summaryrefslogtreecommitdiff
path: root/asmcomp/cmmgen.ml
blob: e3c723ad39ac4454a0fd3d048bd7e26d268f6129 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
(***********************************************************************)
(*                                                                     *)
(*                                OCaml                                *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* Translation from closed lambda to C-- *)

open Misc
open Arch
open Asttypes
open Primitive
open Types
open Lambda
open Clambda
open Cmm
open Cmx_format

(* Local binding of complex expressions *)

let bind name arg fn =
  match arg with
    Cvar _ | Cconst_int _ | Cconst_natint _ | Cconst_symbol _
  | Cconst_pointer _ | Cconst_natpointer _
  | Cconst_blockheader _ -> fn arg
  | _ -> let id = Ident.create name in Clet(id, arg, fn (Cvar id))

let bind_nonvar name arg fn =
  match arg with
    Cconst_int _ | Cconst_natint _ | Cconst_symbol _
  | Cconst_pointer _ | Cconst_natpointer _
  | Cconst_blockheader _ -> fn arg
  | _ -> let id = Ident.create name in Clet(id, arg, fn (Cvar id))

let caml_black = Nativeint.shift_left (Nativeint.of_int 3) 8
    (* cf. byterun/gc.h *)

(* Block headers. Meaning of the tag field: see stdlib/obj.ml *)

let floatarray_tag = Cconst_int Obj.double_array_tag

let block_header tag sz =
  Nativeint.add (Nativeint.shift_left (Nativeint.of_int sz) 10)
                (Nativeint.of_int tag)
(* Static data corresponding to "value"s must be marked black in case we are
   in no-naked-pointers mode.  See [caml_darken] and the code below that emits
   structured constants and static module definitions. *)
let black_block_header tag sz = Nativeint.logor (block_header tag sz) caml_black
let white_closure_header sz = block_header Obj.closure_tag sz
let black_closure_header sz = black_block_header Obj.closure_tag sz
let infix_header ofs = block_header Obj.infix_tag ofs
let float_header = block_header Obj.double_tag (size_float / size_addr)
let floatarray_header len =
      block_header Obj.double_array_tag (len * size_float / size_addr)
let string_header len =
      block_header Obj.string_tag ((len + size_addr) / size_addr)
let boxedint32_header = block_header Obj.custom_tag 2
let boxedint64_header = block_header Obj.custom_tag (1 + 8 / size_addr)
let boxedintnat_header = block_header Obj.custom_tag 2

let alloc_block_header tag sz = Cconst_blockheader(block_header tag sz)
let alloc_float_header = Cconst_blockheader(float_header)
let alloc_floatarray_header len = Cconst_blockheader(floatarray_header len)
let alloc_closure_header sz = Cconst_blockheader(white_closure_header sz)
let alloc_infix_header ofs = Cconst_blockheader(infix_header ofs)
let alloc_boxedint32_header = Cconst_blockheader(boxedint32_header)
let alloc_boxedint64_header = Cconst_blockheader(boxedint64_header)
let alloc_boxedintnat_header = Cconst_blockheader(boxedintnat_header)

(* Integers *)

let max_repr_int = max_int asr 1
let min_repr_int = min_int asr 1

let int_const n =
  if n <= max_repr_int && n >= min_repr_int
  then Cconst_int((n lsl 1) + 1)
  else Cconst_natint
          (Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n)

let rec add_const c n =
  if n = 0 then c
  else match c with
  | Cconst_int x when no_overflow_add x n -> Cconst_int (x + n)
  | Cop(Caddi, ([Cconst_int x; c] | [c; Cconst_int x])) when no_overflow_add n x ->
      let d = n + x in
      if d = 0 then c else Cop(Caddi, [c; Cconst_int d])
  | Cop(Csubi, [Cconst_int x; c]) when no_overflow_add n x ->
      Cop(Csubi, [Cconst_int (n + x); c])
  | Cop(Csubi, [c; Cconst_int x]) when no_overflow_sub n x ->
      add_const c (n - x)
  | c -> Cop(Caddi, [c; Cconst_int n])

let incr_int c = add_const c 1
let decr_int c = add_const c (-1)

let rec add_int c1 c2 =
  match (c1, c2) with
  | (Cconst_int n, c) | (c, Cconst_int n) ->
      add_const c n
  | (Cop(Caddi, [c1; Cconst_int n1]), c2) ->
      add_const (add_int c1 c2) n1
  | (c1, Cop(Caddi, [c2; Cconst_int n2])) ->
      add_const (add_int c1 c2) n2
  | (_, _) ->
      Cop(Caddi, [c1; c2])

let rec sub_int c1 c2 =
  match (c1, c2) with
  | (c1, Cconst_int n2) when n2 <> min_int ->
      add_const c1 (-n2)
  | (c1, Cop(Caddi, [c2; Cconst_int n2])) when n2 <> min_int ->
      add_const (sub_int c1 c2) (-n2)
  | (Cop(Caddi, [c1; Cconst_int n1]), c2) ->
      add_const (sub_int c1 c2) n1
  | (c1, c2) ->
      Cop(Csubi, [c1; c2])

let rec lsl_int c1 c2 =
  match (c1, c2) with
  | (Cop(Clsl, [c; Cconst_int n1]), Cconst_int n2)
    when n1 > 0 && n2 > 0 && n1 + n2 < size_int * 8 ->
      Cop(Clsl, [c; Cconst_int (n1 + n2)])
  | (Cop(Caddi, [c1; Cconst_int n1]), Cconst_int n2)
    when no_overflow_lsl n1 n2 ->
      add_const (lsl_int c1 c2) (n1 lsl n2)
  | (_, _) ->
      Cop(Clsl, [c1; c2])

let rec mul_int c1 c2 =
  match (c1, c2) with
  | (c, Cconst_int 0) | (Cconst_int 0, c) ->
      Cconst_int 0
  | (c, Cconst_int 1) | (Cconst_int 1, c) ->
      c
  | (c, Cconst_int(-1)) | (Cconst_int(-1), c) ->
      sub_int (Cconst_int 0) c
  | (c, Cconst_int n) | (Cconst_int n, c) when n = 1 lsl Misc.log2 n->
      lsl_int c (Cconst_int (Misc.log2 n))
  | (Cop(Caddi, [c; Cconst_int n]), Cconst_int k) |
    (Cconst_int k, Cop(Caddi, [c; Cconst_int n]))
    when no_overflow_mul n k ->
      add_const (mul_int c (Cconst_int k)) (n * k)
  | (c1, c2) ->
      Cop(Cmuli, [c1; c2])


let ignore_low_bit_int = function
    Cop(Caddi, [(Cop(Clsl, [_; Cconst_int n]) as c); Cconst_int 1]) when n > 0
      -> c
  | Cop(Cor, [c; Cconst_int 1]) -> c
  | c -> c

let lsr_int c1 c2 =
  match c2 with
    Cconst_int 0 ->
      c1
  | Cconst_int n when n > 0 ->
      Cop(Clsr, [ignore_low_bit_int c1; c2])
  | _ ->
      Cop(Clsr, [c1; c2])

let asr_int c1 c2 =
  match c2 with
    Cconst_int 0 ->
      c1
  | Cconst_int n when n > 0 ->
      Cop(Casr, [ignore_low_bit_int c1; c2])
  | _ ->
      Cop(Casr, [c1; c2])

let tag_int = function
    Cconst_int n ->
      int_const n
  | Cop(Casr, [c; Cconst_int n]) when n > 0 ->
      Cop(Cor, [asr_int c (Cconst_int (n - 1)); Cconst_int 1])
  | c ->
      incr_int (lsl_int c (Cconst_int 1))

let force_tag_int = function
    Cconst_int n ->
      int_const n
  | Cop(Casr, [c; Cconst_int n]) when n > 0 ->
      Cop(Cor, [asr_int c (Cconst_int (n - 1)); Cconst_int 1])
  | c ->
      Cop(Cor, [lsl_int c (Cconst_int 1); Cconst_int 1])

let untag_int = function
    Cconst_int n -> Cconst_int(n asr 1)
  | Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) -> c
  | Cop(Cor, [Cop(Casr, [c; Cconst_int n]); Cconst_int 1])
    when n > 0 && n < size_int * 8 ->
      Cop(Casr, [c; Cconst_int (n+1)])
  | Cop(Cor, [Cop(Clsr, [c; Cconst_int n]); Cconst_int 1])
    when n > 0 && n < size_int * 8 ->
      Cop(Clsr, [c; Cconst_int (n+1)])
  | Cop(Cor, [c; Cconst_int 1]) -> Cop(Casr, [c; Cconst_int 1])
  | c -> Cop(Casr, [c; Cconst_int 1])

(* Turning integer divisions into multiply-high then shift.
   The [division_parameters] function is used in module Emit for
   those target platforms that support this optimization. *)

(* Unsigned comparison between native integers. *)

let ucompare x y = Nativeint.(compare (add x min_int) (add y min_int))

(* Unsigned division and modulus at type nativeint.
   Algorithm: Hacker's Delight section 9.3 *)

let udivmod n d = Nativeint.(
  if d < 0n then
    if ucompare n d < 0 then (0n, n) else (1n, sub n d)
  else begin
    let q = shift_left (div (shift_right_logical n 1) d) 1 in
    let r = sub n (mul q d) in
    if ucompare r d >= 0 then (succ q, sub r d) else (q, r)
  end)

(* Compute division parameters.
   Algorithm: Hacker's Delight chapter 10, fig 10-1. *)

let divimm_parameters d = Nativeint.(
  assert (d > 0n);
  let twopsm1 = min_int in (* 2^31 for 32-bit archs, 2^63 for 64-bit archs *)
  let nc = sub (pred twopsm1) (snd (udivmod twopsm1 d)) in
  let rec loop p (q1, r1) (q2, r2) =
    let p = p + 1 in
    let q1 = shift_left q1 1 and r1 = shift_left r1 1 in
    let (q1, r1) =
      if ucompare r1 nc >= 0 then (succ q1, sub r1 nc) else (q1, r1) in
    let q2 = shift_left q2 1 and r2 = shift_left r2 1 in
    let (q2, r2) =
      if ucompare r2 d >= 0 then (succ q2, sub r2 d) else (q2, r2) in
    let delta = sub d r2 in
    if ucompare q1 delta < 0 || (q1 = delta && r1 = 0n)
    then loop p (q1, r1) (q2, r2)
    else (succ q2, p - size)
  in loop (size - 1) (udivmod twopsm1 nc) (udivmod twopsm1 d))

(* The result [(m, p)] of [divimm_parameters d] satisfies the following
   inequality:

      2^(wordsize + p) < m * d <= 2^(wordsize + p) + 2^(p + 1)    (i)

   from which it follows that

      floor(n / d) = floor(n * m / 2^(wordsize+p))
                              if 0 <= n < 2^(wordsize-1)
      ceil(n / d) = floor(n * m / 2^(wordsize+p)) + 1
                              if -2^(wordsize-1) <= n < 0

   The correctness condition (i) above can be checked by the code below.
   It was exhaustively tested for values of d from 2 to 10^9 in the
   wordsize = 64 case.

let add2 (xh, xl) (yh, yl) =
  let zl = add xl yl and zh = add xh yh in
  ((if ucompare zl xl < 0 then succ zh else zh), zl)

let shl2 (xh, xl) n =
  assert (0 < n && n < size + size);
  if n < size
  then (logor (shift_left xh n) (shift_right_logical xl (size - n)),
        shift_left xl n)
  else (shift_left xl (n - size), 0n)

let mul2 x y =
  let halfsize = size / 2 in
  let halfmask = pred (shift_left 1n halfsize) in
  let xl = logand x halfmask and xh = shift_right_logical x halfsize in
  let yl = logand y halfmask and yh = shift_right_logical y halfsize in
  add2 (mul xh yh, 0n)
    (add2 (shl2 (0n, mul xl yh) halfsize)
       (add2 (shl2 (0n, mul xh yl) halfsize)
          (0n, mul xl yl)))

let ucompare2 (xh, xl) (yh, yl) =
  let c = ucompare xh yh in if c = 0 then ucompare xl yl else c

let validate d m p =
  let md = mul2 m d in
  let one2 = (0n, 1n) in
  let twoszp = shl2 one2 (size + p) in
  let twop1 = shl2 one2 (p + 1) in
  ucompare2 twoszp md < 0 && ucompare2 md (add2 twoszp twop1) <= 0
*)

let rec div_int c1 c2 dbg =
  match (c1, c2) with
    (c1, Cconst_int 0) ->
      Csequence(c1, Cop(Craise (Raise_regular, dbg),
                        [Cconst_symbol "caml_exn_Division_by_zero"]))
  | (c1, Cconst_int 1) ->
      c1
  | (Cconst_int 0 as c1, c2) ->
      Csequence(c2, c1)
  | (Cconst_int n1, Cconst_int n2) ->
      Cconst_int (n1 / n2)
  | (c1, Cconst_int n) when n <> min_int ->
      let l = Misc.log2 n in
      if n = 1 lsl l then
        (* Algorithm:
              t = shift-right-signed(c1, l - 1)
              t = shift-right(t, W - l)
              t = c1 + t
              res = shift-right-signed(c1 + t, l)
        *)
        Cop(Casr, [bind "dividend" c1 (fun c1 ->
                     let t = asr_int c1 (Cconst_int (l - 1)) in
                     let t = lsr_int t (Cconst_int (Nativeint.size - l)) in
                     add_int c1 t);
                   Cconst_int l])
      else if n < 0 then
        sub_int (Cconst_int 0) (div_int c1 (Cconst_int (-n)) dbg)
      else begin
        let (m, p) = divimm_parameters (Nativeint.of_int n) in
        (* Algorithm:
              t = multiply-high-signed(c1, m)
              if m < 0, t = t + c1
              if p > 0, t = shift-right-signed(t, p)
              res = t + sign-bit(c1)
        *)
        bind "dividend" c1 (fun c1 ->
          let t = Cop(Cmulhi, [c1; Cconst_natint m]) in
          let t = if m < 0n then Cop(Caddi, [t; c1]) else t in
          let t = if p > 0 then Cop(Casr, [t; Cconst_int p]) else t in
          add_int t (lsr_int c1 (Cconst_int (Nativeint.size - 1))))
      end
  | (c1, c2) when !Clflags.fast ->
      Cop(Cdivi, [c1; c2])
  | (c1, c2) ->
      bind "divisor" c2 (fun c2 ->
        Cifthenelse(c2,
                    Cop(Cdivi, [c1; c2]),
                    Cop(Craise (Raise_regular, dbg),
                        [Cconst_symbol "caml_exn_Division_by_zero"])))

let mod_int c1 c2 dbg =
  match (c1, c2) with
    (c1, Cconst_int 0) ->
      Csequence(c1, Cop(Craise (Raise_regular, dbg),
                        [Cconst_symbol "caml_exn_Division_by_zero"]))
  | (c1, Cconst_int (1 | (-1))) ->
      Csequence(c1, Cconst_int 0)
  | (Cconst_int(0 | 1 | (-1)) as c1, c2) ->
      Csequence(c2, c1)
  | (Cconst_int n1, Cconst_int n2) ->
      Cconst_int (n1 mod n2)
  | (c1, (Cconst_int n as c2)) when n <> min_int ->
      let l = Misc.log2 n in
      if n = 1 lsl l then
        (* Algorithm:
              t = shift-right-signed(c1, l - 1)
              t = shift-right(t, W - l)
              t = c1 + t
              t = bit-and(t, -n)
              res = c1 - t
         *)
        bind "dividend" c1 (fun c1 ->
          let t = asr_int c1 (Cconst_int (l - 1)) in
          let t = lsr_int t (Cconst_int (Nativeint.size - l)) in
          let t = add_int c1 t in
          let t = Cop(Cand, [t; Cconst_int (-n)]) in
          sub_int c1 t)
      else
        bind "dividend" c1 (fun c1 ->
          sub_int c1 (mul_int (div_int c1 c2 dbg) c2))
  | (c1, c2) when !Clflags.fast ->
      Cop(Cmodi, [c1; c2])
  | (c1, c2) ->
      bind "divisor" c2 (fun c2 ->
        Cifthenelse(c2,
                    Cop(Cmodi, [c1; c2]),
                    Cop(Craise (Raise_regular, dbg),
                        [Cconst_symbol "caml_exn_Division_by_zero"])))

