmpi Cne, [Cop(Cand, [hdr; Cconst_int 255]); floatarray_tag])

let is_addr_array_ptr ptr =
  Cop(Ccmpi Cne, [get_tag ptr; floatarray_tag])

let addr_array_length hdr = Cop(Clsr, [hdr; Cconst_int wordsize_shift])
let float_array_length hdr = Cop(Clsr, [hdr; Cconst_int numfloat_shift])

let lsl_const c n =
  Cop(Clsl, [c; Cconst_int n])

let array_indexing log2size ptr ofs =
  match ofs with
    Cconst_int n ->
      let i = n asr 1 in
      if i = 0 then ptr else Cop(Cadda, [ptr; Cconst_int(i lsl log2size)])
  | Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) ->
      Cop(Cadda, [ptr; lsl_const c log2size])
  | Cop(Caddi, [c; Cconst_int n]) ->
      Cop(Cadda, [Cop(Cadda, [ptr; lsl_const c (log2size - 1)]);
                   Cconst_int((n-1) lsl (log2size - 1))])
  | _ ->
      Cop(Cadda, [Cop(Cadda, [ptr; lsl_const ofs (log2size - 1)]);
                   Cconst_int((-1) lsl (log2size - 1))])

let addr_array_ref arr ofs =
  Cop(Cload Word, [array_indexing log2_size_addr arr ofs])
let unboxed_float_array_ref arr ofs =
  Cop(Cload Double_u, [array_indexing log2_size_float arr ofs])
let float_array_ref arr ofs =
  box_float(unboxed_float_array_ref arr ofs)

let addr_array_set arr ofs newval =
  Cop(Cextcall("modify", typ_void, false),
      [array_indexing log2_size_addr arr ofs; newval])
let int_array_set arr ofs newval =
  Cop(Cstore Word, [array_indexing log2_size_addr arr ofs; newval])
let float_array_set arr ofs newval =
  Cop(Cstore Double_u, [array_indexing log2_size_float arr ofs; newval])

(* String length *)

let string_length exp =
  bind "str" exp (fun str ->
    let tmp_var = Ident.create "tmp" in
    Clet(tmp_var,
         Cop(Csubi,
             [Cop(Clsl,
                   [Cop(Clsr, [header str; Cconst_int 10]);
                     Cconst_int log2_size_addr]);
              Cconst_int 1]),
         Cop(Csubi,
             [Cvar tmp_var;
               Cop(Cload Byte_unsigned,
                     [Cop(Cadda, [str; Cvar tmp_var])])])))

(* Message sending *)

let lookup_tag_cache obj tag cache n =
  bind "tag" tag (fun tag -> bind "cache" cache (fun cache ->
    let cache n =
      if n = 0 then cache else Cop(Cadda, [cache; Cconst_int (n * size_addr)])
    in
    let meths = Ident.create "meths" and cached = Ident.create "cached" in
    let mask = get_field (Cvar meths) 1 in
    let cached_pos = lsl_const (Cvar cached) log2_size_addr in
    let tag_pos = Cop(Cadda, [cached_pos; Cconst_int(2*size_addr)]) in
    let tag' = Cop(Cload Word, [Cop(Cadda, [Cvar meths; tag_pos])]) in
    let meth_pos = Cop(Cadda, [cached_pos; Cconst_int size_addr]) in
    Clet(meths, Cop(Cload Word, [obj]),
    Clet(cached, Cop(Cand, [Cop(Cload Word, [cache n]); mask]),
    Cifthenelse(Cop(Ccmpa Cne, [tag'; tag]),
		Cop(Cextcall("oo_cache_public_method", typ_addr, false),
		    [Cvar meths; tag; cache n]),
                Cop(Cload Word, [Cop(Cadda, [Cvar meths; meth_pos])]))
	))))

let lookup_tag obj tag =
  bind "tag" tag (fun tag ->
    Cop(Cextcall("oo_get_public_method", typ_addr, false), [obj; tag]))

let lookup_label obj lab =
  bind "lab" lab (fun lab ->
    let table = Cop (Cload Word, [obj]) in
    addr_array_ref table lab)

(* Allocation *)

let make_alloc_generic set_fn tag wordsize args =
  if wordsize <= Config.max_young_wosize then
    Cop(Calloc, Cconst_natint(block_header tag wordsize) :: args)
  else begin
    let id = Ident.create "alloc" in
    let rec fill_fields idx = function
      [] -> Cvar id
    | e1::el -> Csequence(set_fn (Cvar id) (Cconst_int idx) e1,
                          fill_fields (idx + 2) el) in
    Clet(id, 
         Cop(Cextcall("alloc", typ_addr, true),
                 [Cconst_int wordsize; Cconst_int tag]),
         fill_fields 1 args)
  end

let make_alloc tag args =
  make_alloc_generic addr_array_set tag (List.length args) args
let make_float_alloc tag args =
  make_alloc_generic float_array_set tag
                     (List.length args * size_float / size_addr) args

(* To compile "let rec" over values *)

let fundecls_size fundecls =
  let sz = ref (-1) in
  List.iter
    (fun (label, arity, params, body) ->
      sz := !sz + 1 + (if arity = 1 then 2 else 3))
    fundecls;
  !sz

type rhs_kind =
  | RHS_block of int
  | RHS_nonrec
;;
let rec expr_size = function
  | Uclosure(fundecls, clos_vars) ->
      RHS_block (fundecls_size fundecls + List.length clos_vars)
  | Ulet(id, exp, body) ->
      expr_size body
  | Uletrec(bindings, body) ->
      expr_size body
  | Uprim(Pmakeblock(tag, mut), args) ->
      RHS_block (List.length args)
  | Uprim(Pmakearray(Paddrarray | Pintarray), args) ->
      RHS_block (List.length args)
  | Usequence(exp, exp') ->
      expr_size exp'
  | _ -> RHS_nonrec

(* Record application and currying functions *)

let apply_function n =
  Compilenv.need_apply_fun n; "caml_apply" ^ string_of_int n
let curry_function n =
  Compilenv.need_curry_fun n;
  if n >= 0
  then "caml_curry" ^ string_of_int n
  else "caml_tuplify" ^ string_of_int (-n)

(* Comparisons *)

let transl_comparison = function
    Lambda.Ceq -> Ceq
  | Lambda.Cneq -> Cne
  | Lambda.Cge -> Cge
  | Lambda.Cgt -> Cgt
  | Lambda.Cle -> Cle
  | Lambda.Clt -> Clt

(* Translate structured constants *)

let const_label = ref 0

let new_const_label () =
  incr const_label;
  !const_label

let new_const_symbol () =
  incr const_label;
  Compilenv.current_unit_name () ^ "__" ^ string_of_int !const_label

let structured_constants = ref ([] : (string * structured_constant) list)

let transl_constant = function
    Const_base(Const_int n) ->
      int_const n
  | Const_base(Const_char c) ->
      Cconst_int(((Char.code c) lsl 1) + 1)
  | Const_pointer n ->      
      if n <= max_repr_int && n >= min_repr_int
      then Cconst_pointer((n lsl 1) + 1)
      else Cconst_natpointer
              (Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n)
  | cst ->
      let lbl = new_const_symbol() in
      structured_constants := (lbl, cst) :: !structured_constants;
      Cconst_symbol lbl

(* Translate constant closures *)

let constant_closures =
  ref ([] : (string * (string * int * Ident.t list * ulambda) list) list)