(* Division or modulo on boxed integers.  The overflow case min_int / -1
   can occur, in which case we force x / -1 = -x and x mod -1 = 0. (PR#5513). *)

let is_different_from x = function
    Cconst_int n -> n <> x
  | Cconst_natint n -> n <> Nativeint.of_int x
  | _ -> false

let safe_divmod_bi mkop mkm1 c1 c2 bi dbg =
  bind "dividend" c1 (fun c1 ->
  bind "divisor" c2 (fun c2 ->
    let c = mkop c1 c2 dbg in
    if Arch.division_crashes_on_overflow
    && (size_int = 4 || bi <> Pint32)
    && not (is_different_from (-1) c2)
    then Cifthenelse(Cop(Ccmpi Cne, [c2; Cconst_int(-1)]), c, mkm1 c1)
    else c))

let safe_div_bi =
  safe_divmod_bi div_int (fun c1 -> Cop(Csubi, [Cconst_int 0; c1]))

let safe_mod_bi =
  safe_divmod_bi mod_int (fun c1 -> Cconst_int 0)

(* Bool *)

let test_bool = function
    Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) -> c
  | Cop(Clsl, [c; Cconst_int 1]) -> c
  | c -> Cop(Ccmpi Cne, [c; Cconst_int 1])

(* Float *)

let box_float c = Cop(Calloc, [alloc_float_header; c])

let rec unbox_float = function
    Cop(Calloc, [header; c]) -> c
  | Clet(id, exp, body) -> Clet(id, exp, unbox_float body)
  | Cifthenelse(cond, e1, e2) ->
      Cifthenelse(cond, unbox_float e1, unbox_float e2)
  | Csequence(e1, e2) -> Csequence(e1, unbox_float e2)
  | Cswitch(e, tbl, el) -> Cswitch(e, tbl, Array.map unbox_float el)
  | Ccatch(n, ids, e1, e2) -> Ccatch(n, ids, unbox_float e1, unbox_float e2)
  | Ctrywith(e1, id, e2) -> Ctrywith(unbox_float e1, id, unbox_float e2)
  | c -> Cop(Cload Double_u, [c])

(* Complex *)

let box_complex c_re c_im =
  Cop(Calloc, [alloc_floatarray_header 2; c_re; c_im])

let complex_re c = Cop(Cload Double_u, [c])
let complex_im c = Cop(Cload Double_u,
                       [Cop(Cadda, [c; Cconst_int size_float])])

(* Unit *)

let return_unit c = Csequence(c, Cconst_pointer 1)

let rec remove_unit = function
    Cconst_pointer 1 -> Ctuple []
  | Csequence(c, Cconst_pointer 1) -> c
  | Csequence(c1, c2) ->
      Csequence(c1, remove_unit c2)
  | Cifthenelse(cond, ifso, ifnot) ->
      Cifthenelse(cond, remove_unit ifso, remove_unit ifnot)
  | Cswitch(sel, index, cases) ->
      Cswitch(sel, index, Array.map remove_unit cases)
  | Ccatch(io, ids, body, handler) ->
      Ccatch(io, ids, remove_unit body, remove_unit handler)
  | Ctrywith(body, exn, handler) ->
      Ctrywith(remove_unit body, exn, remove_unit handler)
  | Clet(id, c1, c2) ->
      Clet(id, c1, remove_unit c2)
  | Cop(Capply (mty, dbg), args) ->
      Cop(Capply (typ_void, dbg), args)
  | Cop(Cextcall(proc, mty, alloc, dbg), args) ->
      Cop(Cextcall(proc, typ_void, alloc, dbg), args)
  | Cexit (_,_) as c -> c
  | Ctuple [] as c -> c
  | c -> Csequence(c, Ctuple [])

(* Access to block fields *)

let field_address ptr n =
  if n = 0
  then ptr
  else Cop(Cadda, [ptr; Cconst_int(n * size_addr)])

let get_field ptr n =
  Cop(Cload Word, [field_address ptr n])

let set_field ptr n newval =
  Cop(Cstore Word, [field_address ptr n; newval])

let header ptr =
  Cop(Cload Word, [Cop(Cadda, [ptr; Cconst_int(-size_int)])])

let tag_offset =
  if big_endian then -1 else -size_int

let get_tag ptr =
  if Proc.word_addressed then           (* If byte loads are slow *)
    Cop(Cand, [header ptr; Cconst_int 255])
  else                                  (* If byte loads are efficient *)
    Cop(Cload Byte_unsigned,
        [Cop(Cadda, [ptr; Cconst_int(tag_offset)])])

let get_size ptr =
  Cop(Clsr, [header ptr; Cconst_int 10])

(* Array indexing *)

let log2_size_addr = Misc.log2 size_addr
let log2_size_float = Misc.log2 size_float

let wordsize_shift = 9
let numfloat_shift = 9 + log2_size_float - log2_size_addr

let is_addr_array_hdr hdr =
  Cop(Ccmpi Cne, [Cop(Cand, [hdr; Cconst_int 255]); floatarray_tag])

let is_addr_array_ptr ptr =
  Cop(Ccmpi Cne, [get_tag ptr; floatarray_tag])

let addr_array_length hdr = Cop(Clsr, [hdr; Cconst_int wordsize_shift])
let float_array_length hdr = Cop(Clsr, [hdr; Cconst_int numfloat_shift])

let lsl_const c n =
  if n = 0 then c
  else Cop(Clsl, [c; Cconst_int n])

(* Produces a pointer to the element of the array [ptr] on the position [ofs]
   with the given element [log2size] log2 element size. [ofs] is given as a
   tagged int expression. *)
let array_indexing log2size ptr ofs =
  match ofs with
    Cconst_int n ->
      let i = n asr 1 in
      if i = 0 then ptr else Cop(Cadda, [ptr; Cconst_int(i lsl log2size)])
  | Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) ->
      Cop(Cadda, [ptr; lsl_const c log2size])
  | Cop(Caddi, [c; Cconst_int n]) when log2size = 0 ->
      Cop(Cadda, [Cop(Cadda, [ptr; untag_int c]); Cconst_int (n asr 1)])
  | Cop(Caddi, [c; Cconst_int n]) ->
      Cop(Cadda, [Cop(Cadda, [ptr; lsl_const c (log2size - 1)]);
                   Cconst_int((n-1) lsl (log2size - 1))])
  | _ when log2size = 0 ->
      Cop(Cadda, [ptr; untag_int ofs])
  | _ ->
      Cop(Cadda, [Cop(Cadda, [ptr; lsl_const ofs (log2size - 1)]);
                   Cconst_int((-1) lsl (log2size - 1))])

let addr_array_ref arr ofs =
  Cop(Cload Word, [array_indexing log2_size_addr arr ofs])
let unboxed_float_array_ref arr ofs =
  Cop(Cload Double_u, [array_indexing log2_size_float arr ofs])
let float_array_ref arr ofs =
  box_float(unboxed_float_array_ref arr ofs)

let addr_array_set arr ofs newval =
  Cop(Cextcall("caml_modify", typ_void, false, Debuginfo.none),
      [array_indexing log2_size_addr arr ofs; newval])
let int_array_set arr ofs newval =
  Cop(Cstore Word, [array_indexing log2_size_addr arr ofs; newval])
let float_array_set arr ofs newval =
  Cop(Cstore Double_u, [array_indexing log2_size_float arr ofs; newval])

(* String length *)

(* Length of string block *)

let string_length exp =
  bind "str" exp (fun str ->
    let tmp_var = Ident.create "tmp" in
    Clet(tmp_var,
         Cop(Csubi,
             [Cop(Clsl,
                   [get_size str;
                     Cconst_int log2_size_addr]);
              Cconst_int 1]),
         Cop(Csubi,
             [Cvar tmp_var;
               Cop(Cload Byte_unsigned,
                     [Cop(Cadda, [str; Cvar tmp_var])])])))

(* Message sending *)

let lookup_tag obj tag =
  bind "tag" tag (fun tag ->
    Cop(Cextcall("caml_get_public_method", typ_addr, false, Debuginfo.none),
        [obj; tag]))

let lookup_label obj lab =
  bind "lab" lab (fun lab ->
    let table = Cop (Cload Word, [obj]) in
    addr_array_ref table lab)

let call_cached_method obj tag cache pos args dbg =
  let arity = List.length args in
  let cache = array_indexing log2_size_addr cache pos in
  Compilenv.need_send_fun arity;
  Cop(Capply (typ_addr, dbg),
      Cconst_symbol("caml_send" ^ string_of_int arity) ::
      obj :: tag :: cache :: args)

(* Allocation *)

let make_alloc_generic set_fn tag wordsize args =
  if wordsize <= Config.max_young_wosize then
    Cop(Calloc, Cconst_blockheader(block_header tag wordsize) :: args)
  else begin
    let id = Ident.create "alloc" in
    let rec fill_fields idx = function
      [] -> Cvar id
    | e1::el -> Csequence(set_fn (Cvar id) (Cconst_int idx) e1,
                          fill_fields (idx + 2) el) in
    Clet(id,
         Cop(Cextcall("caml_alloc", typ_addr, true, Debuginfo.none),
                 [Cconst_int wordsize; Cconst_int tag]),
         fill_fields 1 args)
  end

let make_alloc tag args =
  make_alloc_generic addr_array_set tag (List.length args) args
let make_float_alloc tag args =
  make_alloc_generic float_array_set tag
                     (List.length args * size_float / size_addr) args

(* Bounds checking *)

let make_checkbound dbg = function
  | [Cop(Clsr, [a1; Cconst_int n]); Cconst_int m] when (m lsl n) > n ->
      Cop(Ccheckbound dbg, [a1; Cconst_int(m lsl n + 1 lsl n - 1)])
  | args ->
      Cop(Ccheckbound dbg, args)

(* To compile "let rec" over values *)

let fundecls_size fundecls =
  let sz = ref (-1) in
  List.iter
    (fun f -> sz := !sz + 1 + (if f.arity = 1 then 2 else 3))
    fundecls;
  !sz

type rhs_kind =
  | RHS_block of int
  | RHS_floatblock of int
  | RHS_nonrec
;;
let rec expr_size env = function
  | Uvar id ->
      begin try Ident.find_same id env with Not_found -> RHS_nonrec end
  | Uclosure(fundecls, clos_vars) ->
      RHS_block (fundecls_size fundecls + List.length clos_vars)
  | Ulet(id, exp, body) ->
      expr_size (Ident.add id (expr_size env exp) env) body
  | Uletrec(bindings, body) ->
      expr_size env body
  | Uprim(Pmakeblock(tag, mut), args, _) ->
      RHS_block (List.length args)
  | Uprim(Pmakearray(Paddrarray | Pintarray), args, _) ->
      RHS_block (List.length args)
  | Uprim(Pmakearray(Pfloatarray), args, _) ->
      RHS_floatblock (List.length args)
  | Uprim (Pduprecord ((Record_regular | Record_inlined _), sz), _, _) ->
      RHS_block sz
  | Uprim (Pduprecord (Record_extension, sz), _, _) ->
      RHS_block (sz + 1)
  | Uprim (Pduprecord (Record_float, sz), _, _) ->
      RHS_floatblock sz
  | Usequence(exp, exp') ->
      expr_size env exp'
  | _ -> RHS_nonrec

(* Record application and currying functions *)

let apply_function n =
  Compilenv.need_apply_fun n; "caml_apply" ^ string_of_int n
let curry_function n =
  Compilenv.need_curry_fun n;
  if n >= 0
  then "caml_curry" ^ string_of_int n
  else "caml_tuplify" ^ string_of_int (-n)

(* Comparisons *)

let transl_comparison = function
    Lambda.Ceq -> Ceq
  | Lambda.Cneq -> Cne
  | Lambda.Cge -> Cge
  | Lambda.Cgt -> Cgt
  | Lambda.Cle -> Cle
  | Lambda.Clt -> Clt

(* Translate structured constants *)

let transl_constant = function
  | Uconst_int n ->
      int_const n
  | Uconst_ptr n ->
      if n <= max_repr_int && n >= min_repr_int
      then Cconst_pointer((n lsl 1) + 1)
      else Cconst_natpointer
              (Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n)
  | Uconst_ref (label, _) ->
      Cconst_symbol label

let transl_structured_constant cst =
  let label = Compilenv.new_structured_constant cst ~shared:true in
  Cconst_symbol label

(* Translate constant closures *)

let constant_closures =
  ref ([] : (string * ufunction list) list)