(* Boxed integers *)

let box_int_constant bi n =
  match bi with
    Pnativeint -> Const_base(Const_nativeint n)
  | Pint32 -> Const_base(Const_int32 (Nativeint.to_int32 n))
  | Pint64 -> Const_base(Const_int64 (Int64.of_nativeint n))

let operations_boxed_int bi =
  match bi with
    Pnativeint -> "nativeint_ops"
  | Pint32 -> "int32_ops"
  | Pint64 -> "int64_ops"

let box_int bi arg =
  match arg with
    Cconst_int n ->
      transl_constant (box_int_constant bi (Nativeint.of_int n))
  | Cconst_natint n ->
      transl_constant (box_int_constant bi n)
  | _ ->
      let arg' =
        if bi = Pint32 && size_int = 8 && big_endian
        then Cop(Clsl, [arg; Cconst_int 32])
        else arg in
      Cop(Calloc, [alloc_boxedint_header;
                   Cconst_symbol(operations_boxed_int bi);
                   arg])

let unbox_int bi arg =
  match arg with
    Cop(Calloc, [hdr; ops; Cop(Clsl, [contents; Cconst_int 32])])
    when bi = Pint32 && size_int = 8 && big_endian ->
      (* Force sign-extension of low 32 bits *)
      Cop(Casr, [Cop(Clsl, [contents; Cconst_int 32]); Cconst_int 32])
  | Cop(Calloc, [hdr; ops; contents])
    when bi = Pint32 && size_int = 8 && not big_endian ->
      (* Force sign-extension of low 32 bits *)
      Cop(Casr, [Cop(Clsl, [contents; Cconst_int 32]); Cconst_int 32])
  | Cop(Calloc, [hdr; ops; contents]) -> 
      contents
  | _ ->
      Cop(Cload(if bi = Pint32 then Thirtytwo_signed else Word),
          [Cop(Cadda, [arg; Cconst_int size_addr])])

let make_unsigned_int bi arg =
  if bi = Pint32 && size_int = 8
  then Cop(Cand, [arg; Cconst_natint 0xFFFFFFFFn])
  else arg

(* Big arrays *)

let bigarray_elt_size = function
    Pbigarray_unknown -> assert false
  | Pbigarray_float32 -> 4
  | Pbigarray_float64 -> 8
  | Pbigarray_sint8 -> 1
  | Pbigarray_uint8 -> 1
  | Pbigarray_sint16 -> 2
  | Pbigarray_uint16 -> 2
  | Pbigarray_int32 -> 4
  | Pbigarray_int64 -> 8
  | Pbigarray_caml_int -> size_int
  | Pbigarray_native_int -> size_int
  | Pbigarray_complex32 -> 8
  | Pbigarray_complex64 -> 16

let bigarray_indexing elt_kind layout b args =
  let rec ba_indexing dim_ofs delta_ofs = function
    [] -> assert false
  | [arg] ->
      bind "idx" (untag_int arg)
        (fun idx ->
          Csequence(
            Cop(Ccheckbound, [Cop(Cload Word,[field_address b dim_ofs]); idx]),
            idx))
  | arg1 :: argl ->
      let rem = ba_indexing (dim_ofs + delta_ofs) delta_ofs argl in
      bind "idx" (untag_int arg1)
        (fun idx ->
          bind "bound" (Cop(Cload Word, [field_address b dim_ofs]))
          (fun bound ->
            Csequence(Cop(Ccheckbound, [bound; idx]),
                      add_int (mul_int rem bound) idx))) in
  let offset =
    match layout with
      Pbigarray_unknown_layout ->
        assert false
    | Pbigarray_c_layout ->
        ba_indexing (4 + List.length args) (-1) (List.rev args)
    | Pbigarray_fortran_layout ->
        ba_indexing 5 1 (List.map (fun idx -> sub_int idx (Cconst_int 2)) args)
  and elt_size =
    bigarray_elt_size elt_kind in
  let byte_offset =
    if elt_size = 1
    then offset
    else Cop(Clsl, [offset; Cconst_int(log2 elt_size)]) in
  Cop(Cadda, [Cop(Cload Word, [field_address b 1]); byte_offset])

let bigarray_word_kind = function
    Pbigarray_unknown -> assert false
  | Pbigarray_float32 -> Single
  | Pbigarray_float64 -> Double
  | Pbigarray_sint8 -> Byte_signed
  | Pbigarray_uint8 -> Byte_unsigned
  | Pbigarray_sint16 -> Sixteen_signed
  | Pbigarray_uint16 -> Sixteen_unsigned
  | Pbigarray_int32 -> Thirtytwo_signed
  | Pbigarray_int64 -> Word
  | Pbigarray_caml_int -> Word
  | Pbigarray_native_int -> Word
  | Pbigarray_complex32 -> Single
  | Pbigarray_complex64 -> Double

let bigarray_get elt_kind layout b args =
  match elt_kind with
    Pbigarray_complex32 | Pbigarray_complex64 ->
      let kind = bigarray_word_kind elt_kind in
      let sz = bigarray_elt_size elt_kind / 2 in
      bind "addr" (bigarray_indexing elt_kind layout b args) (fun addr ->
        box_complex
          (Cop(Cload kind, [addr]))
          (Cop(Cload kind, [Cop(Cadda, [addr; Cconst_int sz])])))
  | _ ->
      Cop(Cload (bigarray_word_kind elt_kind),
          [bigarray_indexing elt_kind layout b args])

let bigarray_set elt_kind layout b args newval =
  match elt_kind with
    Pbigarray_complex32 | Pbigarray_complex64 ->
      let kind = bigarray_word_kind elt_kind in
      let sz = bigarray_elt_size elt_kind / 2 in
      bind "newval" newval (fun newv ->
      bind "addr" (bigarray_indexing elt_kind layout b args) (fun addr ->
        Csequence(
          Cop(Cstore kind, [addr; complex_re newv]),
          Cop(Cstore kind,
              [Cop(Cadda, [addr; Cconst_int sz]); complex_im newv]))))
  | _ ->
      Cop(Cstore (bigarray_word_kind elt_kind),
          [bigarray_indexing elt_kind layout b args; newval])

(* Simplification of some primitives into C calls *)

let default_prim name =
  { prim_name = name; prim_arity = 0 (*ignored*);
    prim_alloc = true; prim_native_name = ""; prim_native_float = false }

let simplif_primitive_32bits = function
    Pbintofint Pint64 -> Pccall (default_prim "int64_of_int")
  | Pintofbint Pint64 -> Pccall (default_prim "int64_to_int")
  | Pcvtbint(Pint32, Pint64) -> Pccall (default_prim "int64_of_int32")
  | Pcvtbint(Pint64, Pint32) -> Pccall (default_prim "int64_to_int32")
  | Pcvtbint(Pnativeint, Pint64) -> Pccall (default_prim "int64_of_nativeint")
  | Pcvtbint(Pint64, Pnativeint) -> Pccall (default_prim "int64_to_nativeint")
  | Pnegbint Pint64 -> Pccall (default_prim "int64_neg")
  | Paddbint Pint64 -> Pccall (default_prim "int64_add")
  | Psubbint Pint64 -> Pccall (default_prim "int64_sub")
  | Pmulbint Pint64 -> Pccall (default_prim "int64_mul")
  | Pdivbint Pint64 -> Pccall (default_prim "int64_div")
  | Pmodbint Pint64 -> Pccall (default_prim "int64_mod")
  | Pandbint Pint64 -> Pccall (default_prim "int64_and")
  | Porbint Pint64 ->  Pccall (default_prim "int64_or")
  | Pxorbint Pint64 -> Pccall (default_prim "int64_xor")
  | Plslbint Pint64 -> Pccall (default_prim "int64_shift_left")
  | Plsrbint Pint64 -> Pccall (default_prim "int64_shift_right_unsigned")
  | Pasrbint Pint64 -> Pccall (default_prim "int64_shift_right")
  | Pbintcomp(Pint64, Lambda.Ceq) -> Pccall (default_prim "equal")
  | Pbintcomp(Pint64, Lambda.Cneq) -> Pccall (default_prim "notequal")
  | Pbintcomp(Pint64, Lambda.Clt) -> Pccall (default_prim "lessthan")
  | Pbintcomp(Pint64, Lambda.Cgt) -> Pccall (default_prim "greaterthan")
  | Pbintcomp(Pint64, Lambda.Cle) -> Pccall (default_prim "lessequal")
  | Pbintcomp(Pint64, Lambda.Cge) -> Pccall (default_prim "greaterequal")
  | Pbigarrayref(n, Pbigarray_int64, layout) ->
      Pccall (default_prim ("bigarray_get_" ^ string_of_int n))
  | Pbigarrayset(n, Pbigarray_int64, layout) ->
      Pccall (default_prim ("bigarray_set_" ^ string_of_int n))
  | p -> p

let simplif_primitive p =
  match p with
    Pbigarrayref(n, Pbigarray_unknown, layout) ->
      Pccall (default_prim ("bigarray_get_" ^ string_of_int n))
  | Pbigarrayset(n, Pbigarray_unknown, layout) ->
      Pccall (default_prim ("bigarray_set_" ^ string_of_int n))
  | Pbigarrayref(n, kind, Pbigarray_unknown_layout) ->
      Pccall (default_prim ("bigarray_get_" ^ string_of_int n))
  | Pbigarrayset(n, kind, Pbigarray_unknown_layout) ->
      Pccall (default_prim ("bigarray_set_" ^ string_of_int n))
  | p ->
      if size_int = 8 then p else simplif_primitive_32bits p

(* Build switchers both for constants and blocks *)

(* constants first *)

let transl_isout h arg = tag_int (Cop(Ccmpa Clt, [h ; arg]))

exception Found of int

let make_switch_gen arg cases acts =
  let lcases = Array.length cases in
  let new_cases = Array.create lcases 0 in
  let store = Switch.mk_store (=) in
            
  for i = 0 to Array.length cases-1 do
    let act = cases.(i) in
    let new_act = store.Switch.act_store act in
    new_cases.(i) <- new_act
  done ;
  Cswitch
    (arg, new_cases,
     Array.map
       (fun n -> acts.(n))
       (store.Switch.act_get ()))


(* Then for blocks *)

module SArgBlocks =
struct
  type primitive = operation

  let eqint = Ccmpi Ceq
  let neint = Ccmpi Cne
  let leint = Ccmpi Cle
  let ltint = Ccmpi Clt
  let geint = Ccmpi Cge
  let gtint = Ccmpi Cgt

  type act = expression

  let default = Cexit (0,[])
  let make_prim p args = Cop (p,args)
  let make_offset arg n = add_const arg n
  let make_isout h arg =  Cop (Ccmpa Clt, [h ; arg])
  let make_isin h arg =  Cop (Ccmpa Cge, [h ; arg])
  let make_if cond ifso ifnot = Cifthenelse (cond, ifso, ifnot)
  let make_switch arg cases actions =
    make_switch_gen arg cases actions
  let bind arg body = bind "switcher" arg body

end

module SwitcherBlocks = Switch.Make(SArgBlocks)

(* Auxiliary functions for optimizing "let" of boxed numbers (floats and
   boxed integers *)

type unboxed_number_kind =
    No_unboxing
  | Boxed_float
  | Boxed_integer of boxed_integer

let is_unboxed_number = function
    Uconst(Const_base(Const_float f)) ->
      Boxed_float
  | Uprim(p, _) ->
      begin match simplif_primitive p with
          Pccall p -> if p.prim_native_float then Boxed_float else No_unboxing
        | Pfloatfield _ -> Boxed_float
        | Pfloatofint -> Boxed_float
        | Pnegfloat -> Boxed_float
        | Pabsfloat -> Boxed_float
        | Paddfloat -> Boxed_float
        | Psubfloat -> Boxed_float
        | Pmulfloat -> Boxed_float
        | Pdivfloat -> Boxed_float
        | Parrayrefu Pfloatarray -> Boxed_float
        | Parrayrefs Pfloatarray -> Boxed_float
        | Pbintofint bi -> Boxed_integer bi
        | Pcvtbint(src, dst) -> Boxed_integer dst
        | Pnegbint bi -> Boxed_integer bi
        | Paddbint bi -> Boxed_integer bi
        | Psubbint bi -> Boxed_integer bi
        | Pmulbint bi -> Boxed_integer bi
        | Pdivbint bi -> Boxed_integer bi
        | Pmodbint bi -> Boxed_integer bi
        | Pandbint bi -> Boxed_integer bi
        | Porbint bi -> Boxed_integer bi
        | Pxorbint bi -> Boxed_integer bi
        | Plslbint bi -> Boxed_integer bi
        | Plsrbint bi -> Boxed_integer bi
        | Pasrbint bi -> Boxed_integer bi
        | Pbigarrayref(_, (Pbigarray_float32 | Pbigarray_float64), _) ->
            Boxed_float
        | Pbigarrayref(_, Pbigarray_int32, _) -> Boxed_integer Pint32
        | Pbigarrayref(_, Pbigarray_int64, _) -> Boxed_integer Pint64
        | Pbigarrayref(_, Pbigarray_native_int, _) -> Boxed_integer Pnativeint
        | _ -> No_unboxing
      end
  | _ -> No_unboxing

let subst_boxed_number unbox_fn boxed_id unboxed_id exp =
  let need_boxed = ref false in
  let assigned = ref false in
  let rec subst = function
      Cvar id as e ->
        if Ident.same id boxed_id then need_boxed := true; e
    | Clet(id, arg, body) -> Clet(id, subst arg, subst body)
    | Cassign(id, arg) -> 
        if Ident.same id boxed_id then begin
          assigned := true;
          Cassign(unboxed_id, subst(unbox_fn arg))
        end else
          Cassign(id, subst arg)
    | Ctuple argv -> Ctuple(List.map subst argv)
    | Cop(Cload _, [Cvar id]) as e ->
        if Ident.same id boxed_id then Cvar unboxed_id else e
    | Cop(Cload _, [Cop(Cadda, [Cvar id; _])]) as e ->
        if Ident.same id boxed_id then Cvar unboxed_id else e
    | Cop(op, argv) -> Cop(op, List.map subst argv)
    | Csequence(e1, e2) -> Csequence(subst e1, subst e2)
    | Cifthenelse(e1, e2, e3) -> Cifthenelse(subst e1, subst e2, subst e3)
    | Cswitch(arg, index, cases) ->
        Cswitch(subst arg, index, Array.map subst cases)
    | Cloop e -> Cloop(subst e)
    | Ccatch(nfail, ids, e1, e2) -> Ccatch(nfail, ids, subst e1, subst e2)
    | Cexit (nfail, el) -> Cexit (nfail, List.map subst el)        
    | Ctrywith(e1, id, e2) -> Ctrywith(subst e1, id, subst e2)
    | e -> e in
  let res = subst exp in
  (res, !need_boxed, !assigned)  

(* Translate an expression *)

let functions = (Queue.create() : (string * Ident.t list * ulambda) Queue.t)

let rec transl = function
    Uvar id ->
      Cvar id
  | Uconst sc ->
      transl_constant sc
  | Uclosure(fundecls, []) ->
      let lbl = new_const_symbol() in
      constant_closures := (lbl, fundecls) :: !constant_closures;
      List.iter
        (fun (label, arity, params, body) ->
          Queue.add (label, params, body) functions)
        fundecls;
      Cconst_symbol lbl
  | Uclosure(fundecls, clos_vars) ->
      let block_size =
        fundecls_size fundecls + List.length clos_vars in
      let rec transl_fundecls pos = function
          [] ->
            List.map transl clos_vars
        | (label, arity, params, body) :: rem ->
            Queue.add (label, params, body) functions;
            let header =
              if pos = 0
              then alloc_closure_header block_size
              else alloc_infix_header pos in
            if arity = 1 then
              header ::
              Cconst_symbol label ::
              int_const 1 ::
              transl_fundecls (pos + 3) rem
            else
              header ::
              Cconst_symbol(curry_function arity) ::
              int_const arity ::
              Cconst_symbol label ::
              transl_fundecls (pos + 4) rem in
      Cop(Calloc, transl_fundecls 0 fundecls)
  | Uoffset(arg, offset) ->
      field_address (transl arg) offset
  | Udirect_apply(lbl, args) ->
      Cop(Capply typ_addr, Cconst_symbol lbl :: List.map transl args)
  | Ugeneric_apply(clos, [arg]) ->
      bind "fun" (transl clos) (fun clos ->
        Cop(Capply typ_addr, [get_field clos 0; transl arg; clos]))
  | Ugeneric_apply(clos, args) ->
      let arity = List.length args in
      let cargs = Cconst_symbol(apply_function arity) ::
        List.map transl (args @ [clos]) in
      Cop(Capply typ_addr, cargs)
  | Usend(kind, met, obj, args) ->
      let call_met obj args clos =
	if args = [] then Cop(Capply typ_addr,[get_field clos 0;obj;clos]) else
	let arity = List.length args + 1 in
        let cargs = Cconst_symbol(apply_function arity) :: obj ::
	  (List.map transl args) @ [clos] in
        Cop(Capply typ_addr, cargs)
      in
      bind "obj" (transl obj) (fun obj ->
	let met, args =
	  match kind, args with
	    Self, args -> lookup_label obj (transl met), args
	  | Cached, Uprim(Pfield n, [cache]) :: args ->
	      lookup_tag_cache obj (transl met) (transl cache) n, args
	  | _ -> lookup_tag obj (transl met), args
	in
        bind "met" met (call_met obj args))
  | Ulet(id, exp, body) ->
      begin match is_unboxed_number exp with
        No_unboxing ->
          Clet(id, transl exp, transl body)
      | Boxed_float ->
          transl_unbox_let box_float unbox_float transl_unbox_float
                           id exp body
      | Boxed_integer bi ->
          transl_unbox_let (box_int bi) (unbox_int bi) (transl_unbox_int bi)
                           id exp body
      end
  | Uletrec(bindings, body) ->
      transl_letrec bindings (transl body)