(* Boxed integers *)

let box_int_constant bi n =
  match bi with
    Pnativeint -> Uconst_nativeint n
  | Pint32 -> Uconst_int32 (Nativeint.to_int32 n)
  | Pint64 -> Uconst_int64 (Int64.of_nativeint n)

let operations_boxed_int bi =
  match bi with
    Pnativeint -> "caml_nativeint_ops"
  | Pint32 -> "caml_int32_ops"
  | Pint64 -> "caml_int64_ops"

let alloc_header_boxed_int bi =
  match bi with
    Pnativeint -> alloc_boxedintnat_header
  | Pint32 -> alloc_boxedint32_header
  | Pint64 -> alloc_boxedint64_header

let box_int bi arg =
  match arg with
    Cconst_int n ->
      transl_structured_constant (box_int_constant bi (Nativeint.of_int n))
  | Cconst_natint n ->
      transl_structured_constant (box_int_constant bi n)
  | _ ->
      let arg' =
        if bi = Pint32 && size_int = 8 && big_endian
        then Cop(Clsl, [arg; Cconst_int 32])
        else arg in
      Cop(Calloc, [alloc_header_boxed_int bi;
                   Cconst_symbol(operations_boxed_int bi);
                   arg'])

let rec unbox_int bi arg =
  match arg with
    Cop(Calloc, [hdr; ops; Cop(Clsl, [contents; Cconst_int 32])])
    when bi = Pint32 && size_int = 8 && big_endian ->
      (* Force sign-extension of low 32 bits *)
      Cop(Casr, [Cop(Clsl, [contents; Cconst_int 32]); Cconst_int 32])
  | Cop(Calloc, [hdr; ops; contents])
    when bi = Pint32 && size_int = 8 && not big_endian ->
      (* Force sign-extension of low 32 bits *)
      Cop(Casr, [Cop(Clsl, [contents; Cconst_int 32]); Cconst_int 32])
  | Cop(Calloc, [hdr; ops; contents]) ->
      contents
  | Clet(id, exp, body) -> Clet(id, exp, unbox_int bi body)
  | Cifthenelse(cond, e1, e2) ->
      Cifthenelse(cond, unbox_int bi e1, unbox_int bi e2)
  | Csequence(e1, e2) -> Csequence(e1, unbox_int bi e2)
  | Cswitch(e, tbl, el) -> Cswitch(e, tbl, Array.map (unbox_int bi) el)
  | Ccatch(n, ids, e1, e2) -> Ccatch(n, ids, unbox_int bi e1, unbox_int bi e2)
  | Ctrywith(e1, id, e2) -> Ctrywith(unbox_int bi e1, id, unbox_int bi e2)
  | _ ->
      Cop(Cload(if bi = Pint32 then Thirtytwo_signed else Word),
          [Cop(Cadda, [arg; Cconst_int size_addr])])

let make_unsigned_int bi arg =
  if bi = Pint32 && size_int = 8
  then Cop(Cand, [arg; Cconst_natint 0xFFFFFFFFn])
  else arg

(* Big arrays *)

let bigarray_elt_size = function
    Pbigarray_unknown -> assert false
  | Pbigarray_float32 -> 4
  | Pbigarray_float64 -> 8
  | Pbigarray_sint8 -> 1
  | Pbigarray_uint8 -> 1
  | Pbigarray_sint16 -> 2
  | Pbigarray_uint16 -> 2
  | Pbigarray_int32 -> 4
  | Pbigarray_int64 -> 8
  | Pbigarray_caml_int -> size_int
  | Pbigarray_native_int -> size_int
  | Pbigarray_complex32 -> 8
  | Pbigarray_complex64 -> 16

(* Produces a pointer to the element of the bigarray [b] on the position
   [args].  [args] is given as a list of tagged int expressions, one per array
   dimension. *)
let bigarray_indexing unsafe elt_kind layout b args dbg =
  let check_ba_bound bound idx v =
    Csequence(make_checkbound dbg [bound;idx], v) in
  (* Validates the given multidimensional offset against the array bounds and
     transforms it into a one dimensional offset.  The offsets are expressions
     evaluating to tagged int. *)
  let rec ba_indexing dim_ofs delta_ofs = function
    [] -> assert false
  | [arg] ->
      if unsafe then arg
      else
        bind "idx" arg (fun idx ->
          (* Load the untagged int bound for the given dimension *)
          let bound = Cop(Cload Word,[field_address b dim_ofs]) in
          let idxn = untag_int idx in
          check_ba_bound bound idxn idx)
  | arg1 :: argl ->
      (* The remainder of the list is transformed into a one dimensional offset
         *)
      let rem = ba_indexing (dim_ofs + delta_ofs) delta_ofs argl in
      (* Load the untagged int bound for the given dimension *)
      let bound = Cop(Cload Word, [field_address b dim_ofs]) in
      if unsafe then add_int (mul_int (decr_int rem) bound) arg1
      else
        bind "idx" arg1 (fun idx ->
          bind "bound" bound (fun bound ->
            let idxn = untag_int idx in
            (* [offset = rem * (tag_int bound) + idx] *)
            let offset = add_int (mul_int (decr_int rem) bound) idx in
            check_ba_bound bound idxn offset)) in
  (* The offset as an expression evaluating to int *)
  let offset =
    match layout with
      Pbigarray_unknown_layout ->
        assert false
    | Pbigarray_c_layout ->
        ba_indexing (4 + List.length args) (-1) (List.rev args)
    | Pbigarray_fortran_layout ->
        ba_indexing 5 1 (List.map (fun idx -> sub_int idx (Cconst_int 2)) args)
  and elt_size =
    bigarray_elt_size elt_kind in
  (* [array_indexing] can simplify the given expressions *)
  array_indexing (log2 elt_size) (Cop(Cload Word, [field_address b 1])) offset

let bigarray_word_kind = function
    Pbigarray_unknown -> assert false
  | Pbigarray_float32 -> Single
  | Pbigarray_float64 -> Double
  | Pbigarray_sint8 -> Byte_signed
  | Pbigarray_uint8 -> Byte_unsigned
  | Pbigarray_sint16 -> Sixteen_signed
  | Pbigarray_uint16 -> Sixteen_unsigned
  | Pbigarray_int32 -> Thirtytwo_signed
  | Pbigarray_int64 -> Word
  | Pbigarray_caml_int -> Word
  | Pbigarray_native_int -> Word
  | Pbigarray_complex32 -> Single
  | Pbigarray_complex64 -> Double

let bigarray_get unsafe elt_kind layout b args dbg =
  bind "ba" b (fun b ->
    match elt_kind with
      Pbigarray_complex32 | Pbigarray_complex64 ->
        let kind = bigarray_word_kind elt_kind in
        let sz = bigarray_elt_size elt_kind / 2 in
        bind "addr" (bigarray_indexing unsafe elt_kind layout b args dbg)
          (fun addr ->
          box_complex
            (Cop(Cload kind, [addr]))
            (Cop(Cload kind, [Cop(Cadda, [addr; Cconst_int sz])])))
    | _ ->
        Cop(Cload (bigarray_word_kind elt_kind),
            [bigarray_indexing unsafe elt_kind layout b args dbg]))

let bigarray_set unsafe elt_kind layout b args newval dbg =
  bind "ba" b (fun b ->
    match elt_kind with
      Pbigarray_complex32 | Pbigarray_complex64 ->
        let kind = bigarray_word_kind elt_kind in
        let sz = bigarray_elt_size elt_kind / 2 in
        bind "newval" newval (fun newv ->
        bind "addr" (bigarray_indexing unsafe elt_kind layout b args dbg)
          (fun addr ->
          Csequence(
            Cop(Cstore kind, [addr; complex_re newv]),
            Cop(Cstore kind,
                [Cop(Cadda, [addr; Cconst_int sz]); complex_im newv]))))
    | _ ->
        Cop(Cstore (bigarray_word_kind elt_kind),
            [bigarray_indexing unsafe elt_kind layout b args dbg; newval]))

let unaligned_load_16 ptr idx =
  if Arch.allow_unaligned_access
  then Cop(Cload Sixteen_unsigned, [add_int ptr idx])
  else
    let v1 = Cop(Cload Byte_unsigned, [add_int ptr idx]) in
    let v2 = Cop(Cload Byte_unsigned,
                 [add_int (add_int ptr idx) (Cconst_int 1)]) in
    let b1, b2 = if Arch.big_endian then v1, v2 else v2, v1 in
    Cop(Cor, [lsl_int b1 (Cconst_int 8); b2])

let unaligned_set_16 ptr idx newval =
  if Arch.allow_unaligned_access
  then Cop(Cstore Sixteen_unsigned, [add_int ptr idx; newval])
  else
    let v1 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int 8]); Cconst_int 0xFF]) in
    let v2 = Cop(Cand, [newval; Cconst_int 0xFF]) in
    let b1, b2 = if Arch.big_endian then v1, v2 else v2, v1 in
    Csequence(
        Cop(Cstore Byte_unsigned, [add_int ptr idx; b1]),
        Cop(Cstore Byte_unsigned,
            [add_int (add_int ptr idx) (Cconst_int 1); b2]))

let unaligned_load_32 ptr idx =
  if Arch.allow_unaligned_access
  then Cop(Cload Thirtytwo_unsigned, [add_int ptr idx])
  else
    let v1 = Cop(Cload Byte_unsigned, [add_int ptr idx]) in
    let v2 = Cop(Cload Byte_unsigned,
                 [add_int (add_int ptr idx) (Cconst_int 1)]) in
    let v3 = Cop(Cload Byte_unsigned,
                 [add_int (add_int ptr idx) (Cconst_int 2)]) in
    let v4 = Cop(Cload Byte_unsigned,
                 [add_int (add_int ptr idx) (Cconst_int 3)]) in
    let b1, b2, b3, b4 =
      if Arch.big_endian
      then v1, v2, v3, v4
      else v4, v3, v2, v1 in
    Cop(Cor,
        [Cop(Cor, [lsl_int b1 (Cconst_int 24); lsl_int b2 (Cconst_int 16)]);
         Cop(Cor, [lsl_int b3 (Cconst_int 8); b4])])

let unaligned_set_32 ptr idx newval =
  if Arch.allow_unaligned_access
  then Cop(Cstore Thirtytwo_unsigned, [add_int ptr idx; newval])
  else
    let v1 =
      Cop(Cand, [Cop(Clsr, [newval; Cconst_int 24]); Cconst_int 0xFF]) in
    let v2 =
      Cop(Cand, [Cop(Clsr, [newval; Cconst_int 16]); Cconst_int 0xFF]) in
    let v3 =
      Cop(Cand, [Cop(Clsr, [newval; Cconst_int 8]); Cconst_int 0xFF]) in
    let v4 = Cop(Cand, [newval; Cconst_int 0xFF]) in
    let b1, b2, b3, b4 =
      if Arch.big_endian
      then v1, v2, v3, v4
      else v4, v3, v2, v1 in
    Csequence(
        Csequence(
            Cop(Cstore Byte_unsigned, [add_int ptr idx; b1]),
            Cop(Cstore Byte_unsigned,
                [add_int (add_int ptr idx) (Cconst_int 1); b2])),
        Csequence(
            Cop(Cstore Byte_unsigned,
                [add_int (add_int ptr idx) (Cconst_int 2); b3]),
            Cop(Cstore Byte_unsigned,
                [add_int (add_int ptr idx) (Cconst_int 3); b4])))

let unaligned_load_64 ptr idx =
  assert(size_int = 8);
  if Arch.allow_unaligned_access
  then Cop(Cload Word, [add_int ptr idx])
  else
    let v1 = Cop(Cload Byte_unsigned, [add_int ptr idx]) in
    let v2 = Cop(Cload Byte_unsigned,
                 [add_int (add_int ptr idx) (Cconst_int 1)]) in
    let v3 = Cop(Cload Byte_unsigned,
                 [add_int (add_int ptr idx) (Cconst_int 2)]) in
    let v4 = Cop(Cload Byte_unsigned,
                 [add_int (add_int ptr idx) (Cconst_int 3)]) in
    let v5 = Cop(Cload Byte_unsigned,
                 [add_int (add_int ptr idx) (Cconst_int 4)]) in
    let v6 = Cop(Cload Byte_unsigned,
                 [add_int (add_int ptr idx) (Cconst_int 5)]) in
    let v7 = Cop(Cload Byte_unsigned,
                 [add_int (add_int ptr idx) (Cconst_int 6)]) in
    let v8 = Cop(Cload Byte_unsigned,
                 [add_int (add_int ptr idx) (Cconst_int 7)]) in
    let b1, b2, b3, b4, b5, b6, b7, b8 =
      if Arch.big_endian
      then v1, v2, v3, v4, v5, v6, v7, v8
      else v8, v7, v6, v5, v4, v3, v2, v1 in
    Cop(Cor,
        [Cop(Cor,
             [Cop(Cor, [lsl_int b1 (Cconst_int (8*7));
                        lsl_int b2 (Cconst_int (8*6))]);
              Cop(Cor, [lsl_int b3 (Cconst_int (8*5));
                        lsl_int b4 (Cconst_int (8*4))])]);
         Cop(Cor,
             [Cop(Cor, [lsl_int b5 (Cconst_int (8*3));
                        lsl_int b6 (Cconst_int (8*2))]);
              Cop(Cor, [lsl_int b7 (Cconst_int 8);
                        b8])])])

let unaligned_set_64 ptr idx newval =
  assert(size_int = 8);
  if Arch.allow_unaligned_access
  then Cop(Cstore Word, [add_int ptr idx; newval])
  else
    let v1 =
      Cop(Cand, [Cop(Clsr, [newval; Cconst_int (8*7)]); Cconst_int 0xFF]) in
    let v2 =
      Cop(Cand, [Cop(Clsr, [newval; Cconst_int (8*6)]); Cconst_int 0xFF]) in
    let v3 =
      Cop(Cand, [Cop(Clsr, [newval; Cconst_int (8*5)]); Cconst_int 0xFF]) in
    let v4 =
      Cop(Cand, [Cop(Clsr, [newval; Cconst_int (8*4)]); Cconst_int 0xFF]) in
    let v5 =
      Cop(Cand, [Cop(Clsr, [newval; Cconst_int (8*3)]); Cconst_int 0xFF]) in
    let v6 =
      Cop(Cand, [Cop(Clsr, [newval; Cconst_int (8*2)]); Cconst_int 0xFF]) in
    let v7 = Cop(Cand, [Cop(Clsr, [newval; Cconst_int 8]); Cconst_int 0xFF]) in
    let v8 = Cop(Cand, [newval; Cconst_int 0xFF]) in
    let b1, b2, b3, b4, b5, b6, b7, b8 =
      if Arch.big_endian
      then v1, v2, v3, v4, v5, v6, v7, v8
      else v8, v7, v6, v5, v4, v3, v2, v1 in
    Csequence(
        Csequence(
            Csequence(
                Cop(Cstore Byte_unsigned, [add_int ptr idx; b1]),
                Cop(Cstore Byte_unsigned,
                    [add_int (add_int ptr idx) (Cconst_int 1); b2])),
            Csequence(
                Cop(Cstore Byte_unsigned,
                    [add_int (add_int ptr idx) (Cconst_int 2); b3]),
                Cop(Cstore Byte_unsigned,
                    [add_int (add_int ptr idx) (Cconst_int 3); b4]))),
        Csequence(
            Csequence(
                Cop(Cstore Byte_unsigned,
                    [add_int (add_int ptr idx) (Cconst_int 4); b5]),
                Cop(Cstore Byte_unsigned,
                    [add_int (add_int ptr idx) (Cconst_int 5); b6])),
            Csequence(
                Cop(Cstore Byte_unsigned,
                    [add_int (add_int ptr idx) (Cconst_int 6); b7]),
                Cop(Cstore Byte_unsigned,
                    [add_int (add_int ptr idx) (Cconst_int 7); b8]))))

let max_or_zero a =
  bind "size" a (fun a ->
    (* equivalent to
       Cifthenelse(Cop(Ccmpi Cle, [a; Cconst_int 0]), Cconst_int 0, a)

       if a is positive, sign is 0 hence sign_negation is full of 1
                         so sign_negation&a = a
       if a is negative, sign is full of 1 hence sign_negation is 0
                         so sign_negation&a = 0 *)
    let sign = Cop(Casr, [a; Cconst_int (size_int * 8 - 1)]) in
    let sign_negation = Cop(Cxor, [sign; Cconst_int (-1)]) in
    Cop(Cand, [sign_negation; a]))

let check_bound unsafe dbg a1 a2 k =
  if unsafe then k
  else Csequence(make_checkbound dbg [max_or_zero a1;a2], k)

(* Simplification of some primitives into C calls *)

let default_prim name =
  { prim_name = name; prim_arity = 0 (*ignored*);
    prim_alloc = true; prim_native_name = ""; prim_native_float = false }

let simplif_primitive_32bits = function
    Pbintofint Pint64 -> Pccall (default_prim "caml_int64_of_int")
  | Pintofbint Pint64 -> Pccall (default_prim "caml_int64_to_int")
  | Pcvtbint(Pint32, Pint64) -> Pccall (default_prim "caml_int64_of_int32")
  | Pcvtbint(Pint64, Pint32) -> Pccall (default_prim "caml_int64_to_int32")
  | Pcvtbint(Pnativeint, Pint64) ->
      Pccall (default_prim "caml_int64_of_nativeint")
  | Pcvtbint(Pint64, Pnativeint) ->
      Pccall (default_prim "caml_int64_to_nativeint")
  | Pnegbint Pint64 -> Pccall (default_prim "caml_int64_neg")
  | Paddbint Pint64 -> Pccall (default_prim "caml_int64_add")
  | Psubbint Pint64 -> Pccall (default_prim "caml_int64_sub")
  | Pmulbint Pint64 -> Pccall (default_prim "caml_int64_mul")
  | Pdivbint Pint64 -> Pccall (default_prim "caml_int64_div")
  | Pmodbint Pint64 -> Pccall (default_prim "caml_int64_mod")
  | Pandbint Pint64 -> Pccall (default_prim "caml_int64_and")
  | Porbint Pint64 ->  Pccall (default_prim "caml_int64_or")
  | Pxorbint Pint64 -> Pccall (default_prim "caml_int64_xor")
  | Plslbint Pint64 -> Pccall (default_prim "caml_int64_shift_left")
  | Plsrbint Pint64 -> Pccall (default_prim "caml_int64_shift_right_unsigned")
  | Pasrbint Pint64 -> Pccall (default_prim "caml_int64_shift_right")
  | Pbintcomp(Pint64, Lambda.Ceq) -> Pccall (default_prim "caml_equal")
  | Pbintcomp(Pint64, Lambda.Cneq) -> Pccall (default_prim "caml_notequal")
  | Pbintcomp(Pint64, Lambda.Clt) -> Pccall (default_prim "caml_lessthan")
  | Pbintcomp(Pint64, Lambda.Cgt) -> Pccall (default_prim "caml_greaterthan")
  | Pbintcomp(Pint64, Lambda.Cle) -> Pccall (default_prim "caml_lessequal")
  | Pbintcomp(Pint64, Lambda.Cge) -> Pccall (default_prim "caml_greaterequal")
  | Pbigarrayref(unsafe, n, Pbigarray_int64, layout) ->
      Pccall (default_prim ("caml_ba_get_" ^ string_of_int n))
  | Pbigarrayset(unsafe, n, Pbigarray_int64, layout) ->
      Pccall (default_prim ("caml_ba_set_" ^ string_of_int n))
  | Pstring_load_64(_) -> Pccall (default_prim "caml_string_get64")
  | Pstring_set_64(_) -> Pccall (default_prim "caml_string_set64")
  | Pbigstring_load_64(_) -> Pccall (default_prim "caml_ba_uint8_get64")
  | Pbigstring_set_64(_) -> Pccall (default_prim "caml_ba_uint8_set64")
  | Pbbswap Pint64 -> Pccall (default_prim "caml_int64_bswap")
  | p -> p

let simplif_primitive p =
  match p with
  | Pduprecord _ ->
      Pccall (default_prim "caml_obj_dup")
  | Pbigarrayref(unsafe, n, Pbigarray_unknown, layout) ->
      Pccall (default_prim ("caml_ba_get_" ^ string_of_int n))
  | Pbigarrayset(unsafe, n, Pbigarray_unknown, layout) ->
      Pccall (default_prim ("caml_ba_set_" ^ string_of_int n))
  | Pbigarrayref(unsafe, n, kind, Pbigarray_unknown_layout) ->
      Pccall (default_prim ("caml_ba_get_" ^ string_of_int n))
  | Pbigarrayset(unsafe, n, kind, Pbigarray_unknown_layout) ->
      Pccall (default_prim ("caml_ba_set_" ^ string_of_int n))
  | p ->
      if size_int = 8 then p else simplif_primitive_32bits p

(* Build switchers both for constants and blocks *)

let transl_isout h arg = tag_int (Cop(Ccmpa Clt, [h ; arg]))

(* Build an actual switch (ie jump table) *)

module SArgBlocks =
struct
  type primitive = operation

  let eqint = Ccmpi Ceq
  let neint = Ccmpi Cne
  let leint = Ccmpi Cle
  let ltint = Ccmpi Clt
  let geint = Ccmpi Cge
  let gtint = Ccmpi Cgt

  type act = expression

  let default = Cexit (0,[])
  let make_const i =  Cconst_int i
  let make_prim p args = Cop (p,args)
  let make_offset arg n = add_const arg n
  let make_isout h arg =  Cop (Ccmpa Clt, [h ; arg])
  let make_isin h arg =  Cop (Ccmpa Cge, [h ; arg])
  let make_if cond ifso ifnot = Cifthenelse (cond, ifso, ifnot)
  let make_switch arg cases actions = Cswitch (arg,cases,actions)
  let bind arg body = bind "switcher" arg body

  let make_catch handler = match handler with
  | Cexit (i,[]) -> i,fun e -> e
  | _ ->
      let i = next_raise_count () in
(*
      Printf.eprintf  "SHARE CMM: %i\n" i ;
      Printcmm.expression Format.str_formatter handler ;
      Printf.eprintf "%s\n" (Format.flush_str_formatter ()) ;
*)
      i,
      (fun body -> match body with
      | Cexit (j,_) ->
          if i=j then handler
          else body
      | _ ->  Ccatch (i,[],body,handler))

  let make_exit i = Cexit (i,[])

end

(* cmm store, as sharing as normally been detected in previous
   phases, we only share exits *)
module StoreExp =
  Switch.Store
    (struct
      type t = expression
      type key = int
      let make_key = function
        | Cexit (i,[]) -> Some i
        | _ -> None
    end)

module SwitcherBlocks = Switch.Make(SArgBlocks)

(* Int switcher, arg in [low..high],
   cases is list of individual cases, and is sorted by first component *)

let transl_int_switch arg low high cases default = match cases with
| [] -> assert false
| _::_ ->
    let store = StoreExp.mk_store () in
    assert (store.Switch.act_store default = 0) ;
    let cases =
      List.map
        (fun (i,act) -> i,store.Switch.act_store act)
        cases in
    let rec inters plow phigh pact = function
      | [] ->
          if phigh = high then [plow,phigh,pact]
          else [(plow,phigh,pact); (phigh+1,high,0) ]
      | (i,act)::rem ->
          if i = phigh+1 then
            if pact = act then
              inters plow i pact rem
            else
              (plow,phigh,pact)::inters i i act rem
          else (* insert default *)
            if pact = 0 then
              if act = 0 then
                inters plow i 0 rem
              else
                (plow,i-1,pact)::
                inters i i act rem
            else (* pact <> 0 *)
              (plow,phigh,pact)::
              begin
                if act = 0 then inters (phigh+1) i 0 rem
                else (phigh+1,i-1,0)::inters i i act rem
              end in
    let inters = match cases with
    | [] -> assert false
    | (k0,act0)::rem ->
        if k0 = low then inters k0 k0 act0 rem
        else inters low (k0-1) 0 cases in
    bind "switcher" arg
      (fun a ->
        SwitcherBlocks.zyva
          (low,high)
          a
          (Array.of_list inters) store)


(* Auxiliary functions for optimizing "let" of boxed numbers (floats and
   boxed integers *)

type unboxed_number_kind =
    No_unboxing
  | Boxed_float
  | Boxed_integer of boxed_integer

let rec is_unboxed_number = function
    Uconst(Uconst_ref(_, Uconst_float _)) ->
      Boxed_float
  | Uprim(p, _, _) ->
      begin match simplif_primitive p with
          Pccall p -> if p.prim_native_float then Boxed_float else No_unboxing
        | Pfloatfield _ -> Boxed_float
        | Pfloatofint -> Boxed_float
        | Pnegfloat -> Boxed_float
        | Pabsfloat -> Boxed_float
        | Paddfloat -> Boxed_float
        | Psubfloat -> Boxed_float
        | Pmulfloat -> Boxed_float
        | Pdivfloat -> Boxed_float
        | Parrayrefu Pfloatarray -> Boxed_float
        | Parrayrefs Pfloatarray -> Boxed_float
        | Pbintofint bi -> Boxed_integer bi
        | Pcvtbint(src, dst) -> Boxed_integer dst
        | Pnegbint bi -> Boxed_integer bi
        | Paddbint bi -> Boxed_integer bi
        | Psubbint bi -> Boxed_integer bi
        | Pmulbint bi -> Boxed_integer bi
        | Pdivbint bi -> Boxed_integer bi
        | Pmodbint bi -> Boxed_integer bi
        | Pandbint bi -> Boxed_integer bi
        | Porbint bi -> Boxed_integer bi
        | Pxorbint bi -> Boxed_integer bi
        | Plslbint bi -> Boxed_integer bi
        | Plsrbint bi -> Boxed_integer bi
        | Pasrbint bi -> Boxed_integer bi
        | Pbigarrayref(_, _, (Pbigarray_float32 | Pbigarray_float64), _) ->
            Boxed_float
        | Pbigarrayref(_, _, Pbigarray_int32, _) -> Boxed_integer Pint32
        | Pbigarrayref(_, _, Pbigarray_int64, _) -> Boxed_integer Pint64
        | Pbigarrayref(_, _, Pbigarray_native_int,_) -> Boxed_integer Pnativeint
        | Pstring_load_32(_) -> Boxed_integer Pint32
        | Pstring_load_64(_) -> Boxed_integer Pint64
        | Pbigstring_load_32(_) -> Boxed_integer Pint32
        | Pbigstring_load_64(_) -> Boxed_integer Pint64
        | Pbbswap bi -> Boxed_integer bi
        | _ -> No_unboxing
      end
  | Ulet (_, _, e) | Usequence (_, e) -> is_unboxed_number e
  | _ -> No_unboxing

let subst_boxed_number unbox_fn boxed_id unboxed_id box_chunk box_offset exp =
  let need_boxed = ref false in
  let assigned = ref false in
  let rec subst = function
      Cvar id as e ->
        if Ident.same id boxed_id then need_boxed := true; e
    | Clet(id, arg, body) -> Clet(id, subst arg, subst body)
    | Cassign(id, arg) ->
        if Ident.same id boxed_id then begin
          assigned := true;
          Cassign(unboxed_id, subst(unbox_fn arg))
        end else
          Cassign(id, subst arg)
    | Ctuple argv -> Ctuple(List.map subst argv)
    | Cop(Cload chunk, [Cvar id]) as e ->
      if not (Ident.same id boxed_id) then e
      else if chunk = box_chunk && box_offset = 0 then
        Cvar unboxed_id
      else begin
        need_boxed := true;
        e
      end
    | Cop(Cload chunk, [Cop(Cadda, [Cvar id; Cconst_int ofs])]) as e ->
      if not (Ident.same id boxed_id) then e
      else if chunk = box_chunk && ofs = box_offset then
        Cvar unboxed_id
      else begin
        need_boxed := true;
        e
      end
    | Cop(op, argv) -> Cop(op, List.map subst argv)
    | Csequence(e1, e2) -> Csequence(subst e1, subst e2)
    | Cifthenelse(e1, e2, e3) -> Cifthenelse(subst e1, subst e2, subst e3)
    | Cswitch(arg, index, cases) ->
        Cswitch(subst arg, index, Array.map subst cases)
    | Cloop e -> Cloop(subst e)
    | Ccatch(nfail, ids, e1, e2) -> Ccatch(nfail, ids, subst e1, subst e2)
    | Cexit (nfail, el) -> Cexit (nfail, List.map subst el)
    | Ctrywith(e1, id, e2) -> Ctrywith(subst e1, id, subst e2)
    | Cconst_int _ | Cconst_natint _ | Cconst_float _ | Cconst_symbol _
    | Cconst_pointer _ | Cconst_natpointer _
    | Cconst_blockheader _ as e -> e
  in
  let res = subst exp in
  (res, !need_boxed, !assigned)