  (* Primitives *)
  | Uprim(prim, args) ->
      begin match (simplif_primitive prim, args) with
        (Pgetglobal id, []) ->
          Cconst_symbol(Ident.name id)
      | (Pmakeblock(tag, mut), []) ->
          transl_constant(Const_block(tag, []))
      | (Pmakeblock(tag, mut), args) ->
          make_alloc tag (List.map transl args)
      | (Pccall prim, args) ->
          if prim.prim_native_float then
            box_float
              (Cop(Cextcall(prim.prim_native_name, typ_float, false),
                   List.map transl_unbox_float args))
          else begin
            let name =
              if prim.prim_native_name <> ""
              then prim.prim_native_name
              else prim.prim_name in
            Cop(Cextcall(name, typ_addr, prim.prim_alloc),
                List.map transl args)
          end
      | (Pmakearray kind, []) ->
          transl_constant(Const_block(0, []))
      | (Pmakearray kind, args) ->
          begin match kind with
            Pgenarray ->
              Cop(Cextcall("make_array", typ_addr, true),
                  [make_alloc 0 (List.map transl args)])
          | Paddrarray | Pintarray ->
              make_alloc 0 (List.map transl args)
          | Pfloatarray ->
              make_float_alloc Obj.double_array_tag
                              (List.map transl_unbox_float args)
          end
      | (Pbigarrayref(num_dims, elt_kind, layout), arg1 :: argl) ->
          let elt =
            bigarray_get elt_kind layout
              (transl arg1) (List.map transl argl) in
          begin match elt_kind with
            Pbigarray_float32 | Pbigarray_float64 -> box_float elt
          | Pbigarray_complex32 | Pbigarray_complex64 -> elt
          | Pbigarray_int32 -> box_int Pint32 elt
          | Pbigarray_int64 -> box_int Pint64 elt
          | Pbigarray_native_int -> box_int Pnativeint elt
          | Pbigarray_caml_int -> force_tag_int elt
          | _ -> tag_int elt
          end
      | (Pbigarrayset(num_dims, elt_kind, layout), arg1 :: argl) ->
          let (argidx, argnewval) = split_last argl in
          return_unit(bigarray_set elt_kind layout
            (transl arg1)
            (List.map transl argidx)
            (match elt_kind with
              Pbigarray_float32 | Pbigarray_float64 ->
                transl_unbox_float argnewval
            | Pbigarray_complex32 | Pbigarray_complex64 -> transl argnewval
            | Pbigarray_int32 -> transl_unbox_int Pint32 argnewval
            | Pbigarray_int64 -> transl_unbox_int Pint64 argnewval
            | Pbigarray_native_int -> transl_unbox_int Pnativeint argnewval
            | _ -> untag_int (transl argnewval)))
      | (p, [arg]) ->
          transl_prim_1 p arg
      | (p, [arg1; arg2]) ->
          transl_prim_2 p arg1 arg2
      | (p, [arg1; arg2; arg3]) ->
          transl_prim_3 p arg1 arg2 arg3
      | (_, _) ->
          fatal_error "Cmmgen.transl:prim"
      end

  (* Control structures *)
  | Uswitch(arg, s) ->
      (* As in the bytecode interpreter, only matching against constants
         can be checked *)
      if Array.length s.us_index_blocks = 0 then
        Cswitch
          (untag_int (transl arg),
           s.us_index_consts,
           Array.map transl s.us_actions_consts)
      else if Array.length s.us_index_consts = 0 then
        transl_switch (get_tag (transl arg))
          s.us_index_blocks s.us_actions_blocks
      else
        bind "switch" (transl arg) (fun arg ->
          Cifthenelse(
          Cop(Cand, [arg; Cconst_int 1]),
          transl_switch
            (untag_int arg) s.us_index_consts s.us_actions_consts,
          transl_switch
            (get_tag arg) s.us_index_blocks s.us_actions_blocks))
  | Ustaticfail (nfail, args) ->
      Cexit (nfail, List.map transl args)
  | Ucatch(nfail, [], body, handler) ->
      make_catch nfail (transl body) (transl handler)
  | Ucatch(nfail, ids, body, handler) ->
      Ccatch(nfail, ids, transl body, transl handler)
  | Utrywith(body, exn, handler) ->
      Ctrywith(transl body, exn, transl handler)
  | Uifthenelse(Uprim(Pnot, [arg]), ifso, ifnot) ->
      transl (Uifthenelse(arg, ifnot, ifso))
  | Uifthenelse(cond, ifso, Ustaticfail (nfail, [])) ->
      exit_if_false cond (transl ifso) nfail
  | Uifthenelse(cond, Ustaticfail (nfail, []), ifnot) ->
      exit_if_true cond nfail (transl ifnot)
  | Uifthenelse(Uprim(Psequand, _) as cond, ifso, ifnot) ->
      let raise_num = next_raise_count () in
      make_catch
        raise_num
        (exit_if_false cond (transl ifso) raise_num)
        (transl ifnot)
  | Uifthenelse(Uprim(Psequor, _) as cond, ifso, ifnot) ->
      let raise_num = next_raise_count () in      
      make_catch
        raise_num
        (exit_if_true cond raise_num (transl ifnot))
        (transl ifso)
  | Uifthenelse (Uifthenelse (cond, condso, condnot), ifso, ifnot) ->
      let num_true = next_raise_count () in
      make_catch
        num_true
        (make_catch2
           (fun shared_false ->
             Cifthenelse
               (test_bool (transl cond),
                exit_if_true condso num_true shared_false,
                exit_if_true condnot num_true shared_false))
           (transl ifnot))
        (transl ifso)
  | Uifthenelse(cond, ifso, ifnot) ->
      Cifthenelse(test_bool(transl cond), transl ifso, transl ifnot)
  | Usequence(exp1, exp2) ->
      Csequence(remove_unit(transl exp1), transl exp2)
  | Uwhile(cond, body) ->
      let raise_num = next_raise_count () in
      return_unit
        (Ccatch
           (raise_num, [],
            Cloop(exit_if_false cond (remove_unit(transl body)) raise_num),
            Ctuple []))
  | Ufor(id, low, high, dir, body) ->
      let tst = match dir with Upto -> Cgt   | Downto -> Clt in
      let inc = match dir with Upto -> Caddi | Downto -> Csubi in
      let raise_num = next_raise_count () in
      let id_prev = Ident.rename id in
      return_unit
        (Clet
           (id, transl low,
            bind_nonvar "bound" (transl high) (fun high ->
              Ccatch
                (raise_num, [],
                 Cifthenelse
                   (Cop(Ccmpi tst, [Cvar id; high]), Cexit (raise_num, []),
                    Cloop
                      (Csequence
                         (remove_unit(transl body),
                         Clet(id_prev, Cvar id,
                          Csequence
                            (Cassign(id, 
                               Cop(inc, [Cvar id; Cconst_int 2])),
                             Cifthenelse
                               (Cop(Ccmpi Ceq, [Cvar id_prev; high]),
                                Cexit (raise_num,[]), Ctuple [])))))),
                 Ctuple []))))
  | Uassign(id, exp) ->
      return_unit(Cassign(id, transl exp))

and transl_prim_1 p arg =
  match p with
  (* Generic operations *)
    Pidentity ->
      transl arg
  | Pignore ->
      return_unit(remove_unit (transl arg))
  (* Heap operations *)
  | Pfield n ->
      get_field (transl arg) n
  | Pfloatfield n ->
      let ptr = transl arg in
      box_float(
        Cop(Cload Double_u,
            [if n = 0 then ptr
                       else Cop(Cadda, [ptr; Cconst_int(n * size_float)])]))
  (* Exceptions *)
  | Praise ->
      Cop(Craise, [transl arg])
  (* Integer operations *)
  | Pnegint ->
      Cop(Csubi, [Cconst_int 2; transl arg])
  | Poffsetint n ->
      if no_overflow_lsl n then
        add_const (transl arg) (n lsl 1)
      else
        transl_prim_2 Paddint arg (Uconst (Const_base(Const_int n)))
  | Poffsetref n ->
      return_unit
        (bind "ref" (transl arg) (fun arg ->
          Cop(Cstore Word,
              [arg; add_const (Cop(Cload Word, [arg])) (n lsl 1)])))
  (* Floating-point operations *)
  | Pfloatofint ->
      box_float(Cop(Cfloatofint, [untag_int(transl arg)]))
  | Pintoffloat ->
     tag_int(Cop(Cintoffloat, [transl_unbox_float arg]))
  | Pnegfloat ->
      box_float(Cop(Cnegf, [transl_unbox_float arg]))
  | Pabsfloat ->
      box_float(Cop(Cabsf, [transl_unbox_float arg]))
  (* String operations *)
  | Pstringlength ->
      tag_int(string_length (transl arg))
  (* Array operations *)
  | Parraylength kind ->
      begin match kind with
        Pgenarray ->
          let len =
            if wordsize_shift = numfloat_shift then
              Cop(Clsr, [header(transl arg); Cconst_int wordsize_shift])
            else
              bind "header" (header(transl arg)) (fun hdr ->
                Cifthenelse(is_addr_array_hdr hdr,
                            Cop(Clsr, [hdr; Cconst_int wordsize_shift]),
                            Cop(Clsr, [hdr; Cconst_int numfloat_shift]))) in
          Cop(Cor, [len; Cconst_int 1])
      | Paddrarray | Pintarray ->
          Cop(Cor, [addr_array_length(header(transl arg)); Cconst_int 1])
      | Pfloatarray ->
          Cop(Cor, [float_array_length(header(transl arg)); Cconst_int 1])
      end
  (* Boolean operations *)
  | Pnot ->
      Cop(Csubi, [Cconst_int 4; transl arg]) (* 1 -> 3, 3 -> 1 *)
  (* Test integer/block *)
  | Pisint ->
      tag_int(Cop(Cand, [transl arg; Cconst_int 1]))
  (* Boxed integers *)
  | Pbintofint bi ->
      box_int bi (untag_int (transl arg))
  | Pintofbint bi ->
      force_tag_int (transl_unbox_int bi arg)
  | Pcvtbint(bi1, bi2) ->
      box_int bi2 (transl_unbox_int bi1 arg)
  | Pnegbint bi ->
      box_int bi (Cop(Csubi, [Cconst_int 0; transl_unbox_int bi arg]))
  | _ ->
      fatal_error "Cmmgen.transl_prim_1"

and transl_prim_2 p arg1 arg2 =
  match p with
  (* Heap operations *)
    Psetfield(n, ptr) ->
      if ptr then
        return_unit(Cop(Cextcall("modify", typ_void, false),
                        [field_address (transl arg1) n; transl arg2]))
      else
        return_unit(set_field (transl arg1) n (transl arg2))
  | Psetfloatfield n ->
      let ptr = transl arg1 in
      return_unit(
        Cop(Cstore Double_u,
            [if n = 0 then ptr
                       else Cop(Cadda, [ptr; Cconst_int(n * size_float)]);
                   transl_unbox_float arg2]))

  (* Boolean operations *)
  | Psequand ->
      Cifthenelse(test_bool(transl arg1), transl arg2, Cconst_int 1)
  | Psequor ->
      Cifthenelse(test_bool(transl arg1), Cconst_int 3, transl arg2)

  (* Integer operations *)
  | Paddint ->
      decr_int(add_int (transl arg1) (transl arg2))
  | Psubint ->
      incr_int(sub_int (transl arg1) (transl arg2))
  | Pmulint ->
      incr_int(Cop(Cmuli, [decr_int(transl arg1); untag_int(transl arg2)]))
  | Pdivint ->
      tag_int(safe_divmod Cdivi (untag_int(transl arg1)) (untag_int(transl arg2)))
  | Pmodint ->
      tag_int(safe_divmod Cmodi (untag_int(transl arg1)) (untag_int(transl arg2)))
  | Pandint ->
      Cop(Cand, [transl arg1; transl arg2])
  | Porint ->
      Cop(Cor, [transl arg1; transl arg2])
  | Pxorint ->
      Cop(Cor, [Cop(Cxor, [ignore_low_bit_int(transl arg1);
                           ignore_low_bit_int(transl arg2)]);
                Cconst_int 1])
  | Plslint ->
      incr_int(lsl_int (decr_int(transl arg1)) (untag_int(transl arg2)))
  | Plsrint ->
      Cop(Cor, [Cop(Clsr, [transl arg1; untag_int(transl arg2)]);
                Cconst_int 1])
  | Pasrint ->
      Cop(Cor, [Cop(Casr, [transl arg1; untag_int(transl arg2)]);
                Cconst_int 1])
  | Pintcomp cmp ->
      tag_int(Cop(Ccmpi(transl_comparison cmp), [transl arg1; transl arg2]))
  | Pisout ->
      transl_isout (transl arg1) (transl arg2)        
  (* Float operations *)
  | Paddfloat ->
      box_float(Cop(Caddf,
                    [transl_unbox_float arg1; transl_unbox_float arg2]))
  | Psubfloat ->
      box_float(Cop(Csubf,
                    [transl_unbox_float arg1; transl_unbox_float arg2]))
  | Pmulfloat ->
      box_float(Cop(Cmulf,
                    [transl_unbox_float arg1; transl_unbox_float arg2]))
  | Pdivfloat ->
      box_float(Cop(Cdivf,
                    [transl_unbox_float arg1; transl_unbox_float arg2]))
  | Pfloatcomp cmp ->
      tag_int(Cop(Ccmpf(transl_comparison cmp),
                  [transl_unbox_float arg1; transl_unbox_float arg2]))

  (* String operations *)
  | Pstringrefu ->
      tag_int(Cop(Cload Byte_unsigned,
                  [add_int (transl arg1) (untag_int(transl arg2))]))
  | Pstringrefs ->
      tag_int
        (bind "str" (transl arg1) (fun str ->
          bind "index" (untag_int (transl arg2)) (fun idx ->
            Csequence(
              Cop(Ccheckbound, [string_length str; idx]),
              Cop(Cload Byte_unsigned, [add_int str idx])))))

  (* Array operations *)
  | Parrayrefu kind ->
      begin match kind with
        Pgenarray ->
          bind "arr" (transl arg1) (fun arr ->
            bind "index" (transl arg2) (fun idx ->
              Cifthenelse(is_addr_array_ptr arr,
                          addr_array_ref arr idx,
                          float_array_ref arr idx)))
      | Paddrarray | Pintarray ->
          addr_array_ref (transl arg1) (transl arg2)
      | Pfloatarray ->
          float_array_ref (transl arg1) (transl arg2)
      end
  | Parrayrefs kind ->
      begin match kind with
        Pgenarray ->
          bind "index" (transl arg2) (fun idx ->
            bind "arr" (transl arg1) (fun arr ->
              bind "header" (header arr) (fun hdr ->
                Cifthenelse(is_addr_array_hdr hdr,
                  Csequence(Cop(Ccheckbound, [addr_array_length hdr; idx]),
                            addr_array_ref arr idx),
                  Csequence(Cop(Ccheckbound, [float_array_length hdr; idx]),
                            float_array_ref arr idx)))))
      | Paddrarray | Pintarray ->
          bind "index" (transl arg2) (fun idx ->
            bind "arr" (transl arg1) (fun arr ->
              Csequence(Cop(Ccheckbound, [addr_array_length(header arr); idx]),
                        addr_array_ref arr idx)))
      | Pfloatarray ->
          box_float(
            bind "index" (transl arg2) (fun idx ->
              bind "arr" (transl arg1) (fun arr ->
                Csequence(Cop(Ccheckbound, 
                              [float_array_length(header arr); idx]),
                          unboxed_float_array_ref arr idx))))
      end

  (* Operations on bitvects *)
  | Pbittest ->
      bind "index" (untag_int(transl arg2)) (fun idx ->
        tag_int(
          Cop(Cand, [Cop(Clsr, [Cop(Cload Byte_unsigned,
                                    [add_int (transl arg1)
                                      (Cop(Clsr, [idx; Cconst_int 3]))]);
                                Cop(Cand, [idx; Cconst_int 7])]);
                     Cconst_int 1])))