(* Translate an expression *)

let functions = (Queue.create() : ufunction Queue.t)

let strmatch_compile =
  let module S =
    Strmatch.Make
      (struct
        let string_block_length = get_size
        let transl_switch = transl_int_switch
      end) in
  S.compile

let rec transl = function
    Uvar id ->
      Cvar id
  | Uconst sc ->
      transl_constant sc
  | Uclosure(fundecls, []) ->
      let lbl = Compilenv.new_const_symbol() in
      constant_closures := (lbl, fundecls) :: !constant_closures;
      List.iter (fun f -> Queue.add f functions) fundecls;
      Cconst_symbol lbl
  | Uclosure(fundecls, clos_vars) ->
      let block_size =
        fundecls_size fundecls + List.length clos_vars in
      let rec transl_fundecls pos = function
          [] ->
            List.map transl clos_vars
        | f :: rem ->
            Queue.add f functions;
            let header =
              if pos = 0
              then alloc_closure_header block_size
              else alloc_infix_header pos in
            if f.arity = 1 then
              header ::
              Cconst_symbol f.label ::
              int_const 1 ::
              transl_fundecls (pos + 3) rem
            else
              header ::
              Cconst_symbol(curry_function f.arity) ::
              int_const f.arity ::
              Cconst_symbol f.label ::
              transl_fundecls (pos + 4) rem in
      Cop(Calloc, transl_fundecls 0 fundecls)
  | Uoffset(arg, offset) ->
      field_address (transl arg) offset
  | Udirect_apply(lbl, args, dbg) ->
      Cop(Capply(typ_addr, dbg), Cconst_symbol lbl :: List.map transl args)
  | Ugeneric_apply(clos, [arg], dbg) ->
      bind "fun" (transl clos) (fun clos ->
        Cop(Capply(typ_addr, dbg), [get_field clos 0; transl arg; clos]))
  | Ugeneric_apply(clos, args, dbg) ->
      let arity = List.length args in
      let cargs = Cconst_symbol(apply_function arity) ::
        List.map transl (args @ [clos]) in
      Cop(Capply(typ_addr, dbg), cargs)
  | Usend(kind, met, obj, args, dbg) ->
      let call_met obj args clos =
        if args = [] then
          Cop(Capply(typ_addr, dbg), [get_field clos 0;obj;clos])
        else
          let arity = List.length args + 1 in
          let cargs = Cconst_symbol(apply_function arity) :: obj ::
            (List.map transl args) @ [clos] in
          Cop(Capply(typ_addr, dbg), cargs)
      in
      bind "obj" (transl obj) (fun obj ->
        match kind, args with
          Self, _ ->
            bind "met" (lookup_label obj (transl met)) (call_met obj args)
        | Cached, cache :: pos :: args ->
            call_cached_method obj (transl met) (transl cache) (transl pos)
              (List.map transl args) dbg
        | _ ->
            bind "met" (lookup_tag obj (transl met)) (call_met obj args))
  | Ulet(id, exp, body) ->
      begin match is_unboxed_number exp with
        No_unboxing ->
          Clet(id, transl exp, transl body)
      | Boxed_float ->
          transl_unbox_let box_float unbox_float transl_unbox_float
                           Double_u 0
                           id exp body
      | Boxed_integer bi ->
          transl_unbox_let (box_int bi) (unbox_int bi) (transl_unbox_int bi)
                           (if bi = Pint32 then Thirtytwo_signed else Word)
                           size_addr
                           id exp body
      end
  | Uletrec(bindings, body) ->
      transl_letrec bindings (transl body)

  (* Primitives *)
  | Uprim(prim, args, dbg) ->
      begin match (simplif_primitive prim, args) with
        (Pgetglobal id, []) ->
          Cconst_symbol (Ident.name id)
      | (Pmakeblock(tag, mut), []) ->
          assert false
      | (Pmakeblock(tag, mut), args) ->
          make_alloc tag (List.map transl args)
      | (Pccall prim, args) ->
          if prim.prim_native_float then
            box_float
              (Cop(Cextcall(prim.prim_native_name, typ_float, false, dbg),
                   List.map transl_unbox_float args))
          else
            Cop(Cextcall(Primitive.native_name prim, typ_addr, prim.prim_alloc,
                         dbg),
                List.map transl args)
      | (Pmakearray kind, []) ->
          transl_structured_constant (Uconst_block(0, []))
      | (Pmakearray kind, args) ->
          begin match kind with
            Pgenarray ->
              Cop(Cextcall("caml_make_array", typ_addr, true, Debuginfo.none),
                  [make_alloc 0 (List.map transl args)])
          | Paddrarray | Pintarray ->
              make_alloc 0 (List.map transl args)
          | Pfloatarray ->
              make_float_alloc Obj.double_array_tag
                              (List.map transl_unbox_float args)
          end
      | (Pbigarrayref(unsafe, num_dims, elt_kind, layout), arg1 :: argl) ->
          let elt =
            bigarray_get unsafe elt_kind layout
              (transl arg1) (List.map transl argl) dbg in
          begin match elt_kind with
            Pbigarray_float32 | Pbigarray_float64 -> box_float elt
          | Pbigarray_complex32 | Pbigarray_complex64 -> elt
          | Pbigarray_int32 -> box_int Pint32 elt
          | Pbigarray_int64 -> box_int Pint64 elt
          | Pbigarray_native_int -> box_int Pnativeint elt
          | Pbigarray_caml_int -> force_tag_int elt
          | _ -> tag_int elt
          end
      | (Pbigarrayset(unsafe, num_dims, elt_kind, layout), arg1 :: argl) ->
          let (argidx, argnewval) = split_last argl in
          return_unit(bigarray_set unsafe elt_kind layout
            (transl arg1)
            (List.map transl argidx)
            (match elt_kind with
              Pbigarray_float32 | Pbigarray_float64 ->
                transl_unbox_float argnewval
            | Pbigarray_complex32 | Pbigarray_complex64 -> transl argnewval
            | Pbigarray_int32 -> transl_unbox_int Pint32 argnewval
            | Pbigarray_int64 -> transl_unbox_int Pint64 argnewval
            | Pbigarray_native_int -> transl_unbox_int Pnativeint argnewval
            | _ -> untag_int (transl argnewval))
            dbg)
      | (Pbigarraydim(n), [b]) ->
          let dim_ofs = 4 + n in
          tag_int (Cop(Cload Word, [field_address (transl b) dim_ofs]))
      | (p, [arg]) ->
          transl_prim_1 p arg dbg
      | (p, [arg1; arg2]) ->
          transl_prim_2 p arg1 arg2 dbg
      | (p, [arg1; arg2; arg3]) ->
          transl_prim_3 p arg1 arg2 arg3 dbg
      | (_, _) ->
          fatal_error "Cmmgen.transl:prim"
      end

  (* Control structures *)
  | Uswitch(arg, s) ->
      (* As in the bytecode interpreter, only matching against constants
         can be checked *)
      if Array.length s.us_index_blocks = 0 then
        Cswitch
          (untag_int (transl arg),
           s.us_index_consts,
           Array.map transl s.us_actions_consts)
      else if Array.length s.us_index_consts = 0 then
        transl_switch (get_tag (transl arg))
          s.us_index_blocks s.us_actions_blocks
      else
        bind "switch" (transl arg) (fun arg ->
          Cifthenelse(
          Cop(Cand, [arg; Cconst_int 1]),
          transl_switch
            (untag_int arg) s.us_index_consts s.us_actions_consts,
          transl_switch
            (get_tag arg) s.us_index_blocks s.us_actions_blocks))
  | Ustringswitch(arg,sw,d) ->
      bind "switch" (transl arg)
        (fun arg ->
          strmatch_compile arg (Misc.may_map transl d)
            (List.map (fun (s,act) -> s,transl act) sw))
  | Ustaticfail (nfail, args) ->
      Cexit (nfail, List.map transl args)
  | Ucatch(nfail, [], body, handler) ->
      make_catch nfail (transl body) (transl handler)
  | Ucatch(nfail, ids, body, handler) ->
      Ccatch(nfail, ids, transl body, transl handler)
  | Utrywith(body, exn, handler) ->
      Ctrywith(transl body, exn, transl handler)
  | Uifthenelse(Uprim(Pnot, [arg], _), ifso, ifnot) ->
      transl (Uifthenelse(arg, ifnot, ifso))
  | Uifthenelse(cond, ifso, Ustaticfail (nfail, [])) ->
      exit_if_false cond (transl ifso) nfail
  | Uifthenelse(cond, Ustaticfail (nfail, []), ifnot) ->
      exit_if_true cond nfail (transl ifnot)
  | Uifthenelse(Uprim(Psequand, _, _) as cond, ifso, ifnot) ->
      let raise_num = next_raise_count () in
      make_catch
        raise_num
        (exit_if_false cond (transl ifso) raise_num)
        (transl ifnot)
  | Uifthenelse(Uprim(Psequor, _, _) as cond, ifso, ifnot) ->
      let raise_num = next_raise_count () in
      make_catch
        raise_num
        (exit_if_true cond raise_num (transl ifnot))
        (transl ifso)
  | Uifthenelse (Uifthenelse (cond, condso, condnot), ifso, ifnot) ->
      let num_true = next_raise_count () in
      make_catch
        num_true
        (make_catch2
           (fun shared_false ->
             Cifthenelse
               (test_bool (transl cond),
                exit_if_true condso num_true shared_false,
                exit_if_true condnot num_true shared_false))
           (transl ifnot))
        (transl ifso)
  | Uifthenelse(cond, ifso, ifnot) ->
      Cifthenelse(test_bool(transl cond), transl ifso, transl ifnot)
  | Usequence(exp1, exp2) ->
      Csequence(remove_unit(transl exp1), transl exp2)
  | Uwhile(cond, body) ->
      let raise_num = next_raise_count () in
      return_unit
        (Ccatch
           (raise_num, [],
            Cloop(exit_if_false cond (remove_unit(transl body)) raise_num),
            Ctuple []))
  | Ufor(id, low, high, dir, body) ->
      let tst = match dir with Upto -> Cgt   | Downto -> Clt in
      let inc = match dir with Upto -> Caddi | Downto -> Csubi in
      let raise_num = next_raise_count () in
      let id_prev = Ident.rename id in
      return_unit
        (Clet
           (id, transl low,
            bind_nonvar "bound" (transl high) (fun high ->
              Ccatch
                (raise_num, [],
                 Cifthenelse
                   (Cop(Ccmpi tst, [Cvar id; high]), Cexit (raise_num, []),
                    Cloop
                      (Csequence
                         (remove_unit(transl body),
                         Clet(id_prev, Cvar id,
                          Csequence
                            (Cassign(id,
                               Cop(inc, [Cvar id; Cconst_int 2])),
                             Cifthenelse
                               (Cop(Ccmpi Ceq, [Cvar id_prev; high]),
                                Cexit (raise_num,[]), Ctuple [])))))),
                 Ctuple []))))
  | Uassign(id, exp) ->
      return_unit(Cassign(id, transl exp))

and transl_prim_1 p arg dbg =
  match p with
  (* Generic operations *)
    Pidentity ->
      transl arg
  | Pignore ->
      return_unit(remove_unit (transl arg))
  (* Heap operations *)
  | Pfield n ->
      get_field (transl arg) n
  | Pfloatfield n ->
      let ptr = transl arg in
      box_float(
        Cop(Cload Double_u,
            [if n = 0 then ptr
                       else Cop(Cadda, [ptr; Cconst_int(n * size_float)])]))
  | Pint_as_pointer ->
     Cop(Cadda, [transl arg; Cconst_int (-1)])
  (* Exceptions *)
  | Praise k ->
      Cop(Craise (k, dbg), [transl arg])
  (* Integer operations *)
  | Pnegint ->
      Cop(Csubi, [Cconst_int 2; transl arg])
  | Pctconst c ->
      let const_of_bool b = tag_int (Cconst_int (if b then 1 else 0)) in
      begin
        match c with
        | Big_endian -> const_of_bool Arch.big_endian
        | Word_size -> tag_int (Cconst_int (8*Arch.size_int))
        | Int_size -> tag_int (Cconst_int ((8*Arch.size_int) - 1))
        | Max_wosize -> tag_int (Cconst_int ((1 lsl ((8*Arch.size_int) - 10)) - 1 ))
        | Ostype_unix -> const_of_bool (Sys.os_type = "Unix")
        | Ostype_win32 -> const_of_bool (Sys.os_type = "Win32")
        | Ostype_cygwin -> const_of_bool (Sys.os_type = "Cygwin")
      end
  | Poffsetint n ->
      if no_overflow_lsl n 1 then
        add_const (transl arg) (n lsl 1)
      else
        transl_prim_2 Paddint arg (Uconst (Uconst_int n))
                      Debuginfo.none
  | Poffsetref n ->
      return_unit
        (bind "ref" (transl arg) (fun arg ->
          Cop(Cstore Word,
              [arg; add_const (Cop(Cload Word, [arg])) (n lsl 1)])))
  (* Floating-point operations *)
  | Pfloatofint ->
      box_float(Cop(Cfloatofint, [untag_int(transl arg)]))
  | Pintoffloat ->
     tag_int(Cop(Cintoffloat, [transl_unbox_float arg]))
  | Pnegfloat ->
      box_float(Cop(Cnegf, [transl_unbox_float arg]))
  | Pabsfloat ->
      box_float(Cop(Cabsf, [transl_unbox_float arg]))
  (* String operations *)
  | Pstringlength ->
      tag_int(string_length (transl arg))
  (* Array operations *)
  | Parraylength kind ->
      begin match kind with
        Pgenarray ->
          let len =
            if wordsize_shift = numfloat_shift then
              Cop(Clsr, [header(transl arg); Cconst_int wordsize_shift])
            else
              bind "header" (header(transl arg)) (fun hdr ->
                Cifthenelse(is_addr_array_hdr hdr,
                            Cop(Clsr, [hdr; Cconst_int wordsize_shift]),
                            Cop(Clsr, [hdr; Cconst_int numfloat_shift]))) in
          Cop(Cor, [len; Cconst_int 1])
      | Paddrarray | Pintarray ->
          Cop(Cor, [addr_array_length(header(transl arg)); Cconst_int 1])
      | Pfloatarray ->
          Cop(Cor, [float_array_length(header(transl arg)); Cconst_int 1])
      end
  (* Boolean operations *)
  | Pnot ->
      Cop(Csubi, [Cconst_int 4; transl arg]) (* 1 -> 3, 3 -> 1 *)
  (* Test integer/block *)
  | Pisint ->
      tag_int(Cop(Cand, [transl arg; Cconst_int 1]))
  (* Boxed integers *)
  | Pbintofint bi ->
      box_int bi (untag_int (transl arg))
  | Pintofbint bi ->
      force_tag_int (transl_unbox_int bi arg)
  | Pcvtbint(bi1, bi2) ->
      box_int bi2 (transl_unbox_int bi1 arg)
  | Pnegbint bi ->
      box_int bi (Cop(Csubi, [Cconst_int 0; transl_unbox_int bi arg]))
  | Pbbswap bi ->
      let prim = match bi with
        | Pnativeint -> "nativeint"
        | Pint32 -> "int32"
        | Pint64 -> "int64" in
      box_int bi (Cop(Cextcall(Printf.sprintf "caml_%s_direct_bswap" prim,
                               typ_int, false, Debuginfo.none),
                      [transl_unbox_int bi arg]))
  | Pbswap16 ->
      tag_int (Cop(Cextcall("caml_bswap16_direct", typ_int, false,
                            Debuginfo.none),
                   [untag_int (transl arg)]))
  | _ ->
      fatal_error "Cmmgen.transl_prim_1"

and transl_prim_2 p arg1 arg2 dbg =
  match p with
  (* Heap operations *)
    Psetfield(n, ptr) ->
      if ptr then
        return_unit(Cop(Cextcall("caml_modify", typ_void, false,Debuginfo.none),
                        [field_address (transl arg1) n; transl arg2]))
      else
        return_unit(set_field (transl arg1) n (transl arg2))
  | Psetfloatfield n ->
      let ptr = transl arg1 in
      return_unit(
        Cop(Cstore Double_u,
            [if n = 0 then ptr
                       else Cop(Cadda, [ptr; Cconst_int(n * size_float)]);
                   transl_unbox_float arg2]))

  (* Boolean operations *)
  | Psequand ->
      Cifthenelse(test_bool(transl arg1), transl arg2, Cconst_int 1)
      (* let id = Ident.create "res1" in
      Clet(id, transl arg1,
           Cifthenelse(test_bool(Cvar id), transl arg2, Cvar id)) *)
  | Psequor ->
      Cifthenelse(test_bool(transl arg1), Cconst_int 3, transl arg2)

  (* Integer operations *)
  | Paddint ->
      decr_int(add_int (transl arg1) (transl arg2))
  | Psubint ->
      incr_int(sub_int (transl arg1) (transl arg2))
  | Pmulint ->
     begin
       (* decrementing the non-constant part helps when the multiplication is followed by an addition;
          for example, using this trick compiles (100 * a + 7) into
            (+ ( * a 100) -85)
          rather than
            (+ ( * 200 (>>s a 1)) 15)
        *)
       match transl arg1, transl arg2 with
         | Cconst_int _ as c1, c2 -> incr_int (mul_int (untag_int c1) (decr_int c2))
         | c1, c2 -> incr_int (mul_int (decr_int c1) (untag_int c2))
     end
  | Pdivint ->
      tag_int(div_int (untag_int(transl arg1)) (untag_int(transl arg2)) dbg)
  | Pmodint ->
      tag_int(mod_int (untag_int(transl arg1)) (untag_int(transl arg2)) dbg)
  | Pandint ->
      Cop(Cand, [transl arg1; transl arg2])
  | Porint ->
      Cop(Cor, [transl arg1; transl arg2])
  | Pxorint ->
      Cop(Cor, [Cop(Cxor, [ignore_low_bit_int(transl arg1);
                           ignore_low_bit_int(transl arg2)]);
                Cconst_int 1])
  | Plslint ->
      incr_int(lsl_int (decr_int(transl arg1)) (untag_int(transl arg2)))
  | Plsrint ->
      Cop(Cor, [lsr_int (transl arg1) (untag_int(transl arg2));
                Cconst_int 1])
  | Pasrint ->
      Cop(Cor, [asr_int (transl arg1) (untag_int(transl arg2));
                Cconst_int 1])
  | Pintcomp cmp ->
      tag_int(Cop(Ccmpi(transl_comparison cmp), [transl arg1; transl arg2]))
  | Pisout ->
      transl_isout (transl arg1) (transl arg2)
  (* Float operations *)
  | Paddfloat ->
      box_float(Cop(Caddf,
                    [transl_unbox_float arg1; transl_unbox_float arg2]))
  | Psubfloat ->
      box_float(Cop(Csubf,
                    [transl_unbox_float arg1; transl_unbox_float arg2]))
  | Pmulfloat ->
      box_float(Cop(Cmulf,
                    [transl_unbox_float arg1; transl_unbox_float arg2]))
  | Pdivfloat ->
      box_float(Cop(Cdivf,
                    [transl_unbox_float arg1; transl_unbox_float arg2]))
  | Pfloatcomp cmp ->
      tag_int(Cop(Ccmpf(transl_comparison cmp),
                  [transl_unbox_float arg1; transl_unbox_float arg2]))

  (* String operations *)
  | Pstringrefu ->
      tag_int(Cop(Cload Byte_unsigned,
                  [add_int (transl arg1) (untag_int(transl arg2))]))
  | Pstringrefs ->
      tag_int
        (bind "str" (transl arg1) (fun str ->
          bind "index" (untag_int (transl arg2)) (fun idx ->
            Csequence(
              make_checkbound dbg [string_length str; idx],
              Cop(Cload Byte_unsigned, [add_int str idx])))))

  | Pstring_load_16(unsafe) ->
     tag_int
       (bind "str" (transl arg1) (fun str ->
        bind "index" (untag_int (transl arg2)) (fun idx ->
          check_bound unsafe dbg (sub_int (string_length str) (Cconst_int 1))
                      idx (unaligned_load_16 str idx))))

  | Pbigstring_load_16(unsafe) ->
     tag_int
       (bind "ba" (transl arg1) (fun ba ->
        bind "index" (untag_int (transl arg2)) (fun idx ->
        bind "ba_data" (Cop(Cload Word, [field_address ba 1])) (fun ba_data ->
          check_bound unsafe dbg (sub_int (Cop(Cload Word,[field_address ba 5]))
                                          (Cconst_int 1)) idx
                      (unaligned_load_16 ba_data idx)))))

  | Pstring_load_32(unsafe) ->
     box_int Pint32
       (bind "str" (transl arg1) (fun str ->
        bind "index" (untag_int (transl arg2)) (fun idx ->
          check_bound unsafe dbg (sub_int (string_length str) (Cconst_int 3))
                      idx (unaligned_load_32 str idx))))

  | Pbigstring_load_32(unsafe) ->
     box_int Pint32
       (bind "ba" (transl arg1) (fun ba ->
        bind "index" (untag_int (transl arg2)) (fun idx ->
        bind "ba_data" (Cop(Cload Word, [field_address ba 1])) (fun ba_data ->
          check_bound unsafe dbg (sub_int (Cop(Cload Word,[field_address ba 5]))
                                          (Cconst_int 3)) idx
                      (unaligned_load_32 ba_data idx)))))

  | Pstring_load_64(unsafe) ->
     box_int Pint64
       (bind "str" (transl arg1) (fun str ->
        bind "index" (untag_int (transl arg2)) (fun idx ->
          check_bound unsafe dbg (sub_int (string_length str) (Cconst_int 7))
                      idx (unaligned_load_64 str idx))))

  | Pbigstring_load_64(unsafe) ->
     box_int Pint64
       (bind "ba" (transl arg1) (fun ba ->
        bind "index" (untag_int (transl arg2)) (fun idx ->
        bind "ba_data" (Cop(Cload Word, [field_address ba 1])) (fun ba_data ->
          check_bound unsafe dbg (sub_int (Cop(Cload Word,[field_address ba 5]))
                                          (Cconst_int 7)) idx
                      (unaligned_load_64 ba_data idx)))))

  (* Array operations *)
  | Parrayrefu kind ->
      begin match kind with
        Pgenarray ->
          bind "arr" (transl arg1) (fun arr ->
            bind "index" (transl arg2) (fun idx ->
              Cifthenelse(is_addr_array_ptr arr,
                          addr_array_ref arr idx,
                          float_array_ref arr idx)))
      | Paddrarray | Pintarray ->
          addr_array_ref (transl arg1) (transl arg2)
      | Pfloatarray ->
          float_array_ref (transl arg1) (transl arg2)
      end
  | Parrayrefs kind ->
      begin match kind with
      | Pgenarray ->
          bind "index" (transl arg2) (fun idx ->
          bind "arr" (transl arg1) (fun arr ->
          bind "header" (header arr) (fun hdr ->
            if wordsize_shift = numfloat_shift then
              Csequence(make_checkbound dbg [addr_array_length hdr; idx],
                        Cifthenelse(is_addr_array_hdr hdr,
                                    addr_array_ref arr idx,
                                    float_array_ref arr idx))
            else
              Cifthenelse(is_addr_array_hdr hdr,
                Csequence(make_checkbound dbg [addr_array_length hdr; idx],
                          addr_array_ref arr idx),
                Csequence(make_checkbound dbg [float_array_length hdr; idx],
                          float_array_ref arr idx)))))
      | Paddrarray | Pintarray ->
          bind "index" (transl arg2) (fun idx ->
          bind "arr" (transl arg1) (fun arr ->
            Csequence(make_checkbound dbg [addr_array_length(header arr); idx],
                      addr_array_ref arr idx)))
      | Pfloatarray ->
          box_float(
            bind "index" (transl arg2) (fun idx ->
            bind "arr" (transl arg1) (fun arr ->
              Csequence(make_checkbound dbg
                                        [float_array_length(header arr); idx],
                        unboxed_float_array_ref arr idx))))
      end

  (* Operations on bitvects *)
  | Pbittest ->
      bind "index" (untag_int(transl arg2)) (fun idx ->
        tag_int(
          Cop(Cand, [Cop(Clsr, [Cop(Cload Byte_unsigned,
                                    [add_int (transl arg1)
                                      (Cop(Clsr, [idx; Cconst_int 3]))]);
                                Cop(Cand, [idx; Cconst_int 7])]);
                     Cconst_int 1])))

  (* Boxed integers *)
  | Paddbint bi ->
      box_int bi (Cop(Caddi,
                      [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | Psubbint bi ->
      box_int bi (Cop(Csubi,
                      [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | Pmulbint bi ->
      box_int bi (Cop(Cmuli,
                      [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | Pdivbint bi ->
      box_int bi (safe_div_bi
                      (transl_unbox_int bi arg1) (transl_unbox_int bi arg2)
                      bi dbg)
  | Pmodbint bi ->
      box_int bi (safe_mod_bi
                      (transl_unbox_int bi arg1) (transl_unbox_int bi arg2)
                      bi dbg)
  | Pandbint bi ->
      box_int bi (Cop(Cand,
                     [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | Porbint bi ->
      box_int bi (Cop(Cor,
                     [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | Pxorbint bi ->
      box_int bi (Cop(Cxor,
                     [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | Plslbint bi ->
      box_int bi (Cop(Clsl,
                     [transl_unbox_int bi arg1; untag_int(transl arg2)]))
  | Plsrbint bi ->
      box_int bi (Cop(Clsr,
                     [make_unsigned_int bi (transl_unbox_int bi arg1);
                      untag_int(transl arg2)]))
  | Pasrbint bi ->
      box_int bi (Cop(Casr,
                     [transl_unbox_int bi arg1; untag_int(transl arg2)]))
  | Pbintcomp(bi, cmp) ->
      tag_int (Cop(Ccmpi(transl_comparison cmp),
                     [transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
  | _ ->
      fatal_error "Cmmgen.transl_prim_2"

and transl_prim_3 p arg1 arg2 arg3 dbg =
  match p with
  (* String operations *)
    Pstringsetu ->
      return_unit(Cop(Cstore Byte_unsigned,
                      [add_int (transl arg1) (untag_int(transl arg2));
                        untag_int(transl arg3)]))
  | Pstringsets ->
      return_unit
        (bind "str" (transl arg1) (fun str ->
          bind "index" (untag_int (transl arg2)) (fun idx ->
            Csequence(
              make_checkbound dbg [string_length str; idx],
              Cop(Cstore Byte_unsigned,
                  [add_int str idx; untag_int(transl arg3)])))))

  (* Array operations *)
  | Parraysetu kind ->
      return_unit(begin match kind with
        Pgenarray ->
          bind "newval" (transl arg3) (fun newval ->
            bind "index" (transl arg2) (fun index ->
              bind "arr" (transl arg1) (fun arr ->
                Cifthenelse(is_addr_array_ptr arr,
                            addr_array_set arr index newval,
                            float_array_set arr index (unbox_float newval)))))
      | Paddrarray ->
          addr_array_set (transl arg1) (transl arg2) (transl arg3)
      | Pintarray ->
          int_array_set (transl arg1) (transl arg2) (transl arg3)
      | Pfloatarray ->
          float_array_set (transl arg1) (transl arg2) (transl_unbox_float arg3)
      end)
  | Parraysets kind ->
      return_unit(begin match kind with
      | Pgenarray ->
          bind "newval" (transl arg3) (fun newval ->
          bind "index" (transl arg2) (fun idx ->
          bind "arr" (transl arg1) (fun arr ->
          bind "header" (header arr) (fun hdr ->
            if wordsize_shift = numfloat_shift then
              Csequence(make_checkbound dbg [addr_array_length hdr; idx],
                        Cifthenelse(is_addr_array_hdr hdr,
                                    addr_array_set arr idx newval,
                                    float_array_set arr idx
                                                    (unbox_float newval)))
            else
              Cifthenelse(is_addr_array_hdr hdr,
                Csequence(make_checkbound dbg [addr_array_length hdr; idx],
                          addr_array_set arr idx newval),
                Csequence(make_checkbound dbg [float_array_length hdr; idx],
                          float_array_set arr idx
                                          (unbox_float newval)))))))
      | Paddrarray ->
          bind "newval" (transl arg3) (fun newval ->
          bind "index" (transl arg2) (fun idx ->
          bind "arr" (transl arg1) (fun arr ->
            Csequence(make_checkbound dbg [addr_array_length(header arr); idx],
                      addr_array_set arr idx newval))))
      | Pintarray ->
          bind "newval" (transl arg3) (fun newval ->
          bind "index" (transl arg2) (fun idx ->
          bind "arr" (transl arg1) (fun arr ->
            Csequence(make_checkbound dbg [addr_array_length(header arr); idx],
                      int_array_set arr idx newval))))
      | Pfloatarray ->
          bind "newval" (transl_unbox_float arg3) (fun newval ->
          bind "index" (transl arg2) (fun idx ->
          bind "arr" (transl arg1) (fun arr ->
            Csequence(make_checkbound dbg [float_array_length(header arr);idx],
                      float_array_set arr idx newval))))
      end)

  | Pstring_set_16(unsafe) ->
     return_unit
       (bind "str" (transl arg1) (fun str ->
        bind "index" (untag_int (transl arg2)) (fun idx ->
        bind "newval" (untag_int (transl arg3)) (fun newval ->
          check_bound unsafe dbg (sub_int (string_length str) (Cconst_int 1))
                      idx (unaligned_set_16 str idx newval)))))

  | Pbigstring_set_16(unsafe) ->
     return_unit
       (bind "ba" (transl arg1) (fun ba ->
        bind "index" (untag_int (transl arg2)) (fun idx ->
        bind "newval" (untag_int (transl arg3)) (fun newval ->
        bind "ba_data" (Cop(Cload Word, [field_address ba 1])) (fun ba_data ->
          check_bound unsafe dbg (sub_int (Cop(Cload Word,[field_address ba 5]))
                                          (Cconst_int 1))
                      idx (unaligned_set_16 ba_data idx newval))))))

  | Pstring_set_32(unsafe) ->
     return_unit
       (bind "str" (transl arg1) (fun str ->
        bind "index" (untag_int (transl arg2)) (fun idx ->
        bind "newval" (transl_unbox_int Pint32 arg3) (fun newval ->
          check_bound unsafe dbg (sub_int (string_length str) (Cconst_int 3))
                      idx (unaligned_set_32 str idx newval)))))