  (* Boxed integers *)
  | Paddbint bi ->
      box_int bi (Cop(Caddi,
                      [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | Psubbint bi ->
      box_int bi (Cop(Csubi,
                      [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | Pmulbint bi ->
      box_int bi (Cop(Cmuli, 
                      [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | Pdivbint bi ->
      box_int bi (safe_divmod Cdivi
                      (transl_unbox_int bi arg1) (transl_unbox_int bi arg2))
  | Pmodbint bi ->
      box_int bi (safe_divmod Cmodi
                      (transl_unbox_int bi arg1) (transl_unbox_int bi arg2))
  | Pandbint bi ->
      box_int bi (Cop(Cand,
                     [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | Porbint bi ->
      box_int bi (Cop(Cor,
                     [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | Pxorbint bi ->
      box_int bi (Cop(Cxor,
                     [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | Plslbint bi ->
      box_int bi (Cop(Clsl,
                     [transl_unbox_int bi arg1; untag_int(transl arg2)]))
  | Plsrbint bi ->
      box_int bi (Cop(Clsr,
                     [make_unsigned_int bi (transl_unbox_int bi arg1);
                      untag_int(transl arg2)]))
  | Pasrbint bi ->
      box_int bi (Cop(Casr,
                     [transl_unbox_int bi arg1; untag_int(transl arg2)]))
  | Pbintcomp(bi, cmp) ->
      tag_int (Cop(Ccmpi(transl_comparison cmp),
                     [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | _ ->
      fatal_error "Cmmgen.transl_prim_2"

and transl_prim_3 p arg1 arg2 arg3 =
  match p with
  (* String operations *)
    Pstringsetu ->
      return_unit(Cop(Cstore Byte_unsigned,
                      [add_int (transl arg1) (untag_int(transl arg2));
                        untag_int(transl arg3)]))
  | Pstringsets ->
      return_unit
        (bind "str" (transl arg1) (fun str ->
          bind "index" (untag_int (transl arg2)) (fun idx ->
            Csequence(
              Cop(Ccheckbound, [string_length str; idx]),
              Cop(Cstore Byte_unsigned,
                  [add_int str idx; untag_int(transl arg3)])))))

  (* Array operations *)
  | Parraysetu kind ->
      return_unit(begin match kind with
        Pgenarray ->
          bind "newval" (transl arg3) (fun newval ->
            bind "index" (transl arg2) (fun index ->
              bind "arr" (transl arg1) (fun arr ->
                Cifthenelse(is_addr_array_ptr arr,
                            addr_array_set arr index newval,
                            float_array_set arr index (unbox_float newval)))))
      | Paddrarray ->
          addr_array_set (transl arg1) (transl arg2) (transl arg3)
      | Pintarray ->
          int_array_set (transl arg1) (transl arg2) (transl arg3)
      | Pfloatarray ->
          float_array_set (transl arg1) (transl arg2) (transl_unbox_float arg3)
      end)
  | Parraysets kind ->
      return_unit(begin match kind with
        Pgenarray ->
          bind "newval" (transl arg3) (fun newval ->
            bind "index" (transl arg2) (fun idx ->
              bind "arr" (transl arg1) (fun arr ->
                bind "header" (header arr) (fun hdr ->
                  Cifthenelse(is_addr_array_hdr hdr,
                    Csequence(Cop(Ccheckbound, [addr_array_length hdr; idx]),
                              addr_array_set arr idx newval),
                    Csequence(Cop(Ccheckbound, [float_array_length hdr; idx]),
                              float_array_set arr idx
                                              (unbox_float newval)))))))
      | Paddrarray ->
          bind "index" (transl arg2) (fun idx ->
            bind "arr" (transl arg1) (fun arr ->
              Csequence(Cop(Ccheckbound, [addr_array_length(header arr); idx]),
                        addr_array_set arr idx (transl arg3))))
      | Pintarray ->
          bind "index" (transl arg2) (fun idx ->
            bind "arr" (transl arg1) (fun arr ->
              Csequence(Cop(Ccheckbound, [addr_array_length(header arr); idx]),
                        int_array_set arr idx (transl arg3))))
      | Pfloatarray ->
          bind "index" (transl arg2) (fun idx ->
            bind "arr" (transl arg1) (fun arr ->
              Csequence(Cop(Ccheckbound, [float_array_length(header arr);idx]),
                        float_array_set arr idx (transl_unbox_float arg3))))
      end)
  | _ ->
    fatal_error "Cmmgen.transl_prim_3"

and transl_unbox_float = function
    Uconst(Const_base(Const_float f)) -> Cconst_float f
  | exp -> unbox_float(transl exp)

and transl_unbox_int bi = function
    Uconst(Const_base(Const_int32 n)) ->
      Cconst_natint (Nativeint.of_int32 n)
  | Uconst(Const_base(Const_nativeint n)) ->
      Cconst_natint n
  | Uconst(Const_base(Const_int64 n)) ->
      assert (size_int = 8); Cconst_natint (Int64.to_nativeint n)
  | Uprim(Pbintofint bi', [Uconst(Const_base(Const_int i))]) when bi = bi' ->
      Cconst_int i
  | exp -> unbox_int bi (transl exp)

and transl_unbox_let box_fn unbox_fn transl_unbox_fn id exp body =
  let unboxed_id = Ident.create (Ident.name id) in
  let (tr_body, need_boxed, is_assigned) =
    subst_boxed_number unbox_fn id unboxed_id (transl body) in
  if need_boxed && is_assigned then
    Clet(id, transl exp, transl body)
  else
    Clet(unboxed_id, transl_unbox_fn exp,
         if need_boxed
         then Clet(id, box_fn(Cvar unboxed_id), tr_body)
         else tr_body)

and make_catch ncatch body handler = match body with
| Cexit (nexit,[]) when nexit=ncatch -> handler
| _ ->  Ccatch (ncatch, [], body, handler) 

and make_catch2 mk_body handler = match handler with
| Cexit (_,[])|Ctuple []|Cconst_int _|Cconst_pointer _ ->
    mk_body handler
| _ ->
    let nfail = next_raise_count () in
    make_catch
      nfail
      (mk_body (Cexit (nfail,[])))
      handler
  
and exit_if_true cond nfail otherwise =
  match cond with
  | Uconst (Const_pointer 0) -> otherwise
  | Uconst (Const_pointer 1) -> Cexit (nfail,[])
  | Uprim(Psequor, [arg1; arg2]) ->
      exit_if_true arg1 nfail (exit_if_true arg2 nfail otherwise)
  | Uprim(Psequand, _) ->
      begin match otherwise with
      | Cexit (raise_num,[]) ->
          exit_if_false cond (Cexit (nfail,[])) raise_num 
      | _ ->
          let raise_num = next_raise_count () in
          make_catch
            raise_num
            (exit_if_false cond (Cexit (nfail,[])) raise_num)
            otherwise
      end   
  | Uprim(Pnot, [arg]) ->
      exit_if_false arg otherwise nfail
  | Uifthenelse (cond, ifso, ifnot) ->
      make_catch2
        (fun shared ->
          Cifthenelse
            (test_bool (transl cond),
             exit_if_true ifso nfail shared,
             exit_if_true ifnot nfail shared))
        otherwise
  | _ ->
      Cifthenelse(test_bool(transl cond), Cexit (nfail, []), otherwise)

and exit_if_false cond otherwise nfail =
  match cond with
  | Uconst (Const_pointer 0) -> Cexit (nfail,[])
  | Uconst (Const_pointer 1) -> otherwise
  | Uprim(Psequand, [arg1; arg2]) ->
      exit_if_false arg1 (exit_if_false arg2 otherwise nfail) nfail
  | Uprim(Psequor, _ ) ->
      begin match otherwise with
      | Cexit (raise_num,[]) ->
          exit_if_true cond raise_num (Cexit (nfail,[]))
      | _ ->
          let raise_num = next_raise_count () in
          make_catch
            raise_num
            (exit_if_true cond raise_num (Cexit (nfail,[])))
            otherwise
      end
  | Uprim(Pnot, [arg]) ->
      exit_if_true arg nfail otherwise
  | Uifthenelse (cond, ifso, ifnot) ->
      make_catch2
        (fun shared ->
          Cifthenelse
            (test_bool (transl cond),
             exit_if_false ifso shared nfail,
             exit_if_false ifnot shared nfail))
        otherwise
  | _ ->
      Cifthenelse(test_bool(transl cond), otherwise, Cexit (nfail, []))