  | Pbigstring_set_32(unsafe) ->
     return_unit
       (bind "ba" (transl arg1) (fun ba ->
        bind "index" (untag_int (transl arg2)) (fun idx ->
        bind "newval" (transl_unbox_int Pint32 arg3) (fun newval ->
        bind "ba_data" (Cop(Cload Word, [field_address ba 1])) (fun ba_data ->
          check_bound unsafe dbg (sub_int (Cop(Cload Word,[field_address ba 5]))
                                          (Cconst_int 3))
                      idx (unaligned_set_32 ba_data idx newval))))))

  | Pstring_set_64(unsafe) ->
     return_unit
       (bind "str" (transl arg1) (fun str ->
        bind "index" (untag_int (transl arg2)) (fun idx ->
        bind "newval" (transl_unbox_int Pint64 arg3) (fun newval ->
          check_bound unsafe dbg (sub_int (string_length str) (Cconst_int 7))
                      idx (unaligned_set_64 str idx newval)))))

  | Pbigstring_set_64(unsafe) ->
     return_unit
       (bind "ba" (transl arg1) (fun ba ->
        bind "index" (untag_int (transl arg2)) (fun idx ->
        bind "newval" (transl_unbox_int Pint64 arg3) (fun newval ->
        bind "ba_data" (Cop(Cload Word, [field_address ba 1])) (fun ba_data ->
          check_bound unsafe dbg (sub_int (Cop(Cload Word,[field_address ba 5]))
                                          (Cconst_int 7)) idx
                      (unaligned_set_64 ba_data idx newval))))))

  | _ ->
    fatal_error "Cmmgen.transl_prim_3"

and transl_unbox_float = function
    Uconst(Uconst_ref(_, Uconst_float f)) -> Cconst_float f
  | exp -> unbox_float(transl exp)

and transl_unbox_int bi = function
    Uconst(Uconst_ref(_, Uconst_int32 n)) ->
      Cconst_natint (Nativeint.of_int32 n)
  | Uconst(Uconst_ref(_, Uconst_nativeint n)) ->
      Cconst_natint n
  | Uconst(Uconst_ref(_, Uconst_int64 n)) ->
      assert (size_int = 8); Cconst_natint (Int64.to_nativeint n)
  | Uprim(Pbintofint bi',[Uconst(Uconst_int i)],_) when bi = bi' ->
      Cconst_int i
  | exp -> unbox_int bi (transl exp)

and transl_unbox_let box_fn unbox_fn transl_unbox_fn box_chunk box_offset
                     id exp body =
  let unboxed_id = Ident.create (Ident.name id) in
  let trbody1 = transl body in
  let (trbody2, need_boxed, is_assigned) =
    subst_boxed_number unbox_fn id unboxed_id box_chunk box_offset trbody1 in
  if need_boxed && is_assigned then
    Clet(id, transl exp, trbody1)
  else
    Clet(unboxed_id, transl_unbox_fn exp,
         if need_boxed
         then Clet(id, box_fn(Cvar unboxed_id), trbody2)
         else trbody2)

and make_catch ncatch body handler = match body with
| Cexit (nexit,[]) when nexit=ncatch -> handler
| _ ->  Ccatch (ncatch, [], body, handler)

and make_catch2 mk_body handler = match handler with
| Cexit (_,[])|Ctuple []|Cconst_int _|Cconst_pointer _ ->
    mk_body handler
| _ ->
    let nfail = next_raise_count () in
    make_catch
      nfail
      (mk_body (Cexit (nfail,[])))
      handler

and exit_if_true cond nfail otherwise =
  match cond with
  | Uconst (Uconst_ptr 0) -> otherwise
  | Uconst (Uconst_ptr 1) -> Cexit (nfail,[])
  | Uprim(Psequor, [arg1; arg2], _) ->
      exit_if_true arg1 nfail (exit_if_true arg2 nfail otherwise)
  | Uprim(Psequand, _, _) ->
      begin match otherwise with
      | Cexit (raise_num,[]) ->
          exit_if_false cond (Cexit (nfail,[])) raise_num
      | _ ->
          let raise_num = next_raise_count () in
          make_catch
            raise_num
            (exit_if_false cond (Cexit (nfail,[])) raise_num)
            otherwise
      end
  | Uprim(Pnot, [arg], _) ->
      exit_if_false arg otherwise nfail
  | Uifthenelse (cond, ifso, ifnot) ->
      make_catch2
        (fun shared ->
          Cifthenelse
            (test_bool (transl cond),
             exit_if_true ifso nfail shared,
             exit_if_true ifnot nfail shared))
        otherwise
  | _ ->
      Cifthenelse(test_bool(transl cond), Cexit (nfail, []), otherwise)

and exit_if_false cond otherwise nfail =
  match cond with
  | Uconst (Uconst_ptr 0) -> Cexit (nfail,[])
  | Uconst (Uconst_ptr 1) -> otherwise
  | Uprim(Psequand, [arg1; arg2], _) ->
      exit_if_false arg1 (exit_if_false arg2 otherwise nfail) nfail
  | Uprim(Psequor, _, _) ->
      begin match otherwise with
      | Cexit (raise_num,[]) ->
          exit_if_true cond raise_num (Cexit (nfail,[]))
      | _ ->
          let raise_num = next_raise_count () in
          make_catch
            raise_num
            (exit_if_true cond raise_num (Cexit (nfail,[])))
            otherwise
      end
  | Uprim(Pnot, [arg], _) ->
      exit_if_true arg nfail otherwise
  | Uifthenelse (cond, ifso, ifnot) ->
      make_catch2
        (fun shared ->
          Cifthenelse
            (test_bool (transl cond),
             exit_if_false ifso shared nfail,
             exit_if_false ifnot shared nfail))
        otherwise
  | _ ->
      Cifthenelse(test_bool(transl cond), otherwise, Cexit (nfail, []))

and transl_switch arg index cases = match Array.length cases with
| 0 -> fatal_error "Cmmgen.transl_switch"
| 1 -> transl cases.(0)
| _ ->
    let cases = Array.map transl cases in
    let store = StoreExp.mk_store () in
    let index =
      Array.map
        (fun j -> store.Switch.act_store cases.(j))
        index in
    let n_index = Array.length index in
    let inters = ref []
    and this_high = ref (n_index-1)
    and this_low = ref (n_index-1)
    and this_act = ref index.(n_index-1) in
    for i = n_index-2 downto 0 do
      let act = index.(i) in
      if act = !this_act then
        decr this_low
      else begin
        inters := (!this_low, !this_high, !this_act) :: !inters ;
        this_high := i ;
        this_low := i ;
        this_act := act
      end
    done ;
    inters := (0, !this_high, !this_act) :: !inters ;
    match !inters with
    | [_] -> cases.(0)
    | inters ->
        bind "switcher" arg
          (fun a ->
            SwitcherBlocks.zyva
              (0,n_index-1)
              a
              (Array.of_list inters) store)

and transl_letrec bindings cont =
  let bsz =
    List.map (fun (id, exp) -> (id, exp, expr_size Ident.empty exp)) bindings in
  let op_alloc prim sz =
    Cop(Cextcall(prim, typ_addr, true, Debuginfo.none), [int_const sz]) in
  let rec init_blocks = function
    | [] -> fill_nonrec bsz
    | (id, exp, RHS_block sz) :: rem ->
        Clet(id, op_alloc "caml_alloc_dummy" sz, init_blocks rem)
    | (id, exp, RHS_floatblock sz) :: rem ->
        Clet(id, op_alloc "caml_alloc_dummy_float" sz, init_blocks rem)
    | (id, exp, RHS_nonrec) :: rem ->
        Clet (id, Cconst_int 0, init_blocks rem)
  and fill_nonrec = function
    | [] -> fill_blocks bsz
    | (id, exp, (RHS_block _ | RHS_floatblock _)) :: rem ->
        fill_nonrec rem
    | (id, exp, RHS_nonrec) :: rem ->
        Clet (id, transl exp, fill_nonrec rem)
  and fill_blocks = function
    | [] -> cont
    | (id, exp, (RHS_block _ | RHS_floatblock _)) :: rem ->
        let op =
          Cop(Cextcall("caml_update_dummy", typ_void, false, Debuginfo.none),
              [Cvar id; transl exp]) in
        Csequence(op, fill_blocks rem)
    | (id, exp, RHS_nonrec) :: rem ->
        fill_blocks rem
  in init_blocks bsz

(* Translate a function definition *)

let transl_function f =
  Cfunction {fun_name = f.label;
             fun_args = List.map (fun id -> (id, typ_addr)) f.params;
             fun_body = transl f.body;
             fun_fast = !Clflags.optimize_for_speed;
             fun_dbg  = f.dbg; }

(* Translate all function definitions *)

module StringSet =
  Set.Make(struct
    type t = string
    let compare (x:t) y = compare x y
  end)

let rec transl_all_functions already_translated cont =
  try
    let f = Queue.take functions in
    if StringSet.mem f.label already_translated then
      transl_all_functions already_translated cont
    else begin
      transl_all_functions
        (StringSet.add f.label already_translated)
        (transl_function f :: cont)
    end
  with Queue.Empty ->
    cont

(* Emit structured constants *)

let rec emit_structured_constant symb cst cont =
  let emit_block white_header symb cont =
    (* Headers for structured constants must be marked black in case we
       are in no-naked-pointers mode.  See [caml_darken]. *)
    let black_header = Nativeint.logor white_header caml_black in
    Cint black_header :: Cdefine_symbol symb :: cont
  in
  match cst with
  | Uconst_float s->
      emit_block float_header symb (Cdouble s :: cont)
  | Uconst_string s ->
      emit_block (string_header (String.length s)) symb
        (emit_string_constant s cont)
  | Uconst_int32 n ->
      emit_block boxedint32_header symb
        (emit_boxed_int32_constant n cont)
  | Uconst_int64 n ->
      emit_block boxedint64_header symb
        (emit_boxed_int64_constant n cont)
  | Uconst_nativeint n ->
      emit_block boxedintnat_header symb
        (emit_boxed_nativeint_constant n cont)
  | Uconst_block (tag, csts) ->
      let cont = List.fold_right emit_constant csts cont in
      emit_block (block_header tag (List.length csts)) symb cont
  | Uconst_float_array fields ->
      emit_block (floatarray_header (List.length fields)) symb
        (Misc.map_end (fun f -> Cdouble f) fields cont)

and emit_constant cst cont =
  match cst with
  | Uconst_int n | Uconst_ptr n ->
      Cint(Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n)
      :: cont
  | Uconst_ref (label, _) ->
      Csymbol_address label :: cont

and emit_string_constant s cont =
  let n = size_int - 1 - (String.length s) mod size_int in
  Cstring s :: Cskip n :: Cint8 n :: cont

and emit_boxed_int32_constant n cont =
  let n = Nativeint.of_int32 n in
  if size_int = 8 then
    Csymbol_address("caml_int32_ops") :: Cint32 n :: Cint32 0n :: cont
  else
    Csymbol_address("caml_int32_ops") :: Cint n :: cont

and emit_boxed_nativeint_constant n cont =
  Csymbol_address("caml_nativeint_ops") :: Cint n :: cont

and emit_boxed_int64_constant n cont =
  let lo = Int64.to_nativeint n in
  if size_int = 8 then
    Csymbol_address("caml_int64_ops") :: Cint lo :: cont
  else begin
    let hi = Int64.to_nativeint (Int64.shift_right n 32) in
    if big_endian then
      Csymbol_address("caml_int64_ops") :: Cint hi :: Cint lo :: cont
    else
      Csymbol_address("caml_int64_ops") :: Cint lo :: Cint hi :: cont
  end

(* Emit constant closures *)

let emit_constant_closure symb fundecls cont =
  match fundecls with
    [] -> assert false
  | f1 :: remainder ->
      let rec emit_others pos = function
        [] -> cont
      | f2 :: rem ->
          if f2.arity = 1 then
            Cint(infix_header pos) ::
            Csymbol_address f2.label ::
            Cint 3n ::
            emit_others (pos + 3) rem
          else
            Cint(infix_header pos) ::
            Csymbol_address(curry_function f2.arity) ::
            Cint(Nativeint.of_int (f2.arity lsl 1 + 1)) ::
            Csymbol_address f2.label ::
            emit_others (pos + 4) rem in
      Cint(black_closure_header (fundecls_size fundecls)) ::
      Cdefine_symbol symb ::
      if f1.arity = 1 then
        Csymbol_address f1.label ::
        Cint 3n ::
        emit_others 3 remainder
      else
        Csymbol_address(curry_function f1.arity) ::
        Cint(Nativeint.of_int (f1.arity lsl 1 + 1)) ::
        Csymbol_address f1.label ::
        emit_others 4 remainder

(* Emit all structured constants *)

let emit_all_constants cont =
  let c = ref cont in
  List.iter
    (fun (lbl, global, cst) ->
       let cst = emit_structured_constant lbl cst [] in
       let cst = if global then
         Cglobal_symbol lbl :: cst
       else cst in
         c:= Cdata(cst):: !c)
    (Compilenv.structured_constants());
  List.iter
    (fun (symb, fundecls) ->
        c := Cdata(emit_constant_closure symb fundecls []) :: !c)
    !constant_closures;
  constant_closures := [];
  !c

(* Translate a compilation unit *)

let compunit size ulam =
  let glob = Compilenv.make_symbol None in
  let init_code = transl ulam in
  let c1 = [Cfunction {fun_name = Compilenv.make_symbol (Some "entry");
                       fun_args = [];
                       fun_body = init_code; fun_fast = false;
                       fun_dbg  = Debuginfo.none }] in
  let c2 = transl_all_functions StringSet.empty c1 in
  let c3 = emit_all_constants c2 in
  let space =
    (* These words will be registered as roots and as such must contain
       valid values, in case we are in no-naked-pointers mode.  Likewise
       the block header must be black, below (see [caml_darken]), since
       the overall record may be referenced. *)
    Array.to_list
      (Array.init size (fun _index ->
        Cint (Nativeint.of_int 1 (* Val_unit *))))
  in
  Cdata ([Cint(black_block_header 0 size);
         Cglobal_symbol glob;
         Cdefine_symbol glob] @ space) :: c3