and transl_switch arg index cases = match Array.length cases with
| 0 -> fatal_error "Cmmgen.transl_switch"
| 1 -> transl cases.(0)
| _ ->
    let n_index = Array.length index in
    let actions = Array.map transl cases in
      
    let inters = ref []
    and this_high = ref (n_index-1)
    and this_low = ref (n_index-1)
    and this_act = ref index.(n_index-1) in
    for i = n_index-2 downto 0 do
      let act = index.(i) in
      if act = !this_act then
        decr this_low
      else begin
        inters := (!this_low, !this_high, !this_act) :: !inters ;
        this_high := i ;
        this_low := i ;
        this_act := act
      end
    done ;
    inters := (0, !this_high, !this_act) :: !inters ;
    bind "switcher" arg
      (fun a ->
        SwitcherBlocks.zyva
          (0,n_index-1)
          (fun i -> Cconst_int i)
          a
          (Array.of_list !inters) actions)

and transl_letrec bindings cont =
  let bsz = List.map (fun (id, exp) -> (id, exp, expr_size exp)) bindings in
  let rec init_blocks = function
    | [] -> fill_nonrec bsz
    | (id, exp, RHS_block sz) :: rem ->
        Clet(id, Cop(Cextcall("alloc_dummy", typ_addr, true), [int_const sz]),
             init_blocks rem)
    | (id, exp, RHS_nonrec) :: rem ->
        Clet (id, Cconst_int 0, init_blocks rem)
  and fill_nonrec = function
    | [] -> fill_blocks bsz
    | (id, exp, RHS_block sz) :: rem -> fill_nonrec rem
    | (id, exp, RHS_nonrec) :: rem ->
        Clet (id, transl exp, fill_nonrec rem)
  and fill_blocks = function
    | [] -> cont
    | (id, exp, RHS_block _) :: rem ->
        Csequence(Cop(Cextcall("update_dummy", typ_void, false),
                      [Cvar id; transl exp]),
                  fill_blocks rem)
    | (id, exp, RHS_nonrec) :: rem ->
        fill_blocks rem
  in init_blocks bsz

(* Translate a function definition *)

let transl_function lbl params body =
  Cfunction {fun_name = lbl;
             fun_args = List.map (fun id -> (id, typ_addr)) params;
             fun_body = transl body;
             fun_fast = !Clflags.optimize_for_speed}

(* Translate all function definitions *)

module StringSet =
  Set.Make(struct
    type t = string
    let compare = compare
  end)

let rec transl_all_functions already_translated cont =
  try
    let (lbl, params, body) = Queue.take functions in
    if StringSet.mem lbl already_translated then
      transl_all_functions already_translated cont
    else begin
      transl_all_functions (StringSet.add lbl already_translated)
                           (transl_function lbl params body :: cont)
    end
  with Queue.Empty ->
    cont

(* Emit structured constants *)

let rec emit_constant symb cst cont =
  match cst with
    Const_base(Const_float s) ->
      Cint(float_header) :: Cdefine_symbol symb :: Cdouble s :: cont
  | Const_base(Const_string s) ->
      Cint(string_header (String.length s)) ::
      Cdefine_symbol symb ::
      emit_string_constant s cont
  | Const_base(Const_int32 n) ->
      Cint(boxedint_header) :: Cdefine_symbol symb ::
      emit_boxed_int32_constant n cont
  | Const_base(Const_int64 n) ->
      Cint(boxedint_header) :: Cdefine_symbol symb ::
      emit_boxed_int64_constant n cont
  | Const_base(Const_nativeint n) ->
      Cint(boxedint_header) :: Cdefine_symbol symb ::
      emit_boxed_nativeint_constant n cont
  | Const_block(tag, fields) ->
      let (emit_fields, cont1) = emit_constant_fields fields cont in
      Cint(block_header tag (List.length fields)) ::
      Cdefine_symbol symb ::
      emit_fields @ cont1
  | Const_float_array(fields) ->
      Cint(floatarray_header (List.length fields)) ::
      Cdefine_symbol symb ::
      Misc.map_end (fun f -> Cdouble f) fields cont
  | _ -> fatal_error "gencmm.emit_constant"

and emit_constant_fields fields cont =
  match fields with
    [] -> ([], cont)
  | f1 :: fl ->
      let (data1, cont1) = emit_constant_field f1 cont in
      let (datal, contl) = emit_constant_fields fl cont1 in
      (data1 :: datal, contl)

and emit_constant_field field cont =
  match field with
    Const_base(Const_int n) ->
      (Cint(Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n),
       cont)
  | Const_base(Const_char c) ->
      (Cint(Nativeint.of_int(((Char.code c) lsl 1) + 1)), cont)
  | Const_base(Const_float s) ->
      let lbl = new_const_label() in
      (Clabel_address lbl,
       Cint(float_header) :: Cdefine_label lbl :: Cdouble s :: cont)
  | Const_base(Const_string s) ->
      let lbl = new_const_label() in
      (Clabel_address lbl,
       Cint(string_header (String.length s)) :: Cdefine_label lbl :: 
       emit_string_constant s cont)
  | Const_base(Const_int32 n) ->
      let lbl = new_const_label() in
      (Clabel_address lbl,
       Cint(boxedint_header) :: Cdefine_label lbl ::
       emit_boxed_int32_constant n cont)
  | Const_base(Const_int64 n) ->
      let lbl = new_const_label() in
      (Clabel_address lbl,
       Cint(boxedint_header) :: Cdefine_label lbl ::
       emit_boxed_int64_constant n cont)
  | Const_base(Const_nativeint n) ->
      let lbl = new_const_label() in
      (Clabel_address lbl,
       Cint(boxedint_header) :: Cdefine_label lbl ::
       emit_boxed_nativeint_constant n cont)
  | Const_pointer n ->
      (Cint(Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n),
       cont)
  | Const_block(tag, fields) ->
      let lbl = new_const_label() in
      let (emit_fields, cont1) = emit_constant_fields fields cont in
      (Clabel_address lbl,
       Cint(block_header tag (List.length fields)) :: Cdefine_label lbl ::
       emit_fields @ cont1)
  | Const_float_array(fields) ->
      let lbl = new_const_label() in
      (Clabel_address lbl,
       Cint(floatarray_header (List.length fields)) :: Cdefine_label lbl ::
       Misc.map_end (fun f -> Cdouble f) fields cont)

and emit_string_constant s cont =
  let n = size_int - 1 - (String.length s) mod size_int in
  Cstring s :: Cskip n :: Cint8 n :: cont

and emit_boxed_int32_constant n cont =
  let n = Nativeint.of_int32 n in
  if size_int = 8 then
    Csymbol_address("int32_ops") :: Cint32 n :: Cint32 0n :: cont
  else
    Csymbol_address("int32_ops") :: Cint n :: cont

and emit_boxed_nativeint_constant n cont =
  Csymbol_address("nativeint_ops") :: Cint n :: cont

and emit_boxed_int64_constant n cont =
  let lo = Int64.to_nativeint n in
  if size_int = 8 then
    Csymbol_address("int64_ops") :: Cint lo :: cont
  else begin
    let hi = Int64.to_nativeint (Int64.shift_right n 32) in
    if big_endian then
      Csymbol_address("int64_ops") :: Cint hi :: Cint lo :: cont
    else
      Csymbol_address("int64_ops") :: Cint lo :: Cint hi :: cont
  end

(* Emit constant closures *)

let emit_constant_closure symb fundecls cont =
  match fundecls with
    [] -> assert false
  | (label, arity, params, body) :: remainder ->
      let rec emit_others pos = function
        [] -> cont
      | (label, arity, params, body) :: rem ->
          if arity = 1 then
            Cint(infix_header pos) ::
            Csymbol_address label ::
            Cint 3n ::
            emit_others (pos + 3) rem
          else
            Cint(infix_header pos) ::
            Csymbol_address(curry_function arity) ::
            Cint(Nativeint.of_int (arity lsl 1 + 1)) ::
            Csymbol_address label ::
            emit_others (pos + 4) rem in
      Cint(closure_header (fundecls_size fundecls)) ::
      Cdefine_symbol symb ::
      if arity = 1 then
        Csymbol_address label ::
        Cint 3n ::
        emit_others 3 remainder
      else
        Csymbol_address(curry_function arity) ::
        Cint(Nativeint.of_int (arity lsl 1 + 1)) ::
        Csymbol_address label ::
        emit_others 4 remainder

(* Emit all structured constants *)

let emit_all_constants cont =
  let c = ref cont in
  List.iter
    (fun (lbl, cst) -> c := Cdata(emit_constant lbl cst []) :: !c)
    !structured_constants;
  structured_constants := [];
  List.iter
    (fun (symb, fundecls) ->
        c := Cdata(emit_constant_closure symb fundecls []) :: !c)
    !constant_closures;
  constant_closures := [];
  !c

(* Translate a compilation unit *)

let compunit size ulam =
  let glob = Compilenv.current_unit_name () in
  let init_code = transl ulam in
  let c1 = [Cfunction {fun_name = glob ^ "__entry"; fun_args = [];
                       fun_body = init_code; fun_fast = false}] in
  let c2 = transl_all_functions StringSet.empty c1 in
  let c3 = emit_all_constants c2 in
  Cdata [Cint(block_header 0 size);
         Cglobal_symbol glob;
         Cdefine_symbol glob;
         Cskip(size * size_addr)] :: c3

(* Generate an application function:
     (defun caml_applyN (a1 ... aN clos)
       (if (= clos.arity N)
         (app clos.direct a1 ... aN clos)
         (let (clos1 (app clos.code a1 clos)
               clos2 (app clos1.code a2 clos)
               ...
               closN-1 (app closN-2.code aN-1 closN-2))
           (app closN-1.code aN closN-1))))
*)

let apply_function arity =
  let arg = Array.create arity (Ident.create "arg") in
  for i = 1 to arity - 1 do arg.(i) <- Ident.create "arg" done;
  let clos = Ident.create "clos" in
  let rec app_fun clos n =
    if n = arity-1 then
      Cop(Capply typ_addr,
          [get_field (Cvar clos) 0; Cvar arg.(n); Cvar clos])
    else begin
      let newclos = Ident.create "clos" in
      Clet(newclos,
           Cop(Capply typ_addr,
               [get_field (Cvar clos) 0; Cvar arg.(n); Cvar clos]),
           app_fun newclos (n+1))
    end in
  let all_args = Array.to_list arg @ [clos] in
  let body =
    Cifthenelse(
      Cop(Ccmpi Ceq, [get_field (Cvar clos) 1; int_const arity]),
      Cop(Capply typ_addr,
          get_field (Cvar clos) 2 :: List.map (fun s -> Cvar s) all_args),
      app_fun clos 0) in
  Cfunction
   {fun_name = "caml_apply" ^ string_of_int arity;
    fun_args = List.map (fun id -> (id, typ_addr)) all_args;
    fun_body = body;
    fun_fast = true}

(* Generate tuplifying functions:
      (defun caml_tuplifyN (arg clos)
        (app clos.direct #0(arg) ... #N-1(arg) clos)) *)

let tuplify_function arity =
  let arg = Ident.create "arg" in
  let clos = Ident.create "clos" in
  let rec access_components i =
    if i >= arity
    then []
    else get_field (Cvar arg) i :: access_components(i+1) in
  Cfunction
   {fun_name = "caml_tuplify" ^ string_of_int arity;
    fun_args = [arg, typ_addr; clos, typ_addr];
    fun_body =
      Cop(Capply typ_addr,
          get_field (Cvar clos) 2 :: access_components 0 @ [Cvar clos]);
    fun_fast = true}

(* Generate currying functions:
      (defun caml_curryN (arg clos)
         (alloc HDR caml_curryN_1 arg clos))
      (defun caml_curryN_1 (arg clos)
         (alloc HDR caml_curryN_2 arg clos))
      ...
      (defun caml_curryN_N-1 (arg clos)
         (let (closN-2 clos.cdr
               closN-3 closN-2.cdr
               ...
               clos1 clos2.cdr
               clos clos1.cdr)
           (app clos.direct
                clos1.car clos2.car ... closN-2.car clos.car arg clos))) *)

let final_curry_function arity =
  let last_arg = Ident.create "arg" in
  let last_clos = Ident.create "clos" in
  let rec curry_fun args clos n =
    if n = 0 then
      Cop(Capply typ_addr,
          get_field (Cvar clos) 2 ::
          args @ [Cvar last_arg; Cvar clos])
    else begin
      let newclos = Ident.create "clos" in
      Clet(newclos,
           get_field (Cvar clos) 3,
           curry_fun (get_field (Cvar clos) 2 :: args) newclos (n-1))
    end in
  Cfunction
   {fun_name = "caml_curry" ^ string_of_int arity ^
               "_" ^ string_of_int (arity-1);
    fun_args = [last_arg, typ_addr; last_clos, typ_addr];
    fun_body = curry_fun [] last_clos (arity-1);
    fun_fast = true}

let rec intermediate_curry_functions arity num =
  if num = arity - 1 then
    [final_curry_function arity]
  else begin
    let name1 = "caml_curry" ^ string_of_int arity in
    let name2 = if num = 0 then name1 else name1 ^ "_" ^ string_of_int num in
    let arg = Ident.create "arg" and clos = Ident.create "clos" in
    Cfunction
     {fun_name = name2;
      fun_args = [arg, typ_addr; clos, typ_addr];
      fun_body = Cop(Calloc,
                     [alloc_closure_header 4; 
                      Cconst_symbol(name1 ^ "_" ^ string_of_int (num+1));
                      int_const 1; Cvar arg; Cvar clos]);
      fun_fast = true}
    :: intermediate_curry_functions arity (num+1)
  end
    
let curry_function arity =
  if arity >= 0
  then intermediate_curry_functions arity 0
  else [tuplify_function (-arity)]

(* Generate the entry point *)

let entry_point namelist =
  let incr_global_inited =
    Cop(Cstore Word,
        [Cconst_symbol "caml_globals_inited";
         Cop(Caddi, [Cop(Cload Word, [Cconst_symbol "caml_globals_inited"]);
                     Cconst_int 1])]) in
  let body =
    List.fold_right
      (fun name next ->
        Csequence(Cop(Capply typ_void, [Cconst_symbol(name ^ "__entry")]),
                  Csequence(incr_global_inited, next)))
      namelist (Cconst_int 1) in
  Cfunction {fun_name = "caml_program";
             fun_args = [];
             fun_body = body;
             fun_fast = false}

(* Generate the table of globals *)

let cint_zero = Cint 0n

let global_table namelist =
  Cdata(Cglobal_symbol "caml_globals" ::
        Cdefine_symbol "caml_globals" ::
        List.map (fun name -> Csymbol_address name) namelist @
        [cint_zero])

let globals_map namelist =
  Cdata(Cglobal_symbol "globals_map" ::
        emit_constant "globals_map"
          (Const_base (Const_string (Marshal.to_string namelist []))) [])

(* Generate the master table of frame descriptors *)

let frame_table namelist =
  Cdata(Cglobal_symbol "caml_frametable" ::
        Cdefine_symbol "caml_frametable" ::
        List.map (fun name -> Csymbol_address(name ^ "__frametable")) namelist
                              @ [cint_zero])

(* Generate the table of module data and code segments *)

let segment_table namelist symbol begname endname =
  Cdata(Cglobal_symbol symbol ::
        Cdefine_symbol symbol ::
        List.fold_right
          (fun name lst ->
            Csymbol_address(name ^ begname) ::
            Csymbol_address(name ^ endname) :: lst)
          namelist
          [cint_zero])

let data_segment_table namelist =
  segment_table namelist "caml_data_segments" "__data_begin" "__data_end"

let code_segment_table namelist =
  segment_table namelist "caml_code_segments" "__code_begin" "__code_end"

(* Initialize a predefined exception *)

let predef_exception name =
  let bucketname = "bucket_" ^ name in
  Cdata(Cglobal_symbol name ::
        emit_constant name (Const_block(0,[Const_base(Const_string name)]))
        [ Cglobal_symbol bucketname;
          Cint(block_header 0 1);
          Cdefine_symbol bucketname;
          Csymbol_address name ])