(*
CAMLprim value caml_cache_public_method (value meths, value tag, value *cache)
{
  int li = 3, hi = Field(meths,0), mi;
  while (li < hi) { // no need to check the 1st time
    mi = ((li+hi) >> 1) | 1;
    if (tag < Field(meths,mi)) hi = mi-2;
    else li = mi;
  }
  *cache = (li-3)*sizeof(value)+1;
  return Field (meths, li-1);
}
*)

let cache_public_method meths tag cache =
  let raise_num = next_raise_count () in
  let li = Ident.create "li" and hi = Ident.create "hi"
  and mi = Ident.create "mi" and tagged = Ident.create "tagged" in
  Clet (
  li, Cconst_int 3,
  Clet (
  hi, Cop(Cload Word, [meths]),
  Csequence(
  Ccatch
    (raise_num, [],
     Cloop
       (Clet(
        mi,
        Cop(Cor,
            [Cop(Clsr, [Cop(Caddi, [Cvar li; Cvar hi]); Cconst_int 1]);
             Cconst_int 1]),
        Csequence(
        Cifthenelse
          (Cop (Ccmpi Clt,
                [tag;
                 Cop(Cload Word,
                     [Cop(Cadda,
                          [meths; lsl_const (Cvar mi) log2_size_addr])])]),
           Cassign(hi, Cop(Csubi, [Cvar mi; Cconst_int 2])),
           Cassign(li, Cvar mi)),
        Cifthenelse
          (Cop(Ccmpi Cge, [Cvar li; Cvar hi]), Cexit (raise_num, []),
           Ctuple [])))),
     Ctuple []),
  Clet (
  tagged, Cop(Cadda, [lsl_const (Cvar li) log2_size_addr;
                      Cconst_int(1 - 3 * size_addr)]),
  Csequence(Cop (Cstore Word, [cache; Cvar tagged]),
            Cvar tagged)))))

(* Generate an application function:
     (defun caml_applyN (a1 ... aN clos)
       (if (= clos.arity N)
         (app clos.direct a1 ... aN clos)
         (let (clos1 (app clos.code a1 clos)
               clos2 (app clos1.code a2 clos)
               ...
               closN-1 (app closN-2.code aN-1 closN-2))
           (app closN-1.code aN closN-1))))
*)

let apply_function_body arity =
  let arg = Array.make arity (Ident.create "arg") in
  for i = 1 to arity - 1 do arg.(i) <- Ident.create "arg" done;
  let clos = Ident.create "clos" in
  let rec app_fun clos n =
    if n = arity-1 then
      Cop(Capply(typ_addr, Debuginfo.none),
          [get_field (Cvar clos) 0; Cvar arg.(n); Cvar clos])
    else begin
      let newclos = Ident.create "clos" in
      Clet(newclos,
           Cop(Capply(typ_addr, Debuginfo.none),
               [get_field (Cvar clos) 0; Cvar arg.(n); Cvar clos]),
           app_fun newclos (n+1))
    end in
  let args = Array.to_list arg in
  let all_args = args @ [clos] in
  (args, clos,
   if arity = 1 then app_fun clos 0 else
   Cifthenelse(
   Cop(Ccmpi Ceq, [get_field (Cvar clos) 1; int_const arity]),
   Cop(Capply(typ_addr, Debuginfo.none),
       get_field (Cvar clos) 2 :: List.map (fun s -> Cvar s) all_args),
   app_fun clos 0))

let send_function arity =
  let (args, clos', body) = apply_function_body (1+arity) in
  let cache = Ident.create "cache"
  and obj = List.hd args
  and tag = Ident.create "tag" in
  let clos =
    let cache = Cvar cache and obj = Cvar obj and tag = Cvar tag in
    let meths = Ident.create "meths" and cached = Ident.create "cached" in
    let real = Ident.create "real" in
    let mask = get_field (Cvar meths) 1 in
    let cached_pos = Cvar cached in
    let tag_pos = Cop(Cadda, [Cop (Cadda, [cached_pos; Cvar meths]);
                              Cconst_int(3*size_addr-1)]) in
    let tag' = Cop(Cload Word, [tag_pos]) in
    Clet (
    meths, Cop(Cload Word, [obj]),
    Clet (
    cached, Cop(Cand, [Cop(Cload Word, [cache]); mask]),
    Clet (
    real,
    Cifthenelse(Cop(Ccmpa Cne, [tag'; tag]),
                cache_public_method (Cvar meths) tag cache,
                cached_pos),
    Cop(Cload Word, [Cop(Cadda, [Cop (Cadda, [Cvar real; Cvar meths]);
                                 Cconst_int(2*size_addr-1)])]))))

  in
  let body = Clet(clos', clos, body) in
  let fun_args =
    [obj, typ_addr; tag, typ_int; cache, typ_addr]
    @ List.map (fun id -> (id, typ_addr)) (List.tl args) in
  Cfunction
   {fun_name = "caml_send" ^ string_of_int arity;
    fun_args = fun_args;
    fun_body = body;
    fun_fast = true;
    fun_dbg  = Debuginfo.none }

let apply_function arity =
  let (args, clos, body) = apply_function_body arity in
  let all_args = args @ [clos] in
  Cfunction
   {fun_name = "caml_apply" ^ string_of_int arity;
    fun_args = List.map (fun id -> (id, typ_addr)) all_args;
    fun_body = body;
    fun_fast = true;
    fun_dbg  = Debuginfo.none }

(* Generate tuplifying functions:
      (defun caml_tuplifyN (arg clos)
        (app clos.direct #0(arg) ... #N-1(arg) clos)) *)

let tuplify_function arity =
  let arg = Ident.create "arg" in
  let clos = Ident.create "clos" in
  let rec access_components i =
    if i >= arity
    then []
    else get_field (Cvar arg) i :: access_components(i+1) in
  Cfunction
   {fun_name = "caml_tuplify" ^ string_of_int arity;
    fun_args = [arg, typ_addr; clos, typ_addr];
    fun_body =
      Cop(Capply(typ_addr, Debuginfo.none),
          get_field (Cvar clos) 2 :: access_components 0 @ [Cvar clos]);
    fun_fast = true;
    fun_dbg  = Debuginfo.none }

(* Generate currying functions:
      (defun caml_curryN (arg clos)
         (alloc HDR caml_curryN_1 <arity (N-1)> caml_curry_N_1_app arg clos))
      (defun caml_curryN_1 (arg clos)
         (alloc HDR caml_curryN_2 <arity (N-2)> caml_curry_N_2_app arg clos))
      ...
      (defun caml_curryN_N-1 (arg clos)
         (let (closN-2 clos.vars[1]
               closN-3 closN-2.vars[1]
               ...
               clos1 clos2.vars[1]
               clos clos1.vars[1])
           (app clos.direct
                clos1.vars[0] ... closN-2.vars[0] clos.vars[0] arg clos)))

    Special "shortcut" functions are also generated to handle the
    case where a partially applied function is applied to all remaining
    arguments in one go.  For instance:
      (defun caml_curry_N_1_app (arg2 ... argN clos)
        (let clos' clos.vars[1]
           (app clos'.direct clos.vars[0] arg2 ... argN clos')))

    Those shortcuts may lead to a quadratic number of application
    primitives being generated in the worst case, which resulted in
    linking time blowup in practice (PR#5933), so we only generate and
    use them when below a fixed arity 'max_arity_optimized'.
*)

let max_arity_optimized = 15
let final_curry_function arity =
  let last_arg = Ident.create "arg" in
  let last_clos = Ident.create "clos" in
  let rec curry_fun args clos n =
    if n = 0 then
      Cop(Capply(typ_addr, Debuginfo.none),
          get_field (Cvar clos) 2 ::
          args @ [Cvar last_arg; Cvar clos])
    else
      if n = arity - 1 || arity > max_arity_optimized then
        begin
      let newclos = Ident.create "clos" in
      Clet(newclos,
           get_field (Cvar clos) 3,
           curry_fun (get_field (Cvar clos) 2 :: args) newclos (n-1))
        end else
        begin
          let newclos = Ident.create "clos" in
          Clet(newclos,
               get_field (Cvar clos) 4,
               curry_fun (get_field (Cvar clos) 3 :: args) newclos (n-1))
    end in
  Cfunction
   {fun_name = "caml_curry" ^ string_of_int arity ^
               "_" ^ string_of_int (arity-1);
    fun_args = [last_arg, typ_addr; last_clos, typ_addr];
    fun_body = curry_fun [] last_clos (arity-1);
    fun_fast = true;
    fun_dbg  = Debuginfo.none }

let rec intermediate_curry_functions arity num =
  if num = arity - 1 then
    [final_curry_function arity]
  else begin
    let name1 = "caml_curry" ^ string_of_int arity in
    let name2 = if num = 0 then name1 else name1 ^ "_" ^ string_of_int num in
    let arg = Ident.create "arg" and clos = Ident.create "clos" in
    Cfunction
     {fun_name = name2;
      fun_args = [arg, typ_addr; clos, typ_addr];
      fun_body =
         if arity - num > 2 && arity <= max_arity_optimized then
           Cop(Calloc,
               [alloc_closure_header 5;
                Cconst_symbol(name1 ^ "_" ^ string_of_int (num+1));
                int_const (arity - num - 1);
                Cconst_symbol(name1 ^ "_" ^ string_of_int (num+1) ^ "_app");
                Cvar arg; Cvar clos])
         else
           Cop(Calloc,
                     [alloc_closure_header 4;
                      Cconst_symbol(name1 ^ "_" ^ string_of_int (num+1));
                      int_const 1; Cvar arg; Cvar clos]);
      fun_fast = true;
      fun_dbg  = Debuginfo.none }
    ::
      (if arity <= max_arity_optimized && arity - num > 2 then
          let rec iter i =
            if i <= arity then
              let arg = Ident.create (Printf.sprintf "arg%d" i) in
              (arg, typ_addr) :: iter (i+1)
            else []
          in
          let direct_args = iter (num+2) in
          let rec iter i args clos =
            if i = 0 then
              Cop(Capply(typ_addr, Debuginfo.none),
                  (get_field (Cvar clos) 2) :: args @ [Cvar clos])
            else
              let newclos = Ident.create "clos" in
              Clet(newclos,
                   get_field (Cvar clos) 4,
                   iter (i-1) (get_field (Cvar clos) 3 :: args) newclos)
          in
          let cf =
            Cfunction
              {fun_name = name1 ^ "_" ^ string_of_int (num+1) ^ "_app";
               fun_args = direct_args @ [clos, typ_addr];
               fun_body = iter (num+1)
                  (List.map (fun (arg,_) -> Cvar arg) direct_args) clos;
               fun_fast = true;
               fun_dbg = Debuginfo.none }
          in
          cf :: intermediate_curry_functions arity (num+1)
       else
          intermediate_curry_functions arity (num+1))
  end

let curry_function arity =
  if arity >= 0
  then intermediate_curry_functions arity 0
  else [tuplify_function (-arity)]


module IntSet = Set.Make(
  struct
    type t = int
    let compare (x:t) y = compare x y
  end)

let default_apply = IntSet.add 2 (IntSet.add 3 IntSet.empty)
  (* These apply funs are always present in the main program because
     the run-time system needs them (cf. asmrun/<arch>.S) . *)

let generic_functions shared units =
  let (apply,send,curry) =
    List.fold_left
      (fun (apply,send,curry) ui ->
         List.fold_right IntSet.add ui.ui_apply_fun apply,
         List.fold_right IntSet.add ui.ui_send_fun send,
         List.fold_right IntSet.add ui.ui_curry_fun curry)
      (IntSet.empty,IntSet.empty,IntSet.empty)
      units in
  let apply = if shared then apply else IntSet.union apply default_apply in
  let accu = IntSet.fold (fun n accu -> apply_function n :: accu) apply [] in
  let accu = IntSet.fold (fun n accu -> send_function n :: accu) send accu in
  IntSet.fold (fun n accu -> curry_function n @ accu) curry accu

(* Generate the entry point *)

let entry_point namelist =
  let incr_global_inited =
    Cop(Cstore Word,
        [Cconst_symbol "caml_globals_inited";
         Cop(Caddi, [Cop(Cload Word, [Cconst_symbol "caml_globals_inited"]);
                     Cconst_int 1])]) in
  let body =
    List.fold_right
      (fun name next ->
        let entry_sym = Compilenv.make_symbol ~unitname:name (Some "entry") in
        Csequence(Cop(Capply(typ_void, Debuginfo.none),
                         [Cconst_symbol entry_sym]),
                  Csequence(incr_global_inited, next)))
      namelist (Cconst_int 1) in
  Cfunction {fun_name = "caml_program";
             fun_args = [];
             fun_body = body;
             fun_fast = false;
             fun_dbg  = Debuginfo.none }

(* Generate the table of globals *)

let cint_zero = Cint 0n

let global_table namelist =
  let mksym name =
    Csymbol_address (Compilenv.make_symbol ~unitname:name None)
  in
  Cdata(Cglobal_symbol "caml_globals" ::
        Cdefine_symbol "caml_globals" ::
        List.map mksym namelist @
        [cint_zero])

let reference_symbols namelist =
  let mksym name = Csymbol_address name in
  Cdata(List.map mksym namelist)

let global_data name v =
  Cdata(Cglobal_symbol name ::
          emit_structured_constant name
          (Uconst_string (Marshal.to_string v [])) [])

let globals_map v = global_data "caml_globals_map" v

(* Generate the master table of frame descriptors *)

let frame_table namelist =
  let mksym name =
    Csymbol_address (Compilenv.make_symbol ~unitname:name (Some "frametable"))
  in
  Cdata(Cglobal_symbol "caml_frametable" ::
        Cdefine_symbol "caml_frametable" ::
        List.map mksym namelist
        @ [cint_zero])

(* Generate the table of module data and code segments *)

let segment_table namelist symbol begname endname =
  let addsyms name lst =
    Csymbol_address (Compilenv.make_symbol ~unitname:name (Some begname)) ::
    Csymbol_address (Compilenv.make_symbol ~unitname:name (Some endname)) ::
    lst
  in
  Cdata(Cglobal_symbol symbol ::
        Cdefine_symbol symbol ::
        List.fold_right addsyms namelist [cint_zero])

let data_segment_table namelist =
  segment_table namelist "caml_data_segments" "data_begin" "data_end"

let code_segment_table namelist =
  segment_table namelist "caml_code_segments" "code_begin" "code_end"

(* Initialize a predefined exception *)

let predef_exception i name =
  let symname = "caml_exn_" ^ name in
  let cst = Uconst_string name in
  let label = Compilenv.new_const_symbol () in
  let cont = emit_structured_constant label cst [] in
  Cdata(Cglobal_symbol symname ::
        emit_structured_constant symname
          (Uconst_block(Obj.object_tag,
                       [
                         Uconst_ref(label, cst);
                         Uconst_int (-i-1);
                       ])) cont)

(* Header for a plugin *)

let mapflat f l = List.flatten (List.map f l)

let plugin_header units =
  let mk (ui,crc) =
    { dynu_name = ui.ui_name;
      dynu_crc = crc;
      dynu_imports_cmi = ui.ui_imports_cmi;
      dynu_imports_cmx = ui.ui_imports_cmx;
      dynu_defines = ui.ui_defines
    } in
  global_data "caml_plugin_header"
    { dynu_magic = Config.cmxs_magic_number; dynu_units = List.map mk units